WO2019119609A1 - 一种新型多孔发热陶瓷的制备工艺 - Google Patents

一种新型多孔发热陶瓷的制备工艺 Download PDF

Info

Publication number
WO2019119609A1
WO2019119609A1 PCT/CN2018/074109 CN2018074109W WO2019119609A1 WO 2019119609 A1 WO2019119609 A1 WO 2019119609A1 CN 2018074109 W CN2018074109 W CN 2018074109W WO 2019119609 A1 WO2019119609 A1 WO 2019119609A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
ceramic
dry
powder
drying
Prior art date
Application number
PCT/CN2018/074109
Other languages
English (en)
French (fr)
Inventor
丁毅
程宏生
Original Assignee
深圳市卓力能电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市卓力能电子有限公司 filed Critical 深圳市卓力能电子有限公司
Publication of WO2019119609A1 publication Critical patent/WO2019119609A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the invention relates to the technical field of ceramic heating body preparation, and more particularly to the preparation process of a novel porous heating ceramic.
  • the porous ceramic heating technology is to wind the heating wire around the surface of the porous ceramic.
  • the function of the heating wire is to convert electrical energy into thermal energy.
  • the function of the porous ceramic is to adsorb the liquid, and the liquid absorbs heat and atomizes. Since the heat generating portion is limited to the surface of the porous ceramic, only the liquid located at the contact surface of the porous ceramic and the heating wire can be atomized efficiently. However, the liquid adsorbed inside the porous ceramic has a limited heat absorption and cannot be atomized.
  • the present invention provides a preparation process of a novel porous heat-generating ceramic, wherein the porous heat-generating ceramic obtained by the preparation process is heated as a whole, so that the absorbed liquid is more likely to absorb heat and atomize.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a preparation process of a novel porous heat-generating ceramic, which is improved in that the preparation process comprises the following steps:
  • step B drying: the mixed powder prepared in step A is placed in a drying oven for drying, wherein the drying temperature is 105-120 ° C, drying time is 24-48 h;
  • step B ball milling: in the dry mixed powder in step B will be into the grinding ball, and placed in the grinding tank for dry ball milling, dry ball milling time is 12-24h;
  • step C sieving: the ball-mixed powder in step C is placed in a 500 mesh screen to collect the powder passing through the screen;
  • step D the mixed powder collected in step D is placed in a mold of a dry pressing forming apparatus, wherein the dry pressing strength is 30-80 MPa, and after the dry pressing is completed, the mold is withdrawn to form a ceramic embryo body;
  • Electrode Both ends of the porous heated ceramic semi-finished product obtained in the step F are subjected to nickel plating or silver plating on the surface, and then brazed or soldered to the electrode at the nickel-plated or silver-plated portion to obtain a porous body. Finished heat ceramic body.
  • step A 70% of silicon carbide powder and 30% of carbon fiber are weighed by mass percentage.
  • the drying temperature is 110 ° C
  • the drying time is 36 h.
  • the dry ball milling time is 18 h.
  • the dry pressing strength is 60 MPa.
  • the heating rate during sintering is 1-10 ° C / min
  • the sintering temperature is 1500-2100 ° C
  • the sintering time is 3-9 h.
  • the heating rate at the time of sintering was 5 ° C / min
  • the sintering temperature was 1700-1900 ° C
  • the sintering time was 6 h.
  • the invention has the beneficial effects that the preparation process comprises integrally sintering the carbon fiber material and the ceramic material to obtain a porous heat-generating ceramic, so that the porous heat-generating ceramic not only has the function of absorbing and storing liquid, but also has the function of heating; the porous heat-generating ceramic is generally heated.
  • the absorbed liquid is more easily absorbed by heat and atomized.
  • FIG. 1 is a process flow diagram of a preparation process of a novel porous heat-generating ceramic of the present invention.
  • the present invention discloses a preparation process of a novel porous heat-generating ceramic. Specifically, the preparation process includes the following steps:
  • step B drying: the mixed powder prepared in step A is placed in a drying oven for drying, wherein the drying temperature is 110 ° C, the drying time is 36 h;
  • step B ball milling: in the dried mixed powder in step B will be into the grinding ball, and placed in the grinding tank for dry ball milling, dry ball milling time is 18h;
  • step C sieving: the ball-mixed powder in step C is placed in a 500 mesh screen to collect the powder passing through the screen;
  • step D the mixed powder collected in step D is placed in a mold of a dry pressing forming device, wherein the dry pressing strength is 60 MPa, and after the dry pressing is completed, the mold is withdrawn to form a ceramic body;
