WO2021163922A1 - 电子烟雾化组件及其制造方法 - Google Patents

电子烟雾化组件及其制造方法 Download PDF

Info

Publication number
WO2021163922A1
WO2021163922A1 PCT/CN2020/075858 CN2020075858W WO2021163922A1 WO 2021163922 A1 WO2021163922 A1 WO 2021163922A1 CN 2020075858 W CN2020075858 W CN 2020075858W WO 2021163922 A1 WO2021163922 A1 WO 2021163922A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
electronic cigarette
metal powder
wax
mixture
Prior art date
Application number
PCT/CN2020/075858
Other languages
English (en)
French (fr)
Inventor
黄惠华
郭美玲
周波
Original Assignee
昂纳自动化技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳自动化技术(深圳)有限公司 filed Critical 昂纳自动化技术(深圳)有限公司
Priority to PCT/CN2020/075858 priority Critical patent/WO2021163922A1/zh
Publication of WO2021163922A1 publication Critical patent/WO2021163922A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

Definitions

  • the present invention relates to the technical field of electronic cigarettes, in particular to an electronic cigaretteification component and a manufacturing method thereof.
  • the wire winding process of the automatic wire winding machine is usually used to prepare atomized components such as spring coils, cotton winding, and glass fiber winding. It can be subdivided into three processes: simple winding, butt welding, and riveting. Product resistance, pitch, and heating The uniformity of the wire loop diameter is relatively poor, and the atomization component is formed individually, and the production efficiency is relatively low.
  • the co-firing process is usually used to prepare low-temperature ceramic atomization components.
  • the specific operation steps of the process are: placing the heating element in the ceramic mold; preparing the ceramic green body; sintering the finished product at a low temperature of 500-800°C after dewaxing.
  • This method requires the heating element to have a certain supporting force, so it is impossible to prepare high-resistance atomized components. At the same time, it has problems such as ceramic powder falling, heating element peeling, and poor consistency.
  • the atomized components are formed individually, and the production efficiency is relatively low.
  • the thick film printing process is usually used to prepare high-temperature ceramic atomized components. Compared with the co-firing process, the ceramic is not easy to fall off and the mass production process is simpler. The production efficiency is higher, and the specific operation steps of the printing process: preparing high-temperature porous ceramics; grinding to the required size and then cleaning and drying; printing and drying; sintering; cutting into the required atomized components. Because the ceramic surface is not flat, the paste adhesion is poor, and the heating element is easy to fall off after sintering; the ceramic absorbs the paste, and the thickness of the resistive film obtained by the printing process is uneven, resulting in poor product resistance uniformity and easy partial burnout. In addition, because of the paste The material is not a pure metal material, and the sintered slurry contains a certain amount of metal oxide, glass powder, etc., so during the production and use of the product, resistance drift will occur when heated.
  • the technical problem to be solved by the present invention is to provide a method for manufacturing an electronic cigarette atomization component that is conducive to mass production and high efficiency, and the manufactured electronic cigarette atomization component.
  • the technical solution adopted by the present invention to solve its technical problem is to provide a method for manufacturing an electronic cigarette atomization component, which includes the following steps:
  • the injection molding machine injects the metal mixture into the MIM mold according to the heating element pattern in the atomization component and is located on the substrate to form a green atomization component;
  • the green body of the atomization assembly is subjected to wax removal treatment to remove the organic mixture
  • the metal powder is one or more of gold, silver, platinum, copper, nickel, titanium, nickel-chromium alloy, and stainless steel; the particle size of the metal powder is 0.5-20 ⁇ m;
  • the organic mixture is paraffin wax, microcrystalline wax, stearic acid, polystyrene, vinyl acetate, palm wax, polypropylene, EVA, methyl cellulose, beeswax, polymethyl methacrylate, polyethylene glycol One or more.
  • the substrate is porous ceramics or solid ceramics with a smooth surface.
  • the injection molding temperature is 80°C-300°C
  • the pressure is 60Mpa-130Mpa
  • the time is 20s-50s
  • step S4 the temperature of discharging wax is 600°C-1000°C, and the time is 1-40h.
  • the sintering temperature is 800° C. to 1300° C.; during vacuum sintering, the vacuum degree is less than 50 pa.
