CN110041096A - 硅藻土基多孔陶瓷及其制备方法和系统 - Google Patents

硅藻土基多孔陶瓷及其制备方法和系统 Download PDF

Info

Publication number
CN110041096A
CN110041096A CN201910039957.XA CN201910039957A CN110041096A CN 110041096 A CN110041096 A CN 110041096A CN 201910039957 A CN201910039957 A CN 201910039957A CN 110041096 A CN110041096 A CN 110041096A
Authority
CN
China
Prior art keywords
diatomite
porous ceramics
paraffin
temperature
optional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910039957.XA
Other languages
English (en)
Inventor
余明先
李毅
吴沙鸥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Taotao Technology Co Ltd
Original Assignee
Shenzhen Taotao Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Taotao Technology Co Ltd filed Critical Shenzhen Taotao Technology Co Ltd
Priority to CN201910039957.XA priority Critical patent/CN110041096A/zh
Publication of CN110041096A publication Critical patent/CN110041096A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种硅藻土基多孔陶瓷及其制备方法和系统,该方法包括:(1)将硅藻土、烧结助剂和造孔剂进行混合处理,以便得到混合粉体;(2)将所述混合粉体与石蜡、改性剂进行混炼,以便得到混炼料;(3)将所述混炼料进行热压铸成型,以便得到成型料;(4)将所述成型料进行排蜡处理,以便得到除蜡料;(5)将所述除蜡料进行烧结处理,以便得到硅藻土基多孔陶瓷。该方法采用有机微球作为造孔剂,并采用热压铸成型工艺,得到了气孔分布均匀、孔隙率为40‑70%、孔径大小为5‑20μm且抗压强度为5‑20MPa的硅藻土基多孔陶瓷。

Description

硅藻土基多孔陶瓷及其制备方法和系统
技术领域
本发明属于多孔陶瓷领域,具体而言,本发明涉及硅藻土基多孔陶瓷及其制备方法和系统。
背景技术
多孔陶瓷由于其独特特性,具有抗氧化、耐高温、耐腐蚀、孔结构均匀、比表面积高和原料来源广泛、成本低、使用寿命长等特性,被广泛应用于节能、环保、石油、化工、食品等领域,且近年来受到越来越多的关注。
目前制备多孔陶瓷的主要方法有机械挤出成型、颗粒堆积、添加有机造孔剂、添加无机造孔剂,以及发泡法、冷冻干燥法和凝胶注模法,主要难点为如何实现精确控制多孔陶瓷的孔径大小、孔形貌及孔分布,如何在提高孔隙率的同时使保持兼容抗压强度,及如何降低成本。现有技术里有采用有机泡沫微球为成孔剂,并通过热压铸的工艺制备多孔陶瓷。该工艺采用石蜡溶液对有机泡沫微球进行预处理,采用油酸对陶瓷粉体和玻璃助剂进行表面处理,工艺复杂,容易引入杂质造成污染,且制备的多孔陶瓷强度较低,不利于实际工业应用。
因此,现有多孔陶瓷的制备工艺有待进一步改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种硅藻土基多孔陶瓷及其制备方法和系统。该方法采用有机微球作为造孔剂,并采用热压铸成型工艺,得到了气孔分布均匀、孔隙率为40-70%、孔径大小为5-20μm且抗压强度为5-20MPa的硅藻土基多孔陶瓷。
在本发明的一个方面,本发明提出了一种硅藻土基多孔陶瓷的制备方法,根据本发明的实施例,该方法包括:
(1)将硅藻土、烧结助剂和造孔剂进行混合处理,以便得到混合粉体;
(2)将所述混合粉体与石蜡、改性剂进行混炼,以便得到混炼料;
(3)将所述混炼料进行热压铸成型,以便得到成型料;
(4)将所述成型料进行排蜡处理,以便得到除蜡料;
(5)将所述除蜡料进行烧结处理,以便得到硅藻土基多孔陶瓷。
根据本发明实施例的硅藻土基多孔陶瓷的制备方法,通过将硅藻土与烧结助剂、造孔剂进行混合,有利于提高后续混炼的效率和混炼料的均匀性;通过将混合粉体与石蜡、改性剂混炼,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果;混炼料成型采用简单的热压铸成型工艺,可显著降低成本;成型料经排蜡处理后,可得到呈多孔状的除蜡料,该形状的除蜡料有利于提高后续烧结处理的效率和效果;通过将除蜡料进行烧结,其中的造孔剂挥发,使得陶瓷表面的孔分布更加均匀,同时增加孔隙率,烧结助剂有利于降低除蜡料的烧结温度,进一步提高烧结处理的效率。由此,采用该工艺可得到孔隙率为40-70%、孔径大小为5-20μm且抗压强度为5-20MPa的硅藻土基多孔陶瓷,具有孔隙率高、孔隙分布均匀的特点,且具有足够的强度能满足石油、化工、能源等工业的应用要求。
另外,根据本发明上述实施例的硅藻土基多孔陶瓷的制备方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,在步骤(1)中,所述烧结助剂为低温且不含重金属的玻璃粉,所述玻璃粉的粒度为1000-3200目,融化温度为500-1000℃。由此,有利于降低除蜡料的烧结温度。
在本发明的一些实施例中,在步骤(1)中,所述玻璃粉的粒度为1500-2500目,融化温度为600-800℃。由此,可进一步降低除蜡料的烧结温度。
在本发明的一些实施例中,在步骤(1)中,所述造孔剂为聚苯乙烯微球、聚甲基丙烯酸甲酯微球、聚氨酯微球、聚丙烯微球和聚氯乙烯微球中的至少之一。由此,有利于提高硅藻土基多孔陶瓷的孔隙率,使得硅藻土基多孔陶瓷孔隙分布均匀、孔径大小可调且具有足够强度。
