WO2019033768A1 - 一种螺旋桨、动力系统以及无人飞行器 - Google Patents

一种螺旋桨、动力系统以及无人飞行器 Download PDF

Info

Publication number
WO2019033768A1
WO2019033768A1 PCT/CN2018/082658 CN2018082658W WO2019033768A1 WO 2019033768 A1 WO2019033768 A1 WO 2019033768A1 CN 2018082658 W CN2018082658 W CN 2018082658W WO 2019033768 A1 WO2019033768 A1 WO 2019033768A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
power unit
hub
mounting member
connecting portion
Prior art date
Application number
PCT/CN2018/082658
Other languages
English (en)
French (fr)
Inventor
罗东东
吴兴文
苏文兵
孙维
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019033768A1 publication Critical patent/WO2019033768A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/23Transmission of mechanical power to rotors or propellers with each propulsion means having an individual motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • B64C11/04Blade mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/50Blades foldable to facilitate stowage of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/291Detachable rotors or rotor supports
    • B64U30/292Rotors or rotor supports specially adapted for quick release

Definitions

  • the present application relates to the field of unmanned aerial vehicles, and more particularly to a propeller, a power system, and an unmanned aerial vehicle.
  • unmanned aerial vehicles have been favored by more and more users.
  • the blades and the hub of the propeller are usually integrally injection molded, so the blades of the propeller cannot be folded, resulting in a large size, inconvenient carrying and low space utilization of the drone.
  • the technical problem to be solved by the present application is to provide a propeller, a power system and an unmanned aerial vehicle.
  • the propeller can be simple, quick and convenient by providing a quick-release structure on the propeller and the rotor of the power unit and providing elastic components on the rotor.
  • the assembly and disassembly is carried out on the unmanned aerial vehicle.
  • the present application provides a propeller for connecting to a power unit, the propeller including a hub and at least two blades,
  • the at least two blades are foldably mounted on the hub by pivoting;
  • the hub is provided with a fastening member for connecting to the power device
  • the power device is provided with a mounting member corresponding to the fastening member
  • the power device further comprises a carrying bracket, the mounting member is fixed to the power device by the carrying bracket,
  • the fastening member is connected to the mounting member by a snap fit.
  • each of the blades includes a blade and a first connecting portion disposed at one end of the blade, the hub is provided with a second connecting portion corresponding to the first connecting portion, and the second connecting portion and the first connecting portion pass through the pivoting member Pivoted together.
  • pivoting member is a metal piece and is integrally molded with the blade.
  • first connecting portion of the blade includes an upper flange and a lower flange
  • second connecting portion of the hub is a fixing portion
  • the fixing portion is movably mounted between the upper flange and the lower flange .
  • first connecting portion of the blade is a fixing portion
  • second connecting portion of the hub includes an upper flange and a lower flange
  • the fixing portion is movably mounted between the upper flange and the lower flange
  • the mounting member of the power unit includes a plurality of hook-shaped fastening portions
  • the fastening member of the propeller includes a plurality of guiding holes corresponding to the mounting member.
  • the fastening member of the propeller includes a plurality of hook-shaped fastening portions
  • the mounting member of the power device includes a plurality of guiding holes corresponding to the fastening members.
  • the mounting member further includes a stroke groove, the elastic assembly including a button and a spring, wherein the button is reciprocable up and down within the stroke groove, the spring being mounted between the button and the carrier bracket.
  • the hub further includes a spinner dome and a stroke hole
  • the elastic assembly includes a travel boss and a spring
  • the travel boss is disposed on the mounting member
  • the spring is mounted in the hub and sleeved on the stroke convex
  • the spring is coaxial with the motor shaft of the power unit.
  • the present application also provides a power system including a power unit and a propeller according to the preceding claims, the power unit including a stator and a rotor coupled to the power unit via a hub.
  • the present application further provides an unmanned aerial vehicle comprising a power unit and a processing unit for controlling the power unit, further comprising a propeller according to the preceding claim, the propeller being detachably mounted on the power unit, the power unit Power is output to the propeller.
  • the utility model has the beneficial effects that the propeller, the power system and the unmanned aerial vehicle provided in the embodiments of the present application are provided with a quick-release structure disposed on the propeller and the power device rotor, and an elastic component is disposed between the rotor and the detachable propeller.
  • the reciprocating quick-release structure under the action of the elastic component enables the propeller to be assembled and disassembled on the unmanned aerial vehicle in a simple, fast, convenient and firm manner; at the same time, the blades of the propeller of the embodiment of the present application can be folded and The power unit can be quickly loaded and unloaded.
  • the reliability of the propeller blade based on the pivoting member is higher, and the tension between the propeller blade and the hub is not affected by the material characteristics and the manufacturing process, and the propeller is delayed. The service life and the propeller will not be reamed.
  • the propeller is used on the unmanned aerial vehicle, which can greatly reduce the volume of the aircraft, and the UAV is convenient to carry and has a high space utilization rate.
  • FIG. 1 is a perspective view of an unmanned aerial vehicle of the embodiment of the present application.
  • Figure 2 is a perspective view of a propeller of a first embodiment of the power system of the present application
  • FIG. 3 is an exploded perspective view of the power unit in the first embodiment of the power system of the present application, the power unit being mated with the propeller shown in FIG. 2;
  • Figure 4 is a perspective view of the carrier bracket of the power unit shown in Figure 3;
  • FIG 5 is another perspective view of the carrier bracket of the power unit shown in Figure 3;
  • Figure 6 is a perspective view of the mounting member of the power unit shown in Figure 3;
  • Figure 7 is a perspective view of a second embodiment of the power system of the present application.
  • Figure 8 is a perspective view of the load bearing bracket of the power system shown in Figure 7;
  • Figure 9 is a perspective view of the propeller hub of the power system of Figure 7;
  • Figure 10 is a perspective structural view of another embodiment of the propeller of the present application.
  • Figure 11 is an exploded perspective view of the propeller shown in Figure 10;
  • Figure 12 is a folded state view of the propeller shown in Figure 11;
  • Fig. 13 is a structural view of a hub of the propeller shown in Fig. 11;
  • the present application relates to a propeller, a power system, and an unmanned aerial vehicle that is coupled by a plurality of fasteners and mounting members disposed between the propeller and the power unit rotor and an elastic assembly disposed between the propeller and the mounting member
  • the components and the mounting members are under the action of the elastic components, so that the propeller or the propeller can be assembled and disassembled on the unmanned aerial vehicle simply, quickly, conveniently and firmly.
  • the propeller is detachably mounted to a power unit, the propeller includes a hub and at least two blades, and the at least two blades are foldably mounted on the hub by pivoting;
  • the hub is provided with a fastening member for connecting to the power device
  • the power device is provided with a mounting member corresponding to the fastening member
  • the power device further includes a carrying bracket, the mounting member is fixed to the power device by the carrying bracket,
  • the fastening member is connected to the mounting member by a snap fit.
  • Each of the blades includes a blade and a first connecting portion disposed at one end of the blade, the hub is provided with a second connecting portion corresponding to the first connecting portion, and the second connecting portion is pivotally connected to the first connecting portion through the pivoting member together.
  • the first connecting portion of the blade includes an upper flange and a lower flange
  • the second connecting portion of the hub is a fixing portion
  • the fixing portion is movably mounted on the protruding portion Between the edge and the lower flange.
  • the first connecting portion of the blade is a fixing portion
  • the second connecting portion of the hub includes an upper flange and a lower flange
  • the fixing portion is movably mounted on the Between the upper flange and the lower flange.
  • the propeller fastening member employs a three-pronged structure that is integrally injection molded with the propeller while mounting a resilient assembly on the power unit.
