WO2019223196A1 - 一种渗油多孔陶瓷、制备方法及其在电子烟的应用 - Google Patents

一种渗油多孔陶瓷、制备方法及其在电子烟的应用 Download PDF

Info

Publication number
WO2019223196A1
WO2019223196A1 PCT/CN2018/106410 CN2018106410W WO2019223196A1 WO 2019223196 A1 WO2019223196 A1 WO 2019223196A1 CN 2018106410 W CN2018106410 W CN 2018106410W WO 2019223196 A1 WO2019223196 A1 WO 2019223196A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
hours
porous ceramic
fine powder
oil
Prior art date
Application number
PCT/CN2018/106410
Other languages
English (en)
French (fr)
Inventor
朱巧妹
Original Assignee
苏州神鼎陶瓷科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州神鼎陶瓷科技有限公司 filed Critical 苏州神鼎陶瓷科技有限公司
Publication of WO2019223196A1 publication Critical patent/WO2019223196A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the invention belongs to the technical field of ceramic materials, and particularly relates to a porous ceramic material.
  • the invention also relates to a preparation method of the porous ceramic material and the application of the porous ceramic material in an electronic cigarette.
  • the heated non-combustible tobacco product is also commonly referred to as electronic cigarette.
  • the electronic cigarette mainly includes electric heating wire, oil supply structure and oil conducting structure.
  • the medium used in the oil-conducting structure has gone from ordinary high-mesh mesh oil-conducting media to dry-firing glass fiber ropes and ceramic materials with good physical properties.
  • Ceramics are a type of technical rock made of aluminosilicate minerals or certain oxides as the main raw materials, through a specific physical and chemical process at a high temperature and a certain temperature and atmosphere.
  • Al 2 O 3 and ZrO 2 are one of the most widely used raw materials in new ceramic products. They have a series of excellent properties.
  • Al 2 O 3 ceramics and ZrO 2 ceramics have extremely high mechanical strength, good thermal conductivity, and low dielectric loss. Excellent characteristics.
  • the ceramic material is made into round spherical particles through the flame melting process. Finally, a certain amount of fine powder is added as a sintering unit to sinter these round particles together to form a hard ceramic body.
  • the internal structure can form countless The small pores can greatly increase the rate of oil penetration and the amount of storage of smoke oil penetration. Therefore, the use of porous ceramics for the oil-conducting structure of electronic cigarettes can effectively improve the defects existing in traditional oil-conducting media.
  • the object of the present invention is to provide an oil-permeable porous ceramic that has a high penetration rate and good physical properties.
  • the invention also provides a method for preparing the porous ceramic and a method for designing and selecting raw materials.
  • the present invention relates to a smoke-permeable porous ceramic.
  • the porous ceramic is formed by sintering spherical ceramic particles and ceramic fine powder capable of co-firing the porous ceramic body, or by injection molding using inorganic ceramic powder and organic thermoplastic agent.
  • the above-mentioned porous ceramics of the present invention include, but are not limited to, fused spherical alumina, fused spherical mullite, or fused spherical quartz as a particle skeleton, and ceramic fine powder that can be co-fired with the spherical ceramic particles as a junction unit fine powder, including but not It is limited to using titanium dioxide, zirconium dioxide or silicon dioxide as the fine powder for the sintering unit, and the pore size of the pores can be adjusted by adjusting the particle size according to the requirements of the rate of oil penetration.
  • the oil-permeable porous ceramic of the present invention includes a main material and an auxiliary material, and the main material includes the following weight percentage components:
  • the particle skeleton is 78-80%; the sintering unit fine powder is 20-22%; the auxiliary materials include a molding assistant PVA liquid binder and an emulsifying wax release agent.
  • the above particle skeleton includes the following preferred components:
  • the fine powder of the sintering unit includes the following preferred components:
  • Titanium dioxide and zirconium dioxide with a molar ratio of 1: 1: 95% of the fine powder of the sintering unit;
  • Burning aid cerium dioxide 5% of the fine powder of the sintering unit
  • the auxiliary material includes the following preferred components:
  • Emulsified wax release agent 0.4-0.6% of the total material.
  • the above-mentioned main material includes 78-80% of a particle skeleton and 20-22% of a fine powder of a sintering unit, and the particle skeleton includes the following still further preferred components:
  • the auxiliary material includes the following further preferred components:
  • An oil-permeable porous ceramic according to the present invention includes a main material and an auxiliary material.
  • the main material includes 78-80% of a particle skeleton and 20-22% of a fine powder of a sintering unit.
  • the particle skeleton includes the following components:
  • Molten spherical mullite with a particle size of 0.53-0.075mm 10-15% of the particle framework
  • the fine powder of the sintering unit is fine silica powder with a particle diameter of 1-2 microns;
  • the auxiliary material includes the following components:
  • the above-mentioned main material includes 80% of a particle skeleton and 22% of sintered unit fine powder, and the particle skeleton includes the following preferred components:
  • Molten spherical mullite with a particle size of 0.53-0.075mm 10-15% of the particle framework
  • the auxiliary material includes the following preferred components:
  • An oil-permeable porous ceramic according to the present invention includes a main material and an auxiliary material.
  • the main material includes 78-80% of a particle skeleton and 20-22% of a fine powder of a sintering unit.
  • the particle skeleton includes the following components:
  • the fine powder of the sintering unit is fine silica powder with a particle diameter of 1-2 microns;
  • the auxiliary material includes the following components:
  • the above-mentioned main material includes 78-80% of a particle skeleton and 20-22% of a fine powder of a sintering unit, and the particle skeleton includes the following preferred components:
  • the auxiliary material includes the following preferred components:
  • An oil-permeable porous ceramic according to the present invention comprises 86-88 wt% of an inorganic ceramic powder main material and 12-14 wt% of an organic thermoplastic agent auxiliary material.
  • the inorganic ceramic powder main material includes 78-80% of a particle skeleton. And 20-22% fine powder of the sintering unit, the particle skeleton is fused spherical mullite particles with a particle diameter of 0.075-0.1mm;
  • the fine powder of the sintering unit includes the following components:
  • the organic thermoplastic agent auxiliary material includes the following components:
  • An oil-permeable porous ceramic according to the present invention comprises 86-88 wt% of an inorganic ceramic powder main material and 12-14 wt% of an organic thermoplastic agent auxiliary material.
  • the inorganic ceramic powder main material includes 78-80% of a particle skeleton. And 20-22% sintered unit fine powder, the particle skeleton is fused spherical quartz particles with a particle diameter of 0.075-0.1mm; the sintered unit fine powder is silica quartz fine powder:
  • the organic thermoplastic agent auxiliary material includes the following components:
  • the preparation method of the oil-permeable porous ceramics of the present invention includes a dry molding method and an injection molding method, corresponding to the above-mentioned five formulations of the present invention, wherein Formulas 1, 2 and 3 are prepared by a dry molding method, Formula 4 and Formula 5 By injection molding.
  • the main applications of the above-mentioned oil-permeable porous ceramics of the present invention include, but are not limited to, the preparation of electronic cigarette products, and can also be used in corresponding fields.
  • the formula of the porous ceramic material of the present invention is reasonable.
  • appropriate amounts of titanium dioxide, zirconium dioxide, and silica fine powder are used as The main sintering unit is fine powder, the spherical particles have a large specific surface area, and the gaps between the spherical shapes are large and uniform.
  • Titanium dioxide and other materials have good physical properties such as wettability and lipophilicity, and can be sintered or injection molded to produce a relatively smooth product.
  • the final prepared ceramic product forms large and uniform pores in the internal structure, which not only improves the oil-conducting function of the ceramic product, effectively improves the defects existing in the traditional oil-conducting medium, but also improves the strength of the ceramic finished product.
  • An oil-permeable porous ceramic material for an electronic cigarette includes a main material and an auxiliary material.
  • the main material includes 78-80% of a particle skeleton and 20-22% of a sintered unit fine powder.
  • the particle skeleton includes the following components:
  • the fine powder of the sintering unit includes the following components:
  • Titanium dioxide and zirconium dioxide with a molar ratio of 1: 1: 95% of the fine powder of the sintering unit;
  • Burning aid cerium dioxide 5% of the fine powder of the sintering unit
  • TiO 2 titanium dioxide
  • ZrO 2 zirconium dioxide
  • cerium dioxide sintering aid and sinter 1500-1550 ° C. to obtain zirconium titanate (ZrTiO 4 ) phase material.
  • the auxiliary material includes the following components:
  • the preparation process is as follows (dry forming):
  • Step 1) Using an electronic scale with an accuracy tolerance of 2 grams, weigh the molten spherical mullite particles required for the formula and place them in a container;
  • Step 2) Using an electronic scale with an accuracy tolerance of 2 grams, weigh the various titanium dioxide, zirconium dioxide and cerium dioxide fine powder required for the formula in a container, and then pour it into a ball mill with a polyurethane ball. After ball milling for 50 minutes, sifting with a 60 mesh screen vibrating sieve. After sieving, put it in a plastic container.