在本发明的一些实施例中,在步骤(1)中,所述造孔剂为聚苯乙烯微球和聚甲基丙烯酸甲酯微球中的至少之一。由此,可进一步提高硅藻土基多孔陶瓷的孔隙率,使得硅藻土基多孔陶瓷孔隙分布均匀、孔径大小可调且具有足够强度。
在本发明的一些实施例中,在步骤(1)中,所述造孔剂的粒径为8-20μm。由此,可进一步提高硅藻土基多孔陶瓷的孔隙率,使得硅藻土基多孔陶瓷孔隙分布均匀、孔径大小可调且具有足够强度。
在本发明的一些实施例中,在步骤(1)中,所述硅藻土与所述烧结助剂、所述造孔剂的混合质量比为(40-70):(0-20):(5-30)。由此,可进一步提高硅藻土基多孔陶瓷的孔隙率,使得硅藻土基多孔陶瓷孔隙分布均匀、孔径大小可调且具有足够强度。
在本发明的一些实施例中,在步骤(1)中,所述硅藻土与所述烧结助剂、所述造孔剂的混合质量比为(50-60):(5-10):(10-15)。由此,可进一步提高硅藻土基多孔陶瓷的孔隙率,使得硅藻土基多孔陶瓷孔隙分布均匀、孔径大小可调且具有足够强度。
在本发明的一些实施例中,步骤(2)包括:(2-1)将所述石蜡、所述改性剂混合,加热至所述石蜡融化,以便得到含有融化石蜡的混合料;(2-2)将所述混合粉体与所述含有融化石蜡的混合料混合混炼,以便得到所述混炼料。由此,有利于提高混炼效果。
在本发明的一些实施例中,在步骤(2-1)中,所述改性剂为硬脂酸或油酸中的至少之一。由此,可进一步提高混炼效果。
在本发明的一些实施例中,在步骤(2-1)中,所述改性剂为硬脂酸。由此,可进一步提高混炼效果。
在本发明的一些实施例中,在步骤(2-1)中,所述石蜡与所述改性剂的混合质量比为(20-50):(0-20)。
在本发明的一些实施例中,在步骤(2-1)中,所述石蜡与所述改性剂的混合质量比为(20-30):(5-10)。由此,可进一步提高混炼效果。
在本发明的一些实施例中,在步骤(3)中,所述热压铸成型的温度为50-80℃,压力为1-3MPa。由此,既可得到性质较佳的成型料又能节约成本。
在本发明的一些实施例中,在步骤(3)中,所述热压铸成型的温度为60-70,℃,压力为1.8-2.5MPa。由此,既可得到性质较佳的成型料又能节约成本。
在本发明的一些实施例中,在步骤(4)中,所述排蜡处理的温度为室温到400℃,且在200℃以下时所述排蜡处理的升温速率为0.2-1.0℃/min,200℃以上时所述排蜡处理的升温速率为0.5-2℃/min。由此,有利于提高成型料的排蜡效果。
在本发明的一些实施例中,在步骤(4)中,所述排蜡处理的温度为350-380℃,且在200℃以下时所述排蜡处理的升温速率为0.5-0.8℃/min,200℃以上时所述排蜡处理的升温速率为1℃/min。由此,可进一步提高成型料的排蜡效果。
在本发明的一些实施例中,在步骤(5)中,所述烧结处理的温度为500-900℃,升温速率为1-5℃/min,保温时间为0.5-2h。由此,有利于提高除蜡料的烧结效果,得到孔隙分布均匀、孔径大小可调且具有足够强度的硅藻土基多孔陶瓷。
在本发明的一些实施例中,在步骤(5)中,所述烧结处理的温度为600-700℃,升温速率为3℃/min,保温时间为1-1.5h。由此,可进一步提高除蜡料的烧结效果,得到孔隙分布均匀、孔径大小可调且具有足够强度的硅藻土基多孔陶瓷。
在本发明的一些实施例中,在步骤(5)中,所述硅藻土基多孔陶瓷的孔隙率达40-70%,强度达5-20MPa,孔径达5-20μm。
在本发明的再一个方面,本发明提出了一种硅藻土基多孔陶瓷,根据本发明的实施例,所述硅藻土基多孔陶瓷是上述硅藻土基多孔陶瓷的制备方法制得的。采用该工艺可得到孔隙率为40-70%、孔径大小为5-20μm且抗压强度为5-20MPa的硅藻土基多孔陶瓷,具有孔隙率高、孔隙分布均匀的特点,且具有足够的强度能满足石油、化工、能源等工业的应用要求。
在本发明的又一个方面,本发明提出了一种适用于上述硅藻土基多孔陶瓷的制备方法的系统,根据本发明的实施例,该系统包括:
混合装置,所述混合装置具有硅藻土入口、烧结助剂入口、造孔剂入口和混合粉体出口;
混炼装置,所述混炼装置具有石蜡入口、改性剂入口、混合粉体入口和混炼料出口,所述混合粉体入口与所述混合粉体出口相连;
热压铸成型装置,所述热压铸成型装置具有混炼料入口和成型料出口,所述混炼料入口与所述混炼料出口相连;
排蜡装置,所述排蜡装置具有成型料入口和除蜡料出口,所述成型料入口与所述成型料出口相连;
烧结装置,所述烧结装置具有除蜡料入口和硅藻土基多孔陶瓷出口,所述除蜡料入口与所述除蜡料出口相连。
根据本发明实施例的硅藻土基多孔陶瓷的制备系统,通过将硅藻土与烧结助剂、造孔剂进行混合,有利于提高后续混炼的效率和混炼料的均匀性;通过将混合粉体与石蜡、改性剂混炼,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果;混炼料成型采用简单的热压铸成型工艺,可显著降低成本;成型料经排蜡处理后,可得到呈多孔状的除蜡料,该形状的除蜡料有利于提高后续烧结处理的效率和效果;通过将除蜡料进行烧结,其中的造孔剂挥发,使得陶瓷表面的孔分布更加均匀,同时增加孔隙率,烧结助剂有利于降低除蜡料的烧结温度,进一步提高烧结处理的效率。由此,采用该工艺可得到孔隙率为40-70%、孔径大小为5-20μm且抗压强度为5-20MPa的硅藻土基多孔陶瓷,具有孔隙率高、孔隙分布均匀的特点,且具有足够的强度能满足石油、化工、能源等工业的应用要求。
另外,根据本发明上述实施例的硅藻土基多孔陶瓷的制备系统还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述混炼装置为拌蜡机或混炼机。由此,有利于提高混合粉体与石蜡、改性剂的混炼效果。
在本发明的一些实施例中,所述热压铸成型装置为热压铸机。由此,有利于降低工艺的成本,同时保证所得多孔陶瓷的强度。
在本发明的一些实施例中,所述排蜡装置为排蜡炉。由此,有利于提高成型料的排蜡效果。
在本发明的一些实施例中,所述烧结装置为烧结炉或隧道窑炉。由此,有利于提高除蜡料的烧结效果,得到孔隙率高、孔隙分布均匀、且具有足够的强度能满足石油、化工、能源等工业应用要求的硅藻土基多孔陶瓷。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的硅藻土基多孔陶瓷的制备方法流程示意图;