  • the propeller it is only necessary to press the propeller against the elastic component and then rotate it in the preset direction, and the three claws of the propeller can be snapped onto the mounting portion of the mounting member.
  • the propeller is rotated in the opposite direction, and the elastic component assists in separating the propeller from the mounting member.
  • the propeller can also adopt a single claw structure or a double claw structure or a multi-claw structure.
  • the mounting member of the power unit includes a plurality of hook-shaped engaging portions
  • the fastening member of the propeller includes a plurality of guiding holes corresponding to the mounting member
  • FIG. 1 shows an application environment of an embodiment of the present application.
  • the embodiment of the present application is mainly applied to an unmanned aerial vehicle, and the unmanned aerial vehicle mainly includes a body 110, a processing unit (not shown), and a pan/tilt 113.
  • the pan/tilt is equipped with an imaging device 130.
  • a plurality of propellers 111, 112 are mounted above the fuselage 110.
  • the UAV in this embodiment employs a quadrotor UAV.
  • the UAV adopts four small propellers with flexible flight safety control, which can achieve six degrees of freedom. It can be understood that the UAV in this application can be a single-rotor UAV or a quadrotor.
  • the man-machine, the six-rotor drone, and the like are merely described as an example of a four-rotor unmanned aerial vehicle, and do not constitute a limitation on the unmanned aerial vehicle in the embodiment of the present application.
  • the power system of the present embodiment includes the propeller shown in Fig. 2 and the power unit shown in Fig. 3.
  • the power unit includes a stator and a rotor that is coupled to the power unit via a hub 150.
  • a perspective view of a propeller in the power system of the present embodiment The propeller is detachably mounted to the power unit described in FIG.
  • the propeller includes a hub 150 and at least two blades 100 that are foldably mounted on the hub 150 by pivoting.
  • the hub 150 is provided with a fastening member for connecting to the power unit, and the power unit corresponding to the fastening member illustrated in FIG. 3 is provided with a mounting member 70.
  • the power unit further includes a carrier bracket 60.
  • the mounting member 70 is fixed to the power unit by the carrier bracket 60.
  • the fastening member is coupled to the mounting member 70 by a snap fit.
  • the power unit 50 includes a stator and a rotor.
  • the stator includes a stator base 52, a bobbin 53, and a plurality of coils 54 disposed on the bobbin 53, the plurality of coils 54 being connected to a power source through a power cord 51.
  • the stator base 52 is rotatably supported by a motor 55 that is fixed to the fuselage 110 of the UAV by a washer 59.
  • the rotor is fixed to the motor shaft 56, which includes a carrier bracket 60, a rotor sleeve 62, and a plurality of magnetic members 63 corresponding to the stator coils 54.
  • the rotor sleeve 62 is mounted on the periphery of the carrier bracket 60, and the plurality of magnetic members 63 are mounted in the rotor sleeve 62.
  • a mounting member 70 for quickly mounting the propeller is fixed on the top of the carrying bracket 60.
  • the mounting member 70 is fixed to the carrier bracket 60 by screws.
  • the fastening member of the hub of the propeller is coupled to the mounting member 70 of the power unit by a snap fit.
  • the fastening member of the propeller includes a plurality of hooking portions of the hook structure
  • the mounting member 70 of the power unit includes a plurality of guiding holes 73 corresponding to the fastening member (as shown in FIG. 6 ).
  • a guide hole 73 is defined in the mounting member 70, and a mounting portion is provided on the back surface of the mounting member 70.
  • the elastic assembly of the present embodiment includes a button 72 and a spring 64 mounted on the button.
  • the mounting member 70 also defines a spring groove 74 corresponding to the elastic component.
  • the load bearing bracket 60 and the mounting member 70 are movably mounted with an elastic component for quick release.
  • the guiding hole 73 includes a matching hole with a larger opening and a guiding hole with a smaller opening.
  • the fastening portion of the mounting member can also be oppositely disposed through the guiding hole and the fastening member assembly structure.
  • the mounting member of the power unit includes a plurality of hook-shaped fastening portions
  • the fastening member of the propeller includes a plurality of guiding holes corresponding to the mounting member and disposed behind the guiding hole A snap fit for assembly with the fastener.
  • the resilient assembly includes a button 72 that is reciprocable up and down within the travel slot 74 of the mounting member 70 and a spring 64 that is mounted between the button 72 and the carrier bracket 60.
  • a load-bearing bracket structure is provided, and a mounting member 70 for quickly mounting the propeller is fixed on the top of the load-bearing bracket 60.
  • the mounting member 70 cooperates with the fastening member of the propeller to complete the assembly and disassembly of the propeller.
  • the carrier bracket 60 is centrally disposed for passage through the shaft bore 69 of the motor shaft 56.
  • the edge of the carrier bracket 60 extends a plurality of flanges 66 for securing the rotor sleeve 62.
  • a plurality of screw holes 61 for fixing the mounting member 70 are formed in the middle of the carrier bracket 60.
  • a button positioning groove 67 is disposed in the middle of the carrier bracket 60.
  • a plurality of ventilation holes 68 are defined in the middle of the middle portion of the carrier bracket 60.
  • the mounting member 70 secured to the rotor.
  • the mounting member 70 is provided with a screw hole 71 fixed to the carrier bracket 60 by screw-fitted screw holes 71, 65.
  • a guide hole 73 is defined in the mounting member 70, and a mounting portion is provided on the back surface of the mounting member 70.
  • the mounting member 70 also defines a stroke groove 74 corresponding to the resilient member.
  • a positioning pin 68 is provided on the mounting member.
  • the guiding hole 73 includes a matching hole with a larger opening and a guiding hole with a smaller opening.
  • the resilient assembly includes a button 72 that is reciprocable up and down within the travel slot 74 of the mounting member 70 and an elastic member 64, such as a spring, mounted between the button 72 and the carrier bracket 60.
  • the mounting portion is used to fasten and fasten the fastening portion of the fastening member of the propeller.
  • the mounting portion includes a buckle 76, a mounting groove 75, and retaining walls 77, 78 on both sides of the mounting groove.
  • the fastening portion of the fastening member 6 is aligned with the rotation of the propeller over the buckle 76 to fall into the mounting groove 75, and the fastening portion of the fastening member is limited by the retaining walls 77, 78 on both sides in the mounting groove.
  • there are elastic members 64 and buttons 72 which can prevent the unmanned aircraft from being accidentally caused by the propeller design.
  • the fastening member of the propeller is aligned with the larger alignment hole of the opening 73 of the mounting member 70 such that the plurality of fastening members of the propeller simultaneously pass through the alignment hole.
  • the user holds the rotor sleeve 62 of the power unit with one hand, and the pressing portion 96 of the propeller is aligned with the motor shaft 56 of the power unit with one hand, and the propeller is pressed down forcefully.
  • the rotation is performed according to the locking rotation direction indicated on the blade or the spinner cap until the plurality of fastening members of the propeller touch the first blocking wall 77 of the mounting member 70, and then slowly Release the hand until the plurality of fasteners of the propeller are engaged into the mounting groove 75 of the mounting member 70, that is, the installation of the propeller is completed.
  • the propeller when the propeller is disassembled, the user holds the rotor sleeve 62 of the power unit with one hand and gently presses the propeller with one hand.
  • the reverse rotation is performed according to the locking rotation direction indicated on the blade or the spinneret, when the plurality of fastening members of the propeller touch the opening of the guide hole 73 of the mounting member 70
  • the propeller is lifted up, that is, the disassembly of the propeller is completed.
  • the power system of the embodiment includes a propeller and a power unit.
  • the propeller includes a hub 150 and two blades 100.
  • the power unit includes a rotor 120 and a stator 122.
  • the top of the rotor 120 is provided with a travel boss for positioning the elastic assembly. Please refer to FIG. 8 (reference numeral 131) for the enlarged structure of the travel boss. Please refer to FIG. 9 for the enlarged structure of the hub 150.
  • the power system is applied to an unmanned aerial vehicle.
  • the UAV aircraft includes a power unit and a processing unit that controls the power unit.
  • the propeller includes a hub 150 and two blades 100. All of the blades 100 are foldably mounted on the hub 150 by pivoting.
  • the bottom of the hub 150 extends at least one fastening member 158 for quick assembly and detachment to the rotor 120 of the power unit.
  • the fastening member 158 is plural, it can be evenly distributed on the hub 150.
  • the blade 100 includes a blade and a first connecting portion 104 disposed at one end of the blade.