  • the ceramic embryo body obtained in the step E is placed in a graphite dry pot, and the separation powder is buried. Thereafter, the green body buried in the separation powder is sintered at a normal pressure by a nitrogen sintering furnace, and the sintering atmosphere is performed.
  • a porous heated ceramic semi-finished product is prepared by sintering nitrogen; the heating rate during sintering is 5 ° C / min, the sintering temperature is 1700 ° C, and the sintering time is 6 h;
  • Electrode Both ends of the porous heated ceramic semi-finished product obtained in the step F are subjected to nickel plating or silver plating on the surface, and then brazed or soldered to the electrode at the nickel-plated or silver-plated portion to obtain a porous body. Finished heat ceramic body.
  • the present invention discloses a preparation process of a novel porous heat-generating ceramic. Specifically, the preparation process includes the following steps:
  • step B drying: the mixed powder prepared in step A is placed in a drying oven for drying, wherein the drying temperature is 105 ° C, the drying time is 24 h;
  • step B ball milling: in the dry mixed powder in step B will be into the grinding ball, and placed in the grinding tank for dry ball milling, dry ball milling time is 12h;
  • step C sieving: the ball-mixed powder in step C is placed in a 500 mesh screen to collect the powder passing through the screen;
  • step D the mixed powder collected in step D is placed in a mold of a dry pressing forming device, wherein the dry pressing strength is 30 MPa, and after the dry pressing is completed, the mold is withdrawn to form a ceramic body;
  • the ceramic embryo body obtained in the step E is placed in a graphite dry pot, and the separation powder is buried. Thereafter, the green body buried in the separation powder is sintered at a normal pressure by a nitrogen sintering furnace, and the sintering atmosphere is performed. For the nitrogen gas, the green body is sintered to obtain a porous heated ceramic semi-finished product; the heating rate during sintering is 1 ° C / min, the sintering temperature is 1500 ° C, and the sintering time is 3 h;
  • Electrode Both ends of the porous heated ceramic semi-finished product obtained in the step F are subjected to nickel plating or silver plating on the surface, and then brazed or soldered to the electrode at the nickel-plated or silver-plated portion to obtain a porous body. Finished heat ceramic body.
  • the present invention discloses a preparation process of a novel porous heat-generating ceramic. Specifically, the preparation process includes the following steps:
  • step B drying: the mixed powder prepared in step A is placed in a drying oven for drying, wherein the drying temperature is 120 ° C, drying time is 48 h;
  • step B ball milling: in the dry mixed powder in step B will be into the grinding ball, and placed in the grinding tank for dry ball milling, dry ball milling time is 24h;
  • step C sieving: the ball-mixed powder in step C is placed in a 500 mesh screen to collect the powder passing through the screen;
  • step D the mixed powder collected in step D is placed in a mold of a dry pressing forming device, wherein the dry pressing strength is 80 MPa, and after the dry pressing is completed, the mold is withdrawn to form a ceramic body;
  • the ceramic embryo body obtained in the step E is placed in a graphite dry pot, and the separation powder is buried. Thereafter, the green body buried in the separation powder is sintered at a normal pressure by a nitrogen sintering furnace, and the sintering atmosphere is performed. For the nitrogen gas, the body is sintered to obtain a porous heated ceramic semi-finished product; the heating rate during sintering is 10 ° C / min, the sintering temperature is 2100 ° C, and the sintering time is 9 h;
  • Electrode Both ends of the porous heated ceramic semi-finished product obtained in the step F are subjected to nickel plating or silver plating on the surface, and then brazed or soldered to the electrode at the nickel-plated or silver-plated portion to obtain a porous body. Finished heat ceramic body.
  • the present invention provides a preparation process of a novel porous heat-generating ceramic, wherein the carbon fiber material and the ceramic material are integrally sintered to obtain a porous heat-generating ceramic, so that the porous heat-generating ceramic not only has the function of absorbing and storing liquid, Moreover, it has a function of heating; the porous heating ceramic heats up as a whole, so that the absorbed liquid is more likely to absorb heat and atomize.
  • the ceramic material may be at least one of silicon carbide, titanium carbide, boron carbide, silicon nitride, aluminum nitride, boron nitride, and titanium nitride.
  • the shape of the porous heat-generating ceramic is at least one of a cylinder, a hollow cylinder, a hollow cylinder closed at one end, and a sheet shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Resistance Heating (AREA)

