WO2019119611A1 - 一种具有多孔发热膜结构的陶瓷加热体的制备工艺 - Google Patents

一种具有多孔发热膜结构的陶瓷加热体的制备工艺 Download PDF

Info

Publication number
WO2019119611A1
WO2019119611A1 PCT/CN2018/074111 CN2018074111W WO2019119611A1 WO 2019119611 A1 WO2019119611 A1 WO 2019119611A1 CN 2018074111 W CN2018074111 W CN 2018074111W WO 2019119611 A1 WO2019119611 A1 WO 2019119611A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating body
ceramic
porous
ceramic heating
sintering
Prior art date
Application number
PCT/CN2018/074111
Other languages
English (en)
French (fr)
Inventor
丁毅
程宏生
Original Assignee
深圳市卓力能电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市卓力能电子有限公司 filed Critical 深圳市卓力能电子有限公司
Publication of WO2019119611A1 publication Critical patent/WO2019119611A1/zh
Priority to US16/906,518 priority Critical patent/US11498875B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4558Coating or impregnating involving the chemical conversion of an already applied layer, e.g. obtaining an oxide layer by oxidising an applied metal layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4578Coating or impregnating of green ceramics or unset concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4582Porous coatings, e.g. coating containing porous fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Definitions

  • the invention relates to the technical field of preparation of a heating body, and more particularly to a preparation process of a ceramic heating body having a porous heating film structure.
  • the silicon nitride heating sheet is a device combining a high-performance silicon nitride ceramic substrate and a long-life and high-power high-temperature metal heating wire, which has the characteristics of small volume, high power and high thermal efficiency, and heat generation through the silicon nitride heating sheet. It has proven to be a safe and reliable method of heating.
  • the conventional silicon nitride ceramic heating sheet is formed by embedding a tungsten wire in a silicon nitride powder and forming a sheet-like body by hot pressing, and the heater produced by the process is difficult to be positioned due to the process limitation. The position is shifted during the process, resulting in uneven heat transfer of the heater. At the same time, due to the obvious interface between the tungsten wire and the silicon nitride powder, it is difficult to become integrated after sintering, and the tungsten wire and the ceramic contact surface form a gap, during heating. Local oxidation is formed to reduce the service life of the heating sheet.
  • reaction sintering results in poor density, poor mechanical properties, and uneven heating of the heating body.
  • the present invention provides a preparation process of a ceramic heating body having a porous heat-generating film structure, wherein the heating body obtained by the preparation process is heated uniformly and has high heating efficiency.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a preparation process of a ceramic heating body having a porous heat generating film structure, which is improved in that the process comprises the following steps:
  • step B ball milling: adding the grinding ball to the ceramic matrix slurry prepared in step A, and placing it into a ball mill tank for wet ball milling, the time of wet ball milling is 4-24h;
  • Adding a grinding ball to the resistive slurry prepared in the step A, and placing it in a ball mill tank for wet ball milling, and the wet ball milling time is 24-48 h;
  • step B the wet-ball-milled ceramic matrix slurry in step B is defoamed under vacuum;
  • step B The wet-ball milled resistive slurry in step B is defoamed under vacuum;
  • step C molding and drying: the ceramic base slurry prepared in step C is cast into a ceramic substrate of a desired shape by a casting machine, and the ceramic substrate is dried to form an embryo body;
  • step D the green body prepared in step D is placed in a graphite crucible, and the separation powder is buried. Thereafter, the green body buried in the separation powder is sintered in a box furnace under a normal pressure, and the sintering atmosphere is oxygen. The blank body is sintered to obtain a semi-finished product of the porous ceramic heating body base;
  • Wax The paraffin wax is liquefied by a heating cylinder, and the porous ceramic heating body base semi-finished product obtained in the step E is completely immersed in the liquefied paraffin for 1-5 h, and then cooled at room temperature for 4-24 h to obtain a paraffin-containing porous ceramic heating.
  • Body matrix The paraffin wax is liquefied by a heating cylinder, and the porous ceramic heating body base semi-finished product obtained in the step E is completely immersed in the liquefied paraffin for 1-5 h, and then cooled at room temperature for 4-24 h to obtain a paraffin-containing porous ceramic heating.
  • step G machining: the paraffin-containing porous ceramic heating body substrate prepared in step F is machined to remove the paraffin layer on the outer surface of the porous ceramic heating body substrate;
  • the resistive paste prepared in the step C is applied to the outer surface of the porous ceramic heating body substrate prepared in the step G at a desired thickness, and the resistive paste forms a heat generating film on the surface of the ceramic substrate. ;
  • the porous ceramic heating body substrate having the heat generating film structure prepared in the step H is placed in a graphite crucible, and then placed in a sintering furnace for metallization and sintering of the wax discharge and the porous resistance heating film;