  • the present invention provides another method for manufacturing an electronic cigarette atomizing component, which includes the following steps:
  • the injection molding machine respectively injects the base material and the metal mixture into the MIM mold to form a green atomized component
  • the metal powder is one or more of gold, silver, platinum, copper, nickel, titanium, nickel-chromium alloy, and stainless steel; the particle size of the metal powder is 0.5-20 ⁇ m;
  • the organic mixture is paraffin wax, microcrystalline wax, stearic acid, polystyrene, vinyl acetate, palm wax, polypropylene, EVA, methyl cellulose, beeswax, polymethyl methacrylate, polyethylene glycol One or more.
  • the matrix raw materials include aggregates, cosolvents, binders and pore formers;
  • the aggregates include mullite, diatomaceous earth, silicon oxide, silicon carbide, aluminum oxide, and violet crystals.
  • the co-solvent includes one or more of feldspar, perlite, limestone, dolomite and wollastonite
  • the binder includes paraffin, hydroxymethyl cellulose, and One or more of polyvinyl alcohol
  • the pore-forming agent includes one or more of fly ash, charcoal, starch, limestone, and organic particulate materials
  • the base material includes aggregate and co-solvent;
  • the aggregate includes one or more of alumina, zirconia, silicon carbide and silicon oxide, and the co-solvent includes one of glass, magnesium oxide and calcium oxide. kind or more.
  • the temperature of injection molding is 80°C-300°C
  • the pressure is 60Mpa-130Mpa
  • the time is 20s-50s
  • step S3 the temperature of discharging wax is 600°C-1000°C, and the time is 1-40h.
  • the sintering temperature is 800° C. to 1300° C.; during vacuum sintering, the vacuum degree is less than 50 pa.
  • the present invention also provides an electronic cigarette atomizing component, which is manufactured by using any of the above-mentioned manufacturing methods.
  • the method for manufacturing the electronic cigarette atomization component of the present invention uses the MIM (metal powder injection molding) technology to prepare the atomization component, and the process is simple, which is conducive to mass production and has high production efficiency.
  • MIM metal powder injection molding
  • Fig. 1 is a flowchart of a method for manufacturing an electronic cigarette atomizing component according to an embodiment of the present invention
  • Fig. 2 is a flowchart of a method for manufacturing an electronic cigarette atomizing component according to another embodiment of the present invention
  • FIG. 3 is a schematic diagram of the structure of an atomization assembly according to an embodiment manufactured by the manufacturing method of the present invention.
  • the method for manufacturing an electronic cigarette vaporization component may include the following steps:
  • the metal powder is one or more of gold, silver, platinum, copper, nickel, titanium, nickel-chromium alloy, and stainless steel.
  • the particle size of the metal powder is 0.5-20 ⁇ m.
  • the metal powder can be made of metal blocks or metal wires through ball milling, high-pressure water atomization, gas atomization, etc., and then metal particles with a particle size within the required range are screened through a screen.
  • the metal powder is prepared by electrolysis, reduction, pyrolysis, vapor deposition, liquid deposition, etc., for example: using metal solutions such as silver ammonia solution, using chemical reagents such as nickel sulfate to generate metal particles through chemical reactions, and then cleaning, After drying, the sieve screens the metal particles whose particle size is within the required range.
  • Organic mixtures as binders can be selected from paraffin wax, microcrystalline wax, stearic acid, polystyrene, vinyl acetate, palm wax, polypropylene, EVA, methyl cellulose, beeswax, polymethyl methacrylate, One or more of polyethylene glycol.
  • the substrate may be porous ceramics or solid ceramics with a smooth surface.
  • porous ceramics solid ceramics have higher matrix strength, and the adhesion of metal powder on them is stronger than that on porous ceramics.
  • the substrate can be in various shapes as required, such as a rectangular parallelepiped and other polyhedrons, a cylinder or a sheet-like body, and so on.
  • the injection molding machine injects the metal mixture into the MIM mold according to the heating element pattern in the atomization component and is located on the substrate to form a green atomization component.
  • the temperature of injection molding is 80°C-300°C
  • the pressure is 60Mpa-130Mpa
  • the time is 20 s -50s.
  • the green body of the atomized component is subjected to wax removal treatment to remove the organic mixture.
  • the waxing temperature is 600°C-1000°C, and the time is 1-40h.