图2是根据本发明再一个实施例的硅藻土基多孔陶瓷的制备方法流程示意图;
图3是根据本发明一个实施例的硅藻土基多孔陶瓷的制备系统结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的一个方面,本发明提出了一种硅藻土基多孔陶瓷的制备方法,根据本发明的实施例,参考图1,该方法包括:
S100:将硅藻土、烧结助剂和造孔剂进行混合处理
该步骤中,将硅藻土、烧结助剂和造孔剂进行混合处理,以便得到混合粉体。发明人发现,通过将硅藻土与烧结助剂、造孔剂进行混合,有利于提高硅藻土与烧结助剂、造孔剂的接触面积,进而提高后续混炼效率和混炼效果。烧结助剂在高温下会形成液相,可降低多孔陶瓷的烧结温度;造孔剂在高温烧结下会挥发,从而在陶瓷中留下相应的气孔。
根据本发明的一个实施例,烧结助剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为低温且不含重金属的玻璃粉,玻璃粉的粒度为1000-3200目,融化温度为500-1000℃。优选的,上述玻璃粉的粒度为1500-2500目,融化温度为600-800℃。发明人发现,烧结助剂在高温下会形成液相,可降低多孔陶瓷的烧结温度。烧结助剂选用低温且不含重金属的玻璃粉,则烧结助剂在低温条件下就可以完成烧结,降低烧结能耗,降低工艺成本,且不含重金属,环保,使用安全。玻璃粉的粒度过高过低都会影响烧结助剂融化时在陶瓷基体中液相的分布,进而影响孔的分布及大小。融化温度过高,烧结温度也会升高,孔径和孔隙率会变小;熔融温度过低,烧结温度也会过低,陶瓷中会残留有机物。
根据本发明的再一个实施例,造孔剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为聚苯乙烯微球、聚甲基丙烯酸甲酯微球、聚氨酯微球、聚丙烯微球和聚氯乙烯微球中的至少之一。优选的,造孔剂为聚苯乙烯微球和聚甲基丙烯酸甲酯微球中的至少之一。发明人发现,造孔剂在高温烧结下会挥发,从而在陶瓷中留下相应的气孔。聚苯乙烯微球和聚甲基丙烯酸甲酯微球挥发温度低于烧结温度,且挥发无残留,球形度好。
根据本发明的又一个实施例,造孔剂的粒径可以为8-20μm。发明人发现,造孔剂的粒径大小决定了最终多孔陶瓷的孔径大小,过大或者过小都会降低最终所得多孔陶瓷的品质。发明人经过大量实验发现,上述粒径的造孔剂可使得多孔陶瓷的品质较优。
根据本发明的又一个实施例,硅藻土与烧结助剂、造孔剂的混合质量比并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为(40-70):(0-20):(5-30)。优选的,硅藻土与烧结助剂、造孔剂的混合质量比为(50-60):(5-10):(10-15)。发明人发现,硅藻土与烧结助剂、造孔剂的混合质量比过高过低都会直接影响最终多孔陶瓷的孔隙率孔结构、孔分布、孔大小及陶瓷强度。发明人经过大量实验发现,上述配比可显著改善多孔陶瓷的孔隙率孔结构、孔分布、孔大小及陶瓷强度。
S200:将混合粉体与石蜡、改性剂进行混炼
该步骤中,将混合粉体与石蜡、改性剂进行混炼,以便得到混炼料。发明人发现,通过将混合粉体与石蜡、改性剂混炼,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果。石蜡在融化温度范围内可融化为液相,溶解混合粉体,可充当溶剂的作用。
根据本发明的一个实施例,参考图2,S200包括:
S21:将石蜡、改性剂混合,加热至石蜡融化
该步骤中,将石蜡、改性剂混合,加热至石蜡融化,以便得到含有融化石蜡的混合料。发明人发现,通过先将石蜡融化,然后再与混合粉体混炼,有利于通过机械的方式让混合粉体均匀溶解分散在石蜡溶液中。
根据本发明的一个具体实施例,改性剂可以为硬脂酸或油酸中的至少之一。优选的,改性剂可以为硬脂酸。发明人发现,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果。硬脂酸或油酸可显著改善硅藻土和石蜡的流变性,增加混炼料的流动性。
根据本发明的再一个具体实施例,石蜡与改性剂的混合质量比可以为(20-50):(0-20)。优选的,石蜡与改性剂的混合质量比为(20-30):(5-10)。发明人发现,石蜡与改性剂的混合质量比过高或过低都会影响混炼料的流动性,进而影响后续热压铸成型的效果,甚至造成无法成型。
S22:将混合粉体与含有融化石蜡的混合料混合混炼
该步骤中,将混合粉体与含有融化石蜡的混合料混合混炼,以便得到混炼料。发明人发现,含有融化石蜡的混合料是液相,相当于溶剂,把混合粉体加入溶剂中一起混炼,可让陶瓷粉体均匀的溶解在含有融化石蜡的混合料中。
S300:将混炼料进行热压铸成型
该步骤中,将混炼料进行热压铸成型,以便得到成型料。发明人发现,混炼料成型采用简单的热压铸成型工艺,可显著降低成本,同时,采用热压铸成型可以成型复杂结构的产品,不需要额外加工,是一种净尺寸成型工艺。
根据本发明的一个实施例,热压铸成型的温度可以为50-80℃,优选60-70℃,压力可以为1-3MPa,优选1.8-2.5MPa。发明人发现,热压铸成型的温度过高过低,压力过大过小都会直接影响成型料的密度,导致成型料有很多气孔、孔洞等缺陷。
S400:将成型料进行排蜡处理
该步骤中,将成型料进行排蜡处理,以便得到除蜡料。发明人发现,成型料经排蜡处理后,可得到呈多孔状的除蜡料,该形状的除蜡料有利于提高后续烧结处理的效率和效果。通过制定合理的排蜡温度和排蜡速率,可让成型料中的石蜡缓慢融化并挥发。
根据本发明的一个实施例,排蜡处理的温度可以为室温到400℃,优选350-380℃,且在200℃以下时排蜡处理的升温速率可以为0.2-1.0℃/min,优选0.5-0.8℃/min,200℃以上时排蜡处理的升温速率可以为0.5-2℃/min,优选1℃/min。发明人发现,排蜡处理的温度和升温速率都是根据石蜡的融化点和挥发点来制定的,石蜡的融化温度和挥发温度都小于200℃,在石蜡融合和挥发之前,若升温速率过快,会导致产品变形,甚至开裂;而在石蜡挥发之后,若升温速率过低则会显著增加能耗,降低效率,增加成本。