  • Electrode The both ends of the heating body body obtained in the step I are subjected to nickel plating on the surface, and then the electrode is brazed and extracted at the portion after the nickel plating treatment to obtain a finished product of the porous ceramic heating body.
  • the ceramic matrix slurry is composed of the following mass percentages of raw materials:
  • the resistive paste is composed of the following mass percentages of raw materials:
  • the ceramic matrix slurry is composed of the following mass percentages of raw materials:
  • the resistive paste is composed of the following mass percentages of raw materials:
  • the ceramic matrix slurry is composed of the following mass percentages of raw materials:
  • the resistive paste is composed of the following mass percentages of raw materials:
  • the sintering temperature of the embryo body is 900-1400 ° C
  • the heating rate is 1-20 ° C / min
  • the holding time is 2-12 h.
  • the temperature rising rate of the metallization sintering is 1-5 ° C / min
  • the metallization sintering temperature is 800-1000 ° C
  • the time is 1-2 h.
  • the invention has the beneficial effects that the present invention provides a preparation process of a ceramic heating body having a porous heat-generating film structure, which is sequentially passed through mixing, ball milling, tray, forming and drying, sintering, waxing, machining, and coating.
  • the coating, metallization and sintering, and the electrode are simple in the whole manufacturing process.
  • the sintered body is sintered in an oxidizing atmosphere and a normal pressure by using a box furnace, and the obtained heating body is uniformly heated and has high heating efficiency.
  • FIG. 1 is a process flow diagram of a process for preparing a ceramic heating body having a porous heat generating film structure according to the present invention.
  • the present invention discloses a process for preparing a ceramic heating body having a porous heat generating film structure. Specifically, the process includes the following steps:
  • A mixing: 21% diatomaceous earth, 16% starch, 1% nano silica solution, 62% deionized water and mixed and stirred according to the mass percentage, to obtain a ceramic matrix slurry;
  • Ball milling adding the grinding ball to the ceramic base slurry prepared in the step A, and placing it in a ball mill tank for wet ball milling, the wet ball milling time is 24 hours; adding the grinding to the resistance slurry prepared in the step A Ball, and placed in a ball mill for wet ball milling, wet ball milling time is 48h;
  • step B defoaming: the wet-ball-milled ceramic matrix slurry in step B is defoamed under vacuum; the wet-ball-milled resistive slurry in step B is defoamed under vacuum;
  • step C molding and drying: the ceramic base slurry prepared in step C is cast into a ceramic substrate of a desired shape by a casting machine, and the ceramic substrate is dried to form an embryo body;
  • step D the green body prepared in step D is placed in a graphite crucible, and the separation powder is buried. Thereafter, the green body buried in the separation powder is sintered in a box furnace under a normal pressure, and the sintering atmosphere is oxygen.
  • the heating rate is 5 ° C / min
  • the sintering temperature is 1200 ° C
  • the holding time is 2 h
  • the green body is sintered to obtain a semi-finished product of the porous ceramic heating body;
  • the paraffin wax is liquefied by a heating cylinder, the porous ceramic heating body substrate semi-finished product obtained in step E is completely immersed in the liquefied paraffin for 5h, and then cooled at room temperature for 24 hours to obtain a paraffin-containing porous ceramic heating body substrate;
  • step G machining: the paraffin-containing porous ceramic heating body substrate prepared in step F is machined to remove the paraffin layer on the outer surface of the porous ceramic heating body substrate;
  • the resistive paste prepared in the step C is applied to the outer surface of the porous ceramic heating body substrate prepared in the step G at a desired thickness, and the resistive paste forms a heat generating film on the surface of the ceramic substrate. ;
  • Metallization Sintering The porous ceramic heating body substrate having the heat generating film structure obtained in the step H is placed in a graphite crucible, and then placed in a sintering furnace for metallization and sintering of the wax discharge and the porous resistance heating film, wherein the temperature is raised.
  • the rate is 2 ° C / min
  • the metallization sintering temperature is 850 ° C
  • the time is 1 h;
  • Electrode The both ends of the heating body body obtained in the step I are subjected to nickel plating on the surface, and then the electrode is brazed and extracted at the portion after the nickel plating treatment to obtain a finished product of the porous ceramic heating body.
  • the present invention discloses a process for preparing a ceramic heating body having a porous heat generating film structure. Specifically, the process includes the following steps:
  • step B ball milling: adding the grinding ball to the ceramic matrix slurry prepared in step A, and placing it into a ball mill tank for wet ball milling, the time of wet ball milling is 14 h;
  • step B defoaming: the wet-ball-milled ceramic matrix slurry in step B is defoamed under vacuum; the wet-ball-milled resistive slurry in step B is defoamed under vacuum;
  • step C molding and drying: the ceramic base slurry prepared in step C is cast into a ceramic substrate of a desired shape by a casting machine, and the ceramic substrate is dried to form an embryo body;