  • Step 3) Use an electronic scale with an accuracy of about 1 gram to weigh the PVA binder and release agent required for the formula, pour into a plastic container, and stir with a nylon rod for 3 minutes to fully mix and mix the two liquids;
  • Step 4) Pour the molten spherical mullite material from Step 1) into the mixer or high-speed mixer for pre-mixing for 3 minutes, add the PVA binder and release agent mixed in Step 3), and mix again. Make the surface of spherical mullite particles fully wetted by the binder;
  • Step 5) Pour the fine powder sieved in step 2) into the mixer or high-speed mixer for about 18 minutes, and then hook the special tools of the roller in the mixer to keep it suspended and keep it non-milled. Mix for 25 minutes under pressure;
  • Step 6) Take out the mixed material from step 5), put it in a plastic bag after passing through a 50 mesh sieve, squeeze the air out of the bag, tie the plastic bag, and press 25-50 kg on the plastic bag with the material Weight object and hold for 36 hours;
  • Step 7 Add the bundled material from step 6) into the mold cavity. After scraping and flattening, press with 1-1.2 ton / cm 2 pressure, and then use a vacuum silicone suction cup or manually remove the molded product and place it in a porous tray. No less than 36 hours for curing on the board;
  • Step 8 Put the molded product in step 7) into the furnace, first discharge the binder and mold release agent at low temperature, and then sinter.
  • the sintering temperature and change process are: 3-4 hours to 265 °C, heat preservation 1 hour; 3-4 hours to 300 ° C, heat preservation for 1 hour, 5-6 hours to 800 ° C heat preservation for 1 hour, and then rise to 1200 ° C for 1 hour at 100 ° C heating rate per hour, and then 60 hours per hour
  • the temperature rises from -70 ° C to 1500-1550 ° C for 2 hours, and then decreases to 1100 ° C at a rate of 3 hours. After that, it can be naturally cooled down after the furnace is released, and the porous ceramic product is obtained.
  • propylene glycol oil is dripped onto the porous ceramic product, and propylene glycol can quickly penetrate into the product, and the penetration speed is significantly faster than other ceramic products of similar materials.
  • An oil-permeable porous ceramic material for an electronic cigarette includes a main material and an auxiliary material.
  • the main material includes 78-80% of a particle skeleton and 20-22% of a fine powder of a sintering unit.
  • the particle skeleton includes the following components:
  • Molten spherical mullite with a particle size of 0.53-0.075mm 10-15% of the particle framework
  • the fine powder of the sintering unit is a fine powder of silica quartz with a particle diameter of 1.5 microns;
  • the auxiliary material includes the following components:
  • the preparation process is as follows (dry forming):
  • Step 1) Weigh the molten mullite granules of various specifications required in the formula into a container;
  • Step 2 Weigh all the necessary formulas with a 80 mesh screen vibrating sieve. After the sieving is completed, put them in a plastic container.
  • Step 3 Weigh the PVA binder and release agent required for the formula, pour into a plastic container, and stir for 3 minutes;
  • Step 4 pour the molten spherical mullite material from step 1) into the mixer or high-speed mixer to pre-mix for 3 minutes in advance, add the PVA binder and mold release agent mixed in step 3), and mix again The surface of the spherical fused mullite particles is fully wetted by the binder;
  • Step 5 pour the fine powder after ball milling and sieving in step 2) into the mixer or high-speed mixer for 15-20 minutes, and then hook the special tools of the roller in the mixer to keep it suspended. Mix in non-rolled state for 25-30 minutes;
  • Step 6 Take out the mixed material from step 5), put it in a plastic bag after passing through a 50 mesh sieve, squeeze out the air in the bag, tie the plastic bag, and press the 50 kg weight on the tied plastic bag. Object and hold for 36 hours;
  • Step 7 Add the bundled material from step 6) into the mold cavity. After scraping and flattening, press with 1-1.2 ton / cm 2 pressure, and then use a vacuum silicone suction cup or manually remove the molded product and place it in a porous tray. No less than 36 hours for curing on the board;
  • Step 8 Put the molded product in step 7) into the furnace, first discharge the binder and mold release agent at low temperature, and then sinter.
  • the sintering temperature and change process are: 3-4 hours to 265 °C, heat preservation 1 hour; 3-4 hours to 300 ° C, heat preservation for 1 hour, and 5-6 hours to 800 ° C heat preservation for 1 hour; and then rise to 1200 ° C for 1 hour at 80-100 ° C heating rate per hour, and then every hour
  • the temperature rises to 60-70 ° C and rises to 1300-1350 ° C for 2 hours, and then decreases to 1100 ° C at a rate of 3 hours. After that, the temperature will be stopped and the porous ceramic product will be obtained after being baked.
  • An oil-permeable porous ceramic material for an electronic cigarette includes a main material and an auxiliary material.
  • the main material includes 78-80% of a particle skeleton and 20-22% of a fine powder of a sintering unit.
  • the particle skeleton includes the following components:
  • the fine powder of the sintering unit is a fine powder of silica quartz with a particle diameter of 1.5 microns;
  • the auxiliary materials include the following superior components:
  • the preparation process is as follows (dry forming):
  • Step 1) Weigh the fused spherical quartz particles of various specifications required by the formula in a container;
  • Step 2 Weigh the silica and quartz fine powder required for the formula, and then sieve it with a 80 mesh screen vibrating sieve. After sieving, put it in a plastic container.
  • Step 3 Weigh the PVA binder and release agent required for the formula, pour into a plastic container, and stir for 2-4 minutes;
  • Step 4 pour the molten spherical quartz granules from step 1) into the mixer or high-speed mixer for pre-mixing for 3 minutes, add the PVA binder and release agent mixed in step 3), and mix again Make the surface of the spherical fused silica particles fully wetted by the binder;
  • Step 5 pour the silica and quartz fine powder after ball milling and sieving in step 2) into the mixer or high-speed mixer for mixing for about 15-20 minutes, and then hook the special tools for the rollers in the mixer. Keep suspended and non-rolled and mix for 25-30 minutes;
  • Step 6 Take out the mixed material from step 5), put it in a plastic bag after passing through a 50 mesh sieve, squeeze out the air in the bag, tie the plastic bag, and press the 50 kg weight on the tied plastic bag. Object and hold for 36 hours;
  • Step 7 Add the bundled material from step 6) into the mold cavity. After scraping and flattening, press with 1-1.2 ton / cm 2 pressure, and then use a vacuum silicone suction cup or manually remove the molded product and place it in a porous tray. No less than 36 hours for curing on the board;
  • Step 8 Put the molded product in step 7) into the furnace, first discharge the binder and mold release agent at low temperature, and then sinter.
  • the sintering temperature and change process are: 3-4 hours to 265 °C, heat preservation 1 hour; 3-4 hours to 300 ° C, heat preservation for 1 hour, and 5-6 hours to 800 ° C heat preservation for 1 hour; and then rise to 1200 ° C for 1 hour at 80-100 ° C heating rate per hour, and then every hour
  • the temperature rises to 60-70 ° C and rises to 1300-1350 ° C for 2 hours, and then decreases to 1100 ° C at a rate of 3 hours. After that, the temperature will be stopped and the porous ceramic product will be obtained after being baked.
  • An oil-permeable porous ceramic material for an electronic cigarette comprising 87 wt% of an inorganic ceramic powder main material and 13 wt% of an organic thermoplastic agent auxiliary material, the inorganic ceramic powder main material includes 77% of a particle skeleton and 23% of sintering
  • the unit fine powder is characterized by:
  • the particle skeleton is fused spherical mullite with a particle diameter of 0.075-0.1mm;
  • the fine powder of the sintering unit includes the following components:
  • the organic thermoplastic agent auxiliary material includes the following components:
  • the preparation process is as follows (injection molding):
  • Step 1) weigh the raw materials
  • Step 2) mixing and granulating
  • the injection molding machine Turn on the injection molding machine to install the mold and control the mold temperature at 30-40 ° C through the mold temperature refrigerator; preheat the injection machine and confirm that the injection temperature of the injection molding machine is 175-180 ° C; according to the projection area of 0.5-0.8 tons per square centimeter
  • the injection force sets the injection tonnage; after injection into the mold, the mold is opened to take out the molded product to obtain the required molding blank;
  • the degreased porous ceramic body is heated to 300 ° C in 1 hour, kept at 300 ° C for 0.5 hours, heated to 600 ° C in 1 hour, kept at 600 ° C for 0.5 hours, heated to 800 ° C in 1 hour, and kept at 800 ° C in 0.5 Hours, 4 hours heating up to 1200 ° C, 1200 ° C holding for 1 hour, 5 hours heating up to 1500-1550 ° C, 1500-1550 ° C holding for 2 hours, 3 hours cooling down to 1100 ° C, firing equipment stopped, waiting for cooling to come out below 200 ° C
  • the porous ceramic product was obtained.
  • An oil-permeable porous ceramic material for an electronic cigarette comprising 87 wt% of an inorganic ceramic powder main material and 13 wt% of an organic thermoplastic agent auxiliary material, the inorganic ceramic powder main material includes 77% of a particle skeleton and 23% of sintering
  • the unit fine powder is characterized by:
  • the particle skeleton is fused spherical mullite with a particle diameter of 0.075-0.1mm;
  • the fine powder of the sintering unit is silica fine powder:
  • the organic thermoplastic agent auxiliary material includes the following components:
  • the preparation process is as follows (injection molding): same as in Example 4.