S500:将除蜡料进行烧结处理
该步骤中,将除蜡料进行烧结处理,以便得到硅藻土基多孔陶瓷。发明人发现,通过将除蜡料进行烧结,其中的造孔剂挥发,使得陶瓷表面的孔分布更加均匀,陶瓷致密化,同时增加孔隙率,烧结助剂有利于降低除蜡料的烧结温度,进一步提高烧结处理的效率。通过烧结可赋予陶瓷一定的力学性能。
根据本发明的一个实施例,烧结处理的温度可以为500-900℃,优选600-700℃,升温速率可以为1-5℃/min,优选3℃/min,保温时间可以为0.5-2h,优选1-1.5h。发明人发现,烧结处理的温度过高、升温速率过高过低、保温时间过长都会使得陶瓷过烧,使得多孔陶瓷孔隙率降低,孔径过小。而若烧结处理的温度过低,保温时间太短,则最终所得陶瓷的烧结强度太低,达不到产品的性能要求。总之,温度、升温速率及保温时间都会直接影响最终陶瓷的强度、硬度、孔隙率和孔径大小。
根据本发明的再一个实施例,通过采用本申请的上述制备工艺,得到的硅藻土基多孔陶瓷的孔隙率达40-70%,强度为5-20MPa,孔径为5-20μm,且在孔隙率高达60%及以上时,强度仍可保持在10MPa以上,与现有的制备工艺相比,具有显著的进步。
根据本发明实施例的硅藻土基多孔陶瓷的制备方法,通过将硅藻土与烧结助剂、造孔剂进行混合,有利于提高后续混炼的效率和混炼料的均匀性;通过将混合粉体与石蜡、改性剂混炼,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果;混炼料成型采用简单的热压铸成型工艺,可显著降低成本;成型料经排蜡处理后,可得到呈多孔状的除蜡料,该形状的除蜡料有利于提高后续烧结处理的效率和效果;通过将除蜡料进行烧结,其中的造孔剂挥发,使得陶瓷表面的孔分布更加均匀,同时增加孔隙率,烧结助剂有利于降低除蜡料的烧结温度,进一步提高烧结处理的效率。由此,采用该工艺可得到孔隙率为40-70%、孔径大小为5-20μm且抗压强度为5-20MPa的硅藻土基多孔陶瓷,具有孔隙率高、孔隙分布均匀的特点,且具有足够的强度能满足石油、化工、能源等工业的应用要求。
在本发明的再一个方面,本发明提出了一种硅藻土基多孔陶瓷,根据本发明的实施例,硅藻土基多孔陶瓷是上述硅藻土基多孔陶瓷的制备方法制得的。发明人发现,采用该工艺可得到孔隙率为40-70%、孔径大小为5-20μm且抗压强度为5-20MPa的硅藻土基多孔陶瓷,具有孔隙率高、孔隙分布均匀的特点,且具有足够的强度能满足石油、化工、能源等工业的应用要求。
在本发明的又一个方面,本发明提出了一种适用于上述硅藻土基多孔陶瓷的制备方法的系统,根据本发明的实施例,参考图3,该系统包括:混合装置100、混炼装置200、热压铸成型装置300、排蜡装置400和烧结装置500。
根据本发明的实施例,混合装置100具有硅藻土入口101、烧结助剂入口102、造孔剂入口103和混合粉体出口104,且适于将硅藻土、烧结助剂和造孔剂进行混合处理,以便得到混合粉体。发明人发现,通过将硅藻土与烧结助剂、造孔剂进行混合,有利于提高硅藻土与烧结助剂、造孔剂的接触面积,进而提高后续混炼效率和混炼效果。烧结助剂在高温下会形成液相,可降低多孔陶瓷的烧结温度;造孔剂在高温烧结下会挥发,从而在陶瓷中留下相应的气孔。需要说明的是,混合装置并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为球磨机或滚磨机等。
根据本发明的一个实施例,烧结助剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为低温且不含重金属的玻璃粉,玻璃粉的粒度为1000-3200目,融化温度为500-1000℃。优选的,上述玻璃粉的粒度为1500-2500目,融化温度为600-800℃。发明人发现,烧结助剂在高温下会形成液相,可降低多孔陶瓷的烧结温度。烧结助剂选用低温且不含重金属的玻璃粉,则烧结助剂在低温条件下就可以完成烧结,降低烧结能耗,降低工艺成本,且不含重金属,环保,使用安全。玻璃粉的粒度过高过低都会影响烧结助剂融化时在陶瓷基体中液相的分布,进而影响孔的分布及大小。融化温度过高,烧结温度也会升高,孔径和孔隙率会变小;熔融温度过低,烧结温度也会过低,陶瓷中会残留有机物。
根据本发明的再一个实施例,造孔剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为聚苯乙烯微球、聚甲基丙烯酸甲酯微球、聚氨酯微球、聚丙烯微球和聚氯乙烯微球中的至少之一。优选的,造孔剂为聚苯乙烯微球和聚甲基丙烯酸甲酯微球中的至少之一。发明人发现,造孔剂在高温烧结下会挥发,从而在陶瓷中留下相应的气孔。聚苯乙烯微球和聚甲基丙烯酸甲酯微球挥发温度低于烧结温度,且挥发无残留,球形度好。
根据本发明的又一个实施例,造孔剂的粒径可以为8-20μm。发明人发现,造孔剂的粒径大小决定了最终多孔陶瓷的孔径大小,过大或者过小都会降低最终所得多孔陶瓷的品质。发明人经过大量实验发现,上述粒径的造孔剂可使得多孔陶瓷的品质较优。
根据本发明的又一个实施例,硅藻土与烧结助剂、造孔剂的混合质量比并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为(40-70):(0-20):(5-30)。优选的,硅藻土与烧结助剂、造孔剂的混合质量比为(50-60):(5-10):(10-15)。发明人发现,硅藻土与烧结助剂、造孔剂的混合质量比过高过低都会直接影响最终多孔陶瓷的孔隙率孔结构、孔分布、孔大小及陶瓷强度。发明人经过大量实验发现,上述配比可显著改善多孔陶瓷的孔隙率孔结构、孔分布、孔大小及陶瓷强度。
根据本发明的实施例,混炼装置200具有石蜡入口201、改性剂入口202、混合粉体入口203和混炼料出口204,混合粉体入口203与混合粉体出口104相连,且适于将混合粉体与石蜡、改性剂进行混炼,以便得到混炼料。发明人发现,通过将混合粉体与石蜡、改性剂混炼,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果。石蜡在融化温度范围内可融化为液相,溶解混合粉体,可充当溶剂的作用。需要说明的是,混炼装置并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为拌蜡机或混炼机。