  • step D the green body prepared in step D is placed in a graphite crucible, and the separation powder is buried. Thereafter, the green body buried in the separation powder is sintered in a box furnace under a normal pressure, and the sintering atmosphere is oxygen. The blank body is sintered to obtain a semi-finished product of the porous ceramic heating body; the sintering temperature when the body is sintered is 900 ° C, the heating rate is 1 ° C / min, and the holding time is 2 h;
  • the paraffin wax is liquefied by a heating cylinder, the porous ceramic heating body substrate semi-finished product obtained in step E is completely immersed in the liquefied paraffin for 1 h, and then cooled at room temperature for 4 h to obtain a paraffin-containing porous ceramic heating body substrate;
  • step G machining: the paraffin-containing porous ceramic heating body substrate prepared in step F is machined to remove the paraffin layer on the outer surface of the porous ceramic heating body substrate;
  • the resistive paste prepared in the step C is applied to the outer surface of the porous ceramic heating body substrate prepared in the step G at a desired thickness, and the resistive paste forms a heat generating film on the surface of the ceramic substrate. ;
  • the porous ceramic heating body substrate having the heat generating film structure prepared in the step H is placed in a graphite crucible, and then placed in a sintering furnace for metallization and sintering of the wax discharge and the porous resistance heating film; metallization
  • the heating rate of sintering is 1 ° C / min, the metallization sintering temperature is 800 ° C, the time is 1 h;
  • Electrode The both ends of the heating body body obtained in the step I are subjected to nickel plating on the surface, and then the electrode is brazed and extracted at the portion after the nickel plating treatment to obtain a finished product of the porous ceramic heating body.
  • the present invention discloses a process for preparing a ceramic heating body having a porous heat generating film structure. Specifically, the process includes the following steps:
  • A mixing: 50% diatomaceous earth, 8% starch, 2% nano silica solution, 40% deionized water and mixed and stirred according to the mass percentage, to obtain a ceramic matrix slurry;
  • step B ball milling: adding the grinding ball to the ceramic matrix slurry prepared in step A, and placing it into a ball mill tank for wet ball milling, the time of wet ball milling is 4 h;
  • step B defoaming: the wet-ball-milled ceramic matrix slurry in step B is defoamed under vacuum;
  • step B The wet-ball milled resistive slurry in step B is defoamed under vacuum;
  • step C molding and drying: the ceramic base slurry prepared in step C is cast into a ceramic substrate of a desired shape by a casting machine, and the ceramic substrate is dried to form an embryo body;
  • step D the green body prepared in step D is placed in a graphite crucible, and the separation powder is buried. Thereafter, the green body buried in the separation powder is sintered in a box furnace under a normal pressure, and the sintering atmosphere is oxygen. The blank body is sintered to obtain a semi-finished product of the porous ceramic heating body base; the sintering temperature when the body body is sintered is 1400 ° C, the heating rate is 20 ° C / min, and the holding time is 12 h;
  • the paraffin wax is liquefied by a heating cylinder, the porous ceramic heating body substrate semi-finished product obtained in step E is completely immersed in the liquefied paraffin for 3h, and then cooled at room temperature for 14h to obtain a paraffin-containing porous ceramic heating body substrate;
  • step G machining: the paraffin-containing porous ceramic heating body substrate prepared in step F is machined to remove the paraffin layer on the outer surface of the porous ceramic heating body substrate;
  • the resistive paste prepared in the step C is applied to the outer surface of the porous ceramic heating body substrate prepared in the step G at a desired thickness, and the resistive paste forms a heat generating film on the surface of the ceramic substrate. ;
  • the porous ceramic heating body substrate having the heat generating film structure prepared in the step H is placed in a graphite crucible, and then placed in a sintering furnace for metallization and sintering of the wax discharge and the porous resistance heating film; metallization
  • the heating rate of sintering is 5 ° C / min, the metallization sintering temperature is 1000 ° C, the time is 2 h;
  • Electrode The both ends of the heating body body obtained in the step I are subjected to nickel plating on the surface, and then the electrode is brazed and extracted at the portion after the nickel plating treatment to obtain a finished product of the porous ceramic heating body.
  • the present invention provides a process for preparing a ceramic heating body having a porous heat-generating film structure, which is sequentially passed through mixing, ball milling, tray, molding and drying, sintering, waxing, machining, coating,
  • the ceramic heating body is obtained by metallization sintering and electrode connection, and the whole manufacturing process is simple.
  • the ceramic body is uniformly heated and has high heating efficiency by using a box furnace to sinter the embryo body under an oxidizing atmosphere and a normal pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Resistance Heating (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种具有多孔发热膜结构的陶瓷加热体的制备工艺,涉及加热体的制备工艺技术领域;该工艺包括混料、球磨、托盘、成型与干燥、烧结、灌蜡、机加工、涂覆、金属化烧结、接电极;本发明的有益效果是:整个制造工艺简单,通过采用箱式炉在氧化气氛和常压下烧结胚体,制得的加热体加热均匀且加热效率高。