Abstract

一种渗油多孔陶瓷材料、制备方法以及该陶瓷在电子烟的应用,该陶瓷采用球形陶瓷颗粒以及与能与其共烧成多孔陶瓷体的微粉配合烧结而成或釆用无机陶瓷粉体与有机热塑剂注塑成型而成,具体通过选用熔融球形氧化铝、熔融球形莫来石或熔融球形石英作为颗粒骨架,分别配以适量的以二氧化钛、二氧化锆和二氧化硅微粉为主的烧结单元微粉,制备的陶瓷产品在内部结构中形成空隙较大且均匀的毛细孔,不仅提高了该陶瓷制品的导油功能,也提高了该陶瓷制品的强度。该多孔陶瓷的制备方法通过控烧结和注塑温度以及时间等关键工艺节点参数,制备的多孔陶瓷产品的孔隙率大且均匀,可满足电子烟的装配及使用要求。

Description

一种渗油多孔陶瓷、制备方法及其在电子烟的应用 技术领域
本发明属于陶瓷材料技术领域,具体涉及一种多孔陶瓷材料,本发明还涉及该多孔陶瓷材料的制备方法以及该多孔陶瓷材料在电子烟中的应用。
背景技术
为了降低吸烟对身体健康的危害程度,人们研制出了一种能够通过加热不点燃烟草的方式进行抽吸的烟草制品,该加热不燃烧型烟草制品通常又被称为电子烟。
电子烟主要包括电热丝、供油结构和导油结构。目前,导油结构所使用的介质经历了从普通的高目数网眼型导油介质已发展到抗干烧的玻纤绳以及物理性能良好的陶瓷材料。传统导油介质如金属导油网、玻纤绳和有机棉等大多存在的金属异味、导油速度不佳以及烟油异变等问题。
而陶瓷是用铝硅酸盐矿物或某些氧化物等为主要原料,通过特定的物理化学工艺在高温下以一定的温度和气氛制成的具有一定型式的工艺岩石。Al 2O 3和ZrO 2是新型陶瓷制品中使用最为广泛的原料之一,具有一系列优良的性能,Al 2O 3陶瓷、ZrO 2陶瓷具有机械强度极高、导热性能良好、介质损耗低等优良特性。
将陶瓷材料将经过火焰熔融法工艺制成圆形的球形粒子,最后再加入一定量的微粉作为烧结单元将这些圆形的颗粒烧结到一起形成一个坚硬的陶瓷体,其内部结构可形成无数的细小的气孔,因而可大大提高渗油速度和烟油渗入的储存数量。因此,将多孔陶瓷用于电子烟的导油结构,可有效改善传统导油介质存在的缺陷。
发明内容
本发明的目的是提供一种渗透速度快、物理性能良好的渗油多孔陶瓷,本发明还提供该多孔陶瓷的制备方法和原料设计选择方法。
本发明采用以下技术方案:
本发明一种渗烟多孔陶瓷,所述多孔陶瓷采用球形陶瓷颗粒以及与其能够共烧成多孔陶瓷体的陶瓷微粉配合烧结而成或釆用无机陶瓷粉体与有机热塑剂 注塑成型而成。
本发明上述的多孔陶瓷包括但不限于熔融球形氧化铝、熔融球形莫来石或熔融球形石英作为颗粒骨架,以及包括可以与所述球形陶瓷颗粒共烧的陶瓷微粉作为结单元微粉,包括但不限于以二氧化钛、二氧化锆或二氧化硅作为烧结单元微粉,并且可以根据渗油速度要求通过调节颗粒大小来调节气孔的孔径大小。
下面对本发明多孔陶瓷材料的配方及用量进行详叙述,包括但不限于如下五个配方,分别是:
1、配方之一
本发明的渗油多孔陶瓷,包括主料和辅料,所述主料包括以下重量百分比的组分:
颗粒骨架78-80%;烧结单元微粉20-22%;所述辅料包括成型助剂PVA液态粘结剂和乳化蜡脱模剂。
进一步地,上述颗粒骨架中,包括以下优选的组分:
粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的球熔融形莫来石:占颗粒骨架的60-65%;
粒径为0.053-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
所述烧结单元微粉中,包括以下优选的组分:
摩尔比为1:1的二氧化钛和二氧化锆:占烧结单元微粉的95%;
助烧剂二氧化铈:占烧结单元微粉的5%;
所述辅料中,包括以下优选的组分:
浓度为11%的有机PVA液态粘结剂:占总料的4-5%;
乳化蜡脱模剂:占总料的0.4-0.6%。
更进一步地,上述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架中,包括以下更进一步优选的组分:
粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
粒径为0.053-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
所述辅料中,包括以下更进一步优选的组分:
浓度为11%的有机PVA液态粘结剂:占总料的4.5%;乳化蜡脱模剂:占总料的0.45%。
2、配方之二
本发明的一种渗油多孔陶瓷,包括主料和辅料,所述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
粒径为0.53-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
所述烧结单元微粉为1-2微米粒径的二氧化硅石英微粉;
所述辅料中,包括以下组分:
浓度为11%的有机PVA液态粘结剂:占总料的4-5%;乳化蜡脱模剂:占总料的0.5%。
进一步地,上述主料包括80%的颗粒骨架以及22%的烧结单元微粉,所述颗粒骨架包括以下优选的组分:
粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
粒径为0.53-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
所述辅料中,包括以下优选的组分:
浓度为11%的有机PVA液态粘结剂:占总料的4.5%;乳化蜡脱模剂:占总料的0.5%。
3、配方之三
本发明的一种渗油多孔陶瓷,包括主料和辅料,,所述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
粒径为0.1-0.15mm的熔融球形石英:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形石英:占颗粒骨架的60-65%;
粒径为0.053-0.075mm的熔融球形石英:占颗粒骨架的10-15%;
所述烧结单元微粉为1-2微米粒径的二氧化硅石英微粉;
所述辅料中,包括以下组分:
浓度为11%的有机PVA液态粘结剂:占总料的4-5%;乳化蜡脱模剂:占总料的0.4-0.6%。
进一步地,上述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下优选的组分:
粒径为0.1-0.15mm的熔融球形石英:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形石英:占颗粒骨架的60-65%;
粒径为0.053-0.075mm的熔融球形石英:占颗粒骨架的10-15%;
所述辅料中,包括以下优选的组分:
浓度为11%的有机PVA液态粘结剂:占总料的4.5%;乳化蜡脱模剂:占总料的0.5%。
4、配方之四
本发明的一种渗油多孔陶瓷,包括86-88wt%的无机陶瓷粉体主料和12-14wt%的有机热塑剂辅料,所述无机陶瓷粉体主料包括78-80%的颗粒骨架和20-22%的烧结单元微粉,所述颗粒骨架为粒径为0.075-0.1mm的熔融球形莫来石颗粒;