Abstract

一种新型多孔发热陶瓷的制备工艺,包括步骤:A、混料;B、干燥;C、球磨;D、过筛;E、成型;F、烧结;G、接电极;该制备工艺将碳纤维材料和陶瓷材料一体烧结制得多孔发热陶瓷,使得多孔发热陶瓷不仅具有吸收和储存液体的功能,而且本身具有发热的功能;多孔发热陶瓷整体发热,使得吸收的液体更容易吸热而雾化。

Description

一种新型多孔发热陶瓷的制备工艺 技术领域
本发明涉及陶瓷发热体制备技术领域,更具体的说,本实用新型涉及一种新型多孔发热陶瓷的制备工艺。
背景技术
现阶段的多孔陶瓷发热技术,是将发热丝缠绕在多孔陶瓷的表面上,发热丝的作用是将电能转化为热能,多孔陶瓷的作用是吸附液体,液体吸收热量从而雾化。由于发热部位只局限于多孔陶瓷的表面,所以只有位于多孔陶瓷和发热丝接触面的地方的液体才能高效率的雾化。但是多孔陶瓷内部吸附的液体吸收热量有限,无法雾化。
发明内容
为了克服现有技术的不足,本发明提供一种新型多孔发热陶瓷的制备工艺,该制备工艺所制得的多孔发热陶瓷整体发热,使得吸收的液体更容易吸热而雾化。
本发明解决其技术问题所采用的技术方案是:一种新型多孔发热陶瓷的制备工艺,其改进之处在于:该制备工艺包括以下的步骤:
A、混料:按质量百分比称取60-80%的碳化硅粉体和20-40%的碳纤维,将碳化硅粉体和碳纤维进行混合,得到混合粉料;
B、干燥:将步骤A中制得的混合粉料置于干燥箱中进行干燥,其中干燥温度为105-120℃,干燥时间为24-48h;
C、球磨:在步骤B中经过干燥的混合粉料中将入研磨球,并放入研磨罐中进行干法球磨,干法球磨的时间为12-24h;
D、过筛:将步骤C中经过球磨的混合粉料置于500目筛网中,收集通过筛网的粉料;
E、成型:将步骤D中收集的混合粉料置于干压成型设备的模具中成型,其中干压强度为30-80MPa,干压完成后退模,形成陶瓷胚体;
F、烧结:将步骤E中制得的陶瓷胚体置于石墨干锅中,并埋入隔离粉,此后用氮气烧结炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氮气,坯 体烧结制得多孔加热陶瓷半成品;
G、接电极:将步骤F制得的多孔加热陶瓷半成品的两端进行表面镀镍或镀银处理,再于镀镍或镀银处理后的部位进行钎焊或锡焊引出电极,制得多孔发热陶瓷体成品。
进一步的,所述的步骤A中,按质量百分比称取70%的碳化硅粉体和30%的碳纤维。
进一步的,所述的步骤B中,干燥温度为110℃,干燥时间为36h。
进一步的,所述的步骤C中,干法球磨的时间为18h。
进一步的,所述的步骤E中,所述的干压强度为60MPa。
进一步的,所述的步骤F中,烧结时的升温速率为1-10℃/min,烧结温度为1500-2100℃,烧结时间为3-9h。
进一步的,烧结时的升温速率为5℃/min,烧结温度为1700-1900℃,烧结时间为6h。
本发明的有益效果是:该制备工艺将碳纤维材料和陶瓷材料一体烧结制得多孔发热陶瓷,使得多孔发热陶瓷不仅具有吸收和储存液体的功能,而且本身具有发热的功能;多孔发热陶瓷整体发热,使得吸收的液体更容易吸热而雾化。
附图说明
图1为本发明的一种新型多孔发热陶瓷的制备工艺的工艺流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,专利中涉及到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
实施例1
参照图1所示,本发明揭示了一种新型多孔发热陶瓷的制备工艺,具体的, 该制备工艺包括以下的步骤:
A、混料:按质量百分比称取70%的碳化硅粉体和30%的碳纤维,将碳化硅粉体和碳纤维进行混合,得到混合粉料;
B、干燥:将步骤A中制得的混合粉料置于干燥箱中进行干燥,其中干燥温度为110℃,干燥时间为36h;
C、球磨:在步骤B中经过干燥的混合粉料中将入研磨球,并放入研磨罐中进行干法球磨,干法球磨的时间为18h;