  • the organic mixture is removed, so as to avoid the organic mixture from contaminating the metal powder in the subsequent sintering process and causing the circuit formed by the metal powder to have no resistance.
  • the sintering temperature is 800°C-1300°C.
  • the vacuum degree is less than 50pa.
  • the method for manufacturing an electronic cigarette vaporization component may include the following steps:
  • the metal powder and the organic mixture are mixed through a ball mill to prepare a metal mixture.
  • the metal powder is one or more of gold, silver, platinum, copper, nickel, titanium, nickel-chromium alloy, and stainless steel.
  • the particle size of the metal powder is 0.5-20 ⁇ m.
  • the metal powder can be made of metal blocks or metal wires through ball milling, high-pressure water atomization, gas atomization, etc., and then metal particles with a particle size within the required range are screened through a screen.
  • the metal powder is prepared by electrolysis, reduction, pyrolysis, vapor deposition, liquid deposition, etc., for example: using metal solutions such as silver ammonia solution, using chemical reagents such as nickel sulfate to generate metal particles through chemical reactions, and then cleaning, After drying, the sieve screens the metal particles whose particle size is within the required range.
  • Organic mixtures as binders can be selected from paraffin wax, microcrystalline wax, stearic acid, polystyrene, vinyl acetate, palm wax, polypropylene, EVA, methyl cellulose, beeswax, polymethyl methacrylate, One or more of polyethylene glycol.
  • the injection molding machine respectively injects the base material and the metal mixture into the MIM mold to form a green body of the atomized component.
  • the base material may be a porous ceramic base material, including aggregates, cosolvents, binders and pore formers.
  • Aggregate includes one or more of mullite, diatomaceous earth, silicon oxide, silicon carbide, alumina, cordierite and other powders
  • co-solvents include feldspar, perlite, limestone, dolomite and silica fume
  • the binder includes one or more of paraffin, hydroxymethyl cellulose, and polyvinyl alcohol
  • the pore-forming agent includes fly ash, charcoal, starch, limestone, and One or more of powders such as organic particulate materials.
  • the organic particles are selected from one or more of polyethylene, polystyrene, ABS, PMMA and PEG.
  • the base material can also be a solid ceramic base material, including aggregates and cosolvents.
  • the aggregate includes one or more of powders such as aluminum oxide, zirconia, silicon carbide, and silicon oxide
  • the co-solvent includes one or more of glass, magnesium oxide, and calcium oxide.
  • the temperature of injection molding is 80°C-300°C, the pressure is 60Mpa-130Mpa, and the time is 20 s -50s.
  • the green body of the atomized component is subjected to wax removal treatment to remove the organic mixture.
  • the waxing temperature is 600°C-1000°C, and the time is 1-40h.
  • the organic mixture is removed, so as to avoid the organic mixture from contaminating the metal powder in the subsequent sintering process and causing the circuit formed by the metal powder to have no resistance.
  • the base material is melted and solidified into the base body after cooling; for the base material is a porous ceramic base material, the matrix formed after solidification is a porous ceramic base; for the base material, it is a solid ceramic base material, which is formed after solidification It is a solid ceramic substrate with a smooth surface.
  • the metal powder is melted and cooled to form a heating element closely attached to the substrate.
  • the sintering temperature is 800°C-1300°C.
  • the vacuum degree is less than 50pa.
  • the atomization assembly produced by the manufacturing method of the present invention may include a base 10 and a heating element 20 arranged on the base 10.
  • the heating element 20 is closely attached to at least one surface of the base 10.
  • the base 10 can have any shape, such as a sheet-like body, a rectangular parallelepiped and other polyhedral structures, a column, etc.; the base 10 can have a porous structure (such as porous ceramic) or a smooth surface (such as a solid ceramic with a smooth surface).
  • a porous structure such as porous ceramic
  • a smooth surface such as a solid ceramic with a smooth surface
  • the heating element 20 may further include two electrode contacts 21 spaced apart and a heating circuit 22 connected between the two electrode contacts 21.
  • the heating circuit 22 may have various shapes, such as straight lines, curved lines, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种电子烟雾化组件及其制造方法,电子烟雾化组件的制造方法包括以下步骤:S1、将金属粉末和有机混合物通过球磨混合,制得金属混合物;S2、将基体置于MIM模具内;S3、注塑机将金属混合物按照雾化组件中发热体图形注塑到MIM模具内并位于基体上,形成雾化组件生坯;S4、将雾化组件生坯进行排蜡处理,去除有机混合物;S5、真空或惰性气氛烧结,金属粉末熔融,冷却后形成紧密附着在基体上的发热体,与基体形成雾化组件。该电子烟雾化组件制造方法,工序简单,利于大批量生产且生产效率高。