根据本发明的一个实施例,在混炼装置里,可先将石蜡、改性剂混合,加热至石蜡融化,以便得到含有融化石蜡的混合料。发明人发现,通过先将石蜡融化,然后再与混合粉体混炼,有利于通过机械的方式让混合粉体均匀溶解分散在石蜡溶液中。根据本发明的一个具体实施例,改性剂可以为硬脂酸或油酸中的至少之一。优选的,改性剂可以为硬脂酸。发明人发现,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果。硬脂酸或油酸可显著改善硅藻土和石蜡的流变性,增加混炼料的流动性。
根据本发明的再一个具体实施例,石蜡与改性剂的混合质量比可以为(20-50):(0-20)。优选的,石蜡与改性剂的混合质量比为(20-30):(5-10)。发明人发现,石蜡与改性剂的混合质量比过高或过低都会影响混炼料的流动性,进而影响后续热压铸成型的效果,甚至造成无法成型。
根据本发明的再一个实施例,待得到含有融化石蜡的混合料后,将混合粉体与含有融化石蜡的混合料混合混炼,以便得到所述混炼料。发明人发现,含有融化石蜡的混合料是液相,相当于溶剂,把混合粉体加入溶剂中一起混炼,可让陶瓷粉体均匀的溶解在含有融化石蜡的混合料中。
根据本发明的实施例,热压铸成型装置300具有混炼料入口301和成型料出口302,混炼料入口301与混炼料出口204相连,且适于将混炼料进行热压铸成型,以便得到成型料。发明人发现,混炼料成型采用简单的热压铸成型工艺,可显著降低成本。同时,采用热压铸成型可以成型复杂结构的产品,不需要额外加工,是一种净尺寸成型工艺。需要说明的是,热压铸成型装置并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为热压铸机。
根据本发明的一个实施例,热压铸成型的温度可以为50-80℃,优选60-70℃,压力可以为1-3MPa,优选1.8-2.5MPa。发明人发现,热压铸成型的温度过高过低,压力过大过小都会直接影响成型料的密度,导致成型料有很多气孔、孔洞等缺陷。
根据本发明的实施例,排蜡装置400具有成型料入口401和除蜡料出口402,成型料入口401与成型料出口302相连,且适于将成型料进行排蜡处理,以便得到除蜡料。发明人发现,成型料经排蜡处理后,可得到呈多孔状的除蜡料,该形状的除蜡料有利于提高后续烧结处理的效率和效果。通过制定合理的排蜡温度和排蜡速率,可让成型料中的石蜡缓慢融化并挥发。需要说明的是,排蜡装置并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为排蜡炉。进一步的,成型料入口和除蜡料出口可以为同一个口。
根据本发明的一个实施例,排蜡处理的温度可以为室温到400℃,优选350-380℃,且在200℃以下时排蜡处理的升温速率可以为0.2-1.0℃/min,优选0.5-0.8℃/min,200℃以上时排蜡处理的升温速率可以为0.5-2℃/min,优选1℃/min。发明人发现,排蜡处理的温度和升温速率都是根据石蜡的融化点和挥发点来制定的,石蜡的融化温度和挥发温度都小于200℃,在石蜡融合和挥发之前,若升温速率过快,会导致产品变形,甚至开裂;而在石蜡挥发之后,若升温速率过低则会显著增加能耗,降低效率,增加成本。
根据本发明的实施例,烧结装置500具有除蜡料入口501和硅藻土基多孔陶瓷出口502,除蜡料入口501与除蜡料出口402相连,且适于将除蜡料进行烧结处理,以便得到硅藻土基多孔陶瓷。发明人发现,通过将除蜡料进行烧结,其中的造孔剂挥发,使得陶瓷表面的孔分布更加均匀,陶瓷致密化,同时增加孔隙率,烧结助剂有利于降低除蜡料的烧结温度,进一步提高烧结处理的效率。通过烧结可赋予陶瓷一定的力学性能。需要说明的是,烧结装置并不受特别限制,本领域技术人员可以根据实际需要进行选择,例如可以为烧结炉或隧道窑炉。进一步的,除蜡料入口和硅藻土基多孔陶瓷出口可以为同一个口。
根据本发明的一个实施例,烧结处理的温度可以为500-900℃,优选600-700℃,升温速率可以为1-5℃/min,优选3℃/min,保温时间可以为0.5-2h,优选1-1.5h。发明人发现,烧结处理的温度过高、升温速率过高过低、保温时间过长都会使得陶瓷过烧,使得多孔陶瓷孔隙率降低,孔径过小。而若烧结处理的温度过低,保温时间太短,则最终所得陶瓷的烧结强度太低,达不到产品的性能要求。总之,温度、升温速率及保温时间都会直接影响最终陶瓷的强度、硬度、孔隙率和孔径大小。
根据本发明的再一个实施例,通过采用本申请的上述制备工艺,得到的硅藻土基多孔陶瓷的孔隙率达40-70%,强度为5-20MPa,孔径为5-20μm,且在孔隙率高达60%及以上时,强度仍可保持在10MPa以上,与现有的制备工艺相比,具有显著的进步。
根据本发明实施例的硅藻土基多孔陶瓷的制备系统,通过将硅藻土与烧结助剂、造孔剂进行混合,有利于提高后续混炼的效率和混炼料的均匀性;通过将混合粉体与石蜡、改性剂混炼,改性剂可改善硅藻土和石蜡的润湿性和流动性,可进一步提高混合粉体与石蜡的混炼效率和混炼效果;混炼料成型采用简单的热压铸成型工艺,可显著降低成本;成型料经排蜡处理后,可得到呈多孔状的除蜡料,该形状的除蜡料有利于提高后续烧结处理的效率和效果;通过将除蜡料进行烧结,其中的造孔剂挥发,使得陶瓷表面的孔分布更加均匀,同时增加孔隙率,烧结助剂有利于降低除蜡料的烧结温度,进一步提高烧结处理的效率。由此,采用该工艺可得到孔隙率为40-70%、孔径大小为5-20μm且抗压强度为5-20MPa的硅藻土基多孔陶瓷,具有孔隙率高、孔隙分布均匀的特点,且具有足够的强度能满足石油、化工、能源等工业的应用要求。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
实施例1
将硅藻土、低温且不含重金属的玻璃粉(粒度为1500目、融化温度为650-750℃)和聚苯乙烯微球(粒径为20μm)按照50wt%:10wt%:10wt%供给至球磨机混合,以便得到混合粉体;将石蜡和硬脂酸按照25wt%:5wt%供给至拌蜡机中混合,加热至石蜡融化,以便得到含有融化石蜡的混合料;将混合粉体供给至拌蜡机中与含有融化石蜡的混合料混合混炼,以便得到混炼料;将混炼料在70℃、3MPa的压力下进行热压铸成型,以便得到成型料;将成型料供给至排蜡炉进行排蜡处理,排蜡处理的温度为300℃,在200℃以下时排蜡处理的升温速率为0.5℃/min,在200℃以上时排蜡处理的升温速率为1℃/min,以便得到除蜡料;将除蜡料供给至烧结炉进行烧结处理,烧结处理的温度为900℃,升温速率为5℃/min,保温1h,以便得到硅藻土基多孔陶瓷。所得的硅藻土基多孔陶瓷的孔隙率、密度和强度如表1所示。