所述烧结单元微粉中,包括以下组分:
摩尔比为1:1的二氧化钛和二氧化锆:占烧结单元微粉的95%;助烧剂二氧化铈:占烧结单元微粉的5%;
所述有机热塑剂辅料中,包括以下组分:
58-63℃石蜡:占总辅料的55-60%;硬脂酸:占总辅料的9-11%;聚乙烯:占总辅料的20-25%;聚丙烯:占总辅料的11-15%。
5、配方之五
本发明的一种渗油多孔陶瓷,包括86-88wt%的无机陶瓷粉体主料和12-14wt%的有机热塑剂辅料,所述无机陶瓷粉体主料包括78-80%的颗粒骨架和20-22%的烧结单元微粉,所述颗粒骨架为粒径为0.075-0.1mm的熔融球形石英颗粒;所述烧结单元微粉为二氧化硅石英微粉:
所述有机热塑剂辅料中,包括以下组分:
58-63℃石蜡:占总辅料的55-60%;硬脂酸:占总辅料的9-11%;聚乙烯: 占总辅料的20-25%;聚丙烯:占总辅料的11-15%。
本发明渗油多孔陶瓷的制备方法,包括干法成型法和注塑成型法,对应本发明上述的五个配方,其中,配方一、二和三釆用干法成型法,配方四和配方五釆用注塑成型法。
上述本发明渗油多孔陶瓷主要应用包括但不限于制备电子烟产品,也可用于相应领域。
与现有技术相比,本发明的有益效果为:
本发明多孔陶瓷材料的配方合理,通过选用多种规格的熔融球形氧化铝、熔融球形莫来石或熔融球形石英作为颗粒骨架,分别配以适量的以二氧化钛、二氧化锆和二氧化硅微粉为主的烧结单元微粉,球形颗粒比表面积大,球形形状之间产生的空隙较大且均匀;二氧化钛等材料具有良好的润湿性和亲油性等物理性能,可以烧结或注塑料加工出比较平整的产品,最终制备的陶瓷产品在内部结构中形成空隙大且均匀的毛细孔,不仅提高了该陶瓷制品的导油功能、有效改善传统导油介质存在的缺陷,也提高了该陶瓷成品的强度。
本发明在烧结制备时,针对熔融球形氧化铝、熔融球形莫来石、熔融球形石英主料成分,通过控制球磨时间、烧结温度及烧结时间以及注塑温度和压力等工艺关键节点参数,制备的多孔陶瓷产品的孔隙率大且均匀,可满足电子烟的装配及使用要求。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
如无具体说明,本发明的各种原料均可以通过市售得到;或根据本领域的常规方法制备得到。除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练入员所熟悉的意义相同。此外任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。除非另外说明,本文中所使用的所有专业与科学用语与本领域技术熟练人员所熟悉的意义相同。
实施例1
一种电子烟用渗油多孔陶瓷材料,包括主料和辅料,主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架中,包括以下组分:
粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
粒径为0.053-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
所述烧结单元微粉中,包括以下组分:
摩尔比为1:1的二氧化钛和二氧化锆:占烧结单元微粉的95%;
助烧剂二氧化铈:占烧结单元微粉的5%;
取二氧化钛(TiO 2)微粉和二氧化锆(ZrO 2)微粉,加入二氧化铈助烧剂经过1500-1550℃高温烧制而得到钛酸锆(ZrTiO 4)相材料。
所述辅料中,包括以下组分:
浓度为11%的有机PVA液态粘结剂:占总料的4.5%;乳化蜡脱模剂:占总料的0.5%。
制备过程如下(干法成型):
步骤1):采用精度公差在2克的电子秤,称好配方所需的熔融球形莫来石颗粒料放于一容器内;
步骤2):采用精度公差在2克的电子秤,称好配方所需的各种二氧化钛、二氧化锆以及二氧化铈微粉放于一容器内,再一起倒入放有聚氨酯球的球磨机里,球磨50分钟后,采用60目筛网的振动筛进行过筛,过筛完成后放入一塑料容器桶容器内;
步骤3):采用精度1克左右的电子秤称好配方所需的PVA粘结剂和脱模剂倒在一个塑料容器内,用尼龙棒进行搅拌3分钟,将两种液体充分互溶混合;
步骤4):将步骤1)的熔融球形莫来石料倒入混碾机或高速混料机内预先进行预混3分钟,加入步骤3)混合好的PVA粘结剂和脱模剂,再次混合使球形莫来石颗粒表面被粘结剂充分润湿;
步骤5):将步骤2)球磨过筛后的微粉倒入混碾机或高速混料机内进行混碾约18分钟,再将混碾机内碾轮专用工具勾起保持悬空状态保持非碾压状态进行混合25分钟;
步骤6):将步骤5)混好的料取出,过50目筛后放入塑料袋内,将袋内空 气挤出,扎好塑料袋,在扎好料的塑料袋上压25-50公斤重量的物体且保持36小时;
步骤7)、将步骤6)捆扎好的混合料加入到模具型腔内,刮平后采用1-1.2吨/cm 2压力压制成型,再采用真空硅胶吸盘或人工取出成型品,放在多孔托板上进行养护不小于36小时;
步骤8)、将步骤7)的成型品装到炉内,先低温排胶排出粘结剂和脱模剂,再进行烧结,烧结温度及变化过程为:3-4小时升到265℃,保温1小时;再3-4小时到300℃,保温1小时,再5-6小时升到800℃保温1小时;再以每小时100℃升温速率升到1200℃保温1小时,再每小时到60-70℃升速度升到1500-1550℃保温2小时,后再以3小时速率降到1100℃即可停止后进行自然降温,出炉即得到多孔陶瓷产品。
取本实施例制备的多孔陶瓷产品,釆用丙二醇油滴到该多孔陶瓷产品上,丙二醇可以迅速渗透到产品里面,渗透速度明显快于其它同类材料的陶瓷产品。
实施例2
一种电子烟用渗油多孔陶瓷材料,包括主料和辅料,主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
粒径为0.53-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
所述烧结单元微粉为1.5微米粒径的二氧化硅石英微粉;
所述辅料中,包括以下组分:
浓度为11%的有机PVA液态粘结剂:占总料的4.5%;乳化蜡脱模剂:占总料的0.5%。
制备过程如下(干法成型):
步骤1)、称好配方所需的各种规格的熔融球形莫来石颗粒料放于一容器内;
步骤2)、称好配方所需的各种采用80目筛网的振动筛进行过筛,过筛完成后放入一塑料容器桶容器内;
步骤3)、称好配方所需的PVA粘结剂和脱模剂,倒于一个塑料容器内,搅 拌3分钟;
步骤4)、将步骤1)的熔融球形莫来石料倒入混碾机或高速混料机内预先进行预混3分钟,加入步骤3)混合好的PVA粘结剂和脱模剂,再次混合使球形电熔莫来石颗粒表面被粘结剂充分润湿;
步骤5)、将步骤2)球磨过筛后的微粉倒入混碾机或高速混料机内进行混碾约15-20分钟,再将混碾机内碾轮专用工具勾起保持悬空状态保持非碾压状态进行混合25-30分钟;
步骤6)、将步骤5)混好的料取出,过50目筛后放入塑料袋内,将袋内空气挤出,扎好塑料袋,在扎好料的塑料袋上压50公斤重量的物体且保持36小时;