Description

电子烟雾化组件及其制造方法 技术领域
本发明涉及电子烟技术领域,尤其涉及一种电子烟雾化组件及其制造方法。
背景技术
目前,电子烟雾化组件主要通过以下三种工艺实现:
自动绕丝机绕丝工艺,通常用于制备弹簧圈、绕棉、绕玻纤类的雾化组件,可以细分成简易绕线、碰焊、铆接三种工艺,产品阻值、螺距、发热丝圈径一致性都比较差,雾化组件单个成型,生产效率比较低。
共烧工艺,通常用于制备低温陶瓷雾化组件,该工艺具体操作步骤是:发热体放到陶瓷模具内;制备陶瓷生坯;排蜡后在500-800℃低温下烧结成成品。此法要求发热体具有一定支撑力,因此不能制备高阻值的雾化组件,同时具有陶瓷掉粉、发热体剥离,一致性差等问题,雾化组件单个成型,生产效率比较低。
厚膜印刷工艺,通常用于制备高温陶瓷雾化组件,相比共烧工艺,陶瓷不容易掉粉,批量生产工艺更简单。生产效率更高,印刷工艺具体操作步骤:制备高温多孔陶瓷;研磨成所需要尺寸后清洗干燥;印刷并干燥;烧结;切割成所需雾化组件。因为陶瓷表面不平,所以浆料附着力差,烧结后发热体容易脱落;陶瓷吸附浆料,印刷工艺得到的电阻膜厚度不均匀,导致产品阻值一致性差,容易局部烧断,此外,因为浆料不是纯金属材料,烧结后的浆料内含有一定的金属氧化物、玻璃粉等,因此产品制作使用过程中,受热时会出现电阻漂移等现象。
技术问题
本发明要解决的技术问题在于,提供一种利于大批量生产且效率高的电子烟雾化组件制造方法及制得的电子烟雾化组件。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种电子烟雾化组件制造方法,包括以下步骤:
S1、将金属粉末和有机混合物通过球磨混合,制得金属混合物;
S2、将基体置于MIM模具内;
S3、注塑机将所述金属混合物按照雾化组件中发热体图形注塑到MIM模具内并位于所述基体上,形成雾化组件生坯;
S4、将所述雾化组件生坯进行排蜡处理,去除有机混合物;
S5、真空或惰性气氛烧结,所述金属粉末熔融,冷却后形成紧密附着在所述基体上的发热体,与所述基体形成雾化组件。
优选地,步骤S1中,所述金属粉末为金、银、铂、铜、镍、钛、镍铬合金、不锈钢中一种或多种;金属粉末的粒径为0.5-20μm;
所述有机混合物为石蜡、微晶蜡、硬脂酸、聚苯乙烯、醋酸乙烯脂、棕榈蜡、聚丙烯、EVA、甲基纤维素、蜂蜡、聚甲基丙烯酸甲酯、聚乙二醇中一种或多种。
优选地,步骤S2中,所述基体为多孔陶瓷或者表面光滑的实心陶瓷。
优选地,步骤S3中,注塑成型的温度80℃-300℃,压力为60Mpa-130Mpa,时间为20 s -50s;
步骤S4中,排蜡的温度为600℃-1000℃,时间为1-40h。
优选地,步骤S5中,烧结温度为800℃-1300℃;真空烧结时,真空度<50pa。
本发明提供另一种电子烟雾化组件的制造方法,包括以下步骤:
S1、将金属粉末和有机混合物通过球磨混合,制得金属混合物;
S2、注塑机分别将基体原料和金属混合物注塑到MIM模具内,形成雾化组件生坯;
S3、将所述雾化组件生坯进行排蜡处理,去除有机混合物;
S4、真空或惰性气氛烧结,所述基体原料在熔融并冷却固化后形成基体,所述金属粉末在熔融并冷却后形成紧密附着在所述基体上的发热体,与所述基体形成雾化组件。
优选地,步骤S1中,所述金属粉末为金、银、铂、铜、镍、钛、镍铬合金、不锈钢中一种或多种;金属粉末的粒径为0.5-20μm;
所述有机混合物为石蜡、微晶蜡、硬脂酸、聚苯乙烯、醋酸乙烯脂、棕榈蜡、聚丙烯、EVA、甲基纤维素、蜂蜡、聚甲基丙烯酸甲酯、聚乙二醇中一种或多种。
优选地,步骤S2中,所述基体原料包括骨料、助溶剂、粘结剂和造孔剂;所述骨料包括莫来石、硅藻土、氧化硅、碳化硅、氧化铝以及堇晶石中的一种或多种,所述助溶剂包括长石、珍珠岩、石灰石、白云石以及硅灰石中的一种或多种,所述粘结剂包括石蜡、羟甲基纤维素以及聚乙烯醇中的一种或多种,所述造孔剂包括粉煤灰、木炭、淀粉、石灰石以及有机颗粒材料中的一种或多种;
或者,所述基体原料包括骨料和助溶剂;所述骨料包括氧化铝、氧化锆、碳化硅以及氧化硅中一种或多种,所述助溶剂包括玻璃、氧化镁以及氧化钙中一种或多种。
优选地,步骤S2中,注塑成型的温度80℃-300℃,压力为60Mpa-130Mpa,时间为20 s -50s;
步骤S3中,排蜡的温度为600℃-1000℃,时间为1-40h。
优选地,步骤S5中,烧结温度为800℃-1300℃;真空烧结时,真空度<50pa。
本发明还提供一种电子烟雾化组件,采用以上任一项所述的制造方法制得。
有益效果
本发明的电子烟雾化组件制造方法,以MIM(金属粉末注塑成型)技术制备雾化组件,工序简单,利于大批量生产且生产效率高。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一实施例的电子烟雾化组件制造方法的流程图;
