WO2022111138A1 - 雾化芯及包括其的雾化器和电子烟 - Google Patents

雾化芯及包括其的雾化器和电子烟 Download PDF

Info

Publication number
WO2022111138A1
WO2022111138A1 PCT/CN2021/124707 CN2021124707W WO2022111138A1 WO 2022111138 A1 WO2022111138 A1 WO 2022111138A1 CN 2021124707 W CN2021124707 W CN 2021124707W WO 2022111138 A1 WO2022111138 A1 WO 2022111138A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous ceramic
ceramic matrix
atomizing core
electronic cigarette
bar
Prior art date
Application number
PCT/CN2021/124707
Other languages
English (en)
French (fr)
Inventor
冯舒婷
付尧
钱亚明
陈柳城
Original Assignee
深圳雾芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳雾芯科技有限公司 filed Critical 深圳雾芯科技有限公司
Publication of WO2022111138A1 publication Critical patent/WO2022111138A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to an atomizing device, and in particular, to an atomizing core, an atomizer and an electronic cigarette including the same.
  • Electronic cigarettes Due to the pursuit of personal health, environmental protection and convenience of use, electronic cigarettes are increasingly favored by consumers as a substitute for traditional tobacco.
  • Electronic cigarettes or electronic atomizers replace the smoke produced by the high-temperature combustion of traditional tobacco by atomizing the smoking material at low temperature to form aerosol for users to inhale.
  • the e-liquid of the existing electronic cigarettes is usually transported to the atomizing core for atomization under capillary action.
  • the fogging time is long and the smoke volume is small, which affects the user's health. experience and taste.
  • the present application provides an atomizing core, which can be used for electronic cigarettes, and includes a porous ceramic matrix with a thermal conductivity of 0.5W/mK-1.0W/mK to solve the slow aerosol speed and fogging efficiency of the existing atomizing core Therefore, the electronic cigarette has a faster fogging time and a larger amount of smoke, and improves the user's experience and taste.
  • the present application provides an atomizing core, which includes: a porous ceramic substrate; and a heat generating layer disposed on the porous ceramic substrate, wherein the thermal conductivity of the porous ceramic substrate is 0.5W /mK-1.0W/mK.
  • the present application provides an atomizer, which includes: a liquid storage cavity for containing liquid; and the above-mentioned atomization core, the atomization core absorbs liquid from the liquid storage cavity and atomize the liquid.
  • the present application provides an electronic cigarette, which includes the above atomizer.
  • FIG. 1 is a schematic structural diagram of an atomizing core according to an embodiment of the present application.
  • the terms “substantially,” “substantially,” “substantially,” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs proximately.
  • a term when used in conjunction with a numerical value, a term may refer to a range of variation less than or equal to ⁇ 10% of the numerical value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, Less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • the difference between two values is less than or equal to ⁇ 10% of the mean of the values (eg, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%), then the two values are considered to be "substantially" the same.
  • a list of items joined by the terms "at least one of,” “at least one of,” “at least one of,” or other similar terms may mean the listed items any combination of .
  • the phrase “at least one of A and B” means A only; B only; or A and B.
  • the phrase "at least one of A, B, and C” means A only; or B only; C only; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B, and C.
  • Item A may contain a single component or multiple components.
  • Item B may contain a single component or multiple components.
  • Item C may contain a single component or multiple components.
  • an embodiment of the present application provides an atomizing core 100 for an electronic cigarette, which includes a porous ceramic base 110 and a heat generating layer 120 , and the heat generating layer 120 is disposed on the porous ceramic base 110 .
  • the porous ceramic substrate 110 has a large number of micropores, which can absorb the smoke liquid, so as to heat and atomize the smoke liquid into smoke when the heating layer 120 is energized.
  • the thermal conductivity of the porous ceramic substrate 110 has an important influence on the atomization efficiency of the atomizing core 100.
  • the thermal conductivity of the porous ceramic substrate 110 By changing the thermal conductivity of the porous ceramic substrate 110, the heat loss of the heating layer 120 can be reduced, and the atomization of the smoke liquid can be improved. efficiency, saving the fogging time of the atomizing core 100. Therefore, under the same power, the atomizing core of the present application can achieve a more efficient liquid-to-smoke conversion, obtain a faster fogging speed, and achieve a larger amount of smoke, thereby providing users with better suction experience.
  • the thermal conductivity of the porous ceramic matrix 110 is from about 0.5 W/mK to about 1.0 W/mK.
  • the thermal conductivity of the porous ceramic matrix 110 may be about 0.5W/mK, about 0.55W/mK, about 0.6W/mK, about 0.65W/mK, about 0.7W/mK, about 0.75W /mK, about 0.8W/mK, about 0.85W/mK, about 0.9W/mK, about 0.95W/mK, about 1.0W/mK or can be a range of any two of the above values, such as about 0.5W/mK- About 0.7W/mK, about 0.5W/mK to about 0.8W/mK, about 0.5W/mK to about 0.85W/mK, or about 0.8W/mK to about 1.0W/mK. Since the thermal conductivity of the porous ceramic substrate of the present application is relatively small, the heat generated by the heating layer 120 can be isolated from
  • the thermal conductivity of the porous ceramic base 110 is related to the material composition of the porous ceramic base 110 .
  • the porous ceramic matrix 110 may include a first material, a second material, and a pore former.
  • the first material may include at least one of aluminum oxide, aluminum nitride, or zirconium oxide.
  • the second material may include at least one of silicon dioxide, calcium oxide, magnesium oxide, silicon nitride, or silicon carbide.
  • the pore former includes at least one of wood chips, graphite, carbon powder, cellulose, or starch.
  • the first material is alumina
  • the second material is silica
  • the pore-forming agent is carbon powder.
  • the weight ratio of the first material, the second material and the pore former is: (45-65):(20-40):(1-15). In some embodiments, the weight ratio of the first material, the second material and the pore-forming agent may be: (45-65):(30-40):(1-10), (45-65):(20-40 ):(5-15) or (55-65):(25-35):(5-12). For example, in some embodiments, the weight ratio of the first material, the second material, and the pore former may be 45:40:15, 60:38:2, 50:40:10, 60:30:10, or 55: 35:10 etc.
  • the porous ceramic matrix 110 may include a sintering aid in addition to the first material, the second material, and the pore former.
  • the sintering aid can improve the flexural strength and scratch resistance of the porous ceramic matrix 110 .
  • the sintering aid includes at least one of calcium carbonate, magnesium carbonate, talc, or sodium silicate.
  • the first material is alumina
  • the second material is silica
  • the sintering aid is sodium silicate
  • the pore former is starch.
  • the weight ratio of the first material, the second material, the sintering aid and the pore former is: (45-65):(20-40):(1-8):(1-15). In some embodiments, the weight ratio of the first material, the second material and the pore-forming agent may be: (45-65):(30-40):(1-8):(1-10) or (50-60) ):(25-35):(2-8):(5-12).
  • the weight ratio of the first material, the second material, the sintering aid, and the pore former may be 45:40:5:10, 50:35:5:10, 55:30:5: 10, 60:30:5:5, 65:20:5:10, 65:30:2:3 or 65:30:1:4, etc.