Description

一种具有多孔发热膜结构的陶瓷加热体的制备工艺 技术领域
本发明涉及加热体的制备工艺技术领域,更具体的说,本发明涉及一种具有多孔发热膜结构的陶瓷加热体的制备工艺。
背景技术
氮化硅发热片是一种结合高性能氮化硅陶瓷基体和长寿命大功率的高温金属发热丝的器件,其具有体积小,功率大和热效率高等特点,同时通过氮化硅发热片产热也被证明是一种安全可靠的发热方式。
目前,传统的氮化硅陶瓷加热片是将钨丝埋在氮化硅粉末内成型成片状体热压烧结而成,此工艺生产的加热器由于受工艺限制,钨丝很难定位,成型过程中造成位置偏移,造成加热器整体传热不均,同时由于钨丝与氮化硅粉体有明显的界面,烧结后很难成为一体,钨丝与陶瓷接触面形成空隙,加热过程中形成局部氧化,降低发热片的使用寿命。
目前氮化硅陶瓷加热片的烧结也有采用反应烧结,然而反应烧结致密度差,力学性能差,加热体的加热不均匀。
发明内容
为了克服现有技术的不足,本发明提供一种具有多孔发热膜结构的陶瓷加热体的制备工艺,该制备工艺所制得的加热体加热均匀,且加热效率高。
本发明解决其技术问题所采用的技术方案是:一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其改进之处在于:该工艺包括以下的步骤:
A、混料:按质量百分比称取15-55%的硅藻土、5-25%的淀粉、0-2%的纳米二氧化硅溶液、40-70%的去离子水并混合搅拌均匀,制得陶瓷基体浆料;
按质量百分比称取15-40%的电阻浆料、30-60%的淀粉、10-30%的有机溶剂并混和搅拌均匀,制得有造孔剂的电阻浆料;
B、球磨:向步骤A中制得的陶瓷基体浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为4-24h;
向步骤A中制得的电阻浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿 法球磨的时间为24-48h;
C、将步骤B中湿法球磨后的陶瓷基体浆料在真空条件下进行脱泡;
将步骤B中湿法球磨后的电阻浆料在真空条件下进行脱泡;
D、成型与干燥:将步骤C中制得的陶瓷基体浆料用浇注机浇注制成所需形状的陶瓷基体,并将陶瓷基体进行干燥,以形成胚体;
E、烧结:将步骤D制得的坯体置于石墨坩埚中,并埋入隔离粉,此后用箱式炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氧气,坯体烧结制得多孔陶瓷加热体基体半成品;
F、灌蜡:将石蜡用加热筒液化,将步骤E制得的多孔陶瓷加热体基体半成品完全浸入到液化的石蜡中1-5h,之后在常温下冷却4-24h得到含有石蜡的多孔陶瓷加热体基体;
G、机加工:将步骤F中制得的含有石蜡的多孔陶瓷加热体基体进行机加工,去除多孔陶瓷加热体基体外表面的石蜡层;
H、涂覆:将步骤C中制得的电阻浆料按所需厚度涂覆于在步骤G中制得的多孔陶瓷加热体基体的外表面,电阻浆料在陶瓷基体表面形成一层发热膜;
I、金属化烧结:将步骤H中制得的具有发热膜结构的多孔陶瓷加热体基体置于石墨坩埚中,此后置于烧结炉中进行排蜡和多孔电阻发热膜的金属化烧结;
J、接电极:将步骤I中制得的加热体坯体两端进行表面镀镍处理,再于镀镍处理后的部位进行钎焊引出电极,制得多孔陶瓷加热体成品。
进一步的,所述的步骤A中,陶瓷基体浆料由以下质量百分比的原料组成:
硅藻土 21%
淀粉 16%
纳米二氧化硅溶液 1%
去离子水 62%。
进一步的,所述的步骤A中,电阻浆料由以下质量百分比的原料组成:
电阻浆料 30%
淀粉 45%
有机溶剂 25%。
进一步的,所述的步骤A中,陶瓷基体浆料由以下质量百分比的原料组成:
硅藻土 15%
淀粉 15%
去离子水 70%。
进一步的,所述的步骤A中,电阻浆料由以下质量百分比的原料组成:
电阻浆料 40%
淀粉 30%
有机溶剂 30%。
进一步的,所述的步骤A中,陶瓷基体浆料由以下质量百分比的原料组成:
硅藻土 50%
淀粉 8%
纳米二氧化硅溶液 2%
去离子水 40%。
进一步的,所述的步骤A中,电阻浆料由以下质量百分比的原料组成:
电阻浆料 30%
淀粉 50%
有机溶剂 20%。
进一步的,所述的步骤E中,对胚体进行烧结时的烧结温度为900-1400℃,升温速率为1-20℃/min,保温时间为2-12h。
进一步的,所述的步骤I中,金属化烧结的升温速率为1-5℃/min,金属化烧结温度为800-1000℃,时间为1-2h。
本发明的有益效果是:本发明提供了一种具有多孔发热膜结构的陶瓷加热体的制备工艺,该工艺依次通过混料、球磨、托盘、成型与干燥、烧结、灌蜡、机加工、涂覆、金属化烧结、接电极,整个制造工艺简单,通过采用箱式炉在氧化气氛和常压下烧结胚体,制得的加热体加热均匀且加热效率高。
附图说明
图1为本发明的一种具有多孔发热膜结构的陶瓷加热体的制备工艺的工艺流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的 实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,专利中涉及到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
实施例1
参照图1所示,本发明揭示了一种具有多孔发热膜结构的陶瓷加热体的制备工艺,具体的,该工艺包括以下的步骤:
A、混料:按质量百分比称取21%的硅藻土、16%的淀粉、1%的纳米二氧化硅溶液、62%的去离子水并混合搅拌均匀,制得陶瓷基体浆料;
按质量百分比称取30%的电阻浆料、45%的淀粉、25%的有机溶剂并混和搅拌均匀,制得有造孔剂的电阻浆料;
B、球磨:向步骤A中制得的陶瓷基体浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为24h;向步骤A中制得的电阻浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为48h;
C、脱泡:将步骤B中湿法球磨后的陶瓷基体浆料在真空条件下进行脱泡;将步骤B中湿法球磨后的电阻浆料在真空条件下进行脱泡;
D、成型与干燥:将步骤C中制得的陶瓷基体浆料用浇注机浇注制成所需形状的陶瓷基体,并将陶瓷基体进行干燥,以形成胚体;
E、烧结:将步骤D制得的坯体置于石墨坩埚中,并埋入隔离粉,此后用箱式炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氧气,升温速率为5℃/min,烧结温度为1200℃,保温时间为2h,坯体烧结制得多孔陶瓷加热体基体半成品;
F、灌蜡:将石蜡用加热筒液化,将步骤E制得的多孔陶瓷加热体基体半成品完全浸入到液化的石蜡中5h,之后在常温下冷却24h得到含有石蜡的多孔陶瓷加热体基体;
G、机加工:将步骤F中制得的含有石蜡的多孔陶瓷加热体基体进行机加工,去除多孔陶瓷加热体基体外表面的石蜡层;
H、涂覆:将步骤C中制得的电阻浆料按所需厚度涂覆于在步骤G中制得的 多孔陶瓷加热体基体的外表面,电阻浆料在陶瓷基体表面形成一层发热膜;
I、金属化烧结:将步骤H中制得的具有发热膜结构的多孔陶瓷加热体基体置于石墨坩埚中,此后置于烧结炉中进行排蜡和多孔电阻发热膜的金属化烧结,其中升温速率为2℃/min,金属化烧结温度为850℃,时间为1h;
J、接电极:将步骤I中制得的加热体坯体两端进行表面镀镍处理,再于镀镍处理后的部位进行钎焊引出电极,制得多孔陶瓷加热体成品。
实施例2
参照图1所示,本发明揭示了一种具有多孔发热膜结构的陶瓷加热体的制备工艺,具体的,该工艺包括以下的步骤:
A、混料:按质量百分比称取15%的硅藻土、15%的淀粉、70%的去离子水并混合搅拌均匀,制得陶瓷基体浆料;
按质量百分比称取40%的电阻浆料、30%的淀粉、30%的有机溶剂并混和搅拌均匀,制得有造孔剂的电阻浆料;
B、球磨:向步骤A中制得的陶瓷基体浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为14h;
向步骤A中制得的电阻浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为36h;
C、脱泡:将步骤B中湿法球磨后的陶瓷基体浆料在真空条件下进行脱泡;将步骤B中湿法球磨后的电阻浆料在真空条件下进行脱泡;
D、成型与干燥:将步骤C中制得的陶瓷基体浆料用浇注机浇注制成所需形状的陶瓷基体,并将陶瓷基体进行干燥,以形成胚体;
E、烧结:将步骤D制得的坯体置于石墨坩埚中,并埋入隔离粉,此后用箱式炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氧气,坯体烧结制得多孔陶瓷加热体基体半成品;对胚体进行烧结时的烧结温度为900℃,升温速率为1℃/min,保温时间为2h;
F、灌蜡:将石蜡用加热筒液化,将步骤E制得的多孔陶瓷加热体基体半成品完全浸入到液化的石蜡中1h,之后在常温下冷却4h得到含有石蜡的多孔陶瓷加热体基体;
G、机加工:将步骤F中制得的含有石蜡的多孔陶瓷加热体基体进行机加工,去除多孔陶瓷加热体基体外表面的石蜡层;
H、涂覆:将步骤C中制得的电阻浆料按所需厚度涂覆于在步骤G中制得的多孔陶瓷加热体基体的外表面,电阻浆料在陶瓷基体表面形成一层发热膜;
I、金属化烧结:将步骤H中制得的具有发热膜结构的多孔陶瓷加热体基体置于石墨坩埚中,此后置于烧结炉中进行排蜡和多孔电阻发热膜的金属化烧结;金属化烧结的升温速率为1℃/min,金属化烧结温度为800℃,时间为1h;
J、接电极:将步骤I中制得的加热体坯体两端进行表面镀镍处理,再于镀镍处理后的部位进行钎焊引出电极,制得多孔陶瓷加热体成品。
实施例3
参照图1所示,本发明揭示了一种具有多孔发热膜结构的陶瓷加热体的制备工艺,具体的,该工艺包括以下的步骤:
A、混料:按质量百分比称取50%的硅藻土、8%的淀粉、2%的纳米二氧化硅溶液、40%的去离子水并混合搅拌均匀,制得陶瓷基体浆料;
按质量百分比称取30%的电阻浆料、50%的淀粉、20%的有机溶剂并混和搅拌均匀,制得有造孔剂的电阻浆料;
B、球磨:向步骤A中制得的陶瓷基体浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为4h;
向步骤A中制得的电阻浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为24h;
C、脱泡:将步骤B中湿法球磨后的陶瓷基体浆料在真空条件下进行脱泡;
将步骤B中湿法球磨后的电阻浆料在真空条件下进行脱泡;
D、成型与干燥:将步骤C中制得的陶瓷基体浆料用浇注机浇注制成所需形状的陶瓷基体,并将陶瓷基体进行干燥,以形成胚体;
E、烧结:将步骤D制得的坯体置于石墨坩埚中,并埋入隔离粉,此后用箱式炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氧气,坯体烧结制得多孔陶瓷加热体基体半成品;对胚体进行烧结时的烧结温度为1400℃,升温速率为20℃/min,保温时间为12h;
F、灌蜡:将石蜡用加热筒液化,将步骤E制得的多孔陶瓷加热体基体半成品完全浸入到液化的石蜡中3h,之后在常温下冷却14h得到含有石蜡的多孔陶瓷加热体基体;
G、机加工:将步骤F中制得的含有石蜡的多孔陶瓷加热体基体进行机加工, 去除多孔陶瓷加热体基体外表面的石蜡层;
H、涂覆:将步骤C中制得的电阻浆料按所需厚度涂覆于在步骤G中制得的多孔陶瓷加热体基体的外表面,电阻浆料在陶瓷基体表面形成一层发热膜;
I、金属化烧结:将步骤H中制得的具有发热膜结构的多孔陶瓷加热体基体置于石墨坩埚中,此后置于烧结炉中进行排蜡和多孔电阻发热膜的金属化烧结;金属化烧结的升温速率为5℃/min,金属化烧结温度为1000℃,时间为2h;
J、接电极:将步骤I中制得的加热体坯体两端进行表面镀镍处理,再于镀镍处理后的部位进行钎焊引出电极,制得多孔陶瓷加热体成品。
综上所述,本发明提供了一种具有多孔发热膜结构的陶瓷加热体的制备工艺,该工艺依次通过混料、球磨、托盘、成型与干燥、烧结、灌蜡、机加工、涂覆、金属化烧结、接电极制得陶瓷加热体,整个制造工艺简单,通过采用箱式炉在氧化气氛和常压下烧结胚体,制得的陶瓷加热体加热均匀且加热效率高。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

  1. 一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:该工艺包括以下的步骤:
    A、混料:按质量百分比称取15-55%的硅藻土、5-25%的淀粉、0-2%的纳米二氧化硅溶液、40-70%的去离子水,混合搅拌均匀,制得陶瓷基体浆料;
    按质量百分比称取15-40%的电阻浆料、30-60%的淀粉、10-30%的有机溶剂并混和搅拌均匀,制得有造孔剂的电阻浆料;
    B、球磨:向步骤A中制得的陶瓷基体浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为4-24h;
    向步骤A中制得的电阻浆料加入研磨球,并放入球磨罐中进行湿法球磨,湿法球磨的时间为24-48h;
    C、脱泡:将步骤B中湿法球磨后的陶瓷基体浆料在真空条件下进行脱泡;
    将步骤B中湿法球磨后的电阻浆料在真空条件下进行脱泡;
    D、成型与干燥:将步骤C中制得的陶瓷基体浆料用浇注机浇注制成所需形状的陶瓷基体,并将陶瓷基体进行干燥,以形成胚体;
    E、烧结:将步骤D制得的坯体置于石墨坩埚中,并埋入隔离粉,此后用箱式炉将埋于隔离粉中的坯体在常压下进行烧结,烧结气氛为氧气,坯体烧结制得多孔陶瓷加热体基体半成品;
    F、灌蜡:将石蜡用加热筒液化,将步骤E制得的多孔陶瓷加热体基体半成品完全浸入到液化的石蜡中1-5h,之后在常温下冷却4-24h得到含有石蜡的多孔陶瓷加热体基体;
    G、机加工:将步骤F中制得的含有石蜡的多孔陶瓷加热体基体进行机加工,去除多孔陶瓷加热体基体外表面的石蜡层;
    H、涂覆:将步骤C中制得的电阻浆料按所需厚度涂覆于在步骤G中制得的多孔陶瓷加热体基体的外表面,电阻浆料在陶瓷基体表面形成一层发热膜;
    I、金属化烧结:将步骤H中制得的具有发热膜结构的多孔陶瓷加热体基体置于石墨坩埚中,此后置于烧结炉中进行排蜡和多孔电阻发热膜的金属化烧结;
    J、接电极:将步骤I中制得的加热体坯体两端进行表面镀镍处理,再于镀镍处理后的部位进行钎焊引出电极,制得多孔陶瓷加热体成品。
  2. 根据权利要求1所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤A中,陶瓷基体浆料由以下质量百分比的原料组成:
    硅藻土 21%
    淀粉 16%
    纳米二氧化硅溶液 1%
    去离子水 62%。
  3. 根据权利要求2所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤A中,电阻浆料由以下质量百分比的原料组成:
    电阻浆料 30%
    淀粉 45%
    有机溶剂 25%。
  4. 根据权利要求1所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤A中,陶瓷基体浆料由以下质量百分比的原料组成:
    硅藻土 15%
    淀粉 15%
    去离子水 70%。
  5. 根据权利要求4所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤A中,电阻浆料由以下质量百分比的原料组成:
    电阻浆料 40%
    淀粉 30%
    有机溶剂 30%。
  6. 根据权利要求1所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤A中,陶瓷基体浆料由以下质量百分比的原料组成:
    硅藻土 50%
    淀粉 8%
    纳米二氧化硅溶液 2%
    去离子水 40%。
  7. 根据权利要求6所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤A中,电阻浆料由以下质量百分比的原料组成:
    电阻浆料 30%
    淀粉 50%
    有机溶剂 20%。
  8. 根据权利要求1所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤E中,对胚体进行烧结时的烧结温度为900-1400℃,升温速率为1-20℃/min,保温时间为2-12h。
  9. 根据权利要求1所述的一种具有多孔发热膜结构的陶瓷加热体的制备工艺,其特征在于:所述的步骤I中,金属化烧结的升温速率为1-5℃/min,金属化烧结温度为800-1000℃,时间为1-2h。
PCT/CN2018/074111 2017-12-21 2018-01-25 一种具有多孔发热膜结构的陶瓷加热体的制备工艺 WO2019119611A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/906,518 US11498875B2 (en) 2017-12-21 2020-06-19 Method for fabricating a ceramic heating body with porous heating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711394637.3A CN108046833B (zh) 2017-12-21 2017-12-21 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
CN201711394637.3 2017-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/906,518 Continuation-In-Part US11498875B2 (en) 2017-12-21 2020-06-19 Method for fabricating a ceramic heating body with porous heating film