  • the hub 150 is provided with a second connecting portion 157 corresponding to the first connecting portion 104.
  • the second connecting portion 157 of the hub 150 and the first connecting portion 104 of the blade are pivotally connected to the connecting member 142 through the pivoting member 140, so that the two blades 100 can be folded on the hub 150.
  • the main pivoting structure used for the pivoting of the propeller, the blade and the hub of the present embodiment is disposed on the blade 100.
  • the first connecting portion 104 of the blade 100 includes an upper flange and a lower flange, the hub
  • the second connecting portion 157 is a fixing portion that is movably mounted between the upper flange and the lower flange.
  • the hub 150 also includes a spinner dome 170 that is secured to the top.
  • the top of the power device is correspondingly provided with a mounting member, and an elastic component is disposed between the propeller and the mounting member, and the fastening member and the mounting member function in the elastic assembly.
  • the propeller can be assembled and disassembled on the unmanned aerial vehicle simply, quickly, conveniently and firmly.
  • the structure of the hub and the power unit mounting member can be reversed as long as the hub can be mounted on the rotor quickly and easily.
  • the mounting member of the power unit includes a plurality of hook-shaped fastening portions
  • the fastening member of the propeller includes a plurality of guiding holes corresponding to the mounting member.
  • the structure of the mounting member of the power unit is substantially the same as that of the mounting member of Embodiment 1, and the elastic components are different.
  • the elastic assembly of this embodiment includes a travel boss 131 disposed on the mounting member and a spring 132 mounted in the hub 150 and sleeved on the travel boss 131.
  • the spring 132 is coaxial with the motor shaft.
  • the elastic component of this embodiment is different from the elastic component of the combination of the button and the spring in Embodiment 2.
  • the spring 132 in this embodiment is disposed in the stroke hole 151 of the hub 150. Accordingly, the mounting member can eliminate the need to provide the stroke groove 74.
  • the propeller includes a hub 150 and two blades 100.
  • the propeller can be mounted on the power unit shown in Embodiment 1 or Embodiment 2.
  • the first connecting portion of the blade 100 is a fixing portion 102
  • the second connecting portion 156 of the hub 150 includes an upper flange and a lower flange
  • the fixing portion 102 is movable. Installed between the upper flange and the lower flange.
  • the hub 150 also includes a spinner dome 170 that is secured to the top.
  • the structure of the mounting member of the power unit is the same as that of the first embodiment, and the elastic members are also the same.
  • the elastic component in this embodiment is a resilient component of a combination of a button and a spring.
  • the elastic component of the present embodiment is different from the elastic component of the button and spring combination in Embodiment 2.
  • the spring 132 in this embodiment is disposed in the stroke hole 151 of the hub 150. Accordingly, the power unit that cooperates with the propeller of the present embodiment does not need to be provided with a stroke groove on the mounting member.
  • the propeller includes a hub 150 and two blades 100. Likewise, the two blades 100 are foldably mounted on the hub 150 by pivoting. Each blade 100 includes a blade and a first connecting portion 108 disposed at one end of the blade.
  • the hub 150 is provided with a second connecting portion 156 corresponding to the first connecting portion 108, and the second connecting portion 156 of the hub and the blade portion A connecting portion 108 is pivotally connected to the connecting member through the pivoting member.
  • the propeller also includes a buckle 158 that extends from the hub 150.
  • the fastening member 158 of the propeller is used to cooperate with the mounting member on the carrying bracket for quick disassembly.
  • the fastening member 158 has the same structure as that of the embodiment 1.
  • As the fixing claw of the propeller a three-claw structure can be adopted. It can be understood that the propeller can also adopt a single-claw structure or a double-claw structure or a multi-claw structure. In this embodiment, a three-claw structure is adopted, which is integrally injection molded with the hub.
  • the second connecting portion 157 of the hub and the first connecting portion 104 of the blade, or the second connecting portion 156 of the hub and the first connecting portion 108 of the blade pass the pivoting member.
  • the 140 is pivotally coupled to the connector 142. And mounted on the hub by rotation of the connecting member 142.
  • a mounting groove is disposed at both ends of the connecting member 142, and the connecting portion 142 passes through the first connecting portion of the blade and the second connecting portion of the hub is inserted into the mounting slot from the two ends by the fixing buckle 144 to complete the mounting.
  • the fastening member 158 includes a connecting portion extending from the hub and a fastening portion, and the plurality of fastening members 158 are evenly distributed on the bottom of the hub 150.
  • the plurality of fastening members 158 are evenly distributed at the bottom of the hub at an angle of 360/n° (n is the number of fasteners).
  • the pivoting member 140 is a metal piece and is integrally molded with the blade.
  • the hub 100 further includes a limiting groove 154 disposed corresponding to the blade, and each limiting groove 154 is consistent with the shape of the corresponding blade root.
  • the pivoting member 140 has an "work" shape, and the pivoting member 140 forms a pivot hole, and the blade of each blade 100 and the pivoting member 140 are integrally injection molded.
  • the pivoting member 140 is injection molded integrally with the blade by a die, wherein the pivoting hole of the pivoting member 140 is parallel to the axial centerline of the hub.
  • the pivot hole is sleeved on the periphery of the connecting member 142, so that the blade can rotate relative to the second connecting member 156, 157.
  • the pivoting member 140 is a metal copper sleeve or an aluminum alloy machined workpiece.
  • the fastener 158 of the propeller is aligned with the larger alignment aperture of the guide opening of the mounting member such that the plurality of fasteners 158 of the propeller pass through the alignment aperture simultaneously. Pressing the folding propeller causes the spring to compress, and the fastening member enters the mounting member. When pressed down to the minimum compression amount of the elastic assembly, the rotation is rotated according to the locking rotation direction indicated on the blade or the spinner cap until the plurality of fastening members 158 of the propeller Touching the first retaining wall of the mounting member, slowly loosening the hand, the plurality of fastening members 158 are engaged into the mounting groove of the mounting member under the action of the elastic component, that is, the installation of the propeller is completed. As shown in FIG.
  • the user gently presses the propeller gently.
  • the reverse rotation is performed according to the locking rotation direction indicated on the blade or the spinner cap, when the plurality of fastening members 158 of the propeller touch the larger alignment hole of the guide hole of the mounting member When the wall is facing, lift the propeller up, that is, complete the disassembly of the propeller.
  • the embodiment of the present application further provides an unmanned aerial vehicle, including a power device, a processing unit for controlling the power device, and a propeller.
  • a propeller is detachably mounted on the power unit, and power of the power unit is output to the propeller.
  • the propeller may be the propeller described in any of the foregoing embodiments.
  • the propeller of the UAV when the propeller of the UAV is the propeller in the foregoing embodiment, it has the structural features corresponding to the foregoing embodiments, and will not be further described herein.
  • the propeller, the power system and the unmanned aerial vehicle provided by the embodiments of the present application enable the propeller to be assembled and disassembled on the unmanned aerial vehicle simply, quickly, conveniently and firmly by the quick release structure respectively disposed on the propeller and the rotor of the power device; Under the action of the elastic component and the mounting part, the propeller can be firmly fixed on the rotor of the motor to prevent the bomber caused by the propeller of the propeller and improve the safety performance of the aircraft; the propeller can be quickly and easily disassembled, and the replacement and carrying of the propeller are more convenient.
  • the propeller is simple to manufacture and easy to mass produce.
  • the propeller structure provided by the embodiment of the present application can be folded, and the power device can be quickly loaded and unloaded.
  • the reliability of the propeller blade based on the pivoting member is higher, and the material is not
  • the characteristics and manufacturing process affect the tightness between the propeller blades and the hub, delaying the life of the propeller, and the propeller does not have a reaming condition.
  • the propeller is used on the unmanned aerial vehicle, which can greatly reduce the volume of the aircraft, and the UAV is convenient to carry and has a high space utilization rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Toys (AREA)