D、过筛:将步骤C中经过球磨的混合粉料置于500目筛网中,收集通过筛网的粉料;
E、成型:将步骤D中收集的混合粉料置于干压成型设备的模具中成型,其中干压强度为60MPa,干压完成后退模,形成陶瓷胚体;
F、烧结:将步骤E中制得的陶瓷胚体置于石墨干锅中,并埋入隔离粉,此后用氮气烧结炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氮气,坯体烧结制得多孔加热陶瓷半成品;烧结时的升温速率为5℃/min,烧结温度为1700℃,烧结时间为6h;
G、接电极:将步骤F制得的多孔加热陶瓷半成品的两端进行表面镀镍或镀银处理,再于镀镍或镀银处理后的部位进行钎焊或锡焊引出电极,制得多孔发热陶瓷体成品。
实施例2
参照图1所示,本发明揭示了一种新型多孔发热陶瓷的制备工艺,具体的,该制备工艺包括以下的步骤:
A、混料:按质量百分比称取60%的碳化硅粉体和40%的碳纤维,将碳化硅粉体和碳纤维进行混合,得到混合粉料;
B、干燥:将步骤A中制得的混合粉料置于干燥箱中进行干燥,其中干燥温度为105℃,干燥时间为24h;
C、球磨:在步骤B中经过干燥的混合粉料中将入研磨球,并放入研磨罐中进行干法球磨,干法球磨的时间为12h;
D、过筛:将步骤C中经过球磨的混合粉料置于500目筛网中,收集通过筛网的粉料;
E、成型:将步骤D中收集的混合粉料置于干压成型设备的模具中成型,其 中干压强度为30MPa,干压完成后退模,形成陶瓷胚体;
F、烧结:将步骤E中制得的陶瓷胚体置于石墨干锅中,并埋入隔离粉,此后用氮气烧结炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氮气,坯体烧结制得多孔加热陶瓷半成品;烧结时的升温速率为1℃/min,烧结温度为1500℃,烧结时间为3h;
G、接电极:将步骤F制得的多孔加热陶瓷半成品的两端进行表面镀镍或镀银处理,再于镀镍或镀银处理后的部位进行钎焊或锡焊引出电极,制得多孔发热陶瓷体成品。
实施例3
参照图1所示,本发明揭示了一种新型多孔发热陶瓷的制备工艺,具体的,该制备工艺包括以下的步骤:
A、混料:按质量百分比称取80%的碳化硅粉体和20%的碳纤维,将碳化硅粉体和碳纤维进行混合,得到混合粉料;
B、干燥:将步骤A中制得的混合粉料置于干燥箱中进行干燥,其中干燥温度为120℃,干燥时间为48h;
C、球磨:在步骤B中经过干燥的混合粉料中将入研磨球,并放入研磨罐中进行干法球磨,干法球磨的时间为24h;
D、过筛:将步骤C中经过球磨的混合粉料置于500目筛网中,收集通过筛网的粉料;
E、成型:将步骤D中收集的混合粉料置于干压成型设备的模具中成型,其中干压强度为80MPa,干压完成后退模,形成陶瓷胚体;
F、烧结:将步骤E中制得的陶瓷胚体置于石墨干锅中,并埋入隔离粉,此后用氮气烧结炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氮气,坯体烧结制得多孔加热陶瓷半成品;烧结时的升温速率为10℃/min,烧结温度为2100℃,烧结时间为9h;
G、接电极:将步骤F制得的多孔加热陶瓷半成品的两端进行表面镀镍或镀银处理,再于镀镍或镀银处理后的部位进行钎焊或锡焊引出电极,制得多孔发热陶瓷体成品。
通过上述的实施例,本发明提供了一种新型多孔发热陶瓷的制备工艺,该制备工艺将碳纤维材料和陶瓷材料一体烧结制得多孔发热陶瓷,使得多孔发热陶瓷 不仅具有吸收和储存液体的功能,而且本身具有发热的功能;多孔发热陶瓷整体发热,使得吸收的液体更容易吸热而雾化。其中陶瓷材料可以为碳化硅、碳化钛、碳化硼、氮化硅、氮化铝、氮化硼、氮化钛中的至少一种粉料。成型过程中,多孔发热陶瓷的形状为圆柱、中空圆柱、一端封闭的中空圆柱、片状中的至少一种。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (7)