图2是本发明另一实施例的电子烟雾化组件制造方法的流程图
图3是本发明的制造方法制得的一实施例的雾化组件结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,本发明一实施例的电子烟雾化组件制造方法,可包括以下步骤:
S1、将金属粉末和有机混合物通过球磨混合,制得金属混合物;
其中,金属粉末为金、银、铂、铜、镍、钛、镍铬合金、不锈钢中一种或多种。金属粉末的粒径为0.5-20μm。
金属粉末可采用金属块或金属丝,经球磨、高压水雾化、气雾化等方式制成金属粉末,再通过筛网筛选粒径在要求范围内的金属粒子。或者,金属粉末采用电解、还原、热解、气相沉积、液相沉积等方法制得,例如:采用金属溶液如银氨溶液,使用硫酸镍等化学试剂经过化学反应生成金属粒子,再经清洗、干燥,筛网筛选粒径在要求范围内的金属粒子。
有机混合物作为粘结剂,可选自石蜡、微晶蜡、硬脂酸、聚苯乙烯、醋酸乙烯脂、棕榈蜡、聚丙烯、EVA、甲基纤维素、蜂蜡、聚甲基丙烯酸甲酯、聚乙二醇中一种或多种。
S2、将基体置于MIM模具内。
其中,基体可以是多孔陶瓷或者表面光滑的实心陶瓷。相比于多孔陶瓷,实心陶瓷的基体强度更高,金属粉末在其上的附着力比在多孔陶瓷上的附着力更强。
基体可以是所需的各种形状,如长方体等多面体、柱体或片状体等等。
S3、注塑机将金属混合物按照雾化组件中发热体图形注塑到MIM模具内并位于基体上,形成雾化组件生坯。
其中,注塑成型的温度80℃-300℃,压力为60Mpa-130Mpa,时间为20 s -50s。
S4、将雾化组件生坯进行排蜡处理,去除有机混合物。
排蜡的温度为600℃-1000℃,时间为1-40h。
通过该步骤的排蜡处理,将有机混合物去除,避免有机混合物在后续烧结过程中污染金属粉末而导致金属粉末形成的线路无阻值。
S5、真空或惰性气氛烧结,金属粉末熔融,冷却后形成紧密附着在基体上的发热体,与基体形成雾化组件。
其中,烧结温度为800℃-1300℃。真空烧结时,真空度<50pa。
如图2所示,本发明另一实施例的电子烟雾化组件制造方法,可包括以下步骤:
S1、将金属粉末和有机混合物通过球磨混合,制得金属混合物。
其中,金属粉末为金、银、铂、铜、镍、钛、镍铬合金、不锈钢中一种或多种。金属粉末的粒径为0.5-20μm。
金属粉末可采用金属块或金属丝,经球磨、高压水雾化、气雾化等方式制成金属粉末,再通过筛网筛选粒径在要求范围内的金属粒子。或者,金属粉末采用电解、还原、热解、气相沉积、液相沉积等方法制得,例如:采用金属溶液如银氨溶液,使用硫酸镍等化学试剂经过化学反应生成金属粒子,再经清洗、干燥,筛网筛选粒径在要求范围内的金属粒子。
有机混合物作为粘结剂,可选自石蜡、微晶蜡、硬脂酸、聚苯乙烯、醋酸乙烯脂、棕榈蜡、聚丙烯、EVA、甲基纤维素、蜂蜡、聚甲基丙烯酸甲酯、聚乙二醇中一种或多种。
S2、注塑机分别将基体原料和金属混合物注塑到MIM模具内,形成雾化组件生坯。
其中,基体原料可以是多孔陶瓷基体原料,包括骨料、助溶剂、粘结剂和造孔剂。骨料包括莫来石、硅藻土、氧化硅、碳化硅、氧化铝以及堇晶石等粉体中的一种或多种,助溶剂包括长石、珍珠岩、石灰石、白云石以及硅灰石等粉体中的一种或多种,粘结剂包括石蜡、羟甲基纤维素以及聚乙烯醇等中的一种或多种,造孔剂包括粉煤灰、木炭、淀粉、石灰石以及有机颗粒材料等粉体中的一种或多种。有机颗粒选自聚乙烯、聚苯乙烯、ABS、PMMA和PEG中一种或多种。
基体原料也可以是实心陶瓷基体原料,包括骨料和助溶剂。骨料包括氧化铝、氧化锆、碳化硅以及氧化硅等粉体中一种或多种,助溶剂包括玻璃、氧化镁以及氧化钙等中一种或多种。
注塑成型的温度80℃-300℃,压力为60Mpa-130Mpa,时间为20 s -50s。
S3、将雾化组件生坯进行排蜡处理,去除有机混合物。
排蜡的温度为600℃-1000℃,时间为1-40h。
通过该步骤的排蜡处理,将有机混合物去除,避免有机混合物在后续烧结过程中污染金属粉末而导致金属粉末形成的线路无阻值。
S4、真空或惰性气氛烧结,基体原料在熔融并冷却固化后形成基体,金属粉末在熔融并冷却后形成紧密附着在基体上的发热体,与基体形成雾化组件。
其中,通过高温烧结,基体原料熔融,在冷却后固化为基体;对于基体原料为多孔陶瓷基体原料,固化后形成的基体为多孔陶瓷基体;对于基体原料为实心陶瓷基体原料,固化后形成的基体为表面光滑的实心陶瓷基体。金属粉末熔融,冷却后形成紧密附着在基体上的发热体。
烧结温度为800℃-1300℃。真空烧结时,真空度<50pa。
本发明的制造方法制得的雾化组件,参考图3,可包括基体10以及设置在基体10上的发热体20。发热体20紧密附着在基体10的至少一个表面上。
基体10可以是任何形状,如可以是片状体、长方体等多面体结构、柱体等等;基体10可以是具多孔结构(如多孔陶瓷)或者表面光滑(如表面光滑的实心陶瓷)。
发热体20进一步可包括相间隔的两个电极触点21、连接在两个电极触点21之间的发热线路22。发热线路22可以是各种形状,如直线、曲线等等。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种电子烟雾化组件的制造方法,其特征在于,包括以下步骤:
    S1、将金属粉末和有机混合物通过球磨混合,制得金属混合物;
    S2、将基体置于MIM模具内;
    S3、注塑机将所述金属混合物按照雾化组件中发热体图形注塑到MIM模具内并位于所述基体上,形成雾化组件生坯;
    S4、将所述雾化组件生坯进行排蜡处理,去除有机混合物;
    S5、真空或惰性气氛烧结,所述金属粉末熔融,冷却后形成紧密附着在所述基体上的发热体,与所述基体形成雾化组件。
  2. 根据权利要求1所述的电子烟雾化组件的制造方法,其特征在于,步骤S1中,所述金属粉末为金、银、铂、铜、镍、钛、镍铬合金、不锈钢中一种或多种;金属粉末的粒径为0.5-20μm;
    所述有机混合物为石蜡、微晶蜡、硬脂酸、聚苯乙烯、醋酸乙烯脂、棕榈蜡、聚丙烯、EVA、甲基纤维素、蜂蜡、聚甲基丙烯酸甲酯、聚乙二醇中一种或多种。
  3. 根据权利要求1所述的电子烟雾化组件的制造方法,其特征在于,步骤S2中,所述基体为多孔陶瓷或者表面光滑的实心陶瓷。
  4. 根据权利要求1所述的电子烟雾化组件的制造方法,其特征在于,步骤S3中,注塑成型的温度80℃-300℃,压力为60Mpa-130Mpa,时间为20 s -50s;
    步骤S4中,排蜡的温度为600℃-1000℃,时间为1-40h。
  5. 根据权利要求1所述的电子烟雾化组件的制造方法,其特征在于,步骤S5中,烧结温度为800℃-1300℃;真空烧结时,真空度<50pa。
  6. 一种电子烟雾化组件的制造方法,其特征在于,包括以下步骤:
    S1、将金属粉末和有机混合物通过球磨混合,制得金属混合物;
    S2、注塑机分别将基体原料和金属混合物注塑到MIM模具内,形成雾化组件生坯;
    S3、将所述雾化组件生坯进行排蜡处理,去除有机混合物;
    S4、真空或惰性气氛烧结,所述基体原料在熔融并冷却固化后形成基体,所述金属粉末在熔融并冷却后形成紧密附着在所述基体上的发热体,与所述基体形成雾化组件。
  7. 根据权利要求6所述的电子烟雾化组件的制造方法,其特征在于,步骤S1中,所述金属粉末为金、银、铂、铜、镍、钛、镍铬合金、不锈钢中一种或多种;金属粉末的粒径为0.5-20μm;
    所述有机混合物为石蜡、微晶蜡、硬脂酸、聚苯乙烯、醋酸乙烯脂、棕榈蜡、聚丙烯、EVA、甲基纤维素、蜂蜡、聚甲基丙烯酸甲酯、聚乙二醇中一种或多种;
    步骤S2中,所述基体原料包括骨料、助溶剂、粘结剂和造孔剂;所述骨料包括莫来石、硅藻土、氧化硅、碳化硅、氧化铝以及堇晶石中的一种或多种,所述助溶剂包括长石、珍珠岩、石灰石、白云石以及硅灰石中的一种或多种,所述粘结剂包括石蜡、羟甲基纤维素以及聚乙烯醇中的一种或多种,所述造孔剂包括粉煤灰、木炭、淀粉、石灰石以及有机颗粒材料中的一种或多种;
    或者,所述基体原料包括骨料和助溶剂;所述骨料包括氧化铝、氧化锆、碳化硅以及氧化硅中一种或多种,所述助溶剂包括玻璃、氧化镁以及氧化钙中一种或多种。
  8. 根据权利要求6所述的电子烟雾化组件的制造方法,其特征在于,步骤S2中,注塑成型的温度80℃-300℃,压力为60Mpa-130Mpa,时间为20 s -50s;
    步骤S3中,排蜡的温度为600℃-1000℃,时间为1-40h。
  9. 根据权利要求6所述的电子烟雾化组件的制造方法,其特征在于,步骤S5中,烧结温度为800℃-1300℃;真空烧结时,真空度<50pa。
  10. 一种电子烟雾化组件,其特征在于,采用权利要求1-5任一项所述的制造方法或权利要求6-9任一项所述的制造方法制得。
PCT/CN2020/075858 2020-02-19 2020-02-19 电子烟雾化组件及其制造方法 WO2021163922A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075858 WO2021163922A1 (zh) 2020-02-19 2020-02-19 电子烟雾化组件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075858 WO2021163922A1 (zh) 2020-02-19 2020-02-19 电子烟雾化组件及其制造方法

Publications (1)

Publication Number Publication Date
WO2021163922A1 true WO2021163922A1 (zh) 2021-08-26

Family

ID=77390380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075858 WO2021163922A1 (zh) 2020-02-19 2020-02-19 电子烟雾化组件及其制造方法

Country Status (1)

Country Link
WO (1) WO2021163922A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912413A (zh) * 2021-10-26 2022-01-11 国光(宣城)新材料科技有限公司 一种陶瓷雾化芯及其制备方法和应用
CN114451585A (zh) * 2021-12-22 2022-05-10 深圳雪雾科技有限公司 雾化芯及其制备方法、雾化器及电子雾化装置
CN114474448A (zh) * 2021-12-21 2022-05-13 广东栎燃生物科技有限公司 一种高分子纤维材料发热组件的制备方法及电子雾化器
CN114538953A (zh) * 2022-03-28 2022-05-27 深圳市立场科技有限公司 一种发热陶瓷雾化芯的制作工艺以及发热陶瓷雾化芯
WO2023029660A1 (zh) * 2021-09-03 2023-03-09 深圳市华诚达精密工业有限公司 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN116003155A (zh) * 2021-10-21 2023-04-25 比亚迪精密制造有限公司 电子烟雾化芯、电子烟雾化芯的制备方法以及电子烟
CN116779209A (zh) * 2023-06-09 2023-09-19 广东奇砺新材料科技有限公司 一种高tcr值的镍基电子浆料和电极、制备方法
CN117020198A (zh) * 2023-10-08 2023-11-10 华南理工大学 可伐合金的金属注射成形喂料
WO2023226903A1 (zh) * 2022-05-25 2023-11-30 深圳麦克韦尔科技有限公司 一种多孔玻璃雾化芯及其制备方法和电子雾化器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105218137A (zh) * 2015-09-29 2016-01-06 潮州三环(集团)股份有限公司 一种陶瓷浆料、陶瓷多孔导油体以及电子烟用发热组件
US20160316819A1 (en) * 2015-04-30 2016-11-03 Shenzhen Smoore Technology Limited Porous ceramic material, manufacturing method and use thereof
CN106187285A (zh) * 2015-04-30 2016-12-07 深圳麦克韦尔股份有限公司 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用
CN107713022A (zh) * 2017-11-03 2018-02-23 深圳市新宜康电子技术有限公司 雾化发生装置及其成型的方法
CN109336639A (zh) * 2018-11-29 2019-02-15 嘉兴柴薪科技有限公司 一种多孔陶瓷材料及其制备方法
CN109574660A (zh) * 2019-01-21 2019-04-05 东莞信柏结构陶瓷股份有限公司 陶瓷粉、陶瓷发热体及其制备方法与其在电子烟中的应用
CN109907375A (zh) * 2019-03-20 2019-06-21 昂纳自动化技术(深圳)有限公司 雾化组件及其制备方法
CN110526735A (zh) * 2019-09-29 2019-12-03 深圳羽制科技有限公司 一种电子烟装置用多孔陶瓷及其制备方法
CN110526686A (zh) * 2018-05-23 2019-12-03 苏州神鼎陶瓷科技有限公司 一种渗油多孔陶瓷、制备方法及其在电子烟的应用
CN110560680A (zh) * 2019-09-24 2019-12-13 深圳睿蚁科技有限公司 一种高导热发热丝的制备工艺
CN110742314A (zh) * 2019-10-22 2020-02-04 深圳羽制科技有限公司 一种电子烟雾化芯多孔陶瓷及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160316819A1 (en) * 2015-04-30 2016-11-03 Shenzhen Smoore Technology Limited Porous ceramic material, manufacturing method and use thereof
CN106187285A (zh) * 2015-04-30 2016-12-07 深圳麦克韦尔股份有限公司 多孔陶瓷材料的制备方法和多孔陶瓷材料及其应用
CN105218137A (zh) * 2015-09-29 2016-01-06 潮州三环(集团)股份有限公司 一种陶瓷浆料、陶瓷多孔导油体以及电子烟用发热组件
CN107713022A (zh) * 2017-11-03 2018-02-23 深圳市新宜康电子技术有限公司 雾化发生装置及其成型的方法
CN110526686A (zh) * 2018-05-23 2019-12-03 苏州神鼎陶瓷科技有限公司 一种渗油多孔陶瓷、制备方法及其在电子烟的应用
CN109336639A (zh) * 2018-11-29 2019-02-15 嘉兴柴薪科技有限公司 一种多孔陶瓷材料及其制备方法
CN109574660A (zh) * 2019-01-21 2019-04-05 东莞信柏结构陶瓷股份有限公司 陶瓷粉、陶瓷发热体及其制备方法与其在电子烟中的应用
CN109907375A (zh) * 2019-03-20 2019-06-21 昂纳自动化技术(深圳)有限公司 雾化组件及其制备方法
CN110560680A (zh) * 2019-09-24 2019-12-13 深圳睿蚁科技有限公司 一种高导热发热丝的制备工艺
CN110526735A (zh) * 2019-09-29 2019-12-03 深圳羽制科技有限公司 一种电子烟装置用多孔陶瓷及其制备方法
CN110742314A (zh) * 2019-10-22 2020-02-04 深圳羽制科技有限公司 一种电子烟雾化芯多孔陶瓷及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023029660A1 (zh) * 2021-09-03 2023-03-09 深圳市华诚达精密工业有限公司 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN116003155A (zh) * 2021-10-21 2023-04-25 比亚迪精密制造有限公司 电子烟雾化芯、电子烟雾化芯的制备方法以及电子烟
CN113912413A (zh) * 2021-10-26 2022-01-11 国光(宣城)新材料科技有限公司 一种陶瓷雾化芯及其制备方法和应用
CN114474448A (zh) * 2021-12-21 2022-05-13 广东栎燃生物科技有限公司 一种高分子纤维材料发热组件的制备方法及电子雾化器
CN114451585A (zh) * 2021-12-22 2022-05-10 深圳雪雾科技有限公司 雾化芯及其制备方法、雾化器及电子雾化装置
CN114538953A (zh) * 2022-03-28 2022-05-27 深圳市立场科技有限公司 一种发热陶瓷雾化芯的制作工艺以及发热陶瓷雾化芯
WO2023226903A1 (zh) * 2022-05-25 2023-11-30 深圳麦克韦尔科技有限公司 一种多孔玻璃雾化芯及其制备方法和电子雾化器
CN116779209A (zh) * 2023-06-09 2023-09-19 广东奇砺新材料科技有限公司 一种高tcr值的镍基电子浆料和电极、制备方法
CN117020198A (zh) * 2023-10-08 2023-11-10 华南理工大学 可伐合金的金属注射成形喂料
CN117020198B (zh) * 2023-10-08 2023-12-08 华南理工大学 可伐合金的金属注射成形喂料