Abstract

一种螺旋桨、动力系统及无人机,该螺旋桨(111,112)用于连接至动力装置(50),其包括桨毂(150)和至少两个桨叶(100),该至少两个桨叶(100)通过枢接的方式可折叠地安装在该桨毂(150)上;该桨毂(150)设置有用于连接至该动力装置(50)的扣接件(158),该动力装置(50)对应该扣接件(158)设置有安装件(70),该动力装置(50)还包括承载支架(60),该安装件(70)通过该承载支架(60)固定至该动力装置(50),该扣接件(158)与该安装件(70)通过扣接配合的方式进行连接。通过设置螺旋桨(111,112)和动力装置(50)转子上的快拆结构,使得螺旋桨可以简单、快速方便的在无人飞行器上实现装拆,并且该螺旋桨可折叠以提高无人机的空间利用率。

Description

一种螺旋桨、动力系统以及无人飞行器
本申请要求于2017年08月15日提交的、申请号为201710697095.0、申请名称为“一种螺旋桨、动力系统以及无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人飞行器领域,特别是涉及一种螺旋桨、动力系统以及无人飞行器。
背景技术
随着无线互联网、无线局域网和图像处理技术的发展,无人飞行器得到了越来越多用户的青睐。
现有的大多数无人飞行器安装螺旋桨是通过螺丝固定的方式或者在螺旋桨内嵌入含有内螺纹结构的部件,通过内螺纹旋转到无人飞行器的电机轴上,拆卸时需要使用工具,装配复杂,拆卸不方便。同时因无人飞行器的电机在高速旋转时,现有的螺纹与螺纹结构的安装配合,会导致出现射桨现象(即螺旋桨脱离电机),射桨现象会引起无人飞行器出现炸机的意外。
并且在无人飞行器设计中,螺旋桨的桨叶和桨毂通常是一体注塑成型,因此螺旋桨的桨叶不能进行折叠,导致无人机的体积大,携带不方便以及空间利用率低。
因此,现有的无人机螺旋桨以及应用于无人飞行器的电机技术还有待于改进和发展。
发明内容
本申请要解决的技术问题是提供了一种螺旋桨、动力系统以及无人飞行器,通过分别设置在螺旋桨和动力装置转子上的快拆结构并在转子上设置弹性组件,使得螺旋桨可以简单、快速方便的在无人飞行器上实现装拆。
为解决上述技术问题,第一方面,本申请提供一种螺旋桨,用于连接至动力装置,该螺旋桨包括桨毂和至少两个桨叶,
该至少两个桨叶通过枢接的方式可折叠地安装在该桨毂上;
该桨毂设置有用于连接至该动力装置的扣接件,该动力装置对应该扣接件设置有安装件,该动力装置还包括承载支架,该安装件通过该承载支架固定至该动力装置,该扣接件与该安装件通过扣接配合的方式进行连接。
进一步地,每个桨叶包括叶片以及设置在叶片一端的第一连接部,该桨毂对应该第一连接部设置有第二连接部,该第二连接部与第一连接部通过枢接件枢接在一起。
进一步地,该枢接件为金属件,并与该叶片注塑连接为一体。
进一步地,该桨叶的第一连接部包括上凸缘和下凸缘,该桨毂的第二连接部为固定部,该固定部可活动装设在该上凸缘和下凸缘之间。
进一步地,该桨叶的第一连接部为固定部,该桨毂的第二连接部包括上凸缘和下凸缘,该固定部可活动装设在该上凸缘和下凸缘之间。
进一步地,当该桨毂的扣接件与该动力装置的安装件扣接配合时,通过一弹性组件抵持该螺旋桨和该动力装置。
进一步地,该动力装置的安装件包括多个钩状结构的扣合部,该螺旋桨的扣接件包括对应该安装件开设的多个导孔。
进一步地,该螺旋桨的扣接件包括多个钩状结构的扣合部,该动力装置的安装件包括对应该扣接件开设的多个导孔。
进一步地,该安装件还包括行程槽,该弹性组件包括按钮和弹簧,其中,该按钮可在该行程槽内上下往复运动,该弹簧安装在该按钮和该承载支架之间。
进一步地,该桨毂还包括桨帽和行程孔,该弹性组件包括行程凸台和弹簧,该行程凸台设置在该安装件上,该弹簧安装在该桨毂内并套设于该行程凸台,并且该弹簧与该动力装置的电机轴同轴。
本申请还提供一种动力系统,包括动力装置以及前述权利要求所述的螺旋桨,该动力装置包括定子和转子,该螺旋桨通过桨毂与所述动力装置连接。
第三方面,本申请还提供一种无人飞行器,包括动力装置以及控制该 动力装置的处理单元,还包括前述权利要求的螺旋桨,该螺旋桨可拆卸地安装在该动力装置上,该动力装置的动力输出至该螺旋桨。
本申请的有益效果是:本申请实施例中提供的螺旋桨、动力系统以及无人飞行器,通过设置在螺旋桨和动力装置转子上的快拆结构并在转子和可拆卸螺旋桨之间设置弹性组件,该相互配合的快拆结构在弹性组件的作用下,使得螺旋桨可以简单、快速、方便、牢固的在无人飞行器上实现装拆;同时,本申请实施例的螺旋桨的桨叶可以进行折叠,并且与动力装置可进行快装快卸,该螺旋桨桨叶基于枢接件进行折叠的可靠性更高,不会因为材料的特性及制作工艺影响螺旋桨桨叶和桨毂之间的松紧度,延迟螺旋桨的使用寿命,且该螺旋桨不会出现扩孔情况。同时该螺旋桨运用在无人飞行器上,可大大减小飞行器的体积,使得无人飞行器携带方便空间利用率高。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例无人飞行器的立体视图;
图2是本申请动力系统第一实施例的螺旋桨立体图;
图3是本申请动力系统第一实施例中的动力装置的立体分解图,该动力装置与图2所示螺旋桨配合;
图4是图3所示动力装置的承载支架立体图;
图5是图3所示动力装置的承载支架另一方立体图;
图6是图3所示动力装置的安装件立体图;
图7是本申请动力系统的第二实施例立体图;
图8是图7所示动力系统的承载支架立体图;
图9是图7所示动力系统的螺旋桨桨毂立体图;
图10是本申请螺旋桨的另一实施例的立体结构图;
图11是图10所示的螺旋桨的立体分解图;
图12是图11所示的螺旋桨的折叠状态图;