实施例2
将硅藻土、低温且不含重金属的玻璃粉(粒度为2000目、融化温度为750-850℃)和聚甲基丙烯酸甲酯微球(粒径为15μm)按照55wt%:5wt%:10wt%供给至球磨机混合,以便得到混合粉体;将石蜡和硬脂酸按照27wt%:3wt%供给至拌蜡机中混合,加热至石蜡融化,以便得到含有融化石蜡的混合料;将混合粉体供给至拌蜡机中与含有融化石蜡的混合料混合混炼,以便得到混炼料;将混炼料在70℃、3MPa的压力下进行热压铸成型,以便得到成型料;将成型料供给至排蜡炉进行排蜡处理,排蜡处理的温度为300℃,在200℃以下时排蜡处理的升温速率为0.5℃/min,在200℃以上时排蜡处理的升温速率为1℃/min,以便得到除蜡料;将除蜡料供给至烧结炉进行烧结处理,烧结处理的温度为900℃,升温速率为5℃/min,保温1.5h,以便得到硅藻土基多孔陶瓷。所得的硅藻土基多孔陶瓷的孔隙率、密度和强度如表1所示。
实施例3
将硅藻土、低温且不含重金属的玻璃粉(粒度为3000目、融化温度为650-750℃)和聚苯乙烯微球(粒径为10μm)按照57wt%:8wt%:5wt%供给至球磨机混合,以便得到混合粉体;将石蜡和硬脂酸按照25wt%:5wt%供给至拌蜡机中混合,加热至石蜡融化,以便得到含有融化石蜡的混合料;将混合粉体供给至拌蜡机中与含有融化石蜡的混合料混合混炼,以便得到混炼料;将混炼料在70℃、3MPa的压力下进行热压铸成型,以便得到成型料;将成型料供给至排蜡炉进行排蜡处理,排蜡处理的温度为300℃,在200℃以下时排蜡处理的升温速率为0.5℃/min,在200℃以上时排蜡处理的升温速率为2℃/min,以便得到除蜡料;将除蜡料供给至烧结炉进行烧结处理,烧结处理的温度为900℃,升温速率为5℃/min,保温2h,以便得到硅藻土基多孔陶瓷。所得的硅藻土基多孔陶瓷的孔隙率、密度和强度如表1所示。
表1实施例1-3所得硅藻土基多孔陶瓷的孔隙率、密度和强度
孔隙率(%) 密度(g/cm<sup>3</sup>) 强度(MPa)
实施例1 62 1.10 11
实施例2 58 1.01 13
实施例3 54 1.08 18
注:
孔隙率采用多孔陶瓷专用的孔隙率测试仪测试所得;
密度采用排水法测试所得;
强度采用万能力学试验机测试所得。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种硅藻土基多孔陶瓷的制备方法,其特征在于,包括:
(1)将硅藻土、烧结助剂和造孔剂进行混合处理,以便得到混合粉体;
(2)将所述混合粉体与石蜡、改性剂进行混炼,以便得到混炼料;
(3)将所述混炼料进行热压铸成型,以便得到成型料;
(4)将所述成型料进行排蜡处理,以便得到除蜡料;
(5)将所述除蜡料进行烧结处理,以便得到硅藻土基多孔陶瓷。
2.根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述烧结助剂为低温且不含重金属的玻璃粉,所述玻璃粉的粒度为1000-3200目,融化温度为500-1000℃;
任选的,所述玻璃粉的粒度为1500-2500目,融化温度为600-800℃;
任选的,所述造孔剂为聚苯乙烯微球、聚甲基丙烯酸甲酯微球、聚氨酯微球、聚丙烯微球和聚氯乙烯微球中的至少之一;
任选的,所述造孔剂为聚苯乙烯微球和聚甲基丙烯酸甲酯微球中的至少之一;
任选的,所述造孔剂的粒径为8-20μm;
任选的,所述硅藻土与所述烧结助剂、所述造孔剂的混合质量比为(40-70):(0-20):(5-30);
任选的,所述硅藻土与所述烧结助剂、所述造孔剂的混合质量比为(50-60):(5-10):(10-15)。
3.根据权利要求1所述的方法,其特征在于,步骤(2)包括:
(2-1)将所述石蜡、所述改性剂混合,加热至所述石蜡融化,以便得到含有融化石蜡的混合料;
(2-2)将所述混合粉体与所述含有融化石蜡的混合料混合混炼,以便得到所述混炼料。
4.根据权利要求3所述的方法,其特征在于,在步骤(2-1)中,所述改性剂为硬脂酸或油酸中的至少之一;
任选的,所述改性剂为硬脂酸;
任选的,所述石蜡与所述改性剂的混合质量比为(20-50):(0-20);
任选的,所述石蜡与所述改性剂的混合质量比为(20-30):(5-10)。
5.根据权利要求1所述的方法,其特征在于,在步骤(3)中,所述热压铸成型的温度为50-80℃,压力为1-3MPa;
任选的,所述热压铸成型的温度为60-70,℃,压力为1.8-2.5MPa。
6.根据权利要求1所述的方法,其特征在于,在步骤(4)中,所述排蜡处理的温度为室温到400℃,且在200℃以下时所述排蜡处理的升温速率为0.2-1.0℃/min,200℃以上时所述排蜡处理的升温速率为0.5-2℃/min;
任选的,所述排蜡处理的温度为350-380℃,且在200℃℃以下时所述排蜡处理的升温速率为0.5-0.8℃/min,200℃以上时所述排蜡处理的升温速率为1℃/min。
7.根据权利要求1所述的方法,其特征在于,在步骤(5)中,所述烧结处理的温度为500-900℃,升温速率为1-5℃/min,保温时间为0.5-2h;
任选的,所述烧结处理的温度为600-700℃,升温速率为3℃/min,保温时间为1-1.5h;
任选的,所述硅藻土基多孔陶瓷的孔隙率为40-70%,强度为5-20MPa,孔径为5-20μm。
8.一种硅藻土基多孔陶瓷,其特征在于,所述硅藻土基多孔陶瓷是采用权利要求1-7中任一项所述的硅藻土基多孔陶瓷的制备方法制得的。
9.一种适用于权利要求1-7中任一项所述的硅藻土基多孔陶瓷的制备方法的系统,其特征在于,包括:
混合装置,所述混合装置具有硅藻土入口、烧结助剂入口、造孔剂入口和混合粉体出口;
混炼装置,所述混炼装置具有石蜡入口、改性剂入口、混合粉体入口和混炼料出口,所述混合粉体入口与所述混合粉体出口相连;