Publications (1)

Publication Number Publication Date
WO2019119611A1 true WO2019119611A1 (zh) 2019-06-27

Family

ID=62131197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074111 WO2019119611A1 (zh) 2017-12-21 2018-01-25 一种具有多孔发热膜结构的陶瓷加热体的制备工艺

Country Status (3)

Country Link
US (1) US11498875B2 (zh)
CN (1) CN108046833B (zh)
WO (1) WO2019119611A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041096A (zh) * 2019-01-16 2019-07-23 深圳陶陶科技有限公司 硅藻土基多孔陶瓷及其制备方法和系统
CN112413023B (zh) * 2020-11-20 2022-11-08 贵州新安航空机械有限责任公司 薄片粉末冶金刹车盘的加工方法
CN112420240B (zh) * 2020-11-20 2022-11-11 深圳顺络电子股份有限公司 电极浆料及其制作方法、电子烟加热体及其制作方法
CN112592200B (zh) * 2020-12-18 2023-06-27 惠州市新泓威科技有限公司 雾化芯用纳米多孔陶瓷及其制备方法
CN112548100B (zh) * 2020-12-24 2022-05-17 南京航空航天大学 一种仿生定向有序叠层复合材料的制备方法
CN113072390A (zh) * 2021-03-16 2021-07-06 上海梦泺企业管理咨询有限公司 一种多孔陶瓷加热体及其制备方法
CN115974592B (zh) * 2021-10-14 2024-03-29 深圳市卓力能技术有限公司 发热体的金属化处理方法、发热体及气溶胶产生装置
CN114180973B (zh) * 2021-12-27 2023-05-26 重庆石墨烯研究院有限公司 一种石墨烯陶瓷发热板的制备方法
CN115028473B (zh) * 2022-05-06 2024-02-09 深圳市吉迩技术有限公司 覆有金属涂层的多孔陶瓷的制备方法及气溶胶生成装置
WO2024027354A1 (zh) * 2022-08-04 2024-02-08 常州市派腾电子技术服务有限公司 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法
CN116944493B (zh) * 2023-08-03 2024-02-13 广东奇砺新材料科技有限公司 一种气雾发生器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034877A (zh) * 2009-09-30 2011-04-27 比亚迪股份有限公司 一种太阳能电池用导电浆料及其制备方法
CN104014195A (zh) * 2014-05-06 2014-09-03 三达膜科技(厦门)有限公司 一种涂层复合陶瓷滤芯的制备方法
CN107010934A (zh) * 2017-04-20 2017-08-04 深圳市卓力能电子有限公司 一种微孔陶瓷及微孔陶瓷加热棒的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577215A (en) * 1980-06-16 1982-01-14 Ngk Insulators Ltd Preparation of ceramic honeycomb filter
JPH04188652A (ja) * 1990-11-19 1992-07-07 Shinko Electric Ind Co Ltd 高周波素子用パッケージの製造方法と高周波素子用パッケージ
US20040187297A1 (en) * 2003-03-27 2004-09-30 E Touch Corporation Method of fabricating a polymer resistor in an interconnection via
CN101265123B (zh) * 2008-04-18 2010-12-01 南京工业大学 一种小孔径陶瓷膜的制备方法
US8974722B1 (en) * 2013-03-15 2015-03-10 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
CN104860682B (zh) * 2014-02-26 2017-02-15 东莞市国研电热材料有限公司 一种叠层共烧的陶瓷加热体的制备工艺
CN108059479B (zh) * 2017-12-21 2020-09-15 深圳市卓力能电子有限公司 一种新型多孔陶瓷加热体的制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034877A (zh) * 2009-09-30 2011-04-27 比亚迪股份有限公司 一种太阳能电池用导电浆料及其制备方法
CN104014195A (zh) * 2014-05-06 2014-09-03 三达膜科技(厦门)有限公司 一种涂层复合陶瓷滤芯的制备方法
CN107010934A (zh) * 2017-04-20 2017-08-04 深圳市卓力能电子有限公司 一种微孔陶瓷及微孔陶瓷加热棒的制备方法

Also Published As

Publication number Publication date
CN108046833A (zh) 2018-05-18
US20200317585A1 (en) 2020-10-08
CN108046833B (zh) 2020-06-30
US11498875B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2019119611A1 (zh) 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
CN107182139B (zh) 一种金属膜多孔陶瓷发热体及其应用
WO2019119612A1 (zh) 一种新型多孔陶瓷加热体的制备工艺
CN107173849B (zh) 一种导电陶瓷膜多孔陶瓷发热体及其应用
CN103252448B (zh) 一种用于单晶叶片制造的薄壁高强度模壳制备方法
CN107935634A (zh) 一种难熔金属化合物高温抗氧化涂层及其制备方法
CN101386546B (zh) 精铸用自反应氧化铝基复合陶瓷型芯及其制备方法
CN106376107B (zh) 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN101913879B (zh) 氮化硅材料及其制备方法和氮化硅发热器件及其制备方法
CN106467396A (zh) 一种不易变形的大尺寸氮化铝陶瓷基板的制备方法
CN110079708B (zh) 一种纳米石墨片/Al合金基复合材料的粉末冶金制备方法
CN107234241B (zh) 一种微米级多孔钨及其制备方法
CN102284678A (zh) 一种精密铸造钛合金的模壳制备方法
CN107640963A (zh) 一种梯度陶瓷型芯材料的制备方法
WO2023029660A1 (zh) 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN108546095A (zh) 一种氧化物陶瓷与金属焊接连接的方法
CN103589895B (zh) 一种低成本制备高精度金刚石/Cu复合材料零件的方法
CN103880406A (zh) 一种改进的氧化硅陶瓷型芯及其制备方法
CN104384452A (zh) 一种薄壁硅基陶瓷型芯制备工艺
CN106917009B (zh) 一种高体积分数SiC增强Al基复合材料的制备方法
CN104649709A (zh) 一种多孔碳化硅陶瓷的制造方法
US20210384426A1 (en) Phase change thermal storage ceramic and preparation method thereof
CN106365620A (zh) 一种具有较高韧性的氧化铝陶瓷基复合材料及其制备方法
CN104162661B (zh) 一种微波烧结Al2O3-TiC-TiN微米复合陶瓷刀具材料的方法
CN106478081A (zh) 真空碳热还原强化熔融石英高温性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893236

Country of ref document: EP

Kind code of ref document: A1