图13是图11所示的螺旋桨的桨毂的结构图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“电连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本申请涉及螺旋桨、动力系统以及无人飞行器,通过设置在螺旋桨和动力装置转子之间的多个扣接件和安装件以及设置在螺旋桨和安装件之间的弹性组件,该相互配合的扣接件和安装件在弹性组件的作用下,使得螺旋桨或者螺旋桨可以简单、快速、方便、牢固的在无人飞行器上实现装拆。
总述本申请技术方案,该螺旋桨可拆卸安装至动力装置,该螺旋桨包括桨毂和至少两个桨叶,该至少两个桨叶通过枢接的方式可折叠地安装在该桨毂上;该桨毂设置有用于连接至该动力装置的扣接件,该动力装置对应该扣接件设置有安装件,该动力装置还包括承载支架,该安装件通过该承载支架固定至该动力装置,该扣接件与该安装件通过扣接配合的方式进行连接。
每个桨叶包括叶片以及设置在叶片一端的第一连接部,该桨毂对应该第一连接部设置有第二连接部,该第二连接部与第一连接部通过枢接件枢接在一起。
在桨叶枢接方式实施例中,该桨叶的第一连接部包括上凸缘和下凸缘,该桨毂的第二连接部为固定部,该固定部可活动装设在该上凸缘和下凸缘之间。
在桨叶另一枢接方式实施例中,该桨叶的第一连接部为固定部,该桨毂的第二连接部包括上凸缘和下凸缘,该固定部可活动装设在该上凸缘和下凸缘之间。
在扣接配合实施例中,该螺旋桨扣接件采用的三爪结构,该三爪结构并与螺旋桨一体注塑成型,同时在动力装置上安装弹性组件。安装螺旋桨时,仅需要将螺旋桨贴紧弹性组件按下再朝预设方向旋转,将螺旋桨三爪卡扣到安装件的安装部上即可。同理拆卸时,按下螺旋桨朝相反方向旋转,弹性组件辅助将螺旋桨与安装件分离。可以理解的是,该螺旋桨也可采用单爪结构或者双爪结构或者多爪结构。
可以理解的是,在扣接配合另一实施例中,该动力装置的安装件包括多个钩状结构的扣合部,该螺旋桨的扣接件包括对应该安装件开设的多个导孔。
图1示出本申请实施例的应用环境。本申请实施例主要应用于无人飞行器,该无人飞行器主要包括机身110、处理单元(图未示)以及云台113。该云台搭载摄像装置130。该机身110上方安装多个螺旋桨111、112。
本实施例中的无人飞行器采用四旋翼无人机。无人飞行器采用四个小巧的螺旋桨,具有飞行安全控制灵活等特点,能够实现六个自由度的飞行,可以理解的是,本申请中的无人飞行器可以是单旋翼无人机、四旋翼无人机、六旋翼无人机等等,这里仅是以四旋翼无人机为例进行说明,并不构成对本申请实施例中无人飞行器的限定。
实施例1
本实施例的动力系统,包括图2所示的螺旋桨和图3所示的动力装置。该动力装置包括定子和转子,该螺旋桨通过桨毂150与该动力装置连接。
如图2所示,为本实施例的动力系统中的螺旋桨的立体图。该螺旋桨可拆卸地安装至图3所述的动力装置。该螺旋桨包括桨毂150和至少两个桨叶100,该至少两个桨叶100通过枢接的方式可折叠地安装在该桨毂150上。桨毂150设置有用于连接至该动力装置的扣接件,图3所述的动力装置对应扣接件设置有安装件70。该动力装置还包括承载支架60,该安装件70通过该承载支架60固定至该动力装置,该扣接件与该安装件70通过扣接配合的方式进行连接。
动力装置具体结构介绍如下。如图3所示,该动力装置50包括定子以及转子。该定子包括定子座52、线圈架53、设置在线圈架53的若干线圈54,该若干线圈54通过电源线51连接至电源。该定子座52通过轴承55转动支撑电机轴56,该定子座52通过垫圈59固定在无人飞行器的机身110上。
该转子固定在该电机轴56上,该转子包括承载支架60、转子套筒62以及对应该定子线圈54的若干磁性件63。该承载支架60四周边缘安装该转子套筒62,该转子套筒62内安装该若干磁性件63。其中,该承载支架60顶部固定有用于快速安装螺旋桨的安装件70。该安装件70通过螺钉固定在该承载支架60上。
螺旋桨的桨毂的扣接件与动力装置的安装件70通过扣接配合的方式进行连接。在扣接配合一实施例中,螺旋桨的扣接件包括多个钩状结构的扣合部,动力装置的安装件70包括对应该扣接件开设的多个导孔73(如图6所示)。该安装件70上开设导孔73并在安装件70的背面设置安装部。当桨毂150的扣接件与动力装置的安装件70扣接配合时,通过一弹性组件抵持螺旋桨和述动力装置。请一并参考图3,本实施例的弹性组件包括按钮72以及安装在按钮上的弹簧64。该安装件70还对应该弹性组件开设行程槽74,该承载支架60与该安装件70之间活动装设便于快拆的弹性组件。其中,该导孔73包括开口较大的对位孔和开口较小的导引孔。
可以理解的是,螺旋桨扣接件和动力装置安装件之间扣接配合方式中,安装件的扣合部通过导孔与扣接件装配结构也可以相反设置。在扣接配合另一实施例中,该动力装置的安装件包括多个钩状结构的扣合部,该螺旋桨的扣接件包括对应该安装件开设的多个导孔以及设置在导孔后方用于与 扣接件装配的扣合部。
为了清楚说明本申请技术方案,以下技术方案基于螺旋桨设置扣合部以及安装件设置导孔的装配结构加以阐述。
该弹性组件包括可在安装件70的行程槽74内上下往复运动的按钮72以及安装在按钮72和承载支架60之间的弹簧64。
如图4和图5所示的承载支架结构,该承载支架60顶部固定有用于快速安装螺旋桨的安装件70。该安装件70与与螺旋桨的扣接件配合完成螺旋桨的装拆。
该承载支架60中心设置用于通过电机轴56的轴孔69。承载支架60的边缘延伸若干用于固定转子套筒62的突边66。该承载支架60中部开设多个用于固定安装件70的螺孔61。该承载支架60中部设置按钮定位槽67。该承载支架60的中部靠外侧位置开设若干通风孔68。
请参考图6,所示为固定在转子上的安装件70的结构图。该安装件70设置螺孔71,通过螺钉配合螺孔71、65固定在该承载支架60上。该安装件70上开设导孔73并在安装件70的背面设置安装部。该安装件70还对应该弹性组件开设行程槽74。该安装件上设置定位销68。其中,该导孔73包括开口较大的对位孔和开口较小的导引孔。
该承载支架60与该安装件70之间活动装设便于快拆的弹性组件。该弹性组件包括可在安装件70的行程槽74内上下往复运动的按钮72以及安装在按钮72和承载支架60之间的弹性件64,比如弹簧。