步骤7)、将步骤6)捆扎好的混合料加入到模具型腔内,刮平后采用1-1.2吨/cm 2压力压制成型,再采用真空硅胶吸盘或人工取出成型品,放在多孔托板上进行养护不小于36小时;
步骤8)、将步骤7)的成型品装到炉内,先低温排胶排出粘结剂和脱模剂,再进行烧结,烧结温度及变化过程为:3-4小时升到265℃,保温1小时;再3-4小时到300℃,保温1小时,再5-6小时升到800℃保温1小时;再以每小时80-100℃升温速率升到1200℃保温1小时,再每小时到60-70℃升速度升到1300-1350℃保温2小时,后再以3小时速率降到1100℃即可停止后进行自然降温,出炉即得到多孔陶瓷产品。
实施例3
一种电子烟用渗油多孔陶瓷材料,包括主料和辅料,主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
粒径为0.1-0.15mm的熔融球形石英:占颗粒骨架的20-25%;
粒径为0.075-0.1mm的熔融球形石英:占颗粒骨架的60-65%;
粒径为0.053-0.075mm的熔融球形石英:占颗粒骨架的10-15%;
所述烧结单元微粉为1.5微米粒径的二氧化硅石英微粉;
所述辅料中,包括以下优组分:
浓度为11%的有机PVA液态粘结剂:占总料的4.5%;乳化蜡脱模剂:占总料的0.5%。
制备过程如下(干法成型):
步骤1)、称好配方所需的各种规格的熔融球形石英颗粒料放于一容器内;
步骤2)、称好配方所需的二氧化硅石英微粉,釆用80目筛网的振动筛进行过筛,过筛完成后放入一塑料容器桶容器内;
步骤3)、称好配方所需的PVA粘结剂和脱模剂,倒于一个塑料容器内,搅拌2-4分钟;
步骤4)、将步骤1)的熔融球形石英颗粒料倒入混碾机或高速混料机内预先进行预混3分钟,加入步骤3)混合好的PVA粘结剂和脱模剂,再次混合使球形熔融石英颗粒表面被粘结剂充分润湿;
步骤5)、将步骤2)球磨过筛后的二氧化硅石英微粉倒入混碾机或高速混料机内进行混碾约15-20分钟,再将混碾机内碾轮专用工具勾起保持悬空状态保持非碾压状态进行混合25-30分钟;
步骤6)、将步骤5)混好的料取出,过50目筛后放入塑料袋内,将袋内空气挤出,扎好塑料袋,在扎好料的塑料袋上压50公斤重量的物体且保持36小时;
步骤7)、将步骤6)捆扎好的混合料加入到模具型腔内,刮平后采用1-1.2吨/cm 2压力压制成型,再采用真空硅胶吸盘或人工取出成型品,放在多孔托板上进行养护不小于36小时;
步骤8)、将步骤7)的成型品装到炉内,先低温排胶排出粘结剂和脱模剂,再进行烧结,烧结温度及变化过程为:3-4小时升到265℃,保温1小时;再3-4小时到300℃,保温1小时,再5-6小时升到800℃保温1小时;再以每小时80-100℃升温速率升到1200℃保温1小时,再每小时到60-70℃升速度升到1300-1350℃保温2小时,后再以3小时速率降到1100℃即可停止后进行自然降温,出炉即得到多孔陶瓷产品。
实施例4
一种电子烟用渗油多孔陶瓷材料,包括87wt%的无机陶瓷粉体主料和13wt%的有机热塑剂辅料,所述无机陶瓷粉体主料包括77%的颗粒骨架和23%的烧结单元微粉,其特征在于:
所述颗粒骨架为粒径为0.075-0.1mm的熔融球形莫来石;
所述烧结单元微粉中,包括以下组分:
摩尔比为1:1的二氧化钛和二氧化锆:占烧结单元微粉的95%;助烧剂二氧化铈:占烧结单元微粉的5%;钛酸锆(ZrTiO 4)相材料的制备同于实施例1;
所述有机热塑剂辅料中,包括以下组分:
58-63℃石蜡:占总辅料的56%;硬脂酸:占总辅料的10%;聚乙烯:占总辅料的22%;聚丙烯:占总辅料的12%。
制备过程如下(注塑成型):
步骤1)、原料称取
称好所需的颗粒骨料、烧结单元陶瓷微粉料以及有机辅料,分别放在塑料容器中;
步骤2)、混炼造粒
打开蜜炼机器,将密炼机温度调到130-135℃;等待密炼机升温到130-135℃后先将陶瓷颗粒料全部导入密炼机密炼桶内进行慢速搅拌,此时因为冷态的球形陶瓷材料会将密炼机桶内温度降下来等待温度回升到130-135℃后,加入石蜡、硬脂酸、聚乙烯和聚丙烯;开始搅拌混炼;知道有机辅料融化后加热陶瓷微粉加完后将密炼机升温到165℃密炼,并将密炼机密炼桶压盖盖上以免温度流失和有机辅料助剂的挥发出来,165℃混炼搅拌是将所有有机辅料完全融化并达到足够的润湿性和流动性;165℃条件保持混炼20-30分钟后,打开压盖关掉密炼机,并用不锈钢铲刀铲除边缘的密炼料赶往密炼桶中间,然后将密炼机温度降到130℃进行剪切密炼20-25分钟,确认密炼料处于非流体状态后开始将密炼料送入挤出造粒机内进行挤出造粒,获得:直径3-4mm,长度5-6mm的圆柱形造粒料。
步骤3)、注塑成型
开启注塑机安装模具并将模具温度通过模温机制冷机控制在30-40℃;预热注射机并确认注塑机注射温度在175-180℃;按投影面积的每平方厘米0.5-0.8吨的射出力设定注射吨位;注射到模具成型后,打开模具取出成型品,得到需要的成型坯体;
步骤4)、脱脂
将坯体放入醇类的溶剂的脱蜡专用脱蜡设备中,并保持恒温50-60小时;脱蜡完成后放入热脱脂炉内脱脂排出聚乙烯、聚丙烯、硬脂酸有机物;
将坯体放入醇类的溶剂的脱蜡专用脱蜡设备中根据石蜡牌号温度设定脱蜡温度,并保持恒温50-60小时;脱蜡完成后放入热脱脂炉内脱脂排出聚乙烯聚丙烯硬脂酸有机物,具体过程如下:
1小时升温到180℃,180度保温1小时,3小时升温到210℃,210℃保温1小时,3小时升温到265℃,265℃保温1小时,3小时升温到300℃,300℃保温1小时,4.5小时升温到600℃,600度保温1小时(600℃此时有机物已经完全排除干净但还没有足够的搬运强度很容易在搬运过程出现破碎,需要继续升温到足够的搬运强度)2小时升温到800℃,800℃保温2小时后脱脂炉停止;待温度冷却到200℃以下能取出产品时得到具有就够搬运强度的多孔陶瓷坯体。
步骤5)、烧成
取步骤4)脱脂后的多孔陶瓷坯体,于1小时升温到300℃,300℃保温0.5小时,1小时升温到600℃,600℃保温0.5小时,1小时升温到800℃,800℃保温0.5小时,4小时升温到1200℃,1200℃保温1小时,5小时升温到1500-1550℃,1500-1550℃保温2小时,3小时降温到1100℃烧成设备停止,待降温到200℃以下出炉即得到多孔陶瓷产品。
实施例5
一种电子烟用渗油多孔陶瓷材料,包括87wt%的无机陶瓷粉体主料和13wt%的有机热塑剂辅料,所述无机陶瓷粉体主料包括77%的颗粒骨架和23%的烧结单元微粉,其特征在于:
所述颗粒骨架为粒径为0.075-0.1mm的熔融球形莫来石;
所述烧结单元微粉为二氧化硅石英微粉:
所述有机热塑剂辅料中,包括以下组分:
58-63℃石蜡:占总辅料的56%;硬脂酸:占总辅料的10%;聚乙烯:占总辅料的22%;聚丙烯:占总辅料的12%。
制备过程如下(注塑成型):同于实施例4。
本领域技术人员在本发明的原则指引下,可以进行对于本发明的相关改进和变化,因此,可以理解的是,在不脱离本发明基本原则的情况下,可以对除了本说明书详细叙述的实施方案以外的其他方案实施本发明的改进和变化。

