WO2023226903A1 - 一种多孔玻璃雾化芯及其制备方法和电子雾化器 - Google Patents

一种多孔玻璃雾化芯及其制备方法和电子雾化器 Download PDF

Info

Publication number
WO2023226903A1
WO2023226903A1 PCT/CN2023/095363 CN2023095363W WO2023226903A1 WO 2023226903 A1 WO2023226903 A1 WO 2023226903A1 CN 2023095363 W CN2023095363 W CN 2023095363W WO 2023226903 A1 WO2023226903 A1 WO 2023226903A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous glass
fiber
glass
optionally
porous
Prior art date
Application number
PCT/CN2023/095363
Other languages
English (en)
French (fr)
Inventor
杨聪明
龙继才
周前远
付磊
周宏明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023226903A1 publication Critical patent/WO2023226903A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/002Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of fibres, filaments, yarns, felts or woven material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/08Other methods of shaping glass by foaming
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/119Deposition methods from solutions or suspensions by printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • This application belongs to the technical field of electronic atomization devices, and specifically relates to a porous glass atomization core and its preparation method and electronic atomizer.
  • An electronic atomizer is a product that uses atomization and other methods to turn atomization media into steam, allowing users to smoke.
  • the atomizing core is the core component of the electronic atomizer and plays a vital role in the taste, aerosol volume and other performance of the electronic atomizer.
  • porous ceramics are used as the atomization core. Most use diatomaceous earth, silica, alumina, etc. as raw materials, adding glass powder, pore-forming agents, etc., and the porous particles produced by the accumulation of sintering particles are ceramics. Porous ceramics are used as the atomization core, which has the characteristics of good uniformity, long life, delicate taste, and high degree of mechanization. However, the porous ceramic heating element has a certain proportion of semi-closed pores and fine pores, which can easily cause adsorption of low-viscosity components in the atomization medium, thereby affecting the smoking taste and aroma reduction. At the same time, the microscopic surface of the porous ceramic heating element is rough and has low continuity, so it cannot be used with a thin film heating film.
  • porous glass Compared with porous ceramics, porous glass has the characteristics of smooth and continuous microstructure, a lower ratio of micro-nano pores, and is less likely to adsorb atomized media.
  • porous glass is generally prepared by pore-forming agent method, foaming method or sponge dipping method.
  • the foaming method is to soften, foam, and anneal glass to prepare porous glass. It is difficult to accurately control the size of the sample, and the closed cell rate is high.
  • the sponge impregnation method uses sponge as the skeleton, degumming, and sintering to prepare porous glass.
  • the pore size is too large (greater than 300 ⁇ m), the pores are unevenly distributed, and the sintering is easy to collapse, so it is not suitable as an atomization core.
  • the pore structure is easy to collapse, and the requirements of continuous microstructure and high porosity cannot be guaranteed at the same time.
  • the technical problem to be solved by this application is to overcome the shortcomings of the porous glass atomizing core in the prior art such as low porosity and easy collapse of the pore structure, thereby providing a porous glass atomizing core, a preparation method thereof, and an electronic atomizer .
  • This application provides a method for preparing a porous glass atomization core, which includes the following steps:
  • the preparation method of the porous glass includes: mixing glass powder, fiber components, pore-forming agents and additives to prepare a green body, debinding and sintering to obtain the porous glass;
  • the preparation method of porous glass includes: combining glass powder, fiber components, The porous agent is mixed to prepare a green body, which is degummed and sintered to obtain the porous glass;
  • the fiber component has a diameter of 3-30 ⁇ m and a length of 20-500 ⁇ m;
  • the fiber component has a diameter of 10-25 ⁇ m and a length of 20-150 ⁇ m.
  • the aspect ratio of the fiber component is 1-10, and optionally, the aspect ratio of the fiber with a length of 50-150 ⁇ m is 2-5;
  • the proportion of fibers with a fiber length of more than 50 ⁇ m is 25%, optionally, the proportion is more than 40%; further optionally, the proportion is 40-100%.
  • the total mass of raw materials includes 15-50% of fiber components
  • the raw materials include the following mass percentages:
  • the mass percentage of the added phase is 1-50%
  • the glass powder accounts for 40-62%, and the fiber component accounts for 38-60%;
  • the amount of the pore-forming agent is 0.3-2.5 times the total mass of the glass powder and fiber components.
  • any one of the casting process, injection molding process, dry pressing process, and gel injection molding process can be independently selected to prepare the green body;
  • the steps of the injection molding process are roughly as follows: mix the mixed material and injection molding additives (paraffin, polyethylene, dispersant, etc.) at high temperature in an internal mixer until uniform, and then prepare it into a specified shape through injection molding. Green.
  • injection molding additives paraffin, polyethylene, dispersant, etc.
  • the debinding temperature is 200-800°C, and the degluing time is 5-50h; optionally, the degluing temperature is 200-350°C; generally, it can be based on the thermogravimetric curve of the pore-forming agent To obtain a better debinding process.
  • the sintering temperature is 900-1250°C or 1180-1320°C, and the sintering time is 10-180 min.
  • the preparation method of porous glass satisfies at least one of the following (1)-(5):
  • the softening temperature of the glass powder is 600-1200°C; the softening point of the selected fiber raw material can serve as a skeleton when it is above the sintering temperature in the preparation method;
  • the particle size of the glass powder is below 10 ⁇ m, optionally, the particle size is below 3000 mesh;
  • the fiber component is at least one of silicon carbide fiber, silicon nitride fiber, aluminum silicate fiber, quartz fiber, mullite fiber, alumina fiber, hydroxyapatite fiber, and zirconia fiber;
  • the pore-forming agent materials are carbon powder, polystyrene, polymethyl methacrylate, polylactic acid, polyvinyl alcohol, polyethylene terephthalate, engineering plastics, starch, cellulose, and wood chips. , graphite powder and other materials that can decompose, volatilize or burn at high temperatures;
  • the particle size of the pore-forming agent is 10-300 ⁇ m.
  • the average particle size of the pore-forming agent is 70-90 ⁇ m, for example, about 80 ⁇ m.
  • Porous glass materials with better connectivity can be obtained by adjusting the addition ratio of pore-forming agents with different diameters.
  • the heating unit in step S2 is a heating wire, a heating mesh or a heating film;
  • the heating wire or heating mesh needs to be embedded during the green body molding process, and then sintered together with the molded green body to obtain a porous glass atomization core;
  • the heating film is printed in the form of a thick film resistive heating film by screen printing or a thin film resistive heating film by spraying or magnetron sputtering.
  • the pattern of the heating film is designed, and then the multi-layer resistive heating film is obtained through a sintering step. Hole glass atomizer core.
  • This application also provides a porous glass atomization core, which uses porous glass as a base body and is provided with a heating unit on the base body.
  • the porous glass has a porosity of 50-70% and an average pore diameter of 10-200 ⁇ m;
  • the porous glass has a porosity of 65-80% and an average pore diameter of 10-200 ⁇ m, optionally, an average pore diameter of 70-90 ⁇ m.
  • the porous glass in the scheme a is prepared by the preparation method of the above scheme one;
  • porous glass in Scheme b is prepared by the preparation method of Scheme 2 above.
  • the porous glass in solution b includes a skeleton body and multi-directional connected pores.
  • the skeleton body includes a fiber body and a glass body surrounding the fiber body.
  • the average pore diameter of the multi-directional connected pores is 10-200 ⁇ m.
  • Optional Ground, the average pore diameter is 70-90 ⁇ m.
  • the pore size is generally determined by the size of the pore-forming agent and is equivalent to the size of the pore-forming agent.
  • the fiber body has a diameter of 3-30 ⁇ m and a length of 20-500 ⁇ m;
  • the fiber body has a diameter of 10-25 ⁇ m and a length of 20-150 ⁇ m.
  • the aspect ratio of the fiber body is 1-10, and optionally, the aspect ratio of the fibers with a length of 50-150 ⁇ m in the fiber body is 2-5;
  • the proportion of fibers with a length of more than 50 ⁇ m is more than 25%, optionally, the proportion is more than 40%.
  • the porous glass matrix includes a skeleton and multi-directional connecting holes.
  • the glass powder acts as a binder, and the glass serves as a skeleton bonding point, bonding with the effective fibers of the surface coated or uncoated glass to form a three-dimensional structure; or the glass-coated fiber particles become a skeleton bonding point with the surface.
  • the surface of the formed skeleton structure (the surface of the porous glass material and the internal pore wall) is smooth, continuous, and has no microporous secondary structure.
  • the fiber component needs to be pretreated to the above size.
  • Typical non-limiting glass powder and fiber component pore-forming agents with specific diameters and lengths can be obtained by ball milling and sieving.
  • the fiber components can be obtained by the following methods:
  • dispersants include but are not limited to: stearic acid, oleic acid, paraffin, polyethylene glycol, etc.
  • solvents include but are not limited to: water, alcohol, ethyl acetate, etc.
  • the high-energy ball mill adopts planetary ball mill, the ball milling speed is 100-500r/min, and the ball milling time is 0.5-5h.
  • the mesh size of the sieve after drying is 40-100 mesh (sieving only makes the fiber dispersed more evenly, the actual fiber mesh number is much lower than 40-100 mesh, the laser particle size test result is About 15-100 ⁇ m).
  • the fiber length it can be divided into fiber particles less than 50 ⁇ m and effective fibers with a supporting length of 50-150 ⁇ m.
  • the effective fiber aspect ratio is more than 2.
  • the effective fiber The length is 50-100 ⁇ m, and the aspect ratio is 2-5; the effective fibers account for more than 25% of the total fiber mass, and preferably, the effective fibers account for more than 40% of the total fiber mass.
  • glass powder with uniform particle size can be ball-milled with ethanol as a solvent using a high-energy planetary ball mill at a rotation speed of 200-500 r/min for 3-5 hours, and then dried. Dry and sieve before use.
  • the fiber component generally, commercially available 2-5mm chopped fibers are first crushed to less than 0.5mm through a crusher, and then ethanol is used as the solvent and stearic acid is used as the grinding aid, and high-energy planetary ball milling is performed for 2-12 hours.
  • the ball milling speed is 100-400r/min, preferably 300r/min.
  • the ball-milled fiber is washed with ethanol, dried and passed through a 100-mesh sieve to obtain the target fiber; among them, the effective fiber accounted for the total fiber mass can be adjusted by adjusting the ball milling time
  • the effective fiber mass ratio will account for about 40% of the total fiber mass; if ball milled for 8 hours, the effective fiber mass ratio of the total fiber mass ratio will be about 30%; if ball milled for 12 hours or more, it will be effective.
  • the mass ratio of fiber to total fiber is about 10% or less.
  • the grinding aid can also be oleic acid, paraffin, polyethylene glycol, etc.
  • the solvent can also be water or ethyl acetate.
  • This application also provides an electronic atomizer, including the above-mentioned porous glass atomization core.
  • the atomization core uses porous glass 1 as a base, and a heating unit 2 is provided on the base.
  • the heating unit is a heating wire, a heating mesh or a heating film.
  • the heating wire or heating mesh needs to be embedded during the green molding process, and then sintered together with the molded body to obtain a porous glass atomization core; when using a heating film, screen printing can be used on the porous glass substrate.
  • magnetron sputtering thin film resistance heating film design the pattern of the heating film, and then go through the sintering step to obtain the porous glass atomization core.
  • Typical and non-limiting, thick film resistance heating films are prepared using screen printing technology.