该安装部用于固定和限位螺旋桨的扣接件的扣合部。该安装部包括扣榫76、安装槽75以及安装槽两侧的挡壁77、78。该扣接件6的扣合部随着螺旋桨的旋转越过扣榫76对准落入安装槽75,并且该扣接件的扣合部在安装槽内受到两侧的挡壁77、78的限位,同时螺旋桨与动力装置的承载支架间有弹性件64和按钮72的作用,可以防止无人飞行器因螺旋桨设计引起的炸机意外。
使用时,将螺旋桨的扣接件与安装件70的导孔73开口较大的对位孔对齐,使得螺旋桨的多个扣接件同时穿过对位孔。此时,用户一手托着动力装置的转子套筒62,一手将螺旋桨的按压部96对准动力装置的电机轴56,用力下压螺旋桨。当下压到弹性件64最小压缩量时,根据桨叶或桨帽 上提示的锁定旋转方向进行旋转,直至螺旋桨的多个扣接件碰触到安装件70的第一挡壁77时,慢慢松手,直到螺旋桨的多个扣接件卡合到该安装件70的安装槽75内,即完成螺旋桨的安装。
同理在拆卸螺旋桨时,用户一手托着动力装置的转子套筒62,一手将螺旋桨轻轻用力下压。当下压到弹性件64最小压缩量时,根据桨叶或桨帽上提示的锁定旋转方向进行逆向旋转,当螺旋桨的多个扣接件碰触到安装件70的导孔73开口较大的对位孔壁面时,将螺旋桨向上提起,即完成螺旋桨的拆卸。
实施例2
请参考图7,本实施例的动力系统,包括螺旋桨和动力装置。该螺旋桨包括桨毂150和两个桨叶100。该动力装置包括转子120和定子122。该转子120顶部设置用于安置弹性组件的行程凸台。该行程凸台的放大结构请参考图8(附图标记131)。该桨毂150的放大结构请参考图9。
该动力系统应用在无人飞行器上。该无人机飞行器包括动力装置以及控制该动力装置的处理单元。
该螺旋桨包括桨毂150以及两个桨叶100。所有桨叶100通过枢接的方式可折叠地安装在桨毂150上。该桨毂150底部延伸设置用于快速装拆至动力装置的转子120的至少一扣接件158,当该扣接件158为多个时,可以均布于该桨毂150上。
请参考图5,该桨叶100包括叶片以及设置在叶片一端的第一连接部104。该桨毂150对应第一连接部104设置第二连接部157。该桨毂150的第二连接部157与桨叶的第一连接部104通过该枢接件140与连接件142枢接连接在一起,使该两个桨叶100可在桨毂150上折叠。
本实施例的螺旋桨,桨叶和桨毂进行枢接所采用的主要枢接结构设置在桨叶100上,该桨叶100的第一连接部104包括上凸缘和下凸缘,该桨毂的第二连接部157为固定部,该固定部可活动装设在该上凸缘和下凸缘之间。该桨毂150还包括固定在顶部的桨帽170。
为了实现快速安装和拆卸,对应螺旋桨的多个扣接件158,该动力装置的顶部对应设置安装件,该螺旋桨和安装件之间设置弹性组件,该扣接件 和安装件在弹性组件的作用下,使得螺旋桨可以简单、快速、方便、牢固的在无人飞行器上实现装拆。
可以理解的是,该扣接配合方式中,桨毂和动力装置安装件的结构可以相反设置,只要可以实现快速方便将桨毂安装在转子上即可。在扣接配合另一实施例中,该动力装置的安装件包括多个钩状结构的扣合部,该螺旋桨的扣接件包括对应该安装件开设的多个导孔。
为了清楚说明本申请技术方案,以下技术方案基于桨毂设置扣合部以及安装件设置导孔的扣接配合结构加以阐述。
请参考图11,本实施例中,动力装置的安装件的结构与实施例1的安装件大致相同,弹性组件不相同。本实施例的弹性组件包括设置在安装件上的行程凸台131以及安装在桨毂150内并套设在该行程凸台131的弹簧132。该弹簧132与电机轴同轴。
本实施例的弹性组件不同于实施例2中的按钮和弹簧组合的弹性组件。本实施例中的弹簧132设置在桨毂150的行程孔151内,相应的,该安装件可无需设置行程槽74。
实施例3
图10至图13所示为本申请提供的螺旋桨的另一实施例。
请参考10,该螺旋桨包括桨毂150和两个桨叶100。该螺旋桨可安装在实施例1或实施例2中所示的动力装置上。
如图10所示,在该实施例中,桨叶100的第一连接部为固定部102,该桨毂150的第二连接部156包括上凸缘和下凸缘,该固定部102可活动装设在该上凸缘和下凸缘之间。该桨毂150还包括固定在顶部的桨帽170。
本实施例中,动力装置的安装件的结构与实施例1的相同,弹性组件也相同。比如,在本实施例的弹性组件为按钮和弹簧组合的弹性组件。请参见11,本实施例的弹性组件不同于实施例2中的按钮和弹簧组合的弹性组件。本实施例中的弹簧132设置在桨毂150的行程孔151内,相应地,与本实施例的螺旋桨配合的动力装置该安装件上无需再设置行程槽。
该螺旋桨包括桨毂150以及两个桨叶100。同样地,该两个桨叶100通过枢接的方式可折叠地安装在桨毂150上。每一桨叶100包括叶片以及设 置在叶片一端的第一连接部108,该桨毂150对应第一连接部108设置第二连接部156,该桨毂的第二连接部156与桨叶的第一连接部108通过该枢接件与连接件枢接在一起。
该螺旋桨还包括从桨毂150延伸出的扣接件158。该螺旋桨的扣接件158用于配合承载支架上的安装件实现快速拆装。该扣接件158与实施例1的结构相同,作为该螺旋桨的固定爪,可以采用三爪结构,可以理解的是,该螺旋桨也可采用单爪结构或者双爪结构或者多抓结构。本实施例中采用三爪结构,该三爪结构并与桨毂一体注塑成型。
请一并参考图11,该桨毂的第二连接部157与桨叶的第一连接部104,或者该桨毂的第二连接部156与桨叶的第一连接部108通过该枢接件140与连接件142枢接在一起。并通过连接件142转动安装在桨毂上。该连接件142的两端设置安装槽,连接件142穿过桨叶的第一连接部以及桨毂的第二连接部由固定扣144从两端插入安装槽完成安装。
该扣接件158包括从桨毂延伸出的连接部以及扣合部,该多个扣接件158均布于该桨毂150底部。该多个扣接件158按角度为360/n°(n为扣接件个数)均布于桨毂底部。
该枢接件140为金属件,并与该叶片注塑连接为一体,该桨毂100还包括对应叶片设置的限位凹槽154,每个限位凹槽154与对应的叶片根部形状保持一致。