Claims (18)

  1. 一种渗烟多孔陶瓷,其特征在于:所述多孔陶瓷采用球形陶瓷颗粒以及能够与其共烧成多孔陶瓷体的陶瓷微粉配合烧结而成或釆用无机陶瓷粉体与有机热塑剂注塑成型而成。
  2. 如权利要求1所述的一种渗油多孔陶瓷,其特征在于:所述多孔陶瓷主要以熔融球形氧化铝、熔融球形莫来石或熔融球形石英作为颗粒骨架,以及主要分别以二氧化钛、二氧化锆或二氧化硅作为烧结单元微粉,并且可以根据渗油速度要求通过调节颗粒大小来调节气孔的孔径大小。
  3. 如权利要求2所述的一种渗油多孔陶瓷,包括主料和辅料,其特征在于,所述主料包括以下重量百分比的组分:
    颗粒骨架78-80%;
    烧结单元微粉20-22%;
    所述辅料包括成型助剂PVA液态粘结剂和乳化蜡脱模剂。
  4. 如权利要求3所述的一种渗油多孔陶瓷,其特征在于,所述颗粒骨架中,包括以下组分:
    粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
    粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
    粒径为0.053-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
    所述烧结单元微粉中,包括以下组分:
    摩尔比为1:1的二氧化钛和二氧化锆:占烧结单元微粉的95%;
    助烧剂二氧化铈:占烧结单元微粉的5%;
    所述辅料中,包括以下组分:
    浓度为11%的有机PVA液态粘结剂:占总料的4-5%;
    乳化蜡脱模剂:占总料的0.4-0.6%。
  5. 如权利要求4所述的一种渗油多孔陶瓷,其特征在于,所述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架中,包括以下组分:
    粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
    粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
    粒径为0.053-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
    所述辅料中,包括以下组分:
    浓度为11%的有机PVA液态粘结剂:占总料的4.5%;
    乳化蜡脱模剂:占总料的0.5%。
  6. 如权利要求2所述的一种渗油多孔陶瓷,包括主料和辅料,其特征在于,所述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
    粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
    粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
    粒径为0.53-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
    所述烧结单元微粉为1-2微米粒径的二氧化硅石英微粉;
    所述辅料中,包括以下组分:
    浓度为11%的有机PVA液态粘结剂:占总料的4-5%;
    乳化蜡脱模剂:占总料的0.4-0.6%。
  7. 如权利要求6所述的一种渗油多孔陶瓷,包括主料和辅料,其特征在于,所述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
    粒径为0.1-0.15mm的熔融球形莫来石:占颗粒骨架的20-25%;
    粒径为0.075-0.1mm的熔融球形莫来石:占颗粒骨架的60-65%;
    粒径为0.53-0.075mm的熔融球形莫来石:占颗粒骨架的10-15%;
    所述辅料中,包括以下组分:
    浓度为11%的有机PVA液态粘结剂:占总料的4.5%;
    乳化蜡脱模剂:占总料的0.5%。
  8. 如权利要求2所述的一种渗油多孔陶瓷,包括主料和辅料,其特征在于,所述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
    粒径为0.1-0.15mm的熔融球形石英:占颗粒骨架的20-25%;
    粒径为0.075-0.1mm的熔融球形石英:占颗粒骨架的60-65%;
    粒径为0.053-0.075mm的熔融球形石英:占颗粒骨架的10-15%;
    所述烧结单元微粉为1-2微米粒径的二氧化硅石英微粉;
    所述辅料中,包括以下组分:
    浓度为11%的有机PVA液态粘结剂:占总料的4-5%;
    乳化蜡脱模剂:占总料的0.4-0.6%。
  9. 如权利要求8所述的一种渗油多孔陶瓷,包括主料和辅料,其特征在于,所述主料包括78-80%的颗粒骨架以及20-22%的烧结单元微粉,所述颗粒骨架包括以下组分:
    粒径为0.1-0.15mm的熔融球形石英:占颗粒骨架的20-25%;
    粒径为0.075-0.1mm的熔融球形石英:占颗粒骨架的60-65%;
    粒径为0.053-0.075mm的熔融球形石英:占颗粒骨架的10-15%;
    所述辅料中,包括以下组分:
    浓度为11%的有机PVA液态粘结剂:占总料的4.5%;
    乳化蜡脱模剂:占总料的0.5%。
  10. 如权利要求2所述的一种渗油多孔陶瓷,包括86-88wt%的无机陶瓷粉体主料和12-14wt%的有机热塑剂辅料,所述无机陶瓷粉体主料包括78-80%的颗粒骨架和20-24%的烧结单元微粉,其特征在于:
    所述颗粒骨架为粒径为0.075-0.1mm的熔融球形莫来石颗粒;
    所述烧结单元微粉中,包括以下组分:
    摩尔比为1:1的二氧化钛和二氧化锆:占烧结单元微粉的95%;
    助烧剂二氧化铈:占烧结单元微粉的5%;
    所述有机热塑剂辅料中,包括以下组分:
    58-63℃石蜡:占总辅料的55-60%;
    硬脂酸:占总辅料的9-11%;
    聚乙烯:占总辅料的20-25%;
    聚丙烯:占总辅料的11-15%。
  11. 如权利要求2所述的一种渗油多孔陶瓷,包括86-88wt%的无机陶瓷粉体主料和12-14wt%的有机热塑剂辅料,所述无机陶瓷粉体主料包括78-80%的颗粒骨架和20-22%的烧结单元微粉,其特征在于:
    所述颗粒骨架为粒径为0.075-0.1mm的熔融球形石英颗粒;
    所述烧结单元微粉为二氧化硅石英微粉:
    所述有机热塑剂辅料中,包括以下组分:
    58-63℃石蜡:占总辅料的55-60%;
    硬脂酸:占总辅料的9-11%;
    聚乙烯:占总辅料的20-25%;
    聚丙烯:占总辅料的11-15%。
  12. 一种如权利要求3到9任一项所述的渗油多孔陶瓷的制备方法,釆用干法成型法。
  13. 一种如权利要求10或11所述的渗油多孔陶瓷的制备方法,釆用注塑成型法。
  14. 一种如权利要求4所述的渗油多孔陶瓷的制备方法,其特征在于,包括如下步骤:
    步骤1)、称好配方所需的各种规格的熔融球形莫来石颗粒料放于一容器内;