Similar Documents

Publication Publication Date Title
WO2021163922A1 (zh) 电子烟雾化组件及其制造方法
CN111283202B (zh) 电子烟雾化组件及其制造方法
WO2022033267A1 (zh) 一种雾化芯的制造方法、雾化芯及其电子雾化装置
CN101721921B (zh) 一种多孔金属膜的制备方法
CN112759414A (zh) 一种多孔陶瓷雾化芯及其制备方法和电子烟
CN112545066B (zh) 可发热的石墨烯多孔陶瓷、雾化芯及其制备方法
CN112047753A (zh) 多孔陶瓷及其制备方法和应用
CN112408963A (zh) 具有吸附及离子溶出功能的多孔陶瓷材料及其制造方法
CN109279909A (zh) 一种高强度碳化硼多孔陶瓷的制备方法
JP2024523106A (ja) マイクロ孔セラミック霧化コア及びその製造方法
JPWO2012102343A1 (ja) シリコン融液接触部材、その製法、および結晶シリコンの製造方法
US9828481B2 (en) Method of manufacturing porous ceramic body and composition for porous ceramic body
CN1136325C (zh) 氧化物弥散强化型铂材及其制造方法
CN112679202A (zh) 一种多孔陶瓷组合物及其制备方法和应用该陶瓷组合物的电子烟雾化芯
CN110732672A (zh) 一种梯度金属基多孔材料及其制备方法和应用
WO2024124786A1 (zh) 一种金属化多孔陶瓷复合材料及其制备方法
JP3778338B2 (ja) 酸化物分散強化型白金材料の製造方法
CN113941704A (zh) 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN106747468A (zh) 用于气雾化钛及钛合金粉末的导液管材料及其制备方法
JPH0368708A (ja) 開気孔を有する多孔体の改質方法
CN114149248B (zh) 多孔陶瓷材料及其制备方法、发热组件、雾化器和电子烟
CN107857597A (zh) 一种先进结构陶瓷的制备方法
CN114436672A (zh) 一种多孔陶瓷雾化芯的制备方法
CN112552074A (zh) 一种低收缩多孔陶瓷组分、注射喂料及其制备方法
CN114009856A (zh) 抽吸设备的改性电极浆料及制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919949

Country of ref document: EP

Kind code of ref document: A1