该枢接件140呈“工”字型,该枢接件140形成枢接孔,每个桨叶100的叶片和该枢接件140一体注塑成型。该枢接件140与叶片通过模具注塑成型为一体,其中,该枢接件140的枢接孔与桨毂轴向中心线平行。安装时该枢接孔套设在该连接件142外围,使得该叶片可相对于第二连接件156、157旋转,该枢接件140为金属铜套或铝合金机加工件。
使用时,将螺旋桨的扣接件158与安装件的导孔开口较大的对位孔对齐,使得螺旋桨的多个扣接件158同时穿过对位孔。按压折叠式螺旋桨,使得弹簧压缩,扣接件进入安装件,当下压到弹性组件最小压缩量时,根据桨叶或桨帽上提示的锁定旋转方向进行旋转,直至螺旋桨的多个扣接件158碰触到安装件的第一挡壁,慢慢松手,在弹性组件的作用下该多个扣接件158卡合到该安装件的安装槽内,即完成螺旋桨的安装。如图12所示, 折叠叶片时,推动该对叶片,使得叶片绕着枢接件140转动,转动至限位凹槽154时既完成折叠。其中,桨毂上的叶片无法朝没有限位凹槽的一侧推动,复位时,展开可转动的叶片使叶片根部压紧桨毂即可。
同理在拆卸螺旋桨时,用户将螺旋桨轻轻用力下压。当下压到弹性组件最小压缩量时,根据桨叶或桨帽上提示的锁定旋转方向进行逆向旋转,当螺旋桨的多个扣接件158碰触到安装件的导孔开口较大的对位孔壁面时,将螺旋桨向上提起,即完成螺旋桨的拆卸。
实施例4
本申请实施例还提供一种无人飞行器,包括动力装置、控制该动力装置的处理单元以及螺旋桨。螺旋桨可拆卸地安装在所述动力装置上,所述动力装置的动力输出至所述螺旋桨。其中,该螺旋桨可以是前述任一实施例中所述的螺旋桨。在本实施例中,当该无人飞行器的螺旋桨为前述实施例中的螺旋桨时,其具有与前述实施例相应的结构特征,此处均不再一一赘述。
本申请实施例提供的螺旋桨、动力系统以及无人飞行器,通过分别设置在螺旋桨和动力装置转子上的快拆结构,使得螺旋桨可以简单、快速、方便、牢固的在无人飞行器上实现装拆;在弹性组件和安装部的作用下可将螺旋桨牢固固定在电机转子上,以预防因螺旋桨射桨导致的炸机,提高飞行器的安全性能;螺旋桨可以快速方便的拆卸,更便于螺旋桨的更换及携带;同时,螺旋桨制作简单,便于批量生产。
同时,本申请实施例提供的螺旋桨结构,其桨叶可以进行折叠,并且与动力装置可进行快装快卸,该螺旋桨桨叶基于枢接件进行折叠的可靠性更高,不会因为材料的特性及制作工艺影响螺旋桨桨叶和桨毂之间的松紧度,延迟螺旋桨的使用寿命,且该螺旋桨不会出现扩孔情况。同时该螺旋桨运用在无人飞行器上,可大大减小飞行器的体积,使得无人飞行器携带方便空间利用率高。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请 的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种螺旋桨,用于连接至动力装置,所述螺旋桨包括:桨毂和至少两个桨叶,其特征在于:
    所述至少两个桨叶通过枢接的方式可折叠地安装在所述桨毂上;
    所述桨毂设置有用于连接至所述动力装置的扣接件,所述动力装置对应所述扣接件设置有安装件,所述动力装置还包括承载支架,所述安装件通过所述承载支架固定至所述动力装置,所述扣接件与所述安装件通过扣接配合的方式进行连接。
  2. 根据权利要求1所述的螺旋桨,其特征在于,每个所述桨叶包括叶片以及设置在叶片一端的第一连接部,所述桨毂对应所述第一连接部设置有第二连接部,所述第二连接部与第一连接部通过枢接件枢接在一起。
  3. 根据权利要求2所述的螺旋桨,其特征在于,所述枢接件为金属件,并与所述叶片注塑连接为一体。
  4. 根据权利要求2或3所述的螺旋桨,其特征在于,所述桨叶的第一连接部包括上凸缘和下凸缘,所述桨毂的第二连接部为固定部,所述固定部可活动装设在所述上凸缘和下凸缘之间。
  5. 根据权利要求2-4任意一项所述的螺旋桨,其特征在于,所述桨叶的第一连接部为固定部,所述桨毂的第二连接部包括上凸缘和下凸缘,所述固定部可活动装设在所述上凸缘和下凸缘之间。
  6. 根据权利要求1-5任意一项所述的螺旋桨,其特征在于,当所述桨毂的扣接件与所述动力装置的安装件扣接配合时,通过一弹性组件抵持所述 螺旋桨和所述动力装置。
  7. 根据权利要求1-6任意一项所述的螺旋桨,其特征在于,所述动力装置的安装件包括多个钩状结构的扣合部,所述螺旋桨的扣接件包括对应所述安装件开设的多个导孔。
  8. 根据权利要求1-6任意一项所述的螺旋桨,其特征在于,所述螺旋桨的扣接件包括多个钩状结构的扣合部,所述动力装置的安装件包括对应所述扣接件开设的多个导孔。
  9. 根据权利要求6所述的螺旋桨,其特征在于,所述安装件还包括行程槽,所述弹性组件包括按钮和弹簧,其中,所述按钮可在所述行程槽内上下往复运动,所述弹簧安装在所述按钮和所述承载支架之间。
  10. 根据权利要求6所述的螺旋桨,其特征在于,所述桨毂还包括桨帽和行程孔,所述弹性组件包括行程凸台和弹簧,所述行程凸台设置在所述安装件上,所述弹簧安装在所述桨毂内并套设于所述行程凸台,并且所述弹簧与所述动力装置的电机轴同轴。
  11. 一种动力系统,包括动力装置和权利要求1-10任意一项所述的螺旋桨,所述动力装置包括定子和转子,所述螺旋桨通过所述桨毂与所述动力装置连接。
  12. 一种无人飞行器,包括动力装置以及控制所述动力装置的处理单元,其特征在于,还包括权利要求1-10任意一项所述的螺旋桨,所述螺旋桨可拆卸地安装在所述动力装置上,所述动力装置的动力输出至所述螺旋桨。
PCT/CN2018/082658 2017-08-15 2018-04-11 一种螺旋桨、动力系统以及无人飞行器 WO2019033768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710697095.0 2017-08-15
CN201710697095.0A CN109398692A (zh) 2017-08-15 2017-08-15 一种螺旋桨、动力系统以及无人飞行器

Publications (1)

Publication Number Publication Date
WO2019033768A1 true WO2019033768A1 (zh) 2019-02-21

Family

ID=65362168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082658 WO2019033768A1 (zh) 2017-08-15 2018-04-11 一种螺旋桨、动力系统以及无人飞行器

Country Status (2)

Country Link
CN (1) CN109398692A (zh)
WO (1) WO2019033768A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111683877A (zh) * 2019-07-05 2020-09-18 深圳市大疆创新科技有限公司 动力组件及无人飞行器
WO2021011097A1 (en) 2019-07-17 2021-01-21 Loon Llc Lateral propulsion systems and architectures for high altitude balloons

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076273A1 (zh) * 2016-10-28 2018-05-03 深圳市大疆创新科技有限公司 锁定机构、螺旋桨、电机、动力系统组件及飞行器
CN107902074A (zh) * 2017-11-13 2018-04-13 昊翔电能运动科技(昆山)有限公司 螺旋桨组件及其制备方法
CN110027699B (zh) * 2019-05-24 2024-04-19 广东电网有限责任公司 一种可折叠的无人机飞行桨
CN113104206B (zh) * 2021-05-27 2022-07-26 厦门致睿智控地信科技有限公司 一种多旋翼飞行器用螺旋桨快速安装机构
CN114104265B (zh) * 2021-12-24 2022-08-19 深圳深海创新技术有限公司 一种快拆装桨叶连接结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141154A1 (en) * 2013-03-14 2014-09-18 Aeryon Labs Inc. Folding propellers system
CN104071329A (zh) * 2014-03-31 2014-10-01 江苏艾锐泰克无人飞行器科技有限公司 折叠式螺旋桨
CN105083533A (zh) * 2015-10-08 2015-11-25 安阳市豪克科技发展有限责任公司 一种带有限位结构的折叠桨
CN204956919U (zh) * 2015-08-18 2016-01-13 王军 一种螺旋桨连接结构及无人机
CN205499337U (zh) * 2016-04-11 2016-08-24 零度智控(北京)智能科技有限公司 螺旋桨拆装结构及无人机
CN106347653A (zh) * 2016-11-18 2017-01-25 深圳市道通智能航空技术有限公司 动力装置、螺旋桨及飞行器
CN206202677U (zh) * 2016-11-18 2017-05-31 深圳市道通智能航空技术有限公司 动力装置、螺旋桨及飞行器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090029555A (ko) * 2007-09-18 2009-03-23 부산대학교 산학협력단 로터 접이식 무인 헬리콥터
CA2888144C (en) * 2012-10-19 2021-06-01 Aeryon Labs Inc. Hovering unmanned aerial vehicle
CN105564635B (zh) * 2016-01-19 2019-04-02 深圳市大疆创新科技有限公司 折叠螺旋桨、动力组件、无人机及折叠螺旋桨制作方法
CN205675232U (zh) * 2016-04-13 2016-11-09 深圳市大疆创新科技有限公司 桨夹、折叠桨、动力套装及无人机
CN207550508U (zh) * 2017-08-15 2018-06-29 深圳市道通智能航空技术有限公司 一种螺旋桨、动力系统以及无人飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141154A1 (en) * 2013-03-14 2014-09-18 Aeryon Labs Inc. Folding propellers system
CN104071329A (zh) * 2014-03-31 2014-10-01 江苏艾锐泰克无人飞行器科技有限公司 折叠式螺旋桨
CN204956919U (zh) * 2015-08-18 2016-01-13 王军 一种螺旋桨连接结构及无人机
CN105083533A (zh) * 2015-10-08 2015-11-25 安阳市豪克科技发展有限责任公司 一种带有限位结构的折叠桨
CN205499337U (zh) * 2016-04-11 2016-08-24 零度智控(北京)智能科技有限公司 螺旋桨拆装结构及无人机
CN106347653A (zh) * 2016-11-18 2017-01-25 深圳市道通智能航空技术有限公司 动力装置、螺旋桨及飞行器
CN206202677U (zh) * 2016-11-18 2017-05-31 深圳市道通智能航空技术有限公司 动力装置、螺旋桨及飞行器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111683877A (zh) * 2019-07-05 2020-09-18 深圳市大疆创新科技有限公司 动力组件及无人飞行器
WO2021011097A1 (en) 2019-07-17 2021-01-21 Loon Llc Lateral propulsion systems and architectures for high altitude balloons
EP3999412A4 (en) * 2019-07-17 2023-07-19 Aerostar International, Inc. LATERAL PROPULSION SYSTEM AND ARCHITECTURES FOR HIGH ALTITUDE BALLOONS

Also Published As

Publication number Publication date
CN109398692A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2019033768A1 (zh) 一种螺旋桨、动力系统以及无人飞行器
WO2019033769A1 (zh) 折叠螺旋桨、动力组件以及无人飞行器
US20190055003A1 (en) Foldable propeller, power assembly and unmanned aerial vehicle
WO2019128298A1 (zh) 螺旋桨、螺旋桨套件、动力组件、动力套件及无人机
CN207550508U (zh) 一种螺旋桨、动力系统以及无人飞行器
CN107891968B (zh) 一种折叠螺旋桨、动力组件及无人机
US10717527B2 (en) UAV arm mechanism and UAV
WO2018107964A1 (zh) 无人飞行器及其动力组件、螺旋桨和螺旋桨底座组件
CN106347653B (zh) 动力装置、螺旋桨及飞行器
WO2018113481A1 (zh) 可拆卸机臂组件及飞行器
WO2020000240A1 (zh) 天线结构、遥控器及无人飞行器系统
WO2019056756A1 (zh) 螺旋桨、动力组件以及无人飞行器
WO2020062758A1 (zh) 无人机及倾转机构
CN109747807B (zh) 无人机
CN107985585B (zh) 一种螺旋桨、动力组件及无人机
CN210133275U (zh) 无人机机身及无人机
EP3447309B1 (en) Downrod assembly and ceiling fan
CN209683989U (zh) 无人机机身及无人机
CN210592415U (zh) 螺旋桨保护罩及飞行器
WO2019062389A1 (zh) 一种螺旋桨、动力组件及无人机
CN210000559U (zh) 连接组件及无人机
CN211442752U (zh) 一种螺旋桨保护罩、螺旋桨组件及无人机
WO2017166275A1 (zh) 用于无人飞行器的机架连接组件及无人飞行器
CN209743220U (zh) 风扇
CN209321227U (zh) 连接装置以及飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846199

Country of ref document: EP

Kind code of ref document: A1