    步骤2)、称好配方所需的各种二氧化钛、二氧化锆以及二氧化铈微粉放于一容器内,再一起倒入放有聚氨酯球的球磨机里,球磨40-60分钟后,采用50-60目筛网的振动筛进行过筛,过筛完成后放入一塑料容器桶容器内;
    步骤3)、称好配方所需的PVA粘结剂和脱模剂,倒于一个塑料容器内,搅拌2-4分钟;
    步骤4)、将步骤1)的熔融球形莫来石料倒入混碾机或高速混料机内预先进行预混3分钟,加入步骤3)混合好的PVA粘结剂和脱模剂,再次混合使球形莫来石颗粒表面被粘结剂充分润湿;
    步骤5)、将步骤2)球磨过筛后的微粉倒入混碾机或高速混料机内进行混碾约15-20分钟,再将混碾机内碾轮专用工具勾起保持悬空状态保持非碾压状态进行混合25-30分钟;
    步骤6)、将步骤5)混好的料取出,过50目筛后放入塑料袋内,将袋内空气挤出,扎好塑料袋,在扎好料的塑料袋上压25-50公斤重量的物体且保持24-48小时;
    步骤7)、将步骤6)捆扎好的混合料加入到模具型腔内,刮平后采用1-1.2吨/cm 2压力压制成型,再采用真空硅胶吸盘或人工取出成型品,放在多孔托板上进行养护不小于36小时;
    步骤8)、将步骤7)的成型品装到炉内,先低温排胶排出粘结剂和脱模剂,再进行烧结,烧结温度及变化过程为:3-4小时升到265℃,保温1小时;再3-4小时到300℃,保温1小时,再5-6小时升到800℃保温1小时;再以每小时100℃升温速率升到1200℃保温1小时,再每小时到60-70℃升速度升到1500-1550℃ 保温2小时,后再以3小时速率降到1100℃即可停止后进行自然降温,出炉即得到多孔陶瓷产品。
  15. 一种如权利要求6所述的渗油多孔陶瓷的制备方法,其特征在于,包括如下步骤:
    步骤1)、称好配方所需的各种规格的熔融球形莫来石颗粒料放于一容器内;
    步骤2)、称好配方所需的二氧化硅石英微粉,采用60或80目筛网的振动筛进行过筛,过筛完成后放入一塑料容器桶容器内;
    步骤3)、称好配方所需的PVA粘结剂和脱模剂,倒于一个塑料容器内,搅拌2-4分钟;
    步骤4)、将步骤1)的熔融球形莫来石料倒入混碾机或高速混料机内预先进行预混3分钟,加入步骤3)混合好的PVA粘结剂和脱模剂,再次混合使球形莫来石颗粒表面被粘结剂充分润湿;
    步骤5)、将步骤2)球磨过筛后的二氧化硅石英微粉倒入混碾机或高速混料机内进行混碾约15-20分钟,再将混碾机内碾轮专用工具勾起保持悬空状态保持非碾压状态进行混合25-30分钟;
    步骤6)、将步骤5)混好的料取出,过50目筛后放入塑料袋内,将袋内空气挤出,扎好塑料袋,在扎好料的塑料袋上压25-50公斤重量的物体且保持24-48小时;
    步骤7)、将步骤6)捆扎好的混合料加入到模具型腔内,刮平后采用1-1.2吨/cm 2压力压制成型,再采用真空硅胶吸盘或人工取出成型品,放在多孔托板上进行养护不小于36小时;
    步骤8)、将步骤7)的成型品装到炉内,先低温排胶排出粘结剂和脱模剂,再进行烧结,烧结温度及变化过程为:3-4小时升到265℃,保温1小时;再3-4小时到300℃,保温1小时,再5-6小时升到800℃保温1小时;再以每小时80-100℃升温速率升到1200℃保温1小时,再每小时到60-70℃升速度升到1300-1350℃保温2小时,后再以3小时速率降到1100℃即可停止后进行自然降温,出炉即得到多孔陶瓷产品。
  16. 一种如权利要求8所述的渗油多孔陶瓷的制备方法,其特征在于,包括如下步骤:
    步骤1)、称好配方所需的各种规格的熔融球形石英颗粒料放于一容器内;
    步骤2)、称好配方所需的二氧化硅石英微粉,釆用60或80目筛网的振动筛进行过筛,过筛完成后放入一塑料容器桶容器内;
    步骤3)、称好配方所需的PVA粘结剂和脱模剂,倒于一个塑料容器内,搅拌2-4分钟;
    步骤4)、将步骤1)的熔融球形石英颗粒料倒入混碾机或高速混料机内预先进行预混3分钟,加入步骤3)混合好的PVA粘结剂和脱模剂,再次混合使球形熔融石英颗粒表面被粘结剂充分润湿;
    步骤5)、将步骤2)球磨过筛后的二氧化硅石英微粉倒入混碾机或高速混料机内进行混碾约15-20分钟,再将混碾机内碾轮专用工具勾起保持悬空状态保持非碾压状态进行混合25-30分钟;
    步骤6)、将步骤5)混好的料取出,过50目筛后放入塑料袋内,将袋内空气挤出,扎好塑料袋,在扎好料的塑料袋上压25-50公斤重量的物体且保持24-48小时;
    步骤7)、将步骤6)捆扎好的混合料加入到模具型腔内,刮平后采用1-1.2吨/cm 2压力压制成型,再采用真空硅胶吸盘或人工取出成型品,放在多孔托板上进行养护不小于36小时;
    步骤8)、将步骤7)的成型品装到炉内,先低温排胶排出粘结剂和脱模剂,再进行烧结,烧结温度及变化过程为:3-4小时升到265℃,保温1小时;再3-4小时到300℃,保温1小时,再5-6小时升到800℃保温1小时;再以每小时80-100℃升温速率升到1200℃保温1小时,再每小时到60-70℃升速度升到1300-1350℃保温2小时,后再以3小时速率降到1100℃即可停止后进行自然降温,出炉即得到多孔陶瓷产品。
  17. 一种如权利要求10或11所述的渗油多孔陶瓷的制备方法,其特征在于,包括如下步骤:
    步骤1)、原料称取
    称好所需的颗粒骨料、烧结单元陶瓷微粉料以及有机辅料,分别放在塑料容器中;
    步骤2)、混炼造粒
    打开蜜炼机器,将蜜炼机温度调到130-135℃;先将陶瓷颗粒料全部导入蜜炼机进行慢速搅拌,加入石蜡、硬脂酸、聚乙烯和聚丙烯后搅拌混炼;将蜜炼 机升温到165℃蜜炼20-30分钟后,将温度降到130℃再蜜炼20-25分钟,最后将蜜炼料送入挤出造粒机内进行挤出造粒;
    步骤3)、注塑成型
    模具温度控制在30-40℃,预热注射机并确认注塑机注射温度在175-180℃;按投影面积的每平方厘米0.5-0.8吨的射出力设定注射吨位;注射到模具成型后,打开模具取出成型品,得到需要的成型坯体;
    步骤4)、脱脂
    将坯体放入醇类的溶剂的脱蜡专用脱蜡设备中,并保持恒温50-60小时;脱蜡完成后放入热脱脂炉内脱脂排出聚乙烯聚丙烯硬脂酸有机物;
    步骤5)、烧成
    将步骤4)脱脂后的多孔陶瓷坯体,于1小时升温到300℃,300℃保温0.5小时,1小时升温到600℃,600℃保温0.5小时,1小时升温到800℃,800℃保温0.5小时,4小时升温到1200℃,1200℃保温1小时,5小时升温到1500-1550℃,1500-1550℃保温2小时,3小时降温到1100℃烧成设备停止,待降温到200℃以下出炉即得到多孔陶瓷产品。
  18. 一种如权利要求1所述的渗油多孔陶瓷在电子烟中的应用。
PCT/CN2018/106410 2018-05-23 2018-09-19 一种渗油多孔陶瓷、制备方法及其在电子烟的应用 WO2019223196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810500286.8 2018-05-23
CN201810500286 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019223196A1 true WO2019223196A1 (zh) 2019-11-28