  • the main components of the thick film are nickel-based alloys, iron-based alloys, silver alloys, titanium alloys, aluminum alloys, stainless steel, etc., including Fe, Cr, Ni , Ti, Pa, Pt, Al, Mo, Si, Ag and other elements, the thick film protrusion thickness is 11-100 ⁇ m, the penetration thickness is 10-100 ⁇ m, the line width is 250-450 ⁇ m, and the line spacing is 300 ⁇ m-900 ⁇ m, using For patterns such as S, M, and ⁇ , the heating film sintering temperature is 700-1200°C, and the sintering time is 0.5-3h.
  • Typical and non-limiting, thin film resistance heating films are prepared by spraying or magnetron sputtering.
  • the main components of the film are nickel-based alloys, silver alloys, titanium alloys, aluminum alloys, stainless steel, etc., including Fe, Cr, Ni, Ti, Pa , Pt, Al, Mo, Si, Ag and other elements, the film protruding thickness is 0.5-5 ⁇ m.
  • the heating unit is a porous heating film, where: the porous heating film includes a part higher than the surface of the porous glass substrate and a part that penetrates into the porous glass substrate, where, The part above the surface of the porous glass matrix is a porous structure with a pore diameter of 5-30 ⁇ m. The pores are interconnected and penetrate the matrix pores.
  • the maximum penetration thickness of the film is about 170 ⁇ m, which is embedded in the pores of the porous matrix, so that the entire porous heating film is firmly combined with the porous glass matrix; the resistance of the heating film is 0.8-1.2 ohms.
  • the porous glass atomization core provided by this application uses porous glass as a base, and a heating unit is provided on the base.
  • the porous glass has a porosity of 50-80% and a pore diameter of 10-200 ⁇ m.
  • porous glass has a smooth and continuous surface, which can be well adapted to the thin film heating film and improves the stability of the thin film heating film.
  • this application can reduce the adsorption of low-viscosity components in the atomization medium by the porous glass matrix, and use it as the heating element matrix in the atomization core to improve the taste and taste of the electronic atomizer. Aroma reduction.
  • the porous glass has a porosity of 65-80% and an average pore diameter of 10-200 ⁇ m. Alternatively, the average pore diameter is 70-90 ⁇ m.
  • porous glass and porous ceramics are used as the base of the atomization core to store and transfer the atomization liquid medium.
  • the speed of the atomization liquid medium passing through is slow, which may easily lead to insufficient supply of the atomization liquid medium (e-liquid). It produces a burnt smell, etc.; when the pore size of the matrix is too large, the porous matrix has poor liquid-locking ability, and liquid leakage is prone to occur during the suction process.
  • the porous glass material provided by this application has uniform pore size distribution, good connectivity between pores, and an interconnected structure.
  • the pores can communicate with multiple surrounding pores to form a multi-directional connected pore structure.
  • the smooth porous pore walls make the viscous resistance small when the atomized substrate such as e-cigarette oil passes through.
  • the porous glass matrix has a large oil storage capacity, small tortuosity, and good conductivity. The oil speed is fast. Compared with the porous ceramic matrix on the market, the oil conduction speed of this porous glass matrix can be increased by more than 20%.
  • the preparation method of the porous glass atomization core provided by this application, during the preparation process of the porous glass, by further limiting the diameter, length, aspect ratio and effective fiber proportion of the fiber components, the diameter, length, length of the fiber, etc.
  • Diameter ratio, etc. affect the porosity and strength of the porous glass matrix and the size of the pores.
  • an increase in fiber diameter will reduce the porosity of the matrix. If the fiber diameter is too small, it will not be able to play a supporting role, resulting in reduced matrix strength and excessive fiber length. , it is easy to cause the fibers to bend in the matrix, and the stress release is incomplete, which will also lead to low strength of the matrix. The stress release during subsequent sintering will lead to product failure; there are too few effective fibers, and the matrix cannot be easily supported, reducing the porosity of the matrix.
  • the preparation method of the porous glass atomization core provided by this application, during the preparation process of the porous glass, by limiting the debinding temperature and sintering temperature, the debinding and sintering process can significantly affect the pore size, pores and strength of the porous matrix.
  • the debinding temperature can be selected through the thermodynamic properties of the additives (pore formers, auxiliaries, etc.), so that the additives in the green body can be slowly discharged during the debinding process. If the debinding time is too short, it will affect the product quality, making If the product bubbles or cracks, or the glue removal time is too long, production efficiency will be affected.
  • the sintering temperature and time also affect the final performance of the product.
  • the sintering temperature and sintering time are set according to its softening point. Too high a sintering temperature will cause the product to collapse during sintering, and too low a sintering temperature will cause the product to collapse. The glass melting is incomplete, there are glass powder accumulation holes, and the sample strength is low.
  • the porous glass matrix includes the following mass percentage of raw materials based on the total mass of the raw materials: glass powder 20-80%; fiber component 5-50%; pore-forming agent 10-70 %; Add phase 0-50%.
  • This application uses glass powder as the main component and adds fiber components as the skeleton to prevent the collapse of the pore structure caused by the softening flow of the glass, ensuring the pore structure of the porous glass to a great extent.
  • the prepared porous glass has a relatively high porosity.
  • the characteristics of high (50-80%), suitable pore size (10-200 ⁇ m), smooth and continuous internal surface can reduce the adsorption of low-viscosity components in the atomization medium by the porous matrix and ensure the full atomization of the components of the atomization medium.
  • As the heating element matrix in the atomizer core improves the taste and aroma reduction of the electronic atomizer.
  • the preparation method of porous glass provided in this application can also reduce the addition of harmful substances and improve product safety performance by limiting the raw material components.
  • the porous glass atomization core provided by this application has a permeable, smooth and continuous pore structure. Compared with the porous ceramic heating core, it has smaller oil conduction resistance and faster oil conduction speed, ensuring sufficient oil supply during the atomization process and improving the mist quality.
  • the atomization ability of the core increases the aerosol volume and nicotine satisfaction.
  • the rapid oil supply capability makes the atomization temperature lower, the temperature during the atomization process is uniform, and there are no local high-temperature atomization points, which reduces harmful substances such as flue gas aldehydes and ketones due to excessive atomization temperature, and improves the efficiency of the atomization process.
  • Product safety at the same time, it reduces the occurrence of carbon deposits, scorch and other failures during the product suction process.
  • Figure 1 is the surface (left picture) and cross-sectional (right picture) morphology of the porous glass prepared in Example 1 of the present application;
  • Figure 2 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 2 of the present application;
  • Figure 3 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 3 of the present application;
  • Figure 4 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 4 of the present application;
  • Figure 5 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 5 of the present application;
  • Figure 6 is the surface (left picture) and cross-sectional (right picture) morphology of the porous glass prepared in Example 6 of the present application;
  • Figure 7 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Comparative Example 1 of the present application;
  • Figure 8 is a schematic structural diagram of the atomizing core provided by this application.
  • Figure 9 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 7 of the present application.
  • Figure 10 is a microscopic morphology diagram of the porous glass surface prepared in Example 8 of the present application.
  • Figure 11 is a microscopic morphology diagram of the surface of porous glass prepared in Example 9 of the present application.
  • Figure 12 is a microscopic morphology diagram of the porous glass surface prepared in Example 10 of the present application.
  • Figure 13 is a microscopic morphology diagram of the porous glass surface prepared in Comparative Example 2 of the present application.
  • Figure 14 is a comparison curve of the amount of smoke during the suction process between Example 7 of the present application and commercially available ceramic heating elements;
  • Figure 15 is a comparison chart of carbon deposition conditions between Example 7 of the present application and commercially available ceramic heating elements
  • Figure 16 is the appearance morphology picture (left) and micromorphology picture (right) of the atomizing core provided by this application;
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 3 hours. It is kept at 200°C for 3 hours. It is heated to 200°C at a constant speed to 250°C for 3 hours. It is kept at 250°C for 3 hours.
  • 250°C is heated to 300°C at a constant speed, the time is 3h, 300°C is kept for 3 hours, 300°C is heated to 350°C at a constant speed, the time is 3h, 350°C is kept for 3 hours, 350°C is heated to 600°C at a constant speed, the time is 4h, 600 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 60 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 1.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 2.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • the green body debinding process is: the room temperature is heated to 200°C at a constant speed for 4 hours, the temperature is maintained at 200°C for 5 hours, the temperature is raised to 200°C at a constant speed for 6 hours, the temperature is maintained at 250°C for 6 hours, and the temperature is heated from 250°C to 300°C at a constant speed.
  • the time is 5h, keep 300°C for 6 hours, 300°C is heated to 350°C at a constant speed, the time is 6h, 350°C is kept for 4 hours, 350°C is heated to 700°C at a constant speed, the time is 6h, 700°C is kept for 2 hours, the sintering temperature is 1100 °C, the sintering time is 60min, the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and the shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 3.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1000°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 4.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1000°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 5.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the protruding thickness of the thick film is about 70 ⁇ m.
  • the infiltration thickness is about 20 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 7.
  • a thick film resistive heating film is printed by screen printing, using a nickel-based Alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements), the thick film protrusion thickness is about 60 ⁇ m, the penetration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, and the line spacing is 600 ⁇ m , the sintering temperature is 1000°C, the time is 30min, and the atomizing core is obtained.
  • nickel-based Alloy specific element composition: nickel, iron, chromium, copper, molybdenum and other elements
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • Raw material treatment Using ethanol as the solvent, grind the glass powder in a planetary ball mill for 3 hours at a speed of 300 r/min, dry and sieve to obtain glass powder with a particle size of 3-5 ⁇ m (the same below); grind the crushed molybdenum Stone chopped fiber is used, using stearic acid as grinding aid and ethanol as solvent, planetary ball milling at 300r/min for 6 hours, washed with ethanol, dried, and sieved with 100 mesh to obtain fiber raw materials.
  • the effective fiber accounts for The total fiber mass is 40%, and the effective fiber aspect ratio is 2-5.
  • Ingredients for molding 48g glass powder, 52g mullite fiber, 100g PMMA (80 ⁇ m) pore-forming agent ingredients, mix in a three-dimensional mixer for 2 hours, add the mixed materials to the internal mixer, add 20% of the mixed material mass % paraffin, 5% polyethylene, 5% dispersing aid (stearic acid or dibutyl phthalate, dibutyl phthalate is used in this example, the same below), 180°C Mix for 2 hours, and then prepare a green body through an injection molding machine.
  • PMMA 80 ⁇ m
  • pore-forming agent ingredients mix in a three-dimensional mixer for 2 hours, add the mixed materials to the internal mixer, add 20% of the mixed material mass % paraffin, 5% polyethylene, 5% dispersing aid (stearic acid or dibutyl phthalate, dibutyl phthalate is used in this example, the same below), 180°C Mix for 2 hours, and then prepare a green body through an injection molding machine.