热压铸成型装置,所述热压铸成型装置具有混炼料入口和成型料出口,所述混炼料入口与所述混炼料出口相连;
排蜡装置,所述排蜡装置具有成型料入口和除蜡料出口,所述成型料入口与所述成型料出口相连;
烧结装置,所述烧结装置具有除蜡料入口和硅藻土基多孔陶瓷出口,所述除蜡料入口与所述除蜡料出口相连。
10.根据权利要求9所述的系统,其特征在于,所述混炼装置为拌蜡机或混炼机;
任选的,所述热压铸成型装置为热压铸机;
任选的,所述排蜡装置为排蜡炉;
任选的,所述烧结装置为烧结炉或隧道窑炉。
CN201910039957.XA 2019-01-16 2019-01-16 硅藻土基多孔陶瓷及其制备方法和系统 Pending CN110041096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910039957.XA CN110041096A (zh) 2019-01-16 2019-01-16 硅藻土基多孔陶瓷及其制备方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910039957.XA CN110041096A (zh) 2019-01-16 2019-01-16 硅藻土基多孔陶瓷及其制备方法和系统

Publications (1)

Publication Number Publication Date
CN110041096A true CN110041096A (zh) 2019-07-23

Family

ID=67274160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910039957.XA Pending CN110041096A (zh) 2019-01-16 2019-01-16 硅藻土基多孔陶瓷及其制备方法和系统

Country Status (1)

Country Link
CN (1) CN110041096A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713379A (zh) * 2019-12-02 2020-01-21 湖南福美来电子陶瓷有限公司 一种多孔陶瓷雾化芯及其制备方法
CN111205104A (zh) * 2020-01-14 2020-05-29 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷及其制备方法
CN111592332A (zh) * 2020-06-05 2020-08-28 深圳职业技术学院 一种环保保温芯材及其制备方法
CN113563058A (zh) * 2021-07-16 2021-10-29 深圳市吉迩科技有限公司 雾化芯、多孔陶瓷及多孔陶瓷的制备方法
CN113603503A (zh) * 2021-07-21 2021-11-05 深圳市华诚达精密工业有限公司 微孔陶瓷雾化芯及其制备方法
CN113729294A (zh) * 2020-05-27 2021-12-03 东莞市维万特智能科技有限公司 吸液件及其制备方法、发热组件及其制备方法
CN114149248A (zh) * 2021-11-05 2022-03-08 东莞哈珀科技有限公司 多孔陶瓷材料及其制备方法、发热组件、雾化器和电子烟
CN114213020A (zh) * 2021-12-31 2022-03-22 深圳市吉迩科技有限公司 多孔陶瓷浆料、多孔陶瓷的制备方法及多孔陶瓷
CN115594521A (zh) * 2022-10-19 2023-01-13 深圳市卓尔悦电子科技有限公司(Cn) 多孔陶瓷及其制备方法和应用
CN115677376A (zh) * 2022-09-27 2023-02-03 深圳波顿香料有限公司 多孔陶瓷雾化结构部件及其制备方法
CN116265414A (zh) * 2021-12-17 2023-06-20 东莞市陶陶新材料科技有限公司 一种多孔陶瓷材料及其制备方法、及陶瓷雾化芯

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454871A (zh) * 2003-05-30 2003-11-12 武汉理工大学 有机泡沫微球作为成孔剂的热压铸多孔陶瓷的制备方法
CN104529506A (zh) * 2015-01-16 2015-04-22 临江北峰硅藻土有限公司 一种复合天然多孔矿物陶瓷微珠的制备方法
US20160316819A1 (en) * 2015-04-30 2016-11-03 Shenzhen Smoore Technology Limited Porous ceramic material, manufacturing method and use thereof
CN106380221A (zh) * 2016-08-31 2017-02-08 长兴盛华耐火材料有限公司 一种莫来石轻质耐火材料及其制备方法
CN106587962A (zh) * 2016-12-20 2017-04-26 大连工业大学 一种硅藻土基陶粒及其制备方法
CN108046833A (zh) * 2017-12-21 2018-05-18 深圳市卓力能电子有限公司 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
CN108585810A (zh) * 2018-05-16 2018-09-28 深圳市商德先进陶瓷股份有限公司 微孔陶瓷及其制备方法和雾化芯
CN108892533A (zh) * 2018-08-10 2018-11-27 张家港市沐和新材料技术开发有限公司 一种硅藻土基多孔陶瓷浆料的配方

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1454871A (zh) * 2003-05-30 2003-11-12 武汉理工大学 有机泡沫微球作为成孔剂的热压铸多孔陶瓷的制备方法
CN104529506A (zh) * 2015-01-16 2015-04-22 临江北峰硅藻土有限公司 一种复合天然多孔矿物陶瓷微珠的制备方法