Family

ID=68616532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106410 WO2019223196A1 (zh) 2018-05-23 2018-09-19 一种渗油多孔陶瓷、制备方法及其在电子烟的应用

Country Status (2)

Country Link
CN (1) CN110526686B (zh)
WO (1) WO2019223196A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981454A (zh) * 2019-12-10 2020-04-10 东莞市国研电热材料有限公司 一种多孔陶瓷加热体及其制备方法
CN112876285A (zh) * 2021-03-17 2021-06-01 江西一创新材料有限公司 一种3d打印电子烟雾化芯用多孔陶瓷的制备方法
CN112939623A (zh) * 2021-03-01 2021-06-11 西北工业大学 一种太空笔笔尖的制备方法
CN113981365A (zh) * 2021-10-21 2022-01-28 中国航发沈阳黎明航空发动机有限责任公司 在dz125l合金叶片表面涂敷铝硅料浆真空高温烧结制备渗层的方法
CN114044695A (zh) * 2021-10-29 2022-02-15 深圳市吉迩科技有限公司 一种多孔陶瓷材料及其制备方法
CN114411412A (zh) * 2021-12-01 2022-04-29 云南拓宝科技有限公司 一种改性棉及其制备方法和应用
CN116409984A (zh) * 2021-12-31 2023-07-11 深圳市卓尔悦电子科技有限公司 多孔陶瓷及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163922A1 (zh) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN113387694B (zh) * 2021-06-24 2023-03-21 重庆奥福精细陶瓷有限公司 一种颗粒过滤器及其制备方法
CN113929439A (zh) * 2021-10-25 2022-01-14 山东高得材料科技有限公司 滤水用球形陶瓷颗粒的制法和用其制作过滤水装置的方法
CN114133219A (zh) * 2021-12-10 2022-03-04 广东华中科技大学工业技术研究院 电子烟用氧化锆复合的高温多孔陶瓷及其制备方法
CN115057718A (zh) * 2022-06-08 2022-09-16 深圳市吉迩科技有限公司 一种发热体的制备方法及雾化芯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150359262A1 (en) * 2014-06-16 2015-12-17 Shenzhen Smoore Technology Limited Preparation method of porous ceramic, porous ceramic, and electronic cigarette
CN105218137A (zh) * 2015-09-29 2016-01-06 潮州三环(集团)股份有限公司 一种陶瓷浆料、陶瓷多孔导油体以及电子烟用发热组件
CN105294140A (zh) * 2014-06-16 2016-02-03 深圳麦克韦尔股份有限公司 多孔陶瓷的制备方法、多孔陶瓷及其应用
CN105561803A (zh) * 2015-12-29 2016-05-11 合肥创想能源环境科技有限公司 一种大通量、高精度高温凝结水除油除铁用陶瓷超滤膜的制备方法
US20160316819A1 (en) * 2015-04-30 2016-11-03 Shenzhen Smoore Technology Limited Porous ceramic material, manufacturing method and use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430337C (zh) * 2006-03-30 2008-11-05 广东东方锆业科技股份有限公司 注射成型工艺制造氧化锆结构陶瓷制品的方法
KR101366923B1 (ko) * 2011-12-21 2014-02-25 한양대학교 산학협력단 구형 세라믹 폼 제조방법 및 이에 의하여 제조된 구형 세라믹 폼
CN104909820B (zh) * 2015-06-10 2018-01-02 中国科学院过程工程研究所 孔道均匀贯通的多孔陶瓷及其制备方法和用途
CN106086779A (zh) * 2016-06-06 2016-11-09 王华胜 一种微纳米尺寸流通孔径多孔固体材料及其制备方法
CN207138183U (zh) * 2017-06-13 2018-03-27 宁波健立电子有限公司 新型喷雾装置
CN107373770B (zh) * 2017-08-28 2021-01-29 云南中烟工业有限责任公司 一种板状储油并发热的电子烟
CN109721343B (zh) * 2019-01-17 2022-05-24 东莞信柏结构陶瓷股份有限公司 多孔陶瓷原料、多孔陶瓷及其制备方法与应用
EP3794975A1 (en) * 2019-09-20 2021-03-24 Nerudia Limited Smoking substitute apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150359262A1 (en) * 2014-06-16 2015-12-17 Shenzhen Smoore Technology Limited Preparation method of porous ceramic, porous ceramic, and electronic cigarette
CN105294140A (zh) * 2014-06-16 2016-02-03 深圳麦克韦尔股份有限公司 多孔陶瓷的制备方法、多孔陶瓷及其应用
US20160316819A1 (en) * 2015-04-30 2016-11-03 Shenzhen Smoore Technology Limited Porous ceramic material, manufacturing method and use thereof
CN105218137A (zh) * 2015-09-29 2016-01-06 潮州三环(集团)股份有限公司 一种陶瓷浆料、陶瓷多孔导油体以及电子烟用发热组件
CN105561803A (zh) * 2015-12-29 2016-05-11 合肥创想能源环境科技有限公司 一种大通量、高精度高温凝结水除油除铁用陶瓷超滤膜的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981454A (zh) * 2019-12-10 2020-04-10 东莞市国研电热材料有限公司 一种多孔陶瓷加热体及其制备方法
CN112939623A (zh) * 2021-03-01 2021-06-11 西北工业大学 一种太空笔笔尖的制备方法
CN112876285A (zh) * 2021-03-17 2021-06-01 江西一创新材料有限公司 一种3d打印电子烟雾化芯用多孔陶瓷的制备方法
CN113981365A (zh) * 2021-10-21 2022-01-28 中国航发沈阳黎明航空发动机有限责任公司 在dz125l合金叶片表面涂敷铝硅料浆真空高温烧结制备渗层的方法
CN114044695A (zh) * 2021-10-29 2022-02-15 深圳市吉迩科技有限公司 一种多孔陶瓷材料及其制备方法
CN114044695B (zh) * 2021-10-29 2022-12-02 深圳市吉迩科技有限公司 一种多孔陶瓷材料及其制备方法
CN114411412A (zh) * 2021-12-01 2022-04-29 云南拓宝科技有限公司 一种改性棉及其制备方法和应用
CN114411412B (zh) * 2021-12-01 2023-09-19 云南拓宝科技有限公司 一种改性棉及其制备方法和应用
CN116409984A (zh) * 2021-12-31 2023-07-11 深圳市卓尔悦电子科技有限公司 多孔陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN110526686A (zh) 2019-12-03
CN110526686B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2019223196A1 (zh) 一种渗油多孔陶瓷、制备方法及其在电子烟的应用
KR100700801B1 (ko) 유리 제조 시스템에서 사용되는 내 크리프성 지르콘내화성 물질
CN104892021B (zh) 一种电子烟净化器用开气孔陶瓷材料及其制备方法
CN111792922A (zh) 一种高还原多孔陶瓷雾化芯及其制备方法
US6221289B1 (en) Method of making ceramic elements to be sintered and binder compositions therefor
JP7029262B2 (ja) 低密度、高気孔率のセラミック部分品の付加製造のための前駆体材料、及びそれを生産する方法
JP2008030972A (ja) 無鉛組成物およびプレスフリット
CN114956861A (zh) 多孔陶瓷雾化芯及其制备方法和气溶胶产生装置
CN105801144A (zh) 一种优质高铝流钢砖及其制备方法与应用
KR20070096131A (ko) 소결 지르코늄실리케이트 비드의 제조 방법 및 이 제조방법에 의해 제조된 소결 지르코늄실리케이트 비드
JPS5964574A (ja) バツデレ−石焼結性耐火組成物およびそれを原料とする耐火製品
CN106277724B (zh) 激光选择性烧结制备玻璃制品的方法
CN106336207B (zh) 一种异形结构石英陶瓷制品的制备方法
WO2022217932A1 (zh) 多孔陶瓷材料、制作方法、多孔陶瓷及应用
US1527874A (en) Refractory product and method of producing same
JPH04349130A (ja) 石英系ガラス成形体の製造方法
DE10149793B4 (de) Verfahren zur Herstellung von Sinterkörpern aus einer plastischen Formmasse enthaltend Pulver, Wachs und Lösungsmittel
JPH04367578A (ja) 多孔質焼結体及びその製造方法
JPH0224779B2 (zh)
JPS59213669A (ja) ジルコン−ジルコニア耐火物の製造方法
RU2284974C1 (ru) Способ изготовления муллитокорундовых огнеупорных изделий
JPH0444622B2 (zh)
CN108558396A (zh) 火焰喷涂用高纯细晶氧化锆陶瓷条棒的制备方法
JPH0442867A (ja) 低セメントキャスタブル耐火物
JPH03159970A (ja) 耐熱性多孔質非酸化物系セラミックス焼結体とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920055

Country of ref document: EP

Kind code of ref document: A1