  1. 一种新型多孔发热陶瓷的制备工艺,其特征在于:该制备工艺包括以下的步骤:
    A、混料:按质量百分比称取60-80%的碳化硅粉体和20-40%的碳纤维,将碳化硅粉体和碳纤维进行混合,得到混合粉料;
    B、干燥:将步骤A中制得的混合粉料置于干燥箱中进行干燥,其中干燥温度为105-120℃,干燥时间为24-48h;
    C、球磨:在步骤B中经过干燥的混合粉料中将入研磨球,并放入研磨罐中进行干法球磨,干法球磨的时间为12-24h;
    D、过筛:将步骤C中经过球磨的混合粉料置于500目筛网中,收集通过筛网的粉料;
    E、成型:将步骤D中收集的混合粉料置于干压成型设备的模具中成型,其中干压强度为30-80MPa,干压完成后退模,形成陶瓷胚体;
    F、烧结:将步骤E中制得的陶瓷胚体置于石墨干锅中,并埋入隔离粉,此后用氮气烧结炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氮气,坯体烧结制得多孔加热陶瓷半成品;
    G、接电极:将步骤F制得的多孔加热陶瓷半成品的两端进行表面镀镍或镀银处理,再于镀镍或镀银处理后的部位进行钎焊或锡焊引出电极,制得多孔发热陶瓷体成品。
  2. 根据权利要求1所述的一种新型多孔发热陶瓷的制备工艺,其特征在于:所述的步骤A中,按质量百分比称取70%的碳化硅粉体和30%的碳纤维。
  3. 根据权利要求1所述的一种新型多孔发热陶瓷的制备工艺,其特征在于:所述的步骤B中,干燥温度为110℃,干燥时间为36h。
  4. 根据权利要求1所述的一种新型多孔发热陶瓷的制备工艺,其特征在于:所述的步骤C中,干法球磨的时间为18h。
  5. 根据权利要求1所述的一种新型多孔发热陶瓷的制备工艺,其特征在于:所述的步骤E中,所述的干压强度为60MPa。
  6. 根据权利要求1所述的一种新型多孔发热陶瓷的制备工艺,其特征在于:所述的步骤F中,烧结时的升温速率为1-10℃/min,烧结温度为1500-2100℃, 烧结时间为3-9h。
  7. 根据权利要求6所述的一种新型多孔发热陶瓷的制备工艺,其特征在于:烧结时的升温速率为5℃/min,烧结温度为1700℃,烧结时间为6h。
PCT/CN2018/074109 2017-12-21 2018-01-25 一种新型多孔发热陶瓷的制备工艺 WO2019119609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711397392.XA CN108059462B (zh) 2017-12-21 2017-12-21 一种新型多孔发热陶瓷的制备工艺
CN201711397392.X 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019119609A1 true WO2019119609A1 (zh) 2019-06-27

Family

ID=62139821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074109 WO2019119609A1 (zh) 2017-12-21 2018-01-25 一种新型多孔发热陶瓷的制备工艺

Country Status (2)