  • the thermal conductivity of the porous ceramic matrix 110 is further related to the pore size of the porous ceramic matrix 110 .
  • the pore size (D50) of the porous ceramic matrix 110 may be from about 15 ⁇ m to about 25 ⁇ m.
  • the pore size of the porous ceramic matrix 110 can be about 15 ⁇ m, about 16 ⁇ m, about 17 ⁇ m, about 18 ⁇ m, about 19 ⁇ m, about 20 ⁇ m, about 21 ⁇ m, about 22 ⁇ m, about 23 ⁇ m, about 24 ⁇ m, about 25 ⁇ m or can be A range consisting of any two of the above values, such as 15 ⁇ m to about 20 ⁇ m, about 15 ⁇ m to about 22 ⁇ m, about 18 ⁇ m to about 20 ⁇ m, about 18 ⁇ m to about 22 ⁇ m, about 18 ⁇ m to about 25 ⁇ m, or about 20 ⁇ m to about 25 ⁇ m.
  • the thermal conductivity of the porous ceramic matrix 110 is further related to the porosity of the porous ceramic matrix 110 .
  • the porosity of the porous ceramic matrix 110 may be from about 40% to about 50%.
  • the porous ceramic matrix 110 may have a porosity of about 40%, about 41%, about 42%, about 43%, about 44%, about 45%, about 46%, about 47%, about 48%, about 49%, about 50% or can be a range of any two of the above values, such as about 40% to about 45%, about 45% to about 48%, about 45% to about 50%, or about 47%- about 50% etc.
  • the porous ceramic matrix 110 is formed primarily from the accumulation of particles of the first material and particles of the second material.
  • the particles on the surface of the porous ceramic matrix 110 may be at risk of being peeled off under the action of external force, which is manifested by the scratch resistance of the porous ceramic matrix.
  • the material composition, pore size and porosity of the porous ceramic matrix 110 determine the scratch resistance of the porous ceramic matrix 110 .
  • the scratch resistance of the porous ceramic matrix ranges from about 3 wt% to about 10 wt%.
  • the scratch resistance of the porous ceramic matrix ranges from about 3 wt%, 3.5 wt%, about 4 wt%, 4.5 wt%, about 5 wt%, about 6 wt%, about 7 wt%, about 8 wt%, about 9wt%, about 10wt%, or a range that can be composed of any two of the above values, such as about 3wt% to about 4wt%, about 3wt% to about 5wt%, about 4wt% to about 5wt%, about 5wt% to about 7wt%, About 5 wt % to about 10 wt %, about 6 wt % to about 9 wt %, or about 7 wt % to about 10 wt %, and the like.
  • the porous ceramic substrate 110 has good scratch resistance, which can reduce or prevent the ceramic powder from falling off.
  • the flexural strength of the porous ceramic matrix 110 may be about 6 Mpa to about 12 Mpa.
  • the flexural strength of the porous ceramic matrix 110 may be about 6Mpa, about 6.5Mpa, about 7Mpa, about 7.5Mpa, about 8Mpa, about 8.5Mpa, about 9Mpa, about 9.5Mpa, about 10Mpa, about 10.5Mpa, about 11Mpa, about 11.5Mpa, about 12Mpa or a range that can be composed of any two of the above values, such as about 6Mpa-about 10Mpa, about 8Mpa-about 10Mpa, 10Mpa-about 11Mpa, about 10Mpa-about 12Mpa, 10.5Mpa- About 12Mpa or about 11Mpa-about 12Mpa, etc.
  • the porous ceramic substrate 110 has a relatively large bending strength, which can meet the requirements of automated assembly, and further, can
  • the thickness of the porous ceramic matrix 110 may be about 0.5mm-4mm. In some embodiments, the thickness of the porous ceramic matrix 110 may be about 0.5 mm, about 1.0 mm, about 1.5 mm, about 2.0 mm, about 2.5 mm, about 3.0 mm, about 3.5 mm, about 4.0 mm, or may be any of the above A range of two values, for example, about 0.5 mm to about 2 mm, about 0.5 mm to about 3 mm, about 1 mm to about 2 mm, about 1 mm to about 3 mm, or about 1 mm to about 4 mm.
  • the penetration rate of the porous ceramic matrix 110 may be about 0.8 mg/s.bar.mm 2 to about 4.0 mg/s.bar.mm 2 .
  • the permeation velocity refers to the weight of smoke liquid passing through the porous ceramic matrix per unit area (mm 2 ), unit pressure (bar) and unit time (s).
  • the penetration speed of the porous ceramic substrate 110 is greater than 4.0 mg/s.bar.mm 2 , the liquid ejaculation speed is too fast. Therefore, some e-liquid will be inhaled by the user along with the smoke in the future, resulting in an experience similar to oil leakage. .
  • the penetration rate of the porous ceramic matrix 110 may be about 0.8 mg/s.bar.mm 2 , about 0.9 mg/s.bar.mm 2 , about 0.96 mg/s.bar.mm 2 , about 1.0 mg/s.bar.mm 2 , about 1.2 mg/s.bar.mm 2 , about 1.5 mg/s.bar.mm 2 , about 1.6 mg/s.bar.mm 2 , about 1.7 mg/s.bar.
  • mm 2 about 1.8 mg/s.bar.mm 2 , about 2.0 mg/s.bar.mm 2 , about 2.2 mg/s.bar.mm 2 , about 2.5 mg/s.bar.mm 2 , about 2.8 mg /s.bar.mm 2 , about 3.0 mg/s.bar.mm 2 , about 3.2 mg/s.bar.mm 2 , about 3.5 mg/s.bar.mm 2 , about 3.8 mg/s.bar.mm 2.
  • the heat generating layer 120 may be disposed on the porous ceramic base 110 in various suitable manners.
  • the heat generating layer 120 may be disposed on the porous ceramic base 110 by means of sputtering, transfer printing, or photolithography.
  • the heat-generating layer 120 is sputtered, transferred or photo-etched to the porous ceramic base 110, part of the heat-generating layer material will penetrate into the porous ceramic base 110, thereby forming a physical engagement area with the porous ceramic base 110.
  • the physical nip area has a depth of 10 ⁇ m-60 ⁇ m to improve the flexural strength of the porous ceramic matrix 110 and the peel resistance (powder drop) of the heat generating layer 120 .
  • the heating layer 120 may include a heating wire, and the heating wire may include iron, aluminum, platinum, palladium, iron-aluminum alloy, iron-nickel alloy, iron-chromium-aluminum alloy, iron-chromium alloy, palladium-copper alloy, gold-silver-platinum alloy, gold-silver alloy, At least one of palladium-silver alloy or gold-platinum alloy.
  • the present application further provides an atomizer, which includes a liquid storage chamber and the atomizing core of the present application.
  • the liquid storage chamber can contain liquid, and the atomizing core can absorb the liquid from the liquid storage chamber and atomize the liquid.
  • the liquid is smoke liquid
  • the viscosity of the smoke liquid may be 120 mPa.s to about 200 mPa.s, such as about 120 mPa.s, about 130 mPa.s, about 140 mPa.s, about 150 mPa.s, about 160 mPa.s. s, about 170 mPa.s, about 180 mPa.s, about 190 mPa.s, about 200 mPa.s, or a range that can be any two of the above, such as about 120 mPa.s to about 150 mPa.s or about 150 mPa.s to about 200 mPa .s etc.
  • the heating power of the atomizer may range from about 6.5W to about 18W.
  • the heating power of the atomizer can be about 6.5W, about 7W, about 8W, about 9W, about 10W, about 11W, about 12W, about 13W, about 14W, about 15W, about 16W, About 17W, about 18W, or a range of any two values above, for example, about 6.5W to about 10W, about 6.5W to about 15W, or about 10W to about 18W.
  • the present application further provides an electronic cigarette, which includes the atomizer of the present application.
  • the e-cigarette liquid can be atomized by an atomizer to generate aerosol for users to inhale.
  • the electronic cigarette of the present application achieves a faster fogging speed and a larger amount of smoke, and provides users with better taste and experience.
  • the fogging time of the electronic cigarette is about 0.4s to about 0.7s.
  • the fogging time of the electronic cigarette may be about 0.4s, about 0.45s, about 0.5s, about 0.53s, about 0.55s, about 0.6s, about 0.65s, about 0.7s or may be A range composed of any two of the above values, for example, about 0.4s to about 0.5s, about 0.4s to about 0.55s, about 0.45s to about 0.55s, or about 0.4 to about 0.6s.
  • the electronic cigarette of the present application has a faster fogging speed due to the atomizing core, so that the first puff of smoke has a better experience.
  • the smoke volume (TPM) of the electronic cigarette is about 5 mg to about 7 mg per puff.
  • the smoke volume of each puff is 55 mL, and the puffing time of each puff is 3 seconds.
  • the smoke volume of the electronic cigarette is about 5 mg, about 5.5 mg, about 6 mg, about 7 mg or can be in the range of any two of the above values, such as about 5 mg to about 5.5 mg, about 5 mg to about 6 mg. , about 5.5 mg to about 6 mg or about 6 mg to about 7 mg, etc.
  • the service life of the electronic cigarette can be about 500 to about 1000 puffs, such as about 500, about 600, about 700, about 800, about 900, about 1000, or can be a range composed of any two of the above values, For example, about 500 to about 800 or about 800 to about 1000, and the like.
  • the service life of the electronic cigarette in this application is measured by the following method: give sufficient liquid e-liquid, take the suction volume of 55mL, puff for 3 seconds and pause for 15 seconds as a cycle, and continue to cycle until the smoke volume TPM is less than 5mg, and then stop. Record the number of cycles at this time as the service life of the atomizing core.
  • the electronic cigarette of the present application can reduce the heat loss of the heating layer and improve the atomization efficiency of the smoke liquid because of its atomizing core, so that the electronic cigarette has a longer service life while ensuring the amount of smoke required by the user.
  • Thermal conductivity The porous ceramic substrate was tested by the hot wire method with a thermal conductivity meter, and the test temperature was 200 °C.
  • Bending strength The porous ceramic matrix sample was tested on a universal material testing machine, measured by the three-point bending method, and the loading rate was 0.5 mm/min.
  • Distance (cm) is the width (cm) at the fracture of the sample, H is the thickness (cm) at the fracture of the sample.
  • Fogging time 1. Connect the smoking device to the smoking machine, start the smoking mode for 3S and stop for 15S, 2. Use a high-speed camera to shoot at the cigarette holder, and then select from the video the time difference between the indicator light of the smoking device and the start of smoke from the cigarette holder, as fogging time.
  • Penetration speed seal and fix the sample at one end of the glass tube, with the ceramic convex surface facing outward, the inner diameter of the tube is 10mm, and the height of the e-liquid is 20cm; time 30 minutes from the first drop of e-liquid, and weigh the weight of the e-liquid during this process. And calculate the oil leakage rate (mg/s).
  • the viscosity of the smoke liquid is 180Pa.s.
  • Scratch resistance Select a 1kg weight, press the porous ceramic sample on 240-mesh sandpaper and rub it for 15cm in length, weigh the weight change of the porous ceramic sample before and after friction, and calculate the rate of change.
  • Smoke volume test the suction volume of each mouth is 55mL, the suction time of each mouth is 3 seconds, each cycle is 3 seconds of suction and 15 seconds of pause, and every ten cycles is a test.
  • Smoke volume per puff total smoke volume of ten cycles/10.
  • porous ceramic matrix includes a first material, a second material and a pore-forming agent.
  • the porous ceramic substrates of the following Examples and Comparative Examples were prepared by mixing, molding, and sintering alumina, silica, and pore formers.
  • the atomizing core and the electronic cigarette were prepared by a general method using the prepared porous ceramic substrate.
  • the compositions of the porous ceramic substrates of Examples 1-1 to 1-15 and Comparative Examples 1-1 to 1-3 are shown in Table 1-1.
  • Table 1-2 shows the relationship between the pore size, porosity and thermal conductivity of the porous ceramic matrix in the atomizing cores of Examples 1-1 to 1-8 and Comparative Example 1-1 and the fogging time.
  • the thickness of the porous ceramic substrate used in this chapter is 1mm, and the heating power is 6.5W.
  • the thermal conductivity of the porous ceramic matrix plays a crucial role in the fogging time.
  • the thermal conductivity of the porous ceramic matrix is selected in the range of 0.5W/mK-1.0W/mK, a fogging time of less than or equal to 0.7s can be obtained, which meets the needs of general consumers.
  • the thermal conductivity of the porous ceramic matrix is related to the pore size and porosity of the porous ceramic matrix.
  • the pore size and porosity of the porous ceramic matrix can be selected by selecting a range of thermal conductivity.
  • Table 1-3 shows the pore size and porosity of the porous ceramic substrates in the electronic cigarettes of Example 1-1, Examples 1-9 to 1-15, and Comparative Examples 1-2 and 1-3 and the relationship between the permeation speed and the pore size relation.
  • Tables 1-4 show the pore size and porosity and scratch resistance and flexural strength of the porous ceramic substrates of Example 1-1, Examples 1-9 to 1-15, and Comparative Examples 1-2 and 1-3 The relationship between.
  • the porous ceramic matrix when the porous ceramic matrix has a pore size of about 15 ⁇ m to about 25 ⁇ m and a porosity of about 40% to about 50%, the porous ceramic matrix may have a range of about 0.8 mg/s.bar.mm 2 to about 4.0 A penetration rate of mg/s.bar.mm 2 and a scratch resistance of about 5 wt% to about 10 wt%.
  • Table 1-5 shows the penetration rate and the amount of smoke (TPM) and heat generation of the porous ceramic matrix in the electronic cigarettes of Example 1-1, Examples 1-9 to 1-15, and Comparative Examples 1-2 and 1-3 The relationship between the temperature of the filament, and the service life of the electronic cigarette.
  • the penetration rate of the porous ceramic matrix is greater than 4.0 mg/s.bar.mm 2 (for example, 4.04 mg/s.bar.mm 2 )
  • the smoke volume of the electronic cigarette no longer increases significantly, because the lower part of the smoke liquid If the oil is too fast, the excess e-liquid cannot be atomized; and the temperature of the heating wire is low at this time, and the atomization of the macromolecular essence in the e-liquid is insufficient.
  • porous ceramic matrix includes a first material, a second material, a sintering aid and a pore-forming agent.
  • the porous ceramic substrates of the following examples and comparative examples were prepared by mixing, shaping, and sintering alumina, silica, sintering aids and pore formers.
  • Atomizer cores and electronic cigarettes were prepared by a general method using the prepared porous ceramic substrate.
  • the compositions of the porous ceramic substrates of Examples 2-1 to 2-11 and Comparative Examples 2-1 to 2-3 are shown in Table 2-1.
  • Table 2-2 shows the relationship between the pore size, porosity and thermal conductivity of the porous ceramic matrix in the atomizing cores of Examples 2-1 to 2-8 and Comparative Example 2-1 and the fogging time.
  • the thickness of the porous ceramic substrate used in this chapter is 2mm, and the heating power is 9W.
  • Example 2-1 Pore size/ ⁇ m Porosity/% Thermal conductivity/(W/mK) Fog time/s
  • Example 2-1 25 50 0.5 0.4
  • Example 2-2 25 48 0.55 0.45
  • Example 2-3 20
  • Example 2-4 20
  • Example 2-5 18
  • Example 2-7 17
  • Examples 2-8 17 40 1.0 0.7 Comparative Example 2-1 17 36 1.2 0.8
  • the thermal conductivity of the porous ceramic matrix is selected to be 0.5W/mK-1.0W/mK.
  • the fogging time of less than or equal to 0.7s can be obtained to meet the needs of general consumers.
  • Table 2-3 shows the pore size and porosity of the porous ceramic substrates in the electronic cigarettes of Example 2-1, Example 2-5, Examples 2-9 to 2-11, and Comparative Examples 2-2 and 2-3 relationship with penetration rate.
  • Example 2-1 25 50 3.85 Comparative Example 2-2 25 53 4.04 Comparative Example 2-3 15 40 0.77
  • Table 2-4 shows the pore size and porosity and scratch resistance of the porous ceramic substrates of Example 2-1, Example 2-5, Examples 2-9 to 2-11, and Comparative Examples 2-2 and 2-3 Relationship between properties and flexural strength.
  • the porous ceramic matrix when the porous ceramic matrix is composed of the first material, the second material, the sintering aid and the pore-forming agent, the porous ceramic matrix is selected to have a pore size of about 18 ⁇ m to about 25 ⁇ m and a pore size of about 45 ⁇ m. % to about 50% porosity can result in a porous ceramic matrix having a penetration rate of about 1.5 mg/s.bar.mm 2 to about 4.0 mg/s.bar.mm 2 and a scratch resistance of about 3 wt % to about 5 wt % .
  • Table 2-5 shows the penetration rate and the amount of smoke of the porous ceramic matrix in the electronic cigarettes of Example 2-1, Example 2-5 and 2-9 to 2-11 and Comparative Examples 2-2 and 2-3 and The relationship between the temperature of the heating body and the service life of the electronic cigarette.
  • Example 2-5 1.54 6.1 305 800 Examples 2-9 2.69 6.2 295 900 Examples 2-10 2.88 6.3 290 1000 Example 2-11 3.08 6.4 285 900 Example 2-1 3.85 6.5 280 800 Comparative Example 2-2 4.04 6.5 280 750 Comparative Example 2-3 0.77 3.5 310 700
  • the penetration rate of the porous ceramic matrix is selected to be 1.5 mg/s. bar.mm 2 -4.0mg/s.bar.mm 2 can make the atomizing core have TPM greater than 6mg and scratch resistance of 3wt%-5wt%.
  • the present application provides an electronic cigarette.
  • a porous ceramic substrate with a certain thermal conductivity in the electronic cigarette, the heat loss of the heating layer can be reduced, the atomization efficiency of the smoke liquid can be improved, and the cost of consumption can be reduced. fog time. Therefore, the electronic cigarette of the present application can achieve a faster fogging speed and a larger amount of smoke when the user smokes, thereby improving the user experience.

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

一种雾化芯及包括该雾化芯的雾化器和电子烟。雾化芯(100)包括多孔陶瓷基体(110)和设置在多孔陶瓷基体(110)上的发热层(120),其中多孔陶瓷基体(110)的导热系数为0.5W/mK-1.0W/mK。通过使用具有合适导热系数的多孔陶瓷基体(110)来减少发热层(120)的热量损失,提高烟液雾化效率,节省起雾时间。电子烟可以实现较快的起雾速度及较大的烟雾量,从而提高使用者的抽吸体验。

Description

雾化芯及包括其的雾化器和电子烟 技术领域
本申请涉及雾化装置,尤其涉及一种雾化芯及包括其的雾化器和电子烟。
背景技术
由于对于个人健康、环境保护以及使用便利性的追求,电子烟作为传统烟草的取代品越来越受到消费者的青睐。电子烟或电子雾化器通过将发烟材料低温雾化形成用于使用者吸入的气雾,来取代传统烟草以高温燃烧的方式所产生的烟气。现有电子烟的烟液通常在毛细作用下输送到雾化芯进行雾化,然而在抽吸时由于气雾速度慢和起雾效率低导致起雾时间长且烟雾量小,影响使用者的体验及口感。
因此,有必要对电子烟的雾化芯做进一步的改进与研究。
发明内容
本申请提供了一种雾化芯,其可用于电子烟,并包括导热系数为0.5W/mK-1.0W/mK的多孔陶瓷基体以解决现有雾化芯的气雾速度慢和起雾效率低的问题,从而使电子烟具有较快的起雾时间和较大的烟雾量,进行提升使用者的体验及口感。
根据本申请的实施例,本申请提供了一种雾化芯,其包括:多孔陶瓷基体;及发热层,其设置在所述多孔陶瓷基体上,其中所述多孔陶瓷基体的导热系数为0.5W/mK-1.0W/mK。
根据本申请的另一实施例,本申请提供了一种雾化器,其包括:储液腔,用于收容液体;及上述雾化芯,所述雾化芯从所述储液腔吸收液体并将所述液体雾化。
根据本申请的又一实施例,本申请提供了一种电子烟,其包括上述雾化器。
本申请实施例的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
附图说明
在下文中将简要地说明为了描述本申请实施例或现有技术所必要的附图以便于描述本申请的实施例。显而易见地,下文描述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,在不需要创造性劳动的前提下,依然可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1为根据本申请实施例的雾化芯的结构示意图。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应所述被解释为对本申请的限制。
另外,有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
如本文中所使用,术语“大致”、“大体上”、“实质”及“约”用以描述及说明小的变化。当与事件或情形结合使用时,所述术语可指代其中事件或情形精确发生的例子以及其中事件或情形极近似地发生的例子。举例来说,当结合数值使用时,术语可指代小于或等于所述数值的±10%的变化范围,例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%。举例来说,如果两个数值之间的差值小于或等于所述值的平均值的±10%(例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%),那么可认为所述两个数值“大体上”相同。
再者,为便于描述,“第一”、“第二”、“第三”等等可在本文中用于区分不同的组分。“第一”、“第二”、“第三”等等不意欲限制对应组分。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一 者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个组分或多个组分。项目B可包含单个组分或多个组分。项目C可包含单个组分或多个组分。
本申请所用的物质,如无特别说明,均可商业化购买。
如图1所示,本申请的实施例提供了一种用于电子烟的雾化芯100,其包括多孔陶瓷基体110和发热层120,发热层120设置在多孔陶瓷基体110上。多孔陶瓷基体110具有大量微孔,可以吸附烟液,从而在发热层120通电的情况下将烟液加热雾化成烟气。
发明人研究发现,多孔陶瓷基体110的导热系数对雾化芯100的雾化效率有重要的影响,通过改变多孔陶瓷基体110的导热系数可以减少发热层120的热量损失,提高烟液的雾化效率,节省雾化芯100的起雾时间。因此,在同等功率下,本申请的雾化芯可以实现更高效的烟液-烟气转化,得到更快的起雾速度,实现更大的烟雾量,从而为使用者提供更优的抽吸体验。
在一些实施例中,多孔陶瓷基体110的导热系数为约0.5W/mK-约1.0W/mK。例如,在一些实施例中,多孔陶瓷基体110的导热系数可以为约0.5W/mK、约0.55W/mK、约0.6W/mK、约0.65W/mK、约0.7W/mK、约0.75W/mK、约0.8W/mK、约0.85W/mK、约0.9W/mK、约0.95W/mK、约1.0W/mK或可以为以上任意两数值组成的范围,例如约0.5W/mK-约0.7W/mK、约0.5W/mK-约0.8W/mK、约0.5W/mK-约0.85W/mK或约0.8W/mK-约1.0W/mK。由于本申请的多孔陶瓷基体的导热系数较小,因此可以隔绝发热层120产生的热量往多孔陶瓷基体110传导,减少发热层120的热量损失。
多孔陶瓷基体110的导热系数与多孔陶瓷基体110的材料组成相关。在一些实施例中,多孔陶瓷基体110可以包括第一材料、第二材料和造孔剂。在一些实施例中,第一材料可以包括氧化铝、氮化铝或氧化锆中的至少一种。在一些实施例中,第二材料可以包括二氧化硅、氧化钙、氧化镁、氮化硅或碳化硅中的至少一种。在一些实施例中,所述造孔剂包括木屑、石墨、碳粉、纤维素或淀粉中的至少一种。在一些实施例中,第一材料为氧化铝,第二材料为二氧化硅,造孔剂为碳粉。
在一些实施例中,第一材料、第二材料和造孔剂的重量比为:(45-65):(20-40):(1-15)。一些实施例中,第一材料、第二材料和造孔剂的重量比可以为:(45-65):(30-40):(1-10)、(45-65):(20-40):(5-15)或(55-65):(25-35):(5-12)。例如,在一些实施例中,第一材料、第二材料和造孔剂的重量比可以为45:40:15、60:38:2、50:40:10、60:30:10或55:35:10等。
在一些实施例中,除了第一材料、第二材料和造孔剂之外,多孔陶瓷基体110还可以包括助烧剂。助烧剂可以提高多孔陶瓷基体110的抗弯强度和抗刮擦性能。在一些实施例中,所述助烧剂包括碳酸钙、碳酸镁、滑石粉或硅酸钠中的至少一种。在一些实施例中,第一材料为氧化铝,第二材料为二氧化硅,助烧剂为硅酸钠,造孔剂为淀粉。
在一些实施例中,第一材料、第二材料、助烧剂和造孔剂的重量比为:(45-65):(20-40):(1-8):(1-15)。一些实施例中,第一材料、第二材料和造孔剂的重量比可以为:(45-65):(30-40):(1-8):(1-10)或(50-60):(25-35):(2-8):(5-12)。例如,在一些实施例中,第一材料、第二材料、助烧剂和造孔剂的重量比可以为45:40:5:10、50:35:5:10、55:30:5:10、60:30:5:5、65:20:5:10、65:30:2:3或65:30:1:4等。
多孔陶瓷基体110的导热系数进一步与多孔陶瓷基体110的孔径相关。在一些实施例中,多孔陶瓷基体110的孔径(D50)可以为约15μm-约25μm。例如,在一些实施例中,多孔陶瓷基体110的孔径可以为约15μm、约16μm、约17μm、约18μm、约19μm、约20μm、约21μm、约22μm、约23μm、约24μm、约25μm或可以为以上任意两数值组成的范围,例如15μm-约20μm、约15μm-约22μm、约18μm-约20μm、约18μm-约22μm、约18μm-约25μm或约20μm-约25μm。
多孔陶瓷基体110的导热系数进一步与多孔陶瓷基体110的孔隙率相关。在一些实施例中,多孔陶瓷基体110的孔隙率可以为约40%-约50%。例如,在一些实施例中,多孔陶瓷基体110的孔隙率可以为约40%、约41%、约42%、约43%、约44%、约45%、约46%、约47%、约48%、约49%、约50%或可以为以上任意两数值组成的范围,例如约40%-约45%、约45%-约48%、约45%-约50%或约47%-约50%等。
在一些实施例中,多孔陶瓷基体110主要由第一材料颗粒和第二材料颗粒堆积形成。多孔陶瓷基体110表面的颗粒在外力作用下会有被剥离的风险,此表现为多孔陶瓷基体的耐刮擦性能。多孔陶瓷基体110的材料组成、孔径和孔隙率决定了多孔陶瓷基体110的耐刮擦性能。在一些实施例中,多孔陶瓷基体的耐刮擦范围为约3wt%-约10wt%。例如,在一些实施例中,多孔陶瓷基体的耐刮擦范围为约3wt%、3.5wt%、约4wt%、4.5wt%、约5wt%、约6wt%、约7wt%、约8wt%、约9wt%、约10wt%或可以为以上任意两数值组成的范围,例如约3wt%-约4wt%、约3wt%-约5wt%、约4wt%-约5wt%、约5wt%-约7wt%、约5wt%-约10wt%、约6wt%-约9wt%或约7wt%-约10wt%等。多孔陶瓷基体110具有良好的耐刮擦性能,可以减少或防止陶瓷掉粉。
在一些实施例中,多孔陶瓷基体110的抗弯强度可以为约6Mpa-约12Mpa。例如,在一些实施例中,多孔陶瓷基体110的抗弯强度可以为约6Mpa、约6.5Mpa、约7Mpa、约7.5Mpa、约8Mpa、约8.5Mpa、约9Mpa、约9.5Mpa、约10Mpa、约10.5Mpa、约11Mpa、约11.5Mpa、约12Mpa或可以为以上任意两数值组成的范围,例如约6Mpa-约10Mpa、约8Mpa-约10Mpa、10Mpa-约11Mpa、约10Mpa-约12Mpa、10.5Mpa-约12Mpa或约11Mpa-约12Mpa等。多孔陶瓷基体110具有较大的抗弯强度,可以满足自动化组装要求,进一步地,可以满足自动化抓手/吸盘的强度要求以及烟弹中顶针的组装压力要求。
在一些实施例中,多孔陶瓷基体110的厚度可以为约0.5mm-4mm。在一些实施例中,多孔陶瓷基体110的厚度可以为约0.5mm、约1.0mm、约1.5mm、约2.0mm、约2.5mm、约3.0mm、约3.5mm、约4.0mm或可以为以上任意两数值组成的范围,例如约0.5mm-约2mm、约0.5mm-约3mm、约1mm-约2mm、约1mm-约3mm或约1mm-约4mm。
在一些实施例中,多孔陶瓷基体110的渗透速度可以为约0.8mg/s.bar.mm 2至约4.0mg/s.bar.mm 2。在本申请中,渗透速度表示在单位面积(mm 2)、单位压力(bar)和单位时间(s)下通过多孔陶瓷基体的烟液重量。当多孔陶瓷基体110的渗透速度大于4.0mg/s.bar.mm 2时,烟液下油速度过快,因此有些烟液未来得及雾化而随烟雾被使用者吸入,产生类似漏油的体验。当多孔陶瓷基体110的渗透速度小于0.8mg/s.bar.mm 2时,烟液在多孔陶瓷基体110中的流动速度过慢,会出现干烧现象,从而会产生例如甲醛的有害物质。在一些实施例中,多孔陶瓷基体110的渗透速度可以为约0.8mg/s.bar.mm 2、约0.9mg/s.bar.mm 2、约0.96mg/s.bar.mm 2、约1.0mg/s.bar.mm 2、约1.2mg/s.bar.mm 2、约1.5mg/s.bar.mm 2、约1.6mg/s.bar.mm 2、约1.7mg/s.bar.mm 2、约1.8mg/s.bar.mm 2、约2.0mg/s.bar.mm 2、约2.2mg/s.bar.mm 2、约2.5mg/s.bar.mm 2、约2.8mg/s.bar.mm 2、约3.0mg/s.bar.mm 2、约3.2mg/s.bar.mm 2、约3.5mg/s.bar.mm 2、约3.8mg/s.bar.mm 2、约3.85mg/s.bar.mm 2、约3.9mg/s.bar.mm 2、约4.0mg/s.bar.mm 2或可以为以上任意两数值组成的范围,例如约0.8mg/s.bar.mm 2至约2.0mg/s.bar.mm 2、约0.9mg/s.bar.mm 2至约2.5mg/s.bar.mm 2、约0.96mg/s.bar.mm 2至约3.85mg/s.bar.mm 2、约1.35mg/s.bar.mm 2至约2.88mg/s.bar.mm 2、约1.54mg/s.bar.mm 2至约2.88mg/s.bar.mm 2、约2.0mg/s.bar.mm 2至约3.0mg/s.bar.mm 2、约1.54mg/s.bar.mm 2至约3.85mg/s.bar.mm 2、约2.0mg/s.bar.mm 2至约3.85mg/s.bar.mm 2或1.5mg/s.bar.mm 2至约3.0mg/s.bar.mm 2
发热层120可以各种合适的方式设置在多孔陶瓷基体110上。例如,发热层120可以通过溅射、转印或光刻等方式设置到多孔陶瓷基体110上。在将发热层120溅射、转 印或光刻到多孔陶瓷基体110时,部分发热层材料会渗透到多孔陶瓷基体110中,从而形成与多孔陶瓷基体110的物理咬合区。在一些实施例中,物理咬合区具有10μm-60μm的深度,以提高多孔陶瓷基体110的抗弯强度和发热层120的耐剥离性能(掉粉)。发热层120可以包括发热丝,发热丝可以包括铁、铝、铂、钯、铁铝合金、铁镍合金、铁铬铝合金、铁铬合金、钯铜合金、金银铂合金、金银合金、钯银合金或金铂合金中的至少一种。
根据本申请的另一方面,本申请还提供了一种雾化器,其包括储液腔和本申请的雾化芯。储液腔可以收容液体,雾化芯可以从所述储液腔吸收液体并将液体雾化。
在一些实施例中,液体为烟液,烟液的粘度可以为120mPa.s-约200mPa.s,例如约120mPa.s、约130mPa.s、约140mPa.s、约150mPa.s、约160mPa.s、约170mPa.s、约180mPa.s、约190mPa.s、约200mPa.s或可以为以上任意两数值组成的范围,例如约120mPa.s-约150mPa.s或约150mPa.s-约200mPa.s等。
在一些实施例中,雾化器的发热功率可以为约6.5W-约18W。例如,在一些实施例中,雾化器的发热功率可以为约6.5W、约7W、约8W、约9W、约10W、约11W、约12W、约13W、约14W、约15W、约16W、约17W、约18W或可以为以上任意两数值组成的范围,例如约6.5W-约10W、约6.5W-约15W或约10W-约18W。
根据本申请的又一方面,本申请还提供了一种电子烟,其包括本申请的雾化器。电子烟的烟液可通过雾化器雾化生成供使用者吸入的气雾。根据本申请的实施例,本申请的电子烟实现较快的起雾速度及较大的烟雾量,为使用者提供较好的口感和体验。
在一些实施例中,电子烟的起雾时间为约0.4s-约0.7s。例如,在一些实施例中,电子烟的起雾时间可以为约0.4s、约0.45s、约0.5s、约0.53s、约0.55s、约0.6s、约0.65s、约0.7s或可以为以上任意两数值组成的范围,例如约0.4s-约0.5s、约0.4s-约0.55s、约0.45s-约0.55s或约0.4-约0.6s。本申请的电子烟因雾化芯而具有较快的起雾速度,使得第一口烟雾有更好的体验。
在一些实施例中,电子烟的烟雾量(TPM)为每口约5mg-约7mg。在本申请中,每一口的烟雾容量为55mL,且每一口的抽吸时间为3秒。经过对大量使用者烟雾需求的统计,烟雾量至少为5mg时才能或得较好的抽吸体验,烟雾量为6mg-7mg时体验更优。在一些实施例中,电子烟的烟雾量为每口约5mg、约5.5mg、约6mg、约7mg或可以为以上任意两数值组成的范围,例如约5mg-约5.5mg、约5mg-约6mg、约5.5mg-约 6mg或约6mg-约7mg等。
在一些实施例中,电子烟的使用寿命可以是约500-约1000的口数,例如约500、约600、约700、约800、约900、约1000或可以为以上任意两数值组成的范围,例如约500-约800或约800-约1000等。本申请中电子烟的使用寿命是通过以下方法测出的:给予充足的烟液,以抽吸容积55mL、抽吸3秒停顿15秒为一个循环,持续循环至烟雾量TPM小于5mg时停止,记录此时的循环次数,作为雾化芯的使用寿命。本申请的电子烟因其雾化芯可以减少发热层的热量损失,提高烟液的雾化效率,从而在保证使用者所需的烟雾量的同时,使电子烟具有较长的使用寿命。
实施例
为便于更好地理解本申请,通过以下实例加以说明。这些实例属于本申请的保护范围,但不限制本申请的保护范围。
测试方法:
导热系数:采用导热系数仪对多孔陶瓷基体以热线法进行测试,测试温度为200℃。
抗弯强度:在万能材料试验机上测试多孔陶瓷基体试样,采用三点弯曲法测量,加载速率0.5mm/min。计算公式如下:Rf=3F×L/(2×b×h×h),其中,Rf为抗弯强度(Mpa),F为试样折断时的负荷(Kg),L为支撑刀口之间的距离(cm),B为试样断口处的宽度(cm),H为试样断口处的厚度(cm)。
起雾时间:1,将烟具连接吸烟机,启动抽吸3S停歇15S模式,2,采用高速摄像机对准烟嘴拍摄,随后从录像中选取从烟具指示灯亮起到烟嘴开始出现烟雾的时间差值,作为起雾时间。
渗透速度:将样品密封固定在玻璃管一端,陶瓷凸面朝外,管内直径为10mm,烟油高度为20cm;从第一滴烟液产生开始计时30min,称量此过程中烟液的重量,并计算渗油速度(mg/s)。烟液的粘度为180Pa.s。
耐刮擦性能:选取1kg的砝码,将多孔陶瓷样品压在240目砂纸上摩擦15cm长度,称取多孔陶瓷样品摩擦前后重量变化,计算变化率。
烟雾量测试:每一口的抽吸容积为55mL,每一口的抽吸时间为3秒,每一个循环为抽吸3秒和停顿15秒,每十个循环为一次试验。每口的烟雾量=十次循环的总烟雾量/10。
测试结果:
一、多孔陶瓷基体包括第一材料、第二材料和造孔剂的实施例及对比例。
通过氧化铝、二氧化硅和造孔剂进行混合、成型、烧结工艺来制备下面各实施例和对比例的多孔陶瓷基体。使用所制备的多孔陶瓷基体通过一般方法制备雾化芯和电子烟。实施例1-1至1-15及对比例1-1至1-3的多孔陶瓷基体的组成如表1-1所示。表1-2示出了实施例1-1至1-8以及对比例1-1的雾化芯中的多孔陶瓷基体的孔径、孔隙率和导热系数与起雾时间之间的关系。本章节所用的多孔陶瓷基体的厚度为1mm,发热功率为6.5W。
表1-1
Figure PCTCN2021124707-appb-000001
表1-2
  孔径/μm 孔隙率/% 导热系数/(W/mK) 起雾时间/s
实施例1-1 25 50 0.5 0.4
实施例1-2 25 48 0.55 0.45
实施例1-3 20 48 0.6 0.5
实施例1-4 20 45 0.7 0.53
实施例1-5 19 45 0.8 0.55
实施例1-6 19 43 0.85 0.6
实施例1-7 18 43 0.9 0.65
实施例1-8 18 40 1.0 0.7
对比例1-1 18 36 1.2 0.8
根据表1-1可以得知,多孔陶瓷基体的导热系数对起雾时间起着至关重要的作用。选择多孔陶瓷基体的导热系数在0.5W/mK-1.0W/mK的范围内,可以得到小于等于0.7s的起雾时间,满足一般消费者的需求。并且,在多孔陶瓷基体材料组成一定的条件下,多孔陶瓷基体的导热系数与多孔陶瓷基体的孔径和孔隙率相关。可以通过选择一定范围的导热系数来选择多孔陶瓷基体的孔径和孔隙率。
表1-3示出了实施例1-1、实施例1-9至1-15以及对比例1-2和1-3的电子烟中多孔陶瓷基体的孔径和孔隙率与渗透速度之间的关系。
表1-3
  孔径/μm 孔隙率/% 渗透速度/(mg/s.bar.mm 2)
实施例1-9 15 40 0.96
实施例1-10 15 43 1.15
实施例1-11 16 43 1.35
实施例1-12 18 45 1.54
实施例1-13 20 50 2.69
实施例1-14 22 50 2.88
实施例1-15 23 50 3.08
实施例1-1 25 50 3.85
对比例1-2 14 40 0.77
对比例1-3 25 53 4.04
表1-4示出了实施例1-1、实施例1-9至1-15以及对比例1-2和1-3的多孔陶瓷基体的孔径和孔隙率与耐刮擦性能和抗弯强度之间的关系。
表1-4
  孔径/μm 孔隙率/% 耐刮擦/% 抗弯强度/Mpa
实施例1-9 15 40 5 10
实施例1-10 15 43 6 9
实施例1-11 16 43 6.2 8.5
实施例1-12 18 45 6.5 8
实施例1-13 20 50 7 7.5
实施例1-14 22 50 8.5 7.3
实施例1-15 23 50 9 7
实施例1-1 25 50 10 6.8
对比例1-2 14 40 4 6.5
对比例1-3 25 53 11 6
根据表1-4可以得知,当多孔陶瓷基体具有约15μm-约25μm孔径以及约40%-约50%孔隙率时,多孔陶瓷基体可以具有约0.8mg/s.bar.mm 2-约4.0mg/s.bar.mm 2的渗透速度以及约5wt%-约10wt%的耐刮擦性能。
表1-5示出了实施例1-1、实施例1-9至1-15以及对比例1-2和1-3的电子烟中多孔陶瓷基体的渗透速度与烟雾量(TPM)及发热丝温度之间的关系,以及电子烟的使用寿命。
表1-5
  渗透速度/(mg/s.bar.mm 2) TPM/mg 发热丝温度/℃ 使用寿命/口数
实施例1-9 0.96 4.5 295 500
实施例1-10 1.15 5.5 290 600
实施例1-11 1.35 6.0 285 700
实施例1-12 1.54 6.1 280 750
实施例1-13 2.69 6.2 275 800
实施例1-14 2.88 6.3 270 800
实施例1-15 3.08 6.4 265 750
实施例1-1 3.85 6.5 260 700
对比例1-2 0.77 3.5 300 400
对比例1-3 4.04 6.5 260 450
由表1-5可以得知,在多孔陶瓷基体的渗透速度为0.8mg/s.bar.mm 2-4.0mg/s.bar.mm 2时,电子烟的烟雾量随渗透速度的增加而增大,并且发热丝温度随渗透速度的增加而降低。当多孔陶瓷基体的渗透速度小于0.8mg/s.bar.mm 2(例如,0.77mg/s.bar.mm 2)时,发热丝的温度较高,大大增加了产生甲醛等有害物质的几率。当多孔陶瓷基体的渗透速度大于4.0mg/s.bar.mm 2(例如,4.04mg/s.bar.mm 2)时,电子烟的烟雾量不再显著增大,这是因为烟液的下油过快,导致多余的烟液无法雾化;并且此时发热丝的温度较低,烟液中大分子香精雾化不充分。
二、多孔陶瓷基体包括第一材料、第二材料、助烧剂和造孔剂的实施例及对比例。
通过氧化铝、二氧化硅、助烧剂和造孔剂进行混合、成型、烧结工艺来制备下面各实施例和对比例的多孔陶瓷基体。使用所制备的多孔陶瓷基体通过一般方法制备雾化芯和电子烟。实施例2-1至2-11及对比例2-1至2-3的多孔陶瓷基体的组成如表2-1所示。表2-2示出了实施例2-1至2-8以及对比例2-1的雾化芯中的多孔陶瓷基体的孔径、孔隙率和导热系数与起雾时间之间的关系。本章节所用的多孔陶瓷基体的厚度为2mm,发热功率为9W。
表2-1
Figure PCTCN2021124707-appb-000002
Figure PCTCN2021124707-appb-000003
表2-2
  孔径/μm 孔隙率/% 导热系数/(W/mK) 起雾时间/s
实施例2-1 25 50 0.5 0.4
实施例2-2 25 48 0.55 0.45
实施例2-3 20 48 0.6 0.5
实施例2-4 20 45 0.7 0.53
实施例2-5 18 45 0.8 0.55
实施例2-6 18 43 0.85 0.6
实施例2-7 17 43 0.9 0.65
实施例2-8 17 40 1.0 0.7
对比例2-1 17 36 1.2 0.8
根据表2-2可以得知,当多孔陶瓷基体由第一材料、第二材料、助烧剂和造孔剂组成时,选择多孔陶瓷基体的导热系数为0.5W/mK-1.0W/mK也可以得到小于等于0.7s的起雾时间,满足一般消费者的需求。
表2-3示出了实施例2-1、实施例2-5、实施例2-9至2-11以及对比例2-2和2-3的电子烟中多孔陶瓷基体的孔径和孔隙率与渗透速度之间的关系。
表2-3
  孔径/μm 孔隙率/% 渗透速度/(mg/s.bar.mm 2)
实施例2-5 18 45 1.54
实施例2-9 20 50 2.69
实施例2-10 22 50 2.88
实施例2-11 23 50 3.08
实施例2-1 25 50 3.85
对比例2-2 25 53 4.04
对比例2-3 15 40 0.77
表2-4示出了实施例2-1、实施2-5、实施例2-9至2-11以及对比例2-2和2-3的多孔陶瓷基体的孔径和孔隙率与耐刮擦性能和抗弯强度之间的关系。
表2-4
  孔径/μm 孔隙率/% 耐刮擦/% 抗弯强度/Mpa
实施例2-5 18 45 3 10
实施例2-9 20 50 3.5 9
实施例2-10 22 50 4 8.6
实施例2-11 23 50 4.5 8.2
实施例2-1 25 50 5 8
对比例2-2 25 53 5.5 7.5
对比例2-3 15 40 2.5 11
根据表2-3以及2-4可以得知,当多孔陶瓷基体由第一材料、第二材料、助烧剂和造孔剂组成时,选择多孔陶瓷基体具有约18μm-约25μm孔径以及约45%-约50%孔隙率可以使得多孔陶瓷基体具有约1.5mg/s.bar.mm 2-约4.0mg/s.bar.mm 2的渗透速度以及约3wt%-约5wt%的耐刮擦性能。
表2-5示出了实施例2-1、实施例2-5以及2-9至2-11以及对比例2-2和2-3的电子烟中多孔陶瓷基体的渗透速度与烟雾量及发热体温度之间的关系,以及电子烟的使用寿命。
表2-5
  渗透速度/(mg/s.bar.mm 2) TPM/mg 发热丝温度/℃ 使用寿命/口数
实施例2-5 1.54 6.1 305 800
实施例2-9 2.69 6.2 295 900
实施例2-10 2.88 6.3 290 1000
实施例2-11 3.08 6.4 285 900
实施例2-1 3.85 6.5 280 800
对比例2-2 4.04 6.5 280 750
对比例2-3 0.77 3.5 310 700
根据表2-3至表2-5可以得知,当多孔陶瓷基体由第一材料、第二材料、助烧剂和造孔剂组成时,选择多孔陶瓷基体的渗透速度为1.5mg/s.bar.mm 2-4.0mg/s.bar.mm 2可以使得雾化芯具有大于6mg的TPM以及3wt%-5wt%的耐刮擦性能。
通过本申请上述实施例应可了解,本申请提供了一种电子烟,通过该电子烟中包含一定导热系数的多孔陶瓷基体,能够减少发热层的热量损失、提高烟液雾化效率和节省起雾时间。因此,本申请的电子烟在使用者抽吸时能够实现较快的起雾速度及较大的烟雾量,从而提升使用者体验。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (18)

  1. 一种雾化芯,其包括:
    多孔陶瓷基体;及
    发热层,其设置在所述多孔陶瓷基体上,
    其中所述多孔陶瓷基体的导热系数为0.5W/mK-1.0W/mK。
  2. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体的孔径为15μm-25μm。
  3. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体的孔隙率为40%-50%。
  4. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体包括第一材料、第二材料和造孔剂,其中所述第一材料包括氧化铝、氮化铝或氧化锆中的至少一种,所述第二材料包括二氧化硅、氧化钙、氧化镁、氮化硅或碳化硅中的至少一种,和/或所述造孔剂包括木屑、石墨、碳粉、纤维素或淀粉中的至少一种。
  5. 根据权利要求4所述的雾化芯,其中所述第一材料、所述第二材料和所述造孔剂的重量比为:(45-65):(20-40):(1-15)。
  6. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体包括第一材料、第二材料、助烧剂和造孔剂,其中所述第一材料包括氧化铝、氮化铝或氧化锆中的至少一种,所述第二材料包括二氧化硅、氧化钙、氧化镁、氮化硅或碳化硅中的至少一种,所述助烧剂包括碳酸钙、碳酸镁、滑石粉或硅酸钠中的至少一种,和/或所述造孔剂包括木屑、石墨、碳粉、纤维素或淀粉中的至少一种。
  7. 根据权利要求6所述的雾化芯,其中所述第一材料、所述第二材料、所述助烧剂和所述造孔剂的重量比为:(45-65):(20-40):(1-8):(1-15)。
  8. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体的耐刮擦范围为3wt%-10wt%
  9. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体的抗弯强度为6Mpa-12Mpa。
  10. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体的厚度为0.5mm-4mm。
  11. 根据权利要求1所述的雾化芯,其中所述多孔陶瓷基体的渗透速度为0.8mg/s.bar.mm 2至4.0mg/s.bar.mm 2
  12. 根据权利要求1所述的雾化芯,其中所述发热层包括发热丝,所述发热丝包括铁、 铝、铂、钯、铁铝合金、铁镍合金、铁铬铝合金、铁铬合金、钯铜合金、金银铂合金、金银合金、钯银合金或金铂合金中的至少一种。
  13. 一种雾化器,其包括:
    储液腔,用于收容液体;及
    根据权利要求1至12任一项所述的雾化芯,所述雾化芯从所述储液腔吸收液体并将所述液体雾化。
  14. 根据权利要求13所述的雾化器,其中所述液体的粘度为120mPa.s-200mPa.s。
  15. 根据权利要求13所述的雾化器,其中所述雾化器的发热功率为6.5W-18W。
  16. 一种电子烟,其包括根据权利要求13至15任一项所述的雾化器。
  17. 根据权利要求16所述的电子烟,其中所述电子烟的起雾时间为0.4s-0.7s。
  18. 根据权利要求16所述的电子烟,其中所述电子烟的烟雾量为每口5mg-7mg。
PCT/CN2021/124707 2020-11-24 2021-10-19 雾化芯及包括其的雾化器和电子烟 WO2022111138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011330892.3 2020-11-24
CN202011330892.3A CN114532606A (zh) 2020-11-24 2020-11-24 雾化芯及包括其的雾化器和电子烟

Publications (1)

Publication Number Publication Date
WO2022111138A1