  • Debinding and sintering heat up to 200°C for 200 minutes, then heat up to 500°C at 0.5°C per minute, with 2 hours of holding time set at 240°C, 280°C, 300°C, and 350°C, and then heat up at 5°C per minute. to 1180°C, kept for 30 minutes, and naturally cooled to room temperature to obtain a porous glass material with a fiber content of 52%.
  • the microscopic morphology of the porous glass is shown in Figure 9.
  • the atomizing core is prepared with the prepared porous glass matrix, and the ruthenium-based porous thick film heating film slurry is used.
  • the main component is ruthenium dioxide (containing trace amounts of Ag, Cu, Ni, and Bi elements).
  • the printed film is sintered to obtain porous Heating film, the porous heating film has a pore diameter of 5-30 ⁇ m, the pores are connected to each other, and penetrate the matrix pores, about 80 ⁇ m higher than the matrix, and the penetration thickness is about 70 ⁇ m.
  • the pattern is shown in Figure 16, and the line width is about 330 ⁇ m, the line spacing is about 650 ⁇ m, the distance between the lines and the edge of the substrate is about 800 ⁇ m, the sintering temperature is 980°C, the time is 30 minutes, and the porous glass atomization core is obtained.
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • Ingredients for molding 40g glass powder, 60g fiber, 200g PMMA (80 ⁇ m) pore-forming agent ingredients, mix in a three-dimensional mixer for 2 hours, add the mixed materials to the internal mixer, and add paraffin accounting for 20% of the mass of the mixed material , 5% polyethylene, 5% dispersing aid, mix at 180°C for 2 hours, and then prepare a green body through an injection molding machine.
  • 40g glass powder, 60g fiber, 200g PMMA (80 ⁇ m) pore-forming agent ingredients mix in a three-dimensional mixer for 2 hours, add the mixed materials to the internal mixer, and add paraffin accounting for 20% of the mass of the mixed material , 5% polyethylene, 5% dispersing aid, mix at 180°C for 2 hours, and then prepare a green body through an injection molding machine.
  • Debinding and sintering heat up to 200°C for 200 minutes, then heat up to 500°C at 0.5°C per minute, with 2 hours of holding time set at 240°C, 280°C, 300°C, and 350°C, and then heat up at 5°C per minute. to 1220°C, kept for 30 minutes, and naturally cooled to room temperature to obtain a porous glass material with a fiber content of 60%.
  • the micromorphology of the porous glass matrix is shown in Figure 10.
  • the preparation method of the heating film is the same as in Example 7.
  • the present application relates to a porous glass atomizing core, and its preparation method includes the following steps:
  • Raw material processing Using ethanol as the solvent, grind the glass powder in a planetary ball mill for 3 hours at a speed of 300 r/min, dry and sieve to obtain glass powder with a particle size of 3-5 ⁇ m; chop the crushed mullite into short pieces Fiber, use stearic acid as grinding aid, ethanol as solvent, planetary ball milling at 300r/min for 8 hours, ethanol washing, drying, and 100 mesh sieving to obtain fiber raw materials, the effective fiber accounts for 25% of the total fiber mass %, the effective fiber aspect ratio is 2-5.
  • Ingredients for molding 62g glass powder, 38g mullite fiber, 240g PMMA (80 ⁇ m) pore-forming agent ingredients, mix in a three-dimensional mixer for 2 hours, add the mixed materials to the internal mixer, add 20% of the mixed material mass % paraffin, 5% polyethylene, 5% dispersing aid, mix at 180°C for 2 hours, and then prepare a green body through an injection molding machine.
  • Debinding and sintering heat up to 200°C for 200 minutes, then heat up to 500°C at 0.5°C per minute, with 2 hours of holding time set at 240°C, 280°C, 300°C, and 350°C, and then heat up at 5°C per minute. to 1200°C, kept for 30 minutes, and naturally cooled to room temperature to obtain a porous glass material with a fiber content of 38%.
  • the microscopic morphology of the porous glass is shown in Figure 11.
  • the preparation method of the heating film is the same as in Example 7.
  • This embodiment provides a porous glass atomizing core, and its preparation method includes the following steps:
  • Raw material processing Using ethanol as the solvent, grind the glass powder in a planetary ball mill for 3 hours at a speed of 300 r/min, dry and sieve to obtain glass powder with a particle size of 3-5 ⁇ m; chop the crushed mullite into short pieces Fiber, using stearic acid as grinding aid, ethanol as solvent, planetary ball milling at 300r/min for 12 hours, washing with ethanol, drying, and sieving with 100 mesh to obtain fiber raw materials, the effective fiber accounts for 10% of the total fiber mass %, the effective fiber aspect ratio is 2-5.
  • Ingredients for molding 62g glass powder, 38g mullite fiber, 240g PMMA (80 ⁇ m) pore-forming agent ingredients, mix in a three-dimensional mixer for 2 hours, add the mixed materials to the internal mixer, add 20% of the mixed material mass % paraffin, 5% polyethylene, 5% dispersing aid, mix at 180°C for 2 hours, and then prepare a green body through an injection molding machine.
  • Debinding and sintering heat up to 200°C for 200 minutes, then heat up to 500°C at 0.5°C per minute, with 2 hours of holding time set at 240°C, 280°C, 300°C, and 350°C, and then heat up at 5°C per minute. to 1250°C, kept for 30 minutes, and naturally cooled to room temperature to obtain a porous glass material with a fiber content of 38%.
  • the microscopic morphology of the porous glass is shown in Figure 12.
  • the preparation method of the heating film is the same as in Example 7. After testing, the resistance value of the heating film obtained in Examples 7-10 is 0.8-1.2 ohms.
  • This comparative example provides an atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the sintering temperature is 1100°C and the sintering time is 60 minutes.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • the comparative example provides a porous glass atomization core, and its preparation method includes the following steps:
  • Ingredients for molding 70g glass powder, 30g mullite fiber, 200g PMMA (80 ⁇ m) pore-forming agent ingredients, mix in a three-dimensional mixer for 2 hours, add the mixed materials to the internal mixer, add 20% of the mixed material mass % paraffin, 5% polyethylene, 5% dispersing aid, mix at 180°C for 2 hours, and then prepare a green body through an injection molding machine.
  • Debinding and sintering heat up to 200°C for 200 minutes, then heat up to 500°C at 0.5°C per minute, with 2 hours of holding time set at 240°C, 280°C, 300°C, and 350°C, and then heat up at 5°C per minute. to 1320°C, kept for 30 minutes, and naturally cooled to room temperature to obtain a porous glass material with a fiber content of 30%.
  • the microscopic morphology of the porous glass is shown in Figure 13.
  • the preparation method of the heating film is the same as in Example 7.
  • This application uses the drainage method for porosity testing. First, weigh the dry weight M 0 of the porous glass, then place the porous glass in a container, submerge it with deionized water, and use a vacuum drying oven to evacuate for about 20 minutes. Remove the water, weigh the wet weight M 1 , and then put it into deionized water to weigh the floating weight M 2 .
  • the porosity is obtained by the following formula. Three samples from the same batch are tested and the average value is taken.
  • This application uses a pore size analyzer (bubble point analyzer) to conduct pore size testing and use this to determine the pore size distribution of porous glass.
  • a pore size analyzer bubble point analyzer
  • d max is the maximum pore diameter
  • is the surface tension of the wetting fluid
  • is the contact angle between the wetting fluid and the material to be tested
  • ⁇ P is the gas pressure difference on both sides of the sample to be tested.
  • the air pressure test range is 0-300KPa.
  • the "bubble test” method is used to conduct the test.
  • the pore diameter data detected is actually the diameter data of the pore throats interconnected by multi-directional connected pores in the porous glass matrix.
  • This application uses the same atomization medium to conduct the oil conduction speed test.
  • Weigh 1g of the mixed solvent of glycerol (VG) and propylene glycol (PG), where PG:VG 1:1, and drop it into a container with a diameter of 2mm.
  • the liquid level is about 1-3 mm lower than the height of the porous sample.
  • the taste evaluation standards mainly include the following evaluation indicators, aroma concentration, irritation (miscellaneous gas), smoke volume, sweetness, throat hit, smoke humidity, Aroma restoration and satisfaction.
  • the maximum score for each evaluation index is 10 points, and the scoring unit for each evaluation index is 0.5 points. Except for irritation (gas), which is scored in the reverse direction, the other indicators are scored in the positive direction.
  • aroma concentration the sensory intensity of the nasal cavity and oral cavity to the overall aerosol
  • irritation the sensory perception of irritation to the mouth, throat, and nasal cavity of the smoke after the atomization medium is atomized, such as Granular feeling, pinprick feeling and miscellaneous gas, etc.
  • aerosol volume the amount of aerosol formed after atomization of the atomizing medium The total amount, as well as the amount of aerosol felt through the mouth and visually seen after exhalation.
  • Sweetness the intensity of the sweetness perceived in the mouth after atomization of the atomized medium and the intensity of the sweet aroma felt in the nasal cavity
  • throat hit the physical sense of the impact of the aerosol on the throat after inhaling the aerosol Intensity
  • aerosol humidity the degree of dryness and wetness of aerosol particle droplet molecules perceived by the oral cavity and nasal cavity
  • aroma reduction degree the mixing uniformity and coordination of the aroma after the atomization medium is atomized
  • satisfaction the same number of puffs , the short-term brain excitement caused by the absorption of nicotine into the lungs can include symptoms such as numbness in the head and dizziness.
  • the atomizing cores of the same shape and size and the ceramic heating element (Shenzhen Maxwell Technology Co., Ltd., Feelm heating element) prepared in the Examples and Comparative Examples of the present application were selected to conduct basic performance tests and install cigarettes for smoking.
  • Comparative Example 1 has a low porosity and pore size.
  • the solvent cannot reach the sample surface, the oil conduction time cannot be calculated, and the taste and aroma reduction degree cannot be scored.
  • Comparative Example 1 only uses glass, pore-forming agents and additive phases to prepare porous glass, with fewer surface pores and mostly closed pores in the internal structure.
  • the pores on the surface and inside are significantly increased, and most of them are open pores.
  • the porosity of Comparative Example 1 is only 5%, while the examples provided in this application have increased the porosity and pore diameter of the sample by adding fiber components as the skeleton. improvement.
  • Example 6 part of the zeolite powder was added as an additive phase. Compared with Example 2, due to the reduction in the amount of fibers that produce the stacking effect, the porosity and pore size of the sample were slightly reduced, and granular zeolite can be clearly seen in the cross section. Powder. After adding zeolite powder, it has little effect on the overall taste, but it can increase the strength of the heating element to a certain extent and improve the deformation of the heating element.
  • the atomizing core prepared by the embodiment of the present application has a significantly improved oil conduction speed.
  • the glass is smooth and continuous, phase separation transmission is reduced, and the aroma reduction degree and overall taste score are also improved. Got a big improvement.
  • the porous glass atomizing core prepared in Examples 7-10 was tested for smoke installation. It was found that the amount of smoke sucked by the porous glass atomizing core was attenuated. Under the condition of 1000 puffs, the porous glass atomizing core prepared in Examples 7-10 was basically smoke-free. Attenuation, where the attenuation of the smoke amount in Example 7 is shown in Figure 14; compared with the commercially available ceramic heating element (Shenzhen Maxwell Technology Co., Ltd., Feelm heating element), the porous glass atomizing core in Example 7 It is not easy to deposit carbon after use. As shown in Figure 15, after 400 puffs, the porous glass atomizing core (left picture) has significant advantages over the ceramic heating element (right picture) in terms of carbon deposition.
  • Embodiments 8-10 are close to the effect of Embodiment 7 in terms of carbon deposition, and also have significant advantages over ceramic heating elements, so they will not be shown one by one.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本申请属于电子雾化装置技术领域,具体涉及一种多孔玻璃雾化芯及其制备方法和电子雾化器。所述多孔玻璃雾化芯的制备方法中,多孔玻璃的制备以玻璃粉为主体成分,通过添加纤维组分作为骨架,防止了因玻璃软化流动造成的孔隙结构坍塌,极大程度的保证了多孔玻璃的孔隙结构,制备得到的多孔玻璃具有孔隙率较高(50-80%)、孔尺寸合适(10-200μm)、内部表面光滑、连续特点,能够减少多孔基体对雾化介质中低粘度成分的吸附,保证了雾化介质成分的充分雾化,作为电子雾化器中发热体的基体,提升了电子雾化器的口感和香气还原度。通过对纤维组分直径和长径比等的具体限定,还能够避免抽吸过程中烟雾量衰减和积碳的发生。