Country Link
CN (1) CN108059462B (zh)
WO (1) WO2019119609A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451607A (zh) * 2018-11-23 2019-03-08 福建闽航电子有限公司 一种用于马桶的陶瓷发热片的制造方法
CN109288140B (zh) * 2018-12-06 2021-08-27 广东国研新材料有限公司 一种电子烟用多孔陶瓷发热体及其制备方法
CN109495993A (zh) * 2018-12-12 2019-03-19 武汉纺织大学 一体压胚烧结麻纤维基碳丝电热陶瓷的制备方法
CN109832673A (zh) * 2019-02-27 2019-06-04 深圳市合元科技有限公司 电子烟雾化器、电子烟、雾化组件及其制备方法
CN110282979A (zh) * 2019-07-02 2019-09-27 湖南嘉盛电陶新材料股份有限公司 一种多孔陶瓷发热体、制备方法及应用
CN112479712A (zh) * 2019-09-11 2021-03-12 深圳市合元科技有限公司 电子烟、多孔发热体及其制备方法
CN110731543A (zh) * 2019-09-23 2020-01-31 珠海惠友电子有限公司 一种雾化器用微孔陶瓷发热件的制备方法
CN112408946B (zh) * 2020-11-24 2022-11-08 天津风烯科技有限责任公司 零秒速热高温陶瓷发热体冷烧结制备方法
CN114277414A (zh) * 2021-08-05 2022-04-05 中国海洋大学 一种多孔电极及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282961A (ja) * 1994-04-07 1995-10-27 Kazuo Ozawa ヒーター
CN1499898A (zh) * 2002-11-08 2004-05-26 黄加玉 一种导电加热陶瓷管及制备方法
JP2008074656A (ja) * 2006-09-20 2008-04-03 Bridgestone Corp 炭化ケイ素ヒータの製造方法
CN101164981A (zh) * 2006-10-16 2008-04-23 宁波大学 一种含炭纤维以及棒状氧化铝嵌入颗粒的碳化硅陶瓷
CN102469636A (zh) * 2010-11-11 2012-05-23 泰州市环能硅碳棒制造有限公司 点火器用片状碳化硅发热元件
CN104602371A (zh) * 2015-01-28 2015-05-06 周献 复合碳化硅电热元件及其生产方法
CN105837217A (zh) * 2016-03-24 2016-08-10 山东奥昱翔碳化硅科技有限公司 硅碳棒及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003747B (zh) * 2014-05-27 2015-07-29 西安超码科技有限公司 一种大尺寸炭/碳化硅复合材料发热体的制备方法
CN105645962B (zh) * 2016-01-06 2018-07-13 天津大学 一种耐高温抗氧化导热碳纤维/碳化硅复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282961A (ja) * 1994-04-07 1995-10-27 Kazuo Ozawa ヒーター
CN1499898A (zh) * 2002-11-08 2004-05-26 黄加玉 一种导电加热陶瓷管及制备方法
JP2008074656A (ja) * 2006-09-20 2008-04-03 Bridgestone Corp 炭化ケイ素ヒータの製造方法
CN101164981A (zh) * 2006-10-16 2008-04-23 宁波大学 一种含炭纤维以及棒状氧化铝嵌入颗粒的碳化硅陶瓷
CN102469636A (zh) * 2010-11-11 2012-05-23 泰州市环能硅碳棒制造有限公司 点火器用片状碳化硅发热元件
CN104602371A (zh) * 2015-01-28 2015-05-06 周献 复合碳化硅电热元件及其生产方法
CN105837217A (zh) * 2016-03-24 2016-08-10 山东奥昱翔碳化硅科技有限公司 硅碳棒及其制备方法

Also Published As

Publication number Publication date
CN108059462B (zh) 2020-06-30
CN108059462A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2019119609A1 (zh) 一种新型多孔发热陶瓷的制备工艺
CN106513027B (zh) 一种基于纤维素的三维多孔g-C3N4/C气凝胶及其制备方法
WO2019119611A1 (zh) 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
US20230337744A1 (en) Heating body and preparation method therefor, vaporizer, and electronic device
CN105236982B (zh) 氮化铝增强的石墨基复合材料及制备工艺
CN101759178B (zh) 一种空心碳半球的制备方法
CN108032580B (zh) 一种制备夹层结构热防护材料的方法及由该方法制得的热防护材料
CN106971764B (zh) 一种惰性基弥散燃料芯块的快速制备工艺
CN104478475B (zh) 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
CN105130445A (zh) 碳化硅基复合陶瓷生坯连接后共烧结的方法
CN102030556A (zh) 一种金刚石/碳化硅陶瓷基复合材料的制备方法
CN103589895B (zh) 一种低成本制备高精度金刚石/Cu复合材料零件的方法
CN109777369B (zh) 一种两段式微封装复合储热材料及其制备方法与用途
CN104671826A (zh) 一种多孔氧化铝陶瓷、制备方法及其应用
CN109851314A (zh) 一种高温管道用纳米气凝胶绝热材料的制备方法
CN111676406B (zh) 一种相变蓄热陶瓷及其制备方法
CN106116620A (zh) 快速制备C/SiC陶瓷复合材料的方法
CN105948781A (zh) 一种高开孔率多孔碳化硅陶瓷材料的制备方法
CN101817684B (zh) 一种多孔Si3N4基体表面覆涂h-BN涂层的方法
CN105084364B (zh) 一种多孔碳化硅球形粉末的制备工艺
CN209463302U (zh) 一种微孔陶瓷单向导油发热结构
CN107752133A (zh) 一种发热片雾化芯
CN105521830A (zh) 一种骨炭基多孔碳化硅蜂窝陶瓷催化剂载体的制备方法
CN214710375U (zh) 发热体、雾化器和电子装置
CN109437942A (zh) 一种轻质热解自适应维形高效防热材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18893133

Country of ref document: EP

Kind code of ref document: A1