US20160316819A1 (en) * 2015-04-30 2016-11-03 Shenzhen Smoore Technology Limited Porous ceramic material, manufacturing method and use thereof
CN106380221A (zh) * 2016-08-31 2017-02-08 长兴盛华耐火材料有限公司 一种莫来石轻质耐火材料及其制备方法
CN106587962A (zh) * 2016-12-20 2017-04-26 大连工业大学 一种硅藻土基陶粒及其制备方法
CN108046833A (zh) * 2017-12-21 2018-05-18 深圳市卓力能电子有限公司 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
CN108585810A (zh) * 2018-05-16 2018-09-28 深圳市商德先进陶瓷股份有限公司 微孔陶瓷及其制备方法和雾化芯
CN108892533A (zh) * 2018-08-10 2018-11-27 张家港市沐和新材料技术开发有限公司 一种硅藻土基多孔陶瓷浆料的配方

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713379A (zh) * 2019-12-02 2020-01-21 湖南福美来电子陶瓷有限公司 一种多孔陶瓷雾化芯及其制备方法
CN111205104A (zh) * 2020-01-14 2020-05-29 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷及其制备方法
CN113729294A (zh) * 2020-05-27 2021-12-03 东莞市维万特智能科技有限公司 吸液件及其制备方法、发热组件及其制备方法
CN113729294B (zh) * 2020-05-27 2022-12-02 东莞市维万特智能科技有限公司 吸液件及其制备方法、发热组件及其制备方法
CN111592332A (zh) * 2020-06-05 2020-08-28 深圳职业技术学院 一种环保保温芯材及其制备方法
WO2023284424A1 (zh) * 2021-07-16 2023-01-19 深圳市吉迩科技有限公司 雾化芯、多孔陶瓷及多孔陶瓷的制备方法
CN113563058A (zh) * 2021-07-16 2021-10-29 深圳市吉迩科技有限公司 雾化芯、多孔陶瓷及多孔陶瓷的制备方法
CN113603503A (zh) * 2021-07-21 2021-11-05 深圳市华诚达精密工业有限公司 微孔陶瓷雾化芯及其制备方法
WO2023000573A1 (zh) * 2021-07-21 2023-01-26 深圳市华诚达精密工业有限公司 微孔陶瓷雾化芯及其制备方法
CN114149248A (zh) * 2021-11-05 2022-03-08 东莞哈珀科技有限公司 多孔陶瓷材料及其制备方法、发热组件、雾化器和电子烟
CN116265414A (zh) * 2021-12-17 2023-06-20 东莞市陶陶新材料科技有限公司 一种多孔陶瓷材料及其制备方法、及陶瓷雾化芯
CN114213020A (zh) * 2021-12-31 2022-03-22 深圳市吉迩科技有限公司 多孔陶瓷浆料、多孔陶瓷的制备方法及多孔陶瓷
CN115677376A (zh) * 2022-09-27 2023-02-03 深圳波顿香料有限公司 多孔陶瓷雾化结构部件及其制备方法
CN115594521A (zh) * 2022-10-19 2023-01-13 深圳市卓尔悦电子科技有限公司(Cn) 多孔陶瓷及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110041096A (zh) 硅藻土基多孔陶瓷及其制备方法和系统
CN104326766B (zh) 一种具有球形孔结构的多孔氮化硅陶瓷材料的制备方法
CN105108154B (zh) 一种利用粉末注射成形技术制备异形复杂零件的方法
WO2023284425A1 (zh) 雾化芯、多孔陶瓷及多孔陶瓷的制备方法
CN112047753B (zh) 多孔陶瓷及其制备方法和应用
CN105198449B (zh) 一种光固化成型的高致密陶瓷的制备方法
CN105563616B (zh) 氧化锆陶瓷制品的成型方法
CN104325538B (zh) 一种改进的制备三维立体结构的直写成型方法
CN103406973B (zh) 一种醇水基料浆凝胶注模制备多孔或致密材料的成型工艺
CN105382255B (zh) 一种纳米钨粉注射成形方法
CN110128115A (zh) 一种闪烧制备氧化物共晶陶瓷的方法
CN209721959U (zh) 制备硅藻土基多孔陶瓷的系统
CN101014551A (zh) 多孔烧制陶瓷泡沫体
WO2019223196A1 (zh) 一种渗油多孔陶瓷、制备方法及其在电子烟的应用
CN109336639A (zh) 一种多孔陶瓷材料及其制备方法
CN101302110A (zh) 制备大尺寸陶瓷磨球的方法和成型用模具
CN104671826A (zh) 一种多孔氧化铝陶瓷、制备方法及其应用
CN114956861A (zh) 多孔陶瓷雾化芯及其制备方法和气溶胶产生装置
CN102266906B (zh) 一种易脱除陶瓷型芯的制备方法
CN104073673A (zh) 一种陶瓷增强金属基复合材料的制备方法
CN109678478A (zh) 一种质轻、高强度和低热导率的钙长石多孔陶瓷材料及其制备方法
CN104556979B (zh) 一种氧化铍陶瓷夹持杆及其制作方法
CN102060514A (zh) 一种高致密氧化镁陶瓷的制备方法
CN105016740B (zh) 一种陶瓷插芯的制备方法和一种脱脂烧结炉
CN101857443B (zh) 制备大尺寸陶瓷磨球的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination