WO2020103037A1 - 多旋翼无人飞行器 - Google Patents

多旋翼无人飞行器

Info

Publication number
WO2020103037A1
WO2020103037A1 PCT/CN2018/116727 CN2018116727W WO2020103037A1 WO 2020103037 A1 WO2020103037 A1 WO 2020103037A1 CN 2018116727 W CN2018116727 W CN 2018116727W WO 2020103037 A1 WO2020103037 A1 WO 2020103037A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
blade
hook
different
rotor
Prior art date
Application number
PCT/CN2018/116727
Other languages
English (en)
French (fr)
Inventor
杨健
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/116727 priority Critical patent/WO2020103037A1/zh
Priority to CN201880040634.6A priority patent/CN110770125A/zh
Publication of WO2020103037A1 publication Critical patent/WO2020103037A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the invention relates to the technical field of aircraft, and in particular to a multi-rotor unmanned aerial vehicle.
  • Multi-rotor unmanned aerial vehicles usually include multiple sets of propellers, each propeller is connected to a motor, and each motor provides a direct power source for the corresponding propeller.
  • Multiple sets of propellers work simultaneously to ensure its stability during flight.
  • the propellers are divided into forward and reverse propellers according to the different rotation directions of the propeller during the flight of the aircraft.
  • the forward and reverse propellers are likely to cause reverse mounting, resulting in the aircraft not flying normally or even bombing.
  • the invention provides a multi-rotor unmanned aerial vehicle.
  • a multi-rotor unmanned aerial vehicle including:
  • a plurality of arms including a first arm and a second arm, both ends of the first arm and the second arm are connected to the fuselage;
  • a rotor assembly equal to the number of arms, the rotor assembly includes a first rotor assembly and a second rotor assembly, the first rotor assembly includes a first blade and a first motor for driving the rotation of the first blade , The second rotor assembly includes a second blade and a second motor for driving the second blade to rotate, the first motor and the second motor rotating in opposite directions, wherein
  • a first shaft hole is opened at the center of the first blade, and a second shaft hole is opened at the center of the second blade.
  • the first shaft hole cooperates with the motor rotating shaft of the first motor.
  • the second shaft hole cooperates with the motor rotating shaft of the second motor;
  • One of the first blade and the first motor is provided with a first engagement mechanism, the other is provided with a first matching mechanism, and the second blade and one of the second motor are provided A second engaging mechanism is provided, and a second engaging mechanism is provided on the other, the engaging mechanism engages with the engaging mechanism to fix the paddle on the motor, wherein
  • the first engaging mechanism is different from the second engaging mechanism, and the first matching mechanism is different from the second engaging mechanism to ensure that the first blade and the second blade are correctly installed.
  • the present invention provides a multi-rotor unmanned aerial vehicle with a first rotor assembly and a second rotor assembly turned opposite to each other, so that the first blade and the second rotor assembly The second blade of the rotor assembly is turned in the opposite direction.
  • both the blades and motors of the two rotor assemblies use the engagement mechanism and the engagement mechanism to achieve assembly, the first engagement mechanism of the first rotor assembly is different from the second engagement mechanism of the second rotor assembly
  • the first cooperation mechanism of the first rotor assembly is different from the second cooperation mechanism of the second rotor assembly, so that the first blade can only be assembled with the first motor, and the second blade can only be assembled with the second motor.
  • the structural difference between the engaging mechanism and the matching mechanism is convenient for the user to distinguish, thus avoiding the problem that the first blade and the second blade that are turned oppositely are reversed and the aircraft cannot fly normally.
  • FIG. 1 is a perspective view of a multi-rotor unmanned aerial vehicle according to an embodiment of the invention
  • FIG. 2 is a schematic structural view of a first rotor assembly in an embodiment of the invention
  • FIG. 3 is a schematic structural view of a second rotor assembly in an embodiment of the invention.
  • FIG. 4 is a schematic structural diagram of a first rotor assembly in another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a second rotor assembly in another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a second rotor assembly in still another embodiment of the present invention.
  • FIG. 7 is a perspective view of a multi-rotor unmanned aerial vehicle in another embodiment of the invention.
  • FIG. 8 is a schematic structural diagram of a first rotor assembly in still another embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a second rotor assembly in still another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the wrong assembly structure of the first blade and the second motor in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the wrong assembly structure of the second blade and the first motor in an embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a first rotor assembly in still another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a second rotor assembly in still another embodiment of the present invention.
  • 1321 second blade; 1321a: second shaft hole; 1321b: second engaging mechanism; 1321c: second fool-proof mating part; 1322: second motor; 1322a: motor shaft of the second motor; 1322b: second Cooperating institutions;
  • Embodiment 1 of the present invention provides a multi-rotor unmanned aerial vehicle 1, including: a fuselage 11, a plurality of arms 12, and a number of rotor assemblies 13 equal to the number of arms 12.
  • the plurality of arms 12 includes a first arm 121 and a second arm 122, and both ends of the first arm 121 and the second arm 122 are connected to the body 11.
  • the rotor assembly 13 includes a first rotor assembly 131 and a second rotor assembly 132.
  • the first rotor assembly 131 includes a first blade 1311 and a first motor 1312 for driving the first blade 1311 to rotate.
  • the second rotor assembly 132 includes a second blade 1321 and a second motor 1322 for driving the second blade 1321 to rotate.
  • the first motor 1312 and the second motor 1322 rotate in opposite directions.
  • a central axis of the first blade 1311 is provided with a first shaft hole 1311a
  • a central axis of the second blade 1321 is provided with a second shaft hole 1321a
  • the motor rotating shaft 1312a of the motor 1312 is engaged
  • the second shaft hole 1321a is engaged with the motor rotating shaft 1322a of the second motor 1322.
  • first engaging mechanism 1311b One of the first blade 1311 and the first motor 1312 is provided with a first engaging mechanism 1311b, and the other is provided with a first matching mechanism 1312b
  • the second blade 1321 and the second One of the motors 1322 is provided with a second engaging mechanism 1321b, and the other is provided with a second engaging mechanism 1322b.
  • the engaging mechanism engages with the engaging mechanism to fix the blade on the On the motor.
  • first engaging mechanism 1311b and the second engaging mechanism 1321b are different, and the first matching mechanism 1312b and the second engaging mechanism 1322b are different to ensure that the first blade 1311 and the second blade 1321 are correctly installation.
  • the first blade 1311 of the first rotor assembly 131 and the second blade 1321 of the second rotor assembly 132 Turn to the opposite.
  • the first engagement mechanism 1311b of the first rotor assembly 131 is different from the first Two engagement mechanisms 1321b
  • the first cooperating mechanism 1312b of the first rotor assembly 131 is different from the second cooperating mechanism 1322b of the second rotor assembly 132, so that the first blade 1311 can only be assembled with the first motor 1312, the second blade 1321 can only be assembled with the second motor 1322.
  • the structural difference between the engaging mechanism and the matching mechanism is convenient for the user to distinguish, thus avoiding the problem that the first blade 1311 and the second blade 1321 turned in opposite directions and the aircraft cannot fly normally due to reverse mounting.
  • FIG. 2 is a schematic structural view of a first rotor assembly in an embodiment of the present invention
  • FIG. 3 is a structural schematic view of a second rotor assembly in an embodiment of the present invention.
  • the first snap mechanism 1311b includes at least one first hook
  • the first mating mechanism 1312b includes The first card hooks correspond to the first card slots one by one.
  • the second engaging mechanism 1321b includes at least one second hook
  • the second matching mechanism 1322b includes a second hook corresponding to the second hook.
  • first engagement mechanism 1311b and the second engagement mechanism 1321b may be at least one hook, respectively, and the first engagement mechanism 1312b and the second engagement mechanism 1322b may be at least one engagement slot, respectively, so the first engagement hook and the second engagement mechanism 1322b
  • the difference in the number, shape, distribution, etc. of the hooks can make the first engaging mechanism 1311b different from the second engaging mechanism 1321b.
  • the difference in the number, shape, distribution, etc. of the first locking slot and the second locking slot can make the first matching mechanism 1312b different from the second matching mechanism 1322b. Therefore, the above structure is convenient to set up and convenient for the user to intuitively distinguish the cooperation relationship between the first blade 1311 and the first motor 1312 and the second blade 1321 and the second motor 1322.
  • first engaging mechanism 1311b and the first matching mechanism 1312b may also adopt other structures that can achieve snap-fitting, and the present disclosure does not limit this.
  • second engaging mechanism 1321b and the second matching mechanism 1322b may also adopt other structures that can achieve snap-fitting, and the disclosure does not limit this.
  • the first engaging mechanism 1311b is provided on the first blade 1311
  • the first engaging mechanism 1312b is provided on the first motor 1312
  • the second engaging mechanism 1321b is provided on the second blade 1321
  • the second engaging mechanism 1322b Taking the second motor 1322 as an example, the specific situation where the first engaging mechanism 1311b is different from the second engaging mechanism 1321b and the first engaging mechanism 1312b is different from the second engaging mechanism 1322b will be exemplified by the following embodiments:
  • the number of the first hooks is different from the number of second hooks, and the number of the first hooks is different from the number of second hooks.
  • the number of the first slot and the first hook are equal, and the number of the second slot and the second hook are equal.
  • the number of first hooks corresponds to the number of first hooks.
  • the number of second card slots corresponds to the number of second card hooks.
  • the shapes of the first hook and the second hook may be the same, and only the first hook and the second hook are distinguished in quantity. Users can assemble blades and motors corresponding to the number of hooks and slots through intuitive observation, which reduces the manufacturing cost.
  • the first hook may have a different shape from the second hook, so that the first hook and the second hook are different in number and shape, further reducing the first blade 1311 and the second blade 1321 The probability of anti-installation.
  • the number of first hooks is two, and the number of second hooks is four.
  • the thickness of the first hook on assembly is greater than the thickness of the second hook, that is, the depth of the first hook is greater than the second The depth of the card slot.
  • the thickness of the first hook and the depth of the second slot cannot match Avoid mis-installation of the first blade 1311 and the second blade 1321. Therefore, the use of the first hook and the second hook and the first hook and the second hook that are different in number and shape further improves the assembly probability of the first blade 1311 and the second blade 1321.
  • FIG. 4 is a schematic structural view of a first rotor assembly in another embodiment of the present invention
  • FIG. 5 is a structural schematic view of a second rotor assembly in another embodiment of the present invention.
  • the shape of the first hook is different from the shape of the second hook
  • the shape of the first hook is different from the shape of the second hook.
  • the first slot and the first hook have the same shape
  • the second slot and the second hook have the same shape.
  • the first hook and the second hook or the second hook and the first hook will not be able to cooperate due to structural interference, that is, the first hook cannot be locked into the second card
  • the slot may not be able to snap the second hook into the first slot, thus preventing the user from mistakenly installing the first blade 1311 and the second blade 1321 when installing the blade.
  • the different shapes may be different hook structures of the first hook and the second hook, or a difference in size of the first hook and the second hook.
  • the size difference as an example, the overall size of the first hook in each direction is larger than that of the second hook, and the overall size of the first hook in each direction is larger than that of the second hook.
  • the number of the first hook and the second hook may be the same or Differently, the present invention does not limit this.
  • Embodiment 2 which will not be repeated here.
  • the arrangement of the first hook is different from the arrangement of the second hook, and the arrangement of the first slot is different from the arrangement of the second slot.
  • the first clamping slot and the first hook are arranged in the same way, and the second clamping slot and the second hook are arranged in the same way.
  • FIG. 6 is a schematic structural diagram of a second rotor assembly in still another embodiment of the present invention. As shown in FIG. 4 and FIG.
  • the difference in the arrangement method may also be that the distance between the adjacent first hook and the connected second hook is different, and the position between the first hook and the second hook and the rotating shaft There are many forms such as different radial distances, and the present invention does not limit the specific form of the arrangement.
  • one of the engagement structure and the engagement structure can be integrally formed with the motor and the other is integrally formed with the blade to improve assembly efficiency.
  • one of the engaging mechanism and the matching mechanism may be assembled to the motor and the other to the blade to reduce the processing difficulty and cost of the motor and blade.
  • the rotor assembly 13 is finally assembled on the arm for use.
  • 7 is a perspective view of a multi-rotor unmanned aerial vehicle in another embodiment of the present invention.
  • the multi-rotor unmanned aerial vehicle 1 further includes a plurality of foolproof parts 133 assembled on a plurality of arms, and the plurality of foolproof parts 133 includes first anti-failure parts respectively assembled on different arms and having different structures The dummy 1331 and the second foolproof piece 1332.
  • the first blade 1311 includes a first foolproof mating part 1311c
  • the second blade 1321 includes a second foolproof mating part 1321c, one of the first foolproof part 1331 and the second foolproof part 1332
  • the structure is matched with the first foolproof mating portion 1311c, and the other is structured with the second foolproof mating portion 1321c, so as to realize the foolproof installation of the first blade 1311 and the second blade 1321c.
  • the foolproof piece 133 provided on the arm can together with the engagement mechanism and the cooperation mechanism in the rotor assembly 13 provide guarantee for the correct installation of the first blade 1311 and the second blade 1321, so the first blade 1311 is improved And the probability of the second paddle 1321 being formal.
  • FIGS. 8 and 9 are schematic structural views of a first rotor assembly in another embodiment of the present invention
  • FIG. 9 is a structural schematic view of a second rotor assembly in another embodiment of the present invention.
  • the first foolproof fitting portion 1311c includes a first body provided at the center of the first blade 1311 and a limit structure provided on the first body.
  • the first foolproof part 1331 includes an escape portion 1331a matching the limit structure.
  • the second fool-proof fitting portion 1321c includes a second body provided at the center of the second blade 1321 and a shielding structure provided on the second body.
  • the second fool-proof member 1332 includes a convex portion 1332a.
  • the structure at the center of the blade and the arm have a cooperative relationship to avoid interference of the arm structure on the rotation of the blade, so the main body provided at the center of the blade.
  • the limiting structure and the shielding structure also reduce the interference with the rotation of the blades, and improve the structural reliability of the rotor assembly 13.
  • FIG. 10 is a schematic diagram of the wrong assembly structure of the first blade and the second motor in an embodiment of the present invention. As shown in FIG.
  • FIG. 11 is a schematic diagram of the wrong assembly structure of the second blade and the first motor in an embodiment of the present invention. As shown in FIG.
  • the limiting structure is disposed along the circumferential direction of the first body and surrounds the first body. That is, the annular structure protrudingly arranged along the circumferential direction of the first body of the limiting structure makes foolproof protection exist at any circumferential position of the blade, preventing the foolproof piece 133 from cooperating with the blade at a position where the limiting structure is not provided , Reducing the probability of misinstallation.
  • the shielding structure is provided along the circumferential direction of the second body, and surrounds the second body, so that there is foolproof protection at any circumferential position of the blade, which prevents the foolproof piece 133 from being not provided The position of the shielding structure cooperates with the blade to reduce the probability of mis-installation.
  • the avoidance portion 1331a is adapted to a part of the circumferential section of the limit structure to reduce the structural complexity and space occupied volume of the avoidance portion 1331a, so that the overall structure of the multi-rotor unmanned aerial vehicle 1 is light and reliable.
  • the convex portion 1332a fits into a part of the circumferential section of the shielding structure to reduce the structural complexity and space occupied volume of the convex portion 1332a, making the overall structure of the multi-rotor UAV 1 light and reliable.
  • FIG. 12 is a schematic structural diagram of a first rotor assembly in another embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a second rotor assembly in another embodiment of the present invention. As shown in FIGS.
  • the length of the motor rotating shaft 1312a of the first motor 1312 is greater than the length of the motor rotating shaft 1322a of the second motor 1322, and the depth of the first shaft hole 1311a is correspondingly greater than the depth of the second shaft hole 1321a.
  • the depth of the shaft hole is greater than the length of the motor shaft, so that the first blade 1311 and the second motor 1322 cannot be truly installed and matched, the first blade 1311 cannot turn.
  • the second blade 1321 cooperates with the first motor 1312, the depth of the shaft hole is less than the length of the motor shaft, the motor shaft cannot be fully inserted into the shaft hole, and installation and coordination cannot be achieved, so the first blade 1311 and the second blade are avoided Improper assembly of leaf 1321.
  • the diameters of the motor shaft 1312a of the first motor 1312 and the motor shaft 1322a of the second motor 1322 are different, and the diameter of the first shaft hole 1311a matches the motor shaft 1312a of the first motor 1312
  • the diameter of the second shaft hole 1321a matches the diameter of the motor shaft 1322a of the second motor 1322.
  • the diameter of the motor shaft 1312a of the first motor 1312 is larger than the diameter of the motor shaft 1322a of the second motor 1322, and the diameter of the first shaft hole 1311a is correspondingly larger than the diameter of the second shaft hole 1321a.
  • the first blade 1311 cooperates with the first motor 1312 and the second blade 1321 cooperates with the second motor 1322, the depth of the shaft hole and the diameter of the rotating shaft of the motor cooperate with each other, and the first blade 1311 and the second blade 1321 can be realized Install correctly.
  • the diameter of the shaft hole is larger than the diameter of the rotating shaft of the motor, resulting in the inability to install between the first blade 1311 and the second motor 1322.
  • the second blade 1321 cooperates with the first motor 1312, the diameter of the shaft hole is smaller than the diameter of the motor shaft.
  • the second blade 1321 and the motor shaft 1312a of the first motor 1312 cannot be firmly installed and matched.
  • the second blade 1321 cannot rotate, so the wrong assembly of the first blade 1311 and the second blade 1321 is avoided.
  • the motor rotating shaft of the motor and the shaft hole on the blade may be provided with a matching structure, so that the motor rotating shaft 1312a of the first motor 1312 can only be matched with the shaft hole of the first blade 1311
  • the motor shaft 1322a of the second motor 1322 can only be matched with the shaft hole of the second blade 1321.
  • a first protrusion extending in the axial direction may be provided on the motor rotating shaft 1312a of the first motor 1312, and a first groove matching the first protrusion is provided on the shaft hole of the first paddle 1311;
  • a second protrusion different from the first protrusion extending in the axial direction is provided on the motor rotating shaft 1322a of the second motor 1322, and the shaft hole of the second paddle 1321 is provided with a matching with the second protrusion Second groove.
  • the first protrusion and the second protrusion may be different from each other in number, shape and distribution, and the first groove and the second groove may be different from each other in number, shape and distribution.
  • the specific difference can be set by referring to the difference between the first engagement mechanism 1311b and the second engagement mechanism 1321b, which will not be repeated here.
  • the multi-rotor unmanned aerial vehicle 1 cannot fly normally or is damaged due to the misassembly of 1311 and the second blade 1321.

Abstract

一种多旋翼无人飞行器(1),包括:机身(11)、多个机臂(12)及与机臂(12)数量相等的旋翼组件(13)。通过为多旋翼无人飞行器(1)设置电机转向相反的第一旋翼组件(131)和第二旋翼组件(132),以使第一桨叶(1311)与第二桨叶(1321)转向相反。且第一旋翼组件(131)的第一卡合机构(1311b)不同于第二旋翼组件(132)的第二卡合机构(1321b),第一旋翼组件(131)的第一配合机构(1312b)不同于第二旋翼组件(132)的第二配合机构(1322b),使得第一桨叶(1311)仅能与第一电机(1312)组装,第二桨叶(1321)仅能与第二电机(1322)组装。卡合机构和配合机构之间的结构差异便于用户区分,避免了转向相反的桨叶反装而造成飞行器无法正常飞行的问题。

Description

多旋翼无人飞行器 技术领域
本发明涉及飞行器技术领域,尤其涉及一种多旋翼无人飞行器。
背景技术
多旋翼无人飞行器通常包括多组螺旋桨,每个螺旋桨与一个电机相连,每个电机为与之对应的螺旋桨提供直接的动力源,多组螺旋桨同时工作保证了其在飞行过程中的平稳性。其中,根据螺旋桨在飞行器在飞行过程中的旋转方向不同将螺旋桨分为正桨和反桨。然而,当螺旋桨在组装或替换时,正桨与反桨容易造成反装,导致飞行器无法正常飞行甚至炸机。
发明内容
本发明提供一种多旋翼无人飞行器。
具体地,本发明是通过如下技术方案实现的:
根据本发明的实施例,提供一种多旋翼无人飞行器,包括:
机身;
多个机臂,所述多个机臂包括第一机臂和第二机臂,所述第一机臂与第二机臂的一端均与所述机身连接;以及
与机臂数量相等的旋翼组件,所述旋翼组件包括第一旋翼组件和第二旋翼组件,所述第一旋翼组件包括第一桨叶和用于驱动所述第一桨叶旋转的第一电机,所述第二旋翼组件包括第二桨叶和用于驱动所述第二桨叶旋转的第二电机,所述第一电机与所述第二电机的旋转方向相反,其中
所述第一桨叶的中心位置开设有第一轴孔,所述第二桨叶的中心位置开设有第二轴孔,所述第一轴孔与所述第一电机的电机转轴配合,所述第二轴孔与所述第二电机的电机转轴配合;
所述第一桨叶与所述第一电机的其中一个上设有第一卡合机构,另一个上设有第一配合机构,所述第二桨叶与所述第二电机的其中一个上设有第二卡合机构,另一个上设有第二配合机构,所述卡合机构与所述配合机构相卡合,以将所述桨叶固定在所述电机上,其中
所述第一卡合机构与第二卡合机构不同,所述第一配合机构与第二配合机构不同,以保证第一桨叶与第二桨叶被正确的安装。
由以上本发明实施例提供的技术方案可见,本发明通过为多旋翼无人飞行器设 置电机转向相反的第一旋翼组件和第二旋翼组件,以使第一旋翼组件的第一桨叶与第二旋翼组件的第二桨叶转向相反。且由于两旋翼组件的桨叶和电机均利用了卡合机构及配合机构的卡合实现组装,所以通过使第一旋翼组件的第一卡合机构不同于第二旋翼组件的第二卡合机构,第一旋翼组件的第一配合机构不同于第二旋翼组件的第二配合机构,使得第一桨叶仅能与第一电机组装,第二桨叶仅能与第二电机组装。所述卡合机构和配合机构之间的结构差异便于用户区分,因此避免了转向相反的第一桨叶和第二桨叶反装而造成飞行器无法正常飞行的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中多旋翼无人飞行器的立体图;
图2是本发明一实施例中第一旋翼组件的结构示意图;
图3是本发明一实施例中第二旋翼组件的结构示意图;
图4是本发明另一实施例中第一旋翼组件的结构示意图;
图5是本发明另一实施例中第二旋翼组件的结构示意图;
图6是本发明又一实施例中第二旋翼组件的结构示意图;
图7是本发明另一实施例中多旋翼无人飞行器的立体图;
图8是本发明又一实施例中第一旋翼组件的结构示意图;
图9是本发明再一实施例中第二旋翼组件的结构示意图;
图10是本发明一实施例中第一桨叶和第二电机的误装结构示意图;
图11是本发明一实施例中第二桨叶和第一电机的误装结构示意图;
图12是本发明再一实施例中第一旋翼组件的结构示意图;
图13是本发明再一实施例中第二旋翼组件的结构示意图。
附图标记:
1:多旋翼无人飞行器;
11:机身;
12:机臂;121:第一机臂;122:第二机臂;
13:旋翼组件;131:第一旋翼组件;132:第二旋翼组件;
1311:第一桨叶;1311a:第一轴孔;1311b:第一卡合机构;1311c:第一防呆配合部;1312:第一电机;1312a:第一电机的电机转轴;1312b:第一配合机构;
1321:第二桨叶;1321a:第二轴孔;1321b:第二卡合机构;1321c:第二防呆配合部;1322:第二电机;1322a:第二电机的电机转轴;1322b:第二配合机构;
133:防呆件;1331:第一防呆件;1331a:避让部;1332:第二防呆件;1332a:凸起部。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的多旋翼无人飞行器进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
实施例一
如图1所示,本发明实施例一提供一种多旋翼无人飞行器1,包括:机身11、多个机臂12及与机臂12数量相等的旋翼组件13。所述多个机臂12包括第一机臂121和第二机臂122,所述第一机臂121与第二机臂122的一端均与所述机身11连接。所述旋翼组件13包括第一旋翼组件131和第二旋翼组件132,所述第一旋翼组件131包括第一桨叶1311和用于驱动所述第一桨叶1311旋转的第一电机1312,所述第二旋翼组件132包括第二桨叶1321和用于驱动所述第二桨叶1321旋转的第二电机1322,所述第一电机1312与所述第二电机1322的旋转方向相反。其中,所述第一桨叶1311的中心位置开设有第一轴孔1311a,所述第二桨叶1321的中心位置开设有第二轴孔1321a,所述第一轴孔1311a与所述第一电机1312的电机转轴1312a配合,所述第二轴孔1321a与所述第二电机1322的电机转轴1322a配合。所述第一桨叶1311与所述第一电机1312的其中一个上设有第一卡合机构1311b,另一个上设有第一配合机构1312b,所述第二桨叶1321与所述第二电机1322的其中一个上设有第二卡合机构1321b,另一个上设有第二配合机构1322b,所述卡合机构与所述配合机构相卡合,以将所述桨叶固定在所述电机上。其中,所述第一卡合机构1311b与第二卡合机构1321b不同,所述第一配合机构1312b与第二配合机构1322b不同,以保证第一桨叶1311与第二桨叶1321被正确的安装。
通过为多旋翼无人飞行器1设置电机转向相反的第一旋翼组件131和第二旋翼组件132,以使第一旋翼组件131的第一桨叶1311与第二旋翼组件132的第二桨叶1321转向相反。且由于两旋翼组件13的桨叶和电机均利用了卡合机构及配合机构的卡合实现组装,所以通过使第一旋翼组件131的第一卡合机构1311b不同于第二旋翼组件132 的第二卡合机构1321b,第一旋翼组件131的第一配合机构1312b不同于第二旋翼组件132的第二配合机构1322b,使得第一桨叶1311仅能与第一电机1312组装,第二桨叶1321仅能与第二电机1322组装。所述卡合机构和配合机构之间的结构差异便于用户区分,因此避免了转向相反的第一桨叶1311和第二桨叶1321反装而造成飞行器无法正常飞行的问题。
图2是本发明一实施例中第一旋翼组件的结构示意图;图3是本发明一实施例中第二旋翼组件的结构示意图。如图2、图3所示,为了实现卡合机构和配合机构之间的卡合安装关系,所述第一卡合机构1311b包括至少一个第一卡勾,所述第一配合机构1312b包括与第一卡勾一一对应的第一卡槽。当第一桨叶1311配合于第一电机1312时,第一卡勾与第一卡槽对应卡接配合进而能够实现第一桨叶1311和第一电机1312的正确安装。同样的,所述第二卡合机构1321b包括至少一个第二卡勾,所述第二配合机构1322b包括与第二卡勾一一对应的第二卡槽。当第二桨叶1321配合于第二电机1322时,第二卡勾与第二卡槽对应卡接配合进而能够实现第二桨叶1321和第二电机1322的正确安装。
基于第一卡合机构1311b和第二卡合机构1321b分别可以是至少一个卡勾,而第一配合机构1312b和第二配合机构1322b分别可以是至少一个卡槽,所以第一卡勾与第二卡勾在数量、形状、分布等方面的不同均能够使第一卡合机构1311b不同于第二卡合机构1321b。同样的,第一卡槽和第二卡槽在数量、形状、分布等方面的不同均能够使第一配合机构1312b不同于第二配合机构1322b。因此,上述结构便于设置也便于用户直观的对第一桨叶1311和第一电机1312及第二桨叶1321和第二电机1322之间的配合关系进行区分。
需要说明的是,所述第一卡合机构1311b和第一配合机构1312b也可以采用其他能够实现卡接配合的结构,本公开并不对此进行限制。同样的,所述第二卡合机构1321b和第二配合机构1322b也可以采用其他能够实现卡接配合的结构,本公开也不对此进行限制。下面以第一卡合机构1311b设置在第一桨叶1311上,第一配合机构1312b设置在第一电机1312上,第二卡合机构1321b设置在第二桨叶1321上,第二配合机构1322b设置在第二电机1322上为例,对第一卡合机构1311b不同于第二卡合机构1321b及第一配合机构1312b不同于第二配合机构1322b的具体情况通过以下实施例进行示例性说明:
实施例二
所述第一卡勾的数量不同于第二卡勾的数量,所述第一卡槽的数量不同于第二卡槽的数量。而第一卡槽与第一卡勾的数量相等,第二卡槽与第二卡勾的数量相等。当对桨叶和电机进行组装时,根据卡勾和卡槽数量上的对应关系即可实现对第一桨叶1311和第二桨叶1321的正确安装。
具体的,在本实施例中,以第一卡勾的数量为两个,而第二卡勾的数量为四个为例,此时,第一卡槽和第一卡勾的数量对应,第二卡槽与第二卡勾的数量对应。其 中,所述第一卡勾和第二卡勾的形状可以是相同的,仅从数量上对第一卡勾和第二卡勾进行区分。用户可以通过直观的观察,将卡勾和卡槽数量对应的桨叶和电机进行组装,降低了制造成本。
或者,第一卡勾也可以采用与第二卡勾不同的形状,使得第一卡勾和第二卡勾在数量和形状上均存在差异,进一步降低第一桨叶1311和第二桨叶1321的反装概率。例如,第一卡勾的数量为两个,第二卡勾的数量为四个,第一卡勾在组装上的厚度还大于第二卡勾的厚度,即第一卡槽的深度大于第二卡槽的深度。当使用第一桨叶1311与第二电机1322进行组装时,虽然两个卡勾可能与四个卡槽产生配合,但由于第一卡勾的厚度与第二卡槽的深度无法匹配,仍能够避免第一桨叶1311和第二桨叶1321的误装。因此,采用数量和形状均存在差异的第一卡勾和第二卡勾及第一卡槽和第二卡槽进一步提升了第一桨叶1311和第二桨叶1321的整装概率。
实施例三
图4是本发明另一实施例中第一旋翼组件的结构示意图;图5是本发明另一实施例中第二旋翼组件的结构示意图。如图4、图5所示,所述第一卡勾的形状不同于第二卡勾的形状,所述第一卡槽的形状不同于第二卡槽的形状。而第一卡槽与第一卡勾的形状相同,第二卡槽与第二卡勾的形状相同。当对桨叶和电机进行组装时,根据卡勾和卡槽形状上的对应关系即可实现对第一桨叶1311和第二桨叶1321的正确安装。当所述形状差异存在时,第一卡勾与第二卡槽或第二卡勾和第一卡槽会由于结构上的干涉而无法实现配合,即无法将第一卡勾卡入第二卡槽或无法将第二卡勾卡入第一卡槽,因此避免了用户在安装桨叶时将第一桨叶1311和第二桨叶1321之间误装。
具体的,所述形状不同可以是第一卡勾和第二卡勾的勾型结构上不同,也可以是第一卡勾和第二卡勾在尺寸上的差异。以尺寸差异为例,第一卡勾在各个方向上的整体尺寸大于第二卡勾,第一卡槽在各个方向上的整体尺寸大于第二卡槽,这就导致第一卡勾无法与第二卡槽配合,第二卡勾与无法实现与第一卡槽的稳固装配,因而确保了第一桨叶1311和第二桨叶1321的正确装配。
需要说明的是,当第一卡勾和第二卡勾的形状不同,第一卡槽和第二卡槽的形状不同时,第一卡勾与第二卡勾的在数量上可以相同也可以不同,本发明并不对此进行限制。当第一卡勾和第二卡勾数量不同时的实施例可以参照实施例二,此处不再赘述。
实施例四
所述第一卡勾的排布方式不同于第二卡勾的排布方式,所述第一卡槽的排布方式不同于第二卡槽的排布方式。而第一卡槽与第一卡勾的排布方式相同,第二卡槽与第二卡勾的排布方式相同。当对桨叶和电机进行组装时,根据卡勾和卡槽排布方式上的对应关系即可实现对第一桨叶1311和第二桨叶1321的正确安装。
其中,所述第一卡勾和第二卡勾的形状或数量可以相同,也可以不同,本发明并不对此进行限制。当第一卡勾和第二卡勾的形状和数量均相同,仅根据第一卡勾和第二卡勾的排布方式差异即可实现对第一桨叶1311和第二桨叶1321的正确安装。具体的,图6是本发明又一实施例中第二旋翼组件的结构示意图。如图4、图6所示,以第一卡勾和第二卡勾的形状相同且分别有四个为例:四个第一卡勾沿第一桨叶1311和第一电机1312中一个的周向均匀分布,第一卡槽沿另一个的周向分布;而四个第二卡勾在第二桨叶1321和第二电机1322中的一个上呈直线型分布,第二卡槽在另一个上呈直线分布。因此,由于第一卡勾和第二卡勾排布上的差异,使得第一卡勾无法与第二卡槽配合,第二卡勾也无法与第一卡槽配合,避免了第一桨叶1311和第二桨叶1321的误装。
需要说明的是,所述排布方式的不同还可以是相邻第一卡勾与相连第二卡勾之间的间距不同、第一卡勾和第二卡勾所处位置与转轴之间的径向距离不同等多种形式,本发明不对排布方式的具体形式进行限制。
此外,在设置卡合机构和配合机构时,可以使所述卡合结构和配合结构中的一个与电机一体成型,另一个与桨叶一体成型,以提升组装效率。或者,还可以使卡合机构和配合机构中的一个组装于电机,另一个组装于桨叶,以降低电机和桨叶的加工难度和成本。
在多旋翼无人飞行器1的组装过程中,旋翼组件13最终要组装在机臂上进行使用。图7是本发明另一实施例中多旋翼无人飞行器的立体图。如图7所示,多旋翼无人飞行器1还包括组装于多个机臂的多个防呆件133,所述多个防呆件133包括分别组装于不同机臂且结构不同的第一防呆件1331和第二防呆件1332。所述第一桨叶1311包括第一防呆配合部1311c,所述第二桨叶1321包括第二防呆配合部1321c,所述第一防呆件1331和第二防呆件1332中的一个与所述第一防呆配合部1311c结构匹配,另一个与所述第二防呆配合部1321c结构匹配,以实现所述第一桨叶1311与第二桨叶1321的防呆安装。设置在机臂上的防呆件133能够与旋翼组件13中的卡合机构及配合机构共同对第一桨叶1311和第二桨叶1321的正确安装提供保障,因此提升了第一桨叶1311和第二桨叶1321的正装概率。现以第一防呆件1331与第一防呆配合部1321c配合,第二防呆件1332与第二防呆配合部1321c为例,通过以下实施例对防呆件133与桨叶之间的防呆配合关系进行示例性说明:
实施例五
图8是本发明又一实施例中第一旋翼组件的结构示意图;图9是本发明再一实施例中第二旋翼组件的结构示意图。如图8、图9所示,所述第一防呆配合部1311c包括设置在第一桨叶1311中心位置处的第一主体和设置在第一主体上的限位结构,第一防呆件1331包括匹配于限位结构的避让部1331a。所述第二防呆配合部1321c包括 设置在第二桨叶1321中心位置处的第二主体和设置在第二主体上的遮挡结构,第二防呆件1332中包括凸起部1332a。由于在旋翼组件13组装于机臂时,通常是桨叶的中心位置处的结构与机臂存在配合关系,以避免机臂结构对桨叶旋转的干涉,因此设置在桨叶中心位置处的主体、限位结构和遮挡结构也降低了对桨叶旋转的干扰,提升了旋翼组件13的结构可靠性。
当第一桨叶1311与机臂上的第一电机1312组装时,第一防呆件1331上的避让部1331a刚好避开了限位结构,使得第一桨叶1311正确的组装在第一电机1312上。当第二桨叶1321与机臂上的第二电机1322配合时,第二防呆件1332上的凸起部1332a刚好收容在遮挡结构和第二电机1322形成的组装空间内。图10是本发明一实施例中第一桨叶和第二电机的误装结构示意图,如图10所示,当第一桨叶1311与机臂上的第二电机1322组装时,第二防呆件1332上的凸起部1332a造成了与限位结构之间的结构干涉,使得第一桨叶1311无法与第二电机1322组装配合,从而实现防呆安装。同样的,图11是本发明一实施例中第二桨叶和第一电机的误装结构示意图,如图11所示,当第二桨叶1321与机臂上的第一电机1312组装时,第一防呆件1331上的避让部1331a在电机转轴轴向上的厚度无法与所述遮挡结构形成的组装空间匹配,造成第二桨叶1321无法与第一电机1312配合,从而实现防呆安装。
在上述实施例中,所述限位结构沿第一主体的周向设置,且环绕第一主体。即,限位结构沿第一主体周向突出设置的环形结构,使得在桨叶的任意周向位置均存在防呆保护,避免了防呆件133在未设置限位结构的位置与桨叶配合,降低了误装概率。同样的,所述遮挡结构沿所述第二主体的周向设置,且环绕所述第二主体,使得在桨叶的任意周向位置均存在防呆保护,避免了防呆件133在未设置遮挡结构的位置与桨叶配合,降低了误装概率。
进一步的,所述避让部1331a配合于限位结构的部分周向区段,以降低避让部1331a结构复杂性和空间占用体积,使得多旋翼无人飞行器1整体结构轻便、可靠。所述凸起部1332a配合于所述遮挡结构的部分周向区段,以降低凸起部1332a结构复杂性和空间占用体积,使得多旋翼无人飞行器1整体结构轻便、可靠。
此外,由于在桨叶与电机的组装过程中,还涉及到电机的电机转轴与桨叶上的轴孔之间的配合,因此,可以针对电机转轴与轴孔进行结构改进,以进一步实现电机与桨叶的防呆配合。下面针对电机转轴和轴孔的具体改进方式进行示例性说明:
实施例六
在上述实施例中,所述第一电机1312的电机转轴1312a与所述第二电机1322的电机转轴1322a的长度不等,所述第一轴孔1311a的深度匹配于所述第一电机1312的电机转轴1312a的长度,所述第二轴孔1321a的深度匹配于所述第二电机1322的电机转轴1322a的长度。例如,图12是本发明再一实施例中第一旋翼组件的结构示意图;图13是本 发明再一实施例中第二旋翼组件的结构示意图。如图12、13所示,第一电机1312的电机转轴1312a长度大于第二电机1322的电机转轴1322a长度,第一轴孔1311a的深度对应的大于第二轴孔1321a的深度。当第一桨叶1311与第一电机1312及第二桨叶1321与第二电机1322配合时,轴孔深度与电机转轴的长度相互配合,能够实现第一桨叶1311和第二桨叶1321的正确安装。然而,当第一桨叶1311与第二电机1322配合时,轴孔的深度大于电机转轴的长度,导致第一桨叶1311与第二电机1322之间不能实现真正的安装配合,第一桨叶1311无法转动。当第二桨叶1321与第一电机1312配合时,轴孔的深度小于电机转轴的长度,电机转轴无法完全插入轴孔中,无法实现安装配合,因此避免了第一桨叶1311与第二桨叶1321的错误装配。
实施例七
在实施例五中,进一步的,所述第一电机1312的电机转轴1312a与第二电机1322的电机转轴1322a的直径不等,第一轴孔1311a的直径匹配于第一电机1312的电机转轴1312a的直径,第二轴孔1321a的直径匹配于第二电机1322的电机转轴1322a的直径。例如,第一电机1312的电机转轴1312a直径大于第二电机1322的电机转轴1322a直径,第一轴孔1311a的直径对应的大于第二轴孔1321a的直径。当第一桨叶1311与第一电机1312及第二桨叶1321与第二电机1322配合时,轴孔深度与电机转轴的直径相互配合,能够实现第一桨叶1311和第二桨叶1321的正确安装。然而,当第一桨叶1311与第二电机1322配合时,轴孔的直径大于电机转轴的直径,导致第一桨叶1311与第二电机1322之间不能安装。当第二桨叶1321与第一电机1312配合时,轴孔的直径小于电机转轴的直径,第二桨叶1321和第一电机1312的电机转轴1312a轴不能实现稳固的安装配合,第二桨叶1321无法转动,因此避免了第一桨叶1311与第二桨叶1321的错误装配。
在其他实施例中,还可以为电机的电机转轴以及桨叶上的轴孔设置相互匹配的配合结构,以使第一电机1312的电机转轴1312a仅能与第一桨叶1311的轴孔对应配合,而第二电机1322的电机转轴1322a仅能与第二桨叶1321的轴孔对应配合。例如,可以在第一电机1312的电机转轴1312a上设置沿轴向延伸的第一凸起,而第一桨叶1311的轴孔上设置有与所述第一凸起匹配的第一凹槽;同时在第二电机1322的电机转轴1322a上设置沿轴向延伸的不同于第一凸起的第二凸起,而第二桨叶1321的轴孔上设置有与所述第二凸起匹配的第二凹槽。其中,第一凸起和第二凸起可以在数量、形状和分布上互不相同,第一凹槽和第二凹槽可以在数量、形状和分布上互不相同。具体差异可以参考第一卡合机构1311b和第二卡合机构1321b之间的差别进行设置,此处不再赘述。
通过上述第一凸起和第二凸起及第一凹槽和第二凹槽之间的差异,实现了第一桨叶1311和第二桨叶1321的正确安装,进一步避免了第一桨叶1311和第二桨叶1321发生误装而导致的多旋翼无人飞行器1无法正常飞行或损坏。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个 实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的多旋翼无人飞行器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (17)

  1. 一种多旋翼无人飞行器,其特征在于,包括:
    机身;
    多个机臂,所述多个机臂包括第一机臂和第二机臂,所述第一机臂与第二机臂的一端均与所述机身连接;以及
    与机臂数量相等的旋翼组件,所述旋翼组件包括第一旋翼组件和第二旋翼组件,所述第一旋翼组件包括第一桨叶和用于驱动所述第一桨叶旋转的第一电机,所述第二旋翼组件包括第二桨叶和用于驱动所述第二桨叶旋转的第二电机,所述第一电机与所述第二电机的旋转方向相反,其中
    所述第一桨叶的中心位置开设有第一轴孔,所述第二桨叶的中心位置开设有第二轴孔,所述第一轴孔与所述第一电机的电机转轴配合,所述第二轴孔与所述第二电机的电机转轴配合;
    所述第一桨叶与所述第一电机的其中一个上设有第一卡合机构,另一个上设有第一配合机构,所述第二桨叶与所述第二电机的其中一个上设有第二卡合机构,另一个上设有第二配合机构,所述卡合机构与所述配合机构相卡合,以将所述桨叶固定在所述电机上,其中
    所述第一卡合机构与第二卡合机构不同,所述第一配合机构与第二配合机构不同,以保证第一桨叶与第二桨叶被正确的安装。
  2. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,所述第一卡合机构包括至少一个第一卡勾,所述第一配合机构包括与所述第一卡勾一一对应的第一卡槽;所述第二卡合机构包括至少一个第二卡勾,所述第二配合机构包括与所述第二卡勾一一对应的第二卡槽。
  3. 根据权利要求2所述的多旋翼无人飞行器,其特征在于,所述第一卡勾的数量不同于所述第二卡勾的数量,所述第一卡槽的数量不同于所述第二卡槽的数量。
  4. 根据权利要求2所述的多旋翼无人飞行器,其特征在于,所述第一卡勾的形状不同于所述第二卡勾的形状,所述第一卡槽的形状不同于所述第二卡槽的形状。
  5. 根据权利要求4所述的多旋翼无人飞行器,其特征在于,所述第一卡勾的尺寸不同于所述第二卡勾的尺寸,所述第一卡槽的尺寸不同于所述第二卡槽的尺寸。
  6. 根据权利要求2所述的多旋翼无人飞行器,其特征在于,所述第一卡勾的排布方式不同于所述第二卡勾的排布方式,所述第一卡槽的排布方式不同于所述第二卡槽的排布方式。
  7. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,所述第一卡合机构和第一配合机构中的一个与所述第一电机一体成型;所述第二卡合机构和第二配合机构中的一个与所述第二电机一体成型。
  8. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,所述第一卡合机构和第二配合机构中的一个组装于所述第一电机;所述第二卡合机构和第二配合机构中的一个组装于所述第二电机。
  9. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,还包括组装于多个所述机臂的多个防呆件,所述多个防呆件包括分别组装于不同机臂且结构不同的第一防呆件和第二防呆件;
    所述第一桨叶包括第一防呆配合部,所述第二桨叶包括第二防呆配合部,所述第一防呆件和第二防呆件中的一个与所述第一防呆配合部结构匹配,另一个与所述第二防呆 配合部结构匹配,以实现所述第一桨叶与第二桨叶的防呆安装。
  10. 根据权利要求9所述的多旋翼无人飞行器,其特征在于,所述第一防呆配合部包括设置在所述第一桨叶中心位置处的第一主体和设置在所述第一主体上的限位结构;所述第一防呆件和第二防呆件中的一个包括匹配于所述限位结构的避让部,当所述第一桨叶组装于所述第一电机时,所述避让部配合于所述限位结构。
  11. 根据权利要求10所述的多旋翼无人飞行器,其特征在于,所述限位结构沿所述第一主体的周向设置,且环绕所述第一主体。
  12. 根据权利要求11所述的多旋翼无人飞行器,其特征在于,所述避让部配合于所述限位结构的部分周向区段。
  13. 根据权利要求9所述的多旋翼无人飞行器,其特征在于,所述第二防呆配合部包括设置在所述第二桨叶中心位置处的第二主体和设置在所述第二主体上的遮挡结构;当所述第二桨叶组装于所述第二电机时,所述遮挡结构与所述第二电机之间形成组装空间,所述第一防呆件和所述第二防呆件中的一个包括匹配于所述组装空间的凸起部。
  14. 根据权利要求13所述的多旋翼无人飞行器,其特征在于,所述遮挡结构沿所述第二主体的周向设置,且环绕所述第二主体。
  15. 根据权利要求14所述的多旋翼无人飞行器,其特征在于,所述凸起部配合于所述遮挡结构的部分周向区段。
  16. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,所述第一电机的电机轴与所述第二电机的电机轴的长度不等;所述第一轴孔的深度匹配于所述第一电机的电机轴的长度,所述第二轴孔的深度匹配于所述第二电机的电机轴的长度。
  17. 根据权利要求1所述的多旋翼无人飞行器,其特征在于,所述第一电机的电机轴与所述第二电机的电机轴的直径不等;所述第一轴孔的直径匹配于所述第一电机的电机轴的直径,所述第二轴孔的直径匹配于所述第二电机的电机轴的直径。
PCT/CN2018/116727 2018-11-21 2018-11-21 多旋翼无人飞行器 WO2020103037A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/116727 WO2020103037A1 (zh) 2018-11-21 2018-11-21 多旋翼无人飞行器
CN201880040634.6A CN110770125A (zh) 2018-11-21 2018-11-21 多旋翼无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116727 WO2020103037A1 (zh) 2018-11-21 2018-11-21 多旋翼无人飞行器

Publications (1)

Publication Number Publication Date
WO2020103037A1 true WO2020103037A1 (zh) 2020-05-28

Family

ID=69328590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116727 WO2020103037A1 (zh) 2018-11-21 2018-11-21 多旋翼无人飞行器

Country Status (2)

Country Link
CN (1) CN110770125A (zh)
WO (1) WO2020103037A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077285A1 (zh) * 2020-10-14 2022-04-21 深圳市大疆创新科技有限公司 多旋翼无人飞行器
WO2023082294A1 (zh) * 2021-11-15 2023-05-19 深圳市大疆创新科技有限公司 共轴双桨无人机、无人机套装及电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322648B2 (en) * 2008-05-15 2012-12-04 Aeryon Labs Inc. Hovering aerial vehicle with removable rotor arm assemblies
CN105599895A (zh) * 2016-01-29 2016-05-25 浙江智天科技有限公司 多轴飞行器
CN205499358U (zh) * 2016-04-08 2016-08-24 李丹 防误快装机构
CN206107533U (zh) * 2016-08-31 2017-04-19 深圳市大疆创新科技有限公司 驱动装置、螺旋桨及动力系统
CN107891968A (zh) * 2017-12-19 2018-04-10 深圳市道通智能航空技术有限公司 一种折叠螺旋桨、动力组件及无人机
CN108001668A (zh) * 2017-12-29 2018-05-08 深圳市道通智能航空技术有限公司 螺旋桨、螺旋桨套件、动力组件、动力套件及无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322648B2 (en) * 2008-05-15 2012-12-04 Aeryon Labs Inc. Hovering aerial vehicle with removable rotor arm assemblies
CN105599895A (zh) * 2016-01-29 2016-05-25 浙江智天科技有限公司 多轴飞行器
CN205499358U (zh) * 2016-04-08 2016-08-24 李丹 防误快装机构
CN206107533U (zh) * 2016-08-31 2017-04-19 深圳市大疆创新科技有限公司 驱动装置、螺旋桨及动力系统
CN107891968A (zh) * 2017-12-19 2018-04-10 深圳市道通智能航空技术有限公司 一种折叠螺旋桨、动力组件及无人机
CN108001668A (zh) * 2017-12-29 2018-05-08 深圳市道通智能航空技术有限公司 螺旋桨、螺旋桨套件、动力组件、动力套件及无人机

Also Published As

Publication number Publication date
CN110770125A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020103037A1 (zh) 多旋翼无人飞行器
US20170232937A1 (en) Wiper connector and bolt-stabilizing sleeve adaptor
CN108001668B (zh) 螺旋桨、螺旋桨套件、动力组件、动力套件及无人机
WO2018196123A1 (zh) 螺旋桨、动力系统及无人飞行器
CN206466158U (zh) 可拆卸机臂组件及飞行器
US4125339A (en) Releasably interlocked, assymmetrical, lugged flange joint with fixed relative orientation
GB1585438A (en) Electrical connector assembly having antidecoupling mechanism
CN105392961A (zh) 射孔枪组件和系统
CN102797699A (zh) 具有轴向固定装置的燃气涡轮压缩机末级转子叶片
WO2018076273A1 (zh) 锁定机构、螺旋桨、电机、动力系统组件及飞行器
WO2021035631A1 (zh) 快拆件、螺旋桨组件及多旋翼无人飞行器
US4690366A (en) System for holding an electric motor in a housing
US11859746B2 (en) Device for connecting two tubular objects
WO2020042382A1 (zh) 一种多瓣自锁电连接器
JP7465987B2 (ja) バヨネットロックの第1接続相手と第2接続相手をコーディングする装置および装置セット
US11600880B2 (en) System and method for securing battery in aircraft
CN107191502B (zh) 联轴器以及轴连接结构
CN111370898A (zh) 一种连接器及插头
CN105811166A (zh) 一种对插式连接器
CN215299685U (zh) 一种快速连接止退密封机构
CN115315388A (zh) 旋翼安装组件
CN110891858B (zh) 旋翼组件及无人飞行器
CN205952307U (zh) 旋翼保护架的连接件、无人多旋翼飞行器
CN213810480U (zh) 连接组件及照明装置
WO2022095222A1 (zh) 电池连接组件、电池单元、电动装置及电动装置套件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940892

Country of ref document: EP

Kind code of ref document: A1