Description

一种多孔玻璃雾化芯及其制备方法和电子雾化器
相关申请的交叉引用
本申请要求在2022年5月25日提交中国专利局、申请号为202210579323.5、发明名称为“一种多孔玻璃及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于电子雾化装置技术领域,具体涉及一种多孔玻璃雾化芯及其制备方法和电子雾化器。
背景技术
电子雾化器是一种通过雾化等手段,将雾化介质等变成蒸汽,让用户吸食的一种产品。雾化芯是电子雾化器的核心部件,对电子雾化器的口感、气溶胶量等性能起到了至关重要的的作用。
封闭式电子雾化器大部分采用多孔陶瓷作为雾化芯,大多数采用硅藻土、氧化硅、氧化铝等为原料,加入玻璃粉、造孔剂等,通过烧结制备的颗粒堆积产生的多孔陶瓷。采用多孔陶瓷作雾化芯,具有均一性好,寿命长,口感细腻、械化程度高等特点。但是,多孔陶瓷发热体具有一定的比例的半闭孔和微细孔隙的特点,容易造成对雾化介质中低粘度成分的吸附,进而影响抽吸口感和香气还原度。同时,多孔陶瓷发热体微观表面粗糙、连续性较低,无法搭配薄膜发热膜。
与多孔陶瓷相比,多孔玻璃具有微观结构光滑连续、微纳孔比例较低的特点,不易对雾化介质产生吸附的特点。目前,多孔玻璃的制备,一般采用造孔剂法、发泡法或者海绵浸渍法。发泡法是使玻璃软化、发泡、退火制备的多孔玻璃,较难精确控制样品的尺寸,而且闭孔率较高。海绵浸渍法,以海绵为骨架、排胶、烧结制备多孔玻璃,但是,存在孔尺寸过大(大于300μm)、孔隙分布不均、烧结易坍塌的现象,不适合作为雾化芯。直接采用造孔剂法制备的样品,玻璃达到软化点后,孔隙结构容易坍塌,无法同时保证微观结构连续和高孔隙率两方面的要求。
因此,有待开发一种以多孔玻璃为基体的雾化芯。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的多孔玻璃雾化芯孔隙率低、孔隙结构容易坍塌等缺陷,从而提供一种多孔玻璃雾化芯及其制备方法和电子雾化器。
为此,本申请提供如下技术方案:
本申请提供一种多孔玻璃雾化芯的制备方法,包括如下步骤:
S1,采用如下方案制备多孔玻璃
方案一:所述多孔玻璃的制备方法包括:将玻璃粉、纤维组分、造孔剂和添加相混合,制备生坯,经排胶,烧结,得到所述多孔玻璃;
或者,方案二:所述多孔玻璃的制备方法包括:将玻璃粉、纤维组分、造 孔剂混合,制备生坯,经排胶,烧结,得到所述多孔玻璃;
S2,以所述多孔玻璃为基体,在所述基体上设置发热单元。
可选地,所述纤维组分的直径为3-30μm,长度为20-500μm;
可选地,所述纤维组分的直径为10-25μm,长度为20-150μm。
可选地,所述纤维组分的长径比为1-10,可选地,长度为50-150μm的纤维的长径比为2-5;
和/或,纤维组分中,纤维长度在50μm以上的纤维占比在25%,可选地,占比在40%以上;进一步可选地,占比为40-100%。
可选地,所述方案一中,以原料的总质量计,包括纤维组分15-50%;
可选地,以原料的总质量计,包括如下质量百分含量的原料:
玻璃粉20-70%;纤维组分15-50%;造孔剂为10-70%;添加相0-50%。
进一步可选地,所述添加相的质量百分含量为1-50%;
或者,所述方案二中,
以玻璃粉和纤维组分的总质量计,所述玻璃粉占40-62%,所述纤维组分占38-60%;
和/或,所述造孔剂的用量为玻璃粉和纤维组分总质量的0.3-2.5倍。
可选地,方案一和方案二中独立地选用流延工艺,注塑工艺,干压工艺,凝胶注模程序工艺中的任一种制备生坯;
制备生坯的上述工艺均为领域内已知的,可根据选择的不同工艺添加使用相应的加工助剂。典型非限定性地,注塑工艺的步骤大致为:将混料后的材料与注塑添加剂(石蜡、聚乙烯及分散剂等)于密炼机高温密炼至均匀,再通过注塑制备成指定形状的生坯。
和/或,所述排胶温度为200-800℃,排胶时间为5-50h;可选地,所述排胶温度为200-350℃;一般的,可以根据造孔剂的热重曲线来获得较优的排胶工艺。
和/或,所述烧结温度为900-1250℃或者1180-1320℃,烧结时间为10-180min。
可选地,所述的多孔玻璃的制备方法,满足以下(1)-(5)中的至少一项:
(1)所述玻璃粉的软化温度为600-1200℃;所选纤维原料的软化点在制备方法中的烧结温度以上即可起到骨架作用;
(2)所述玻璃粉的粒径在10μm以下,可选地,粒径在3000目以下;
(3)所述纤维组分为碳化硅纤维,氮化硅纤维,硅酸铝纤维,石英纤维,莫来石纤维,氧化铝纤维,羟基磷石灰纤维,氧化锆纤维中的至少一种;
(4)所述造孔剂材料为碳粉、聚苯乙烯、聚甲基丙烯酸甲酯、聚乳酸、聚乙烯醇、聚对苯二甲酸乙二醇酯、工程塑料、淀粉、纤维素、木屑、石墨粉中等经高温能分解、挥发或燃烧的材料中的一种或混合物;
(5)所述造孔剂的粒径为10-300μm,可选地,所述造孔剂的平均粒径为70-90μm,例如约80μm。可以通过调节不同直径造孔剂的加入比例来获得更好连通性的多孔玻璃材料。
可选地,步骤S2中的发热单元为发热丝,发热网或发热膜;
可选地,发热丝或发热网需要在生坯成型过程中嵌入,然后与成型坯体一起进行烧结,得到多孔玻璃雾化芯;
可选地,发热膜采用丝网印刷的方式印刷厚膜电阻发热膜或者喷涂、磁控溅射薄膜电阻发热膜的形式,设计发热膜的图案,然后再经过烧结步骤得到多 孔玻璃雾化芯。
本申请还提供一种多孔玻璃雾化芯,所述多孔玻璃雾化芯以多孔玻璃为基体,基体上设置有发热单元,
在方案a中:所述多孔玻璃的孔隙率为50-70%,平均孔径为10-200μm;
或者,在方案b中,所述多孔玻璃的孔隙率为65-80%,平均孔径为10-200μm,可选地,平均孔径为70-90μm。
可选地,所述方案a中多孔玻璃由上述的方案一的制备方法制备得到;
或者,所述方案b中多孔玻璃由上述的方案二的制备方法制备得到。
可选地,所述方案b中的多孔玻璃包括骨架体及多向连通孔,骨架体包括纤维体及包绕纤维体的玻璃体,所述多向连通孔的平均孔径为10-200μm,可选地,平均孔径为70-90μm。该孔径一般是由造孔剂的尺寸决定的,与造孔剂的尺寸相当。
可选地,所述纤维体的直径为3-30μm,长度为20-500μm;
可选地,所述纤维体的直径为10-25μm,长度为20-150μm。
可选地,所述纤维体的长径比为1-10,可选地,纤维体中长度为50-150μm的纤维的长径比为2-5;
和/或,纤维体中,长度在50μm以上的纤维占比在25%以上,可选地,占比在40%以上。
本申请提供的多孔玻璃雾化芯中,多孔玻璃基体包括骨架及多向连通孔。其中,玻璃粉起粘结剂作用,玻璃作为骨架粘接点,与表面包覆或未包覆玻璃的有效纤维粘结,形成三维结构;或玻璃包覆纤维颗粒成为骨架粘结点,与表面包覆或未包覆玻璃的有效纤维粘结,形成三维结构。所形成的骨架结构表面(多孔玻璃材料表面及内部孔壁)光滑、连续、无微小孔次级结构。
本申请中,如果纤维组分的直径和长度不在上述范围内,需要对纤维组分预处理至上述尺寸。
典型非限定性的,特定直径和长度的玻璃粉、纤维组分造孔剂可以通过球磨,筛分得到,具体的,可以通过如下方法获得纤维组分:
先对纤维原料进行剪断过筛;称取剪断过筛后的纤维、分散剂、溶剂进行高能球磨;将磨好后的纤维进行干燥,随后进行过筛,随后取筛下的纤维,对直径、长度进行SEM观察。通过工艺参数控制纤维的长度和直径,其中,剪断过筛的筛网目数为10-40目。
其中,分散剂包括但不仅限于:硬脂酸、油酸、石蜡、聚乙二醇等。
其中,溶剂包括但不仅限于:水、酒精、乙酸乙酯等。
其中,高能球磨采用行星球磨,球磨转速为100-500r/min,球磨时间为0.5-5h。
典型非限定性的,干燥后过筛的筛网目数为40-100目(过筛只是让纤维分散更加均匀一点,实际的纤维目数是远低于40-100目的,激光粒度测试结果为15-100μm左右)。
其中,按照纤维长度的大小及作用不同,可将其分为小于50μm的纤维颗粒,及起支撑作用的长度为50-150μm的有效纤维,有效纤维长径比为2以上,优选地,有效纤维长度50-100μm,长径比为2-5;有效纤维占总纤维质量的25%以上,优选地,有效纤维占总纤维质量40%以上。
典型非限定性地,为了获得均匀粒径的玻璃粉,可将市售的玻璃粉末,以乙醇为溶剂,使用高能行星球磨机以200-500r/min的转速,球磨3-5小时,烘 干过筛后使用。
对于纤维组分,一般的,先通过破碎机将市售的2-5mm的短切纤维破碎至0.5mm以下,再以乙醇为溶剂,硬脂酸为助磨剂,高能行星球磨2-12小时,球磨转速100-400r/min,优选的,以300r/min球磨,球磨后的纤维经乙醇洗涤,烘干过100目筛,获得目标纤维;其中,有效纤维占总纤维质量可以通过调节球磨时间来改变,一般的,300r/min球磨速度下,球磨6小时,有效纤维占总纤维质量比约40%,球磨8小时,有效纤维占总纤维质量比约30%,球磨12小时及以上,有效纤维占总纤维质量比约10%及以下。其中,助磨剂还可以为油酸、石蜡、聚乙二醇等。溶剂还可以为水或乙酸乙酯等。
本申请还提供一种电子雾化器,包括上述的多孔玻璃雾化芯。
典型非限定性的,如图8所示,所述雾化芯以多孔玻璃1为基体,基体上设置有发热单元2,所述发热单元为发热丝,发热网或发热膜。其中,发热丝或发热网需要在生坯成型过程中嵌入,然后与成型坯体一起进行烧结,得到多孔玻璃雾化芯;当采用发热膜的时候,可以在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜或者喷涂、磁控溅射薄膜电阻发热膜的形式,设计发热膜的图案,然后再经过烧结步骤得到多孔玻璃雾化芯。
典型非限定性的,采用丝网印刷工艺制备厚膜电阻发热膜,厚膜的主要成分为镍基合金、铁基合金、银合金、钛合金、铝合金、不锈钢等,包含Fe、Cr、Ni、Ti、Pa、Pt、Al、Mo、Si、Ag等元素,厚膜突出厚度为11-100μm,下渗厚度为10-100μm,线宽为250-450μm,线距为300μm-900μm,采用的图案S、M、Ω等图案,发热膜烧结温度为700-1200℃,烧结时间为0.5-3h。
典型非限定性的,采用喷涂或者磁控溅射制备薄膜电阻发热膜,薄膜的主要成分为镍基合金、银合金、钛合金、铝合金、不锈钢等,包含Fe、Cr、Ni、Ti、Pa、Pt、Al、Mo、Si、Ag等元素,薄膜突出厚度为0.5-5μm。
例如,一种基于多孔玻璃材料印膜烧结后制备的多孔玻璃雾化芯,其发热单元为多孔发热膜,其中:多孔发热膜包括高于多孔玻璃基体表面部分和渗入多孔玻璃基体部分,其中,高于多孔玻璃基体表面部分为多孔结构,孔径5-30μm,孔与孔之间相互连通,并与基体孔贯通,其高度30-100μm,优选的高度约为60μm;渗入多孔玻璃基体部分的发热膜,最大渗入厚度约为170μm,其镶嵌于多孔基体孔道内,使整个多孔发热膜与多孔玻璃基体结合牢固;发热膜阻值0.8-1.2欧姆。
本申请技术方案,具有如下优点:
本申请提供的多孔玻璃雾化芯,以多孔玻璃为基体,基体上设置有发热单元,所述多孔玻璃的孔隙率为50-80%,孔径为10-200μm。多孔玻璃与多孔陶瓷相比表面光滑连续,可以很好的适配薄膜发热膜,提高了薄膜发热膜的稳定性。本申请通过对多孔玻璃的孔隙率和孔径的限定,能够减少多孔玻璃基体对雾化介质中低粘度成分的吸附,以其作为雾化芯中发热体基体,提升了电子雾化器的口感和香气还原度。
本申请提供的多孔玻璃雾化芯,所述多孔玻璃的孔隙率为65-80%,平均孔径为10-200μm,可选地,平均孔径为70-90μm。一般的,多孔玻璃和多孔陶瓷作为雾化芯基体,储存及传递雾化液介质,当基体孔径较小时,雾化液介质通过的速度慢,容易导致雾化液介质(烟油)供给不足,产生焦味等;当基体孔径太大时,多孔基体锁液能力差,抽吸过程中容易出现漏液的问题。本申请所提供的多孔玻璃材料,孔径分布均匀,孔与孔联通性好,相互搭架的结构形成 的孔能与周围的多个孔联通,形成多向连通孔结构,光滑的多孔孔壁使得烟油等雾化基质通过时粘滞阻力小,多孔玻璃基体储油量大,迂曲度小,导油速度快,对比市售多孔陶瓷基体,该多孔玻璃基体导油速度能提升20%以上。
本申请提供的多孔玻璃雾化芯的制备方法,在多孔玻璃制备过程中,通过对纤维组分的直径、长度、长径比和有效纤维占比等的进一步限定,纤维的直径、长度、长径比等影响多孔玻璃基体的孔隙率及强度和孔的大小,一般的,纤维直径增加将降低基体孔隙率,纤维直径太小,将不能起到支撑作用,使基体强度降低,纤维长度过大,容易导致纤维在基体中弯曲,应力释放不完全,也将导致基体强度低,后续烧结使用中应力释放导致产品失效;有效纤维过少,基体不容易被支撑,降低基体孔隙率。
本申请提供的多孔玻璃雾化芯的制备方法,在多孔玻璃的制备过程中,通过对排胶温度和烧结温度的限定,排胶烧结工艺能显著影响多孔基体孔径、孔隙和强度状况,一般的,排胶温度可以通过添加剂(造孔剂,助剂等)的热力学性能加以选择,使得生坯中的添加剂能够在排胶过程中缓慢的排出,排胶时间过短,将影响产品质量,使得产品鼓泡或产生裂纹,排胶时间过长,将影响生产效率。一般的,烧结温度及时间也影响产品最终性能,本案中对于选择的玻璃材料,根据其软化点设置烧结温度和烧结时间,过高的烧结温度会使得产品烧结坍塌,过低的烧结温度会使得玻璃熔融不完全,有玻璃粉末堆积孔,样品强度低。
本申请提供的多孔玻璃雾化心,多孔玻璃基体以原料的总质量计,包括如下质量百分含量的原料:玻璃粉20-80%;纤维组分5-50%;造孔剂10-70%;添加相0-50%。本申请以玻璃粉为主体成分,通过添加纤维组分作为骨架,防止了因玻璃软化流动造成的孔隙结构坍塌,极大程度的保证了多孔玻璃的孔隙结构,制备得到的多孔玻璃具有孔隙率较高(50-80%)、孔尺寸合适(10-200μm)、内部表面光滑、连续的特点,能够减少多孔基体对雾化介质中低粘度成分的吸附,保证了雾化介质成分的充分雾化,作为雾化芯中发热体基体,提升了电子雾化器的口感和香气还原度。本申请提供的多孔玻璃的制备方法,通过对原料组分的限定,也能减少有害物质的加入,提升了产品安全性能。
本申请提供的多孔玻璃雾化芯,孔隙结构贯通、光滑连续,与多孔陶瓷发热芯相比导油阻力较小、导油速度较快,保证了雾化过程中供油的充足,提升了雾化芯的雾化能力,提高了气溶胶量和尼古丁满足感。同时,快速的供油能力使得雾化温度较低,雾化过程中温度均匀,无局部高温雾化点,减少了因雾化温度过高产生的有害物质如:烟气醛酮等,提升了产品安全性;同时,减少了产品抽吸过程中积碳、焦糊等失效的发生。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1制备的多孔玻璃表面(左图)和断面(右图)形貌;
图2是本申请实施例2制备的多孔玻璃表面(左图)和断面(右图)形貌;
图3是本申请实施例3制备的多孔玻璃表面(左图)和断面(右图)形貌;
图4是本申请实施例4制备的多孔玻璃表面(左图)和断面(右图)形貌;
图5是本申请实施例5制备的多孔玻璃表面(左图)和断面(右图)形貌;
图6是本申请实施例6制备的多孔玻璃表面(左图)和断面(右图)形貌;
图7是本申请对比例1制备的多孔玻璃表面(左图)和断面(右图)形貌;
图8是本申请提供的雾化芯结构示意图;
图9是本申请实施例7制备的多孔玻璃表面(左图)和断面(右图)形貌;
图10是本申请实施例8制备的多孔玻璃表面微观形貌图;
图11是本申请实施例9制备的多孔玻璃表面微观形貌图;
图12是本申请实施例10制备的多孔玻璃表面微观形貌图;
图13是本申请对比例2制备的多孔玻璃表面微观形貌图;
图14是本申请实施例7和市售陶瓷发热体在抽吸过程中的烟雾量对比曲线;
图15是本申请实施例7和市售陶瓷发热体的积碳情况对比图;
图16是本申请提供的雾化芯外观形貌图(左)及微观形貌图(右);
附图标记:
1、多孔玻璃;2、发热单元。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种多孔玻璃雾化芯,其制备方法包括如下步骤:
先对莫来石纤维进行剪断,采用20目筛网进行过筛,称取过筛后的莫来石纤维100g、硬脂酸5g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比3:1,球磨转速为300r/min,球磨时间为30min。将磨好后的莫来石纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉35g(软化温度1080℃,下同)、50μm PMMA造孔剂40g、球磨过筛后的莫来石纤维25g,采用三维混料机,混料2h。采用注塑成型,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为3小时,200℃保温3h,200℃匀速升温至250℃,时间为3h,250℃保温3小时,250℃匀速升温至300℃,时间为3h,300℃保温3小时,300℃匀速升温至350℃,时间为3h,350℃保温3小时,350℃匀速升温至600℃,时间为4h,600℃保温2小时。烧结温度为1100℃,烧结时间为60min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图1所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例2
本实施例提供一种多孔玻璃雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉35g、100μm ASA造孔剂40g,球磨过筛后的氧化铝纤维25g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1100℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图2所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例3
本实施例提供一种多孔玻璃雾化芯,其制备方法包括如下步骤:
先对硅酸铝纤维进行剪断,采用40目筛网进行过筛,称取过筛后的硅酸铝纤维100g、硬脂酸10g、体积浓度为100%酒精100g,进行行星球磨,其中球料比5:1,球磨转速为400r/min,球磨时间为2h。将磨好后的硅酸铝纤维在100℃烘箱内进行干燥,随后采用60目的筛网进行过筛。
按照质量称取3000目玻璃粉35g、200μm PET造孔剂40g、球磨过筛后的硅酸铝纤维25g,采用三维混料机,混料3h。采用注塑成型工艺,进行生坯的制备,
生坯排胶工艺为:室温匀速升温至200℃,时间为4小时,200℃保温5h,200℃匀速升温至250℃,时间为6h,250℃保温6小时,250℃匀速升温至300℃,时间为5h,300℃保温6小时,300℃匀速升温至350℃,时间为6h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时,烧结温度为1100℃,烧结时间为60min,烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图3所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例4
本实施例提供一种多孔玻璃雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉20g、100μm ASA造孔剂30g,球磨过筛后的氧化铝纤维50g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1000℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图4所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例5
本实施例提供一种多孔玻璃雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉80g、100μm ASA造孔剂15g,球磨过筛后的氧化铝纤维5g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1000℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图5所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为70μm左右,下渗厚度为20μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例6
本实施例提供一种多孔玻璃雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目的玻璃粉35g、100μm ASA造孔剂40g,球磨过筛后的氧化铝纤维20g,并添加30μm左右的沸石粉末5g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1100℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图7所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基 合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例7
本实施例提供一种多孔玻璃雾化芯,其制备方法包含如下步骤:
原料处理:以乙醇为溶剂,将玻璃粉末以300r/min的转速,于行星球磨机中球磨3h,烘干、过筛,获得粒径3-5μm的玻璃粉(下同);将粉碎后的莫来石短切纤维,以硬脂酸为助磨剂,以乙醇为溶剂,以300r/min的转速,行星球磨6小时,乙醇洗涤后烘干、100目过筛,获得纤维原料,有效纤维占纤维总质量40%,有效纤维长径比为2-5。
配料成型:以48g玻璃粉、52g莫来石纤维、100gPMMA(80μm)造孔剂配料,在三维混料机中混料2h,将混合后的材料加入密炼机中,加入占混合物料质量20%的石蜡,5%的聚乙烯,5%的分散助剂(硬脂酸或邻苯二甲酸二丁酯,本实施例中采用的为邻苯二甲酸二丁酯,下同),180℃密炼2h,再通过注塑机制备成生坯。
排胶烧结:按200分钟升温至200℃,再以0.5℃每分钟升温至500℃,其中分别于240℃,280℃,300℃,350℃设置2小时保温时间,然后按5℃每分钟升温至1180℃,保温30分钟,自然冷却至室温,获得纤维含量为52%的多孔玻璃材料,多孔玻璃微观形貌如图9所示。
发热膜制备:以制备的多孔玻璃基体制备雾化芯,采用钌基多孔厚膜发热膜浆料,主要成分为二氧化钌(包含微量Ag、Cu、Ni、Bi元素),印膜烧结获得多孔发热膜,多孔发热膜孔径5-30μm,孔与孔之间相互连通,并与基体孔贯通,高于基体约80μm,下渗厚度约为70μm左右,图案如图16所示,线宽约为330μm,线距约为650μm,线与基体边缘相距约800μm,烧结温度为980℃,时间为30min,得到多孔玻璃雾化芯。
实施例8
本实施例提供一种多孔玻璃雾化芯,其制备方法包含如下步骤:
原料处理:同实施例7。
配料成型:以40g玻璃粉、60g纤维、200gPMMA(80μm)造孔剂配料,在三维混料机中混料2h,将混合后的材料加入密炼机种,加入占混合物料质量20%的石蜡,5%的聚乙烯,5%的分散助剂,180℃密炼2h,再通过注塑机制备成生坯。
排胶烧结:按200分钟升温至200℃,再以0.5℃每分钟升温至500℃,其中分别于240℃,280℃,300℃,350℃设置2小时保温时间,然后按5℃每分钟升温至1220℃,保温30分钟,自然冷却至室温,获得纤维含量60%的多孔玻璃材料,多孔玻璃基体的微观形貌如图10所示。
发热膜的制备方法同实施例7。
实施例9
本申请体统一种多孔玻璃雾化芯,其制备方法包含如下步骤:
原料处理:以乙醇为溶剂,将玻璃粉末以300r/min的转速,于行星球磨机中球磨3h,烘干、过筛,获得粒径3-5μm的玻璃粉;将粉碎后的莫来石短切纤维,以硬脂酸为助磨剂,以乙醇为溶剂,以300r/min的转速,行星球磨8小时,乙醇洗涤后烘干、100目过筛,获得纤维原料,有效纤维占总纤维质量25%,有效纤维长径比为2-5。
配料成型:以62g玻璃粉、38g莫来石纤维、240gPMMA(80μm)造孔剂配料,在三维混料机中混料2h,将混合后的材料加入密炼机中,加入占混合物料质量20%的石蜡,5%的聚乙烯,5%的分散助剂,180℃密炼2h,再通过注塑机制备成生坯。
排胶烧结:按200分钟升温至200℃,再以0.5℃每分钟升温至500℃,其中分别于240℃,280℃,300℃,350℃设置2小时保温时间,然后按5℃每分钟升温至1200℃,保温30分钟,自然冷却至室温,获得纤维含量38%的多孔玻璃材料,多孔玻璃微观形貌如图11所示。
发热膜的制备方法同实施例7。
实施例10
本实施例提供一种多孔玻璃雾化芯,其制备方法包含如下步骤:
原料处理:以乙醇为溶剂,将玻璃粉末以300r/min的转速,于行星球磨机中球磨3h,烘干、过筛,获得粒径3-5μm的玻璃粉;将粉碎后的莫来石短切纤维,以硬脂酸为助磨剂,以乙醇为溶剂,以300r/min的转速,行星球磨12小时,乙醇洗涤后烘干、100目过筛,获得纤维原料,有效纤维占总纤维质量10%,有效纤维长径比为2-5。
配料成型:以62g玻璃粉、38g莫来石纤维、240gPMMA(80μm)造孔剂配料,在三维混料机中混料2h,将混合后的材料加入密炼机中,加入占混合物料质量20%的石蜡,5%的聚乙烯,5%的分散助剂,180℃密炼2h,再通过注塑机制备成生坯。
排胶烧结:按200分钟升温至200℃,再以0.5℃每分钟升温至500℃,其中分别于240℃,280℃,300℃,350℃设置2小时保温时间,然后按5℃每分钟升温至1250℃,保温30分钟,自然冷却至室温,获得纤维含量38%的多孔玻璃材料,多孔玻璃微观形貌如图12所示。
发热膜的制备方法同实施例7。经测试,实施例7-10所得发热膜阻值为0.8-1.2欧姆。
对比例1
本对比例提供一种雾化芯,其制备方法包括如下步骤:
按照质量称取玻璃粉60g、100μm ASA造孔剂40g,采用三维混料机,混料3h。采用注塑成型,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1100℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。烧结温度为1100℃,烧结时间为60min,得到的多孔玻璃孔隙结构如图6所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
对比例2
发对比例提供一种多孔玻璃雾化芯,其制备方法包含如下步骤:
原料处理:同实施例10。
配料成型:以70g玻璃粉、30g莫来石纤维、200gPMMA(80μm)造孔剂配料,在三维混料机中混料2h,将混合后的材料加入密炼机种,加入占混合物料质量20%的石蜡,5%的聚乙烯,5%的分散助剂,180℃密炼2h,再通过注塑机制备成生坯。
排胶烧结:按200分钟升温至200℃,再以0.5℃每分钟升温至500℃,其中分别于240℃,280℃,300℃,350℃设置2小时保温时间,然后按5℃每分钟升温至1320℃,保温30分钟,自然冷却至室温,获得纤维含量30%的多孔玻璃材料,多孔玻璃微观形貌如图13所示。
发热膜的制备方法同实施例7。
测试例
1、孔隙率和孔径测试
本申请采用排水法进行孔隙率测试,先称取多孔玻璃的干重M0,再将多孔玻璃置于容器中,用去离子水淹没,采用真空干燥箱抽真空20min左右,将多孔玻璃表面的水去除,称取湿重M1,再置入去离子水中称取浮重M2,通过以下公式得到孔隙率,同一批样品测试三个取平均值。
本申请通过孔径分析仪(泡点仪),进行孔径测试,并以此判断多孔玻璃的孔径分布。
采用氮气对多孔玻璃高压侧持续施加压力,当样品一侧的气体穿过样品到达另一侧的浸润液中而产生气泡,用此方法计算出的即为样品最大孔径,通过增大压力可测试更小的孔径,公式如下所示:
dmax=4γcosθ/ΔP
其中dmax为最大孔径,γ为润湿液表面张力,θ为润湿液与待测材料间的接触角,ΔP为待测样品两侧气体压差。
以平均孔径作为参考数值,气压测试范围为0-300KPa。参照标准GB/T 5249-1985,ISO 4003-1977。
本测试方法中,采用“气泡试验”法进行试验,根据其测试原理,检测得到的孔径数据实际是多孔玻璃基体中多向连通孔相互连通的孔喉的直径数据。
2、导油速率
本申请采用同一种雾化介质进行导油速度测试,称取1g丙三醇(VG)和丙二醇(PG)混合溶剂,其中PG:VG=1:1,滴入直径为2mm的容器内,溶剂的液面高度低于多孔样品的高度1-3mm左右,置于光学显微镜下,将多孔基体置于容器中央后开始计时,通过光学显微镜观察溶剂完全充满多孔样品的上表面后停止计时。
3、品吸测试
口感品吸,由5人组成的口感品吸小组分别进行感官评价,口感评价标准主要包括以下评价指标,香气浓度、刺激性(杂气)、烟雾量、甜度、击喉感、烟雾湿度、香气还原度、满足感。每个评价指标的最大分均为10分,各评价指标均以0.5分为计分单位,除刺激性(杂气)为反向打分外,其余指标为正向打分。
8个指标评价的含义为,香气浓度:鼻腔和口腔对整体气溶胶的感官浓厚程度;刺激性:雾化介质雾化后的烟气在口腔、喉部、鼻腔对刺激性的感官感受,如颗粒感、针刺感以及杂气等;气溶胶量:雾化介质雾化后形成气溶胶的 总量,以及通过口腔感受及呼出后目视到的气雾量的大小。甜度:雾化介质雾化后在口腔内感知到的甜味强弱程度以及鼻腔内感受到的甜香强弱程度;击喉感:吸入气溶胶后,气雾对喉部冲击的物理感官强度;气溶胶湿度:气溶胶颗粒液滴分子被口腔、鼻腔感知到的干湿程度;香气还原度:雾化介质雾化出来后的香气的混合均匀度和协调度;满足感:同等口数下,尼古丁被肺部吸收反应出的短时间大脑兴奋的感受,可以是头部的麻感、晕等症状。
表1评价标准
选取本申请实施例和对比例制备得到的相同形状和尺寸的雾化芯以及陶瓷发热体(深圳市麦克韦尔科技有限公司,Feelm发热体),进行基本性能测试,并进行装烟品吸。
表2

其中,对比例1,孔隙率孔径较低,进行导油测试时,溶剂无法到达样品表面,不能进行导油时间的计算,也无法进行口感和香气还原度的评分。
从上表的结果可以看出,与陶瓷发热体相比,多孔玻璃雾化芯的导油得到了较大的提高,口感和香气还原度感也得到一定的提高。
通过图1-7的微观形貌的对比,对比例1仅采用玻璃、造孔剂和添加相制备多孔玻璃,表面孔隙较少,内部结构大部分为闭孔,通过添加纤维组分作为骨架,表面和内部的孔隙明显增多,大部分为开孔。同时,通过孔隙率和孔径测试数据也可以看到,对比例1的孔隙率仅5%,而本申请提供的实施例通过添加纤维组分作为骨架后,样品孔隙率、孔径均得到了较大的提升。
实施例6,添加了部分沸石粉体作为添加相,与实施例2相比,由于产生堆架效果的纤维量减少,样品的孔隙率孔径略有降低,断面可以明显的看到颗粒状的沸石粉体。加入沸石粉体后,对整体口感影响不大,但是可以一定程度的提升发热体的强度,改善发热体的变形。
实施例7-10,未加添加相,仅有玻璃粉末和纤维作为骨架,在制备过程中,增加了造孔剂的加入量,造孔剂能将纤维相互间充分分散开,使得有效纤维相互间容易形成搭架结构,在充足的有效纤维含量如实施例7-8中,整体形成高孔隙率、高连通性的孔道结构;然而,造孔剂含量加入过多而纤维(有效纤维)较少时,制备过程中产品收缩较大,反而不能形成高孔隙率的多孔玻璃基体。与增加添加相的实施例相比,未加添加相的多孔玻璃基体孔道及表面更光滑,其制备的发热体抽吸口感更纯净。
采用本申请实施例制备的雾化芯和现有的陶瓷发热体相比,导油速度得到了明显的提升,同时由于玻璃光滑连续,减少了分相传输,香气还原度和整体的口感评分也得到了较大的提升。
对实施例7-10制备的多孔玻璃雾化芯装烟检测,多孔玻璃雾化芯抽吸烟雾量衰减小,在抽吸1000口条件下,实施例7-10制备多孔玻璃雾化芯基本无衰减,其中,实施例7的烟雾量衰减如图14所示;与市售陶瓷发热体(深圳市麦克韦尔科技有限公司,Feelm发热体)相比,实施例7多孔玻璃雾化芯抽吸后不易积碳,如图15所示,抽吸400口后,多孔玻璃雾化芯(左图)在积碳方面比陶瓷发热体(右图)有显著优势,其中,市售陶瓷发热体在测试400口后因积碳严重,烟雾量下降严重,不能继续测试。实施例8-10在积碳方面与实施例7的效果接近,也比陶瓷发热体具有显著优势,不再一一展示。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (13)

  1. 一种多孔玻璃雾化芯的制备方法,其特征在于,包括如下步骤:
    S1,采用如下方案制备多孔玻璃
    方案一:所述多孔玻璃的制备方法包括:将玻璃粉、纤维组分、造孔剂和添加相混合,制备生坯,经排胶,烧结,得到所述多孔玻璃;
    或者,方案二:所述多孔玻璃的制备方法包括:将玻璃粉、纤维组分、造孔剂混合,制备生坯,经排胶,烧结,得到所述多孔玻璃;
    S2,以所述多孔玻璃为基体,在所述基体上设置发热单元。
  2. 根据权利要求1所述的多孔玻璃雾化芯的制备方法,其特征在于,所述纤维组分的直径为3-30μm,长度为20-500μm;
    可选地,所述纤维组分的直径为10-25μm,长度为20-150μm。
  3. 根据权利要求2所述的多孔玻璃雾化芯的制备方法,其特征在于,所述纤维组分的长径比为1-10,可选地,纤维组分中长度为50-150μm的纤维的长径比为2-5;
    和/或,纤维组分中,长度在50μm以上的纤维占比在25%以上,可选地,占比在40%以上。
  4. 根据权利要求1-3任一项所述的多孔玻璃雾化芯的制备方法,其特征在于,所述方案一中,以原料的总质量计,包括纤维组分15-50%;
    可选地,以原料的总质量计,包括如下质量百分含量的原料:
    玻璃粉20-70%;纤维组分15-50%;造孔剂为10-70%;添加相0-50%;
    进一步可选地,所述添加相的质量百分含量为1-50%;
    或者,所述方案二中,
    以玻璃粉和纤维组分的总质量计,所述玻璃粉占40-62%,所述纤维组分占38-60%;
    和/或,所述造孔剂的用量为玻璃粉和纤维组分总质量的0.3-2.5倍。
  5. 根据权利要求1-3任一项所述的多孔玻璃雾化芯的制备方法,其特征在于,方案一和方案二中独立地选用流延工艺,注塑工艺,干压工艺,凝胶注模程序工艺中的任一种制备生坯;
    和/或,所述排胶温度为200-800℃,排胶时间为5-50h;可选地,所述排胶温度为200-350℃;
    和/或,所述烧结温度为900-1250℃或者1180-1320℃,烧结时间为10-180min。
  6. 根据权利要求1-3任一项所述的多孔玻璃雾化芯的制备方法,其特征在于,满足以下(1)-(5)中的至少一项:
    (1)所述玻璃粉的软化温度为600-1200℃;
    (2)所述玻璃粉的粒径在10μm以下,可选地,粒径在3000目以下;
    (3)所述纤维组分为碳化硅纤维,氮化硅纤维,硅酸铝纤维,石英纤维, 莫来石纤维,氧化铝纤维,羟基磷石灰纤维,氧化锆纤维中的至少一种;
    (4)所述造孔剂材料为碳粉、聚苯乙烯、聚甲基丙烯酸甲酯、聚乳酸、聚乙烯醇、聚对苯二甲酸乙二醇酯、工程塑料、淀粉、纤维素、木屑、石墨粉中的至少一种;
    (5)所述造孔剂的粒径为10-300μm,可选地,所述造孔剂的平均粒径为70-90μm。
  7. 根据权利要求1-6任一项所述的多孔玻璃雾化芯的制备方法,其特征在于,步骤S2中的发热单元为发热丝,发热网或发热膜;
    可选地,发热丝或发热网需要在生坯成型过程中嵌入,然后与成型坯体一起进行烧结,得到多孔玻璃雾化芯;
    可选地,发热膜采用丝网印刷的方式印刷厚膜电阻发热膜或者喷涂、磁控溅射薄膜电阻发热膜的形式,设计发热膜的图案,然后再经过烧结步骤得到多孔玻璃雾化芯。
  8. 一种多孔玻璃雾化芯,其特征在于,所述多孔玻璃雾化芯以多孔玻璃为基体,基体上设置有发热单元,
    方案a中:所述多孔玻璃的孔隙率为50-70%,平均孔径为10-200μm;
    或者,方案b中,所述多孔玻璃的孔隙率为65-80%,平均孔径为10-200μm,可选地,平均孔径为70-90μm。
  9. 根据权利要求8所述的多孔玻璃雾化芯,其特征在于,所述方案a中多孔玻璃由权利要求1-7任一项中方案一的制备方法制备得到;
    或者,所述方案b中多孔玻璃由由权利要求1-6任一项中方案二的制备方法制备得到。
  10. 根据权利要求8或9所述的多孔玻璃雾化芯,其特征在于,所述方案b中的多孔玻璃包括骨架体及多向连通孔,骨架体包括纤维体及包绕纤维体的玻璃体,所述多向连通孔的平均孔径为10-200μm,可选地,平均孔径为70-90μm。
  11. 根据权利要求10所述的多孔玻璃雾化芯,其特征在于,所述纤维体的直径为3-30μm,长度为20-500μm;
    可选地,所述纤维组分的直径为10-25μm,长度为20-150μm。
  12. 根据权利要求11所述的多孔玻璃雾化芯,其特征在于,所述纤维体的长径比为1-10,可选地,纤维体中长度为50-150μm的纤维的长径比为2-5;
    和/或,纤维体中,长度在50μm以上的纤维占比在25%以上,可选地,占比在40%以上。
  13. 一种电子雾化器,其特征在于,包括权利要求1-7任一项所述的制备方法制备得到多孔玻璃雾化芯或者权利要求8-12任一项所述的多孔玻璃雾化芯。
PCT/CN2023/095363 2022-05-25 2023-05-19 一种多孔玻璃雾化芯及其制备方法和电子雾化器 WO2023226903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210579323.5A CN114804639A (zh) 2022-05-25 2022-05-25 一种多孔玻璃及其制备方法和应用
CN202210579323.5 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226903A1 true WO2023226903A1 (zh) 2023-11-30

Family

ID=82516333

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/080743 WO2023226523A1 (zh) 2022-05-25 2023-03-10 一种多孔玻璃及其制备方法和应用
PCT/CN2023/095363 WO2023226903A1 (zh) 2022-05-25 2023-05-19 一种多孔玻璃雾化芯及其制备方法和电子雾化器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080743 WO2023226523A1 (zh) 2022-05-25 2023-03-10 一种多孔玻璃及其制备方法和应用

Country Status (2)

Country Link
CN (2) CN114804639A (zh)
WO (2) WO2023226523A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804639A (zh) * 2022-05-25 2022-07-29 深圳麦克韦尔科技有限公司 一种多孔玻璃及其制备方法和应用
CN115611520B (zh) * 2022-10-13 2024-05-14 深圳市赛尔美电子科技有限公司 多孔玻璃雾化芯及其制备方法和加热雾化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173801A (zh) * 2021-04-28 2021-07-27 深圳市基克纳科技有限公司 一种多孔材料及其制备方法与应用
WO2021163922A1 (zh) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN113387572A (zh) * 2021-05-20 2021-09-14 深圳市基克纳科技有限公司 一种含空心玻璃粉的多孔材料及其制备方法与应用
CN114804639A (zh) * 2022-05-25 2022-07-29 深圳麦克韦尔科技有限公司 一种多孔玻璃及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003464B1 (ko) * 1991-03-25 1994-04-22 한국유리공업 주식회사 큰 개방기공용적을 갖는 다공질 소결유리의 제조방법
CN102167517A (zh) * 2010-12-30 2011-08-31 陕西科技大学 一种高强多孔玻璃的制备方法
CN104176942A (zh) * 2013-05-23 2014-12-03 天津大学 一种莫来石多晶纤维增强泡沫玻璃
DE102015113124A1 (de) * 2015-08-10 2017-02-16 Schott Ag Offenporige Sintergläser zur Verwendung in elektronischen Zigaretten
KR102211643B1 (ko) * 2019-07-25 2021-02-02 서울시립대학교 산학협력단 우수한 강도를 지닌 발포 유리 및 이의 제조방법
CN110477463A (zh) * 2019-09-11 2019-11-22 深圳市博迪科技开发有限公司 一种多孔玻璃雾化装置及包含其的电子烟
JP7384757B2 (ja) * 2020-06-30 2023-11-21 株式会社ノリタケカンパニーリミテド 多孔質セラミック発熱体
CN113354289A (zh) * 2021-05-20 2021-09-07 深圳市基克纳科技有限公司 一种无铅多孔材料及其制备方法与应用
CN114451586A (zh) * 2022-01-17 2022-05-10 惠州市新泓威科技有限公司 具有纳米金属镀膜层的雾化芯
CN114890677A (zh) * 2022-01-20 2022-08-12 深圳麦克韦尔科技有限公司 多孔发热基材制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163922A1 (zh) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN113173801A (zh) * 2021-04-28 2021-07-27 深圳市基克纳科技有限公司 一种多孔材料及其制备方法与应用
CN113387572A (zh) * 2021-05-20 2021-09-14 深圳市基克纳科技有限公司 一种含空心玻璃粉的多孔材料及其制备方法与应用
CN114804639A (zh) * 2022-05-25 2022-07-29 深圳麦克韦尔科技有限公司 一种多孔玻璃及其制备方法和应用

Also Published As

Publication number Publication date
WO2023226523A1 (zh) 2023-11-30
CN117125900A (zh) 2023-11-28
CN114804639A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023226903A1 (zh) 一种多孔玻璃雾化芯及其制备方法和电子雾化器
CN109437875B (zh) 微孔陶瓷、陶瓷发热体及其制备方法和应用
CN106579564B (zh) 一种多孔发热膜及其制备方法
CN109875123A (zh) 电子烟雾化器、电子烟、雾化组件及其制备方法
CN114532618B (zh) 多孔陶瓷流延浆料、多孔陶瓷雾化芯及制备方法
JPH0319684A (ja) 改良された断熱性材料を有する喫煙品
WO2021103732A1 (zh) 透气度与紧度可调控的干法再造烟叶及其制备方法与应用
WO2023202266A1 (zh) 一种金属发热膜及其制备方法和应用
CN105852188B (zh) 一种提高烟草薄片松厚度的涂布组合物
CN113896564A (zh) 一种球形材料、多孔陶瓷材料及雾化芯及其制备方法
CN111838752B (zh) 一种加热不燃烧卷烟用降温材料及其制备方法
JP4922921B2 (ja) 金属繊維非焼結体の製造方法
WO2022111135A1 (zh) 雾化芯及包括其的雾化器和电子烟
CN113796573B (zh) 高导热加热不燃烧烟叶及卷烟制品
CN111084414A (zh) 一种提升加热卷烟抽吸稳定性的方法
CN207653551U (zh) 一种可自动通风的卷烟滤嘴及卷烟
CN213127989U (zh) 一种可提升抽吸稳定性和热利用率的加热卷烟
CN115104765A (zh) 雾化芯及其用复合多孔陶瓷基体的制备方法和电子雾化装置
CN113679095A (zh) 一种提升加热卷烟抽吸稳定性和热利用率的方法
US20230413907A1 (en) Atomization core, atomizer comprising same, and electronic cigarette
CN207653554U (zh) 一种自动提升抽吸后期通风率的卷烟滤嘴及卷烟
CN116217262B (zh) 一种防漏油雾化芯及其制备方法以及电子烟
CN115581307B (zh) 一种包含储氧材料的加热卷烟烟草薄片及其制备方法
CN109924542A (zh) 一种水松纸涂覆相变材料的可自动调控通风率的卷烟滤嘴、卷烟、及制备和应用
WO2022111138A1 (zh) 雾化芯及包括其的雾化器和电子烟

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810974

Country of ref document: EP

Kind code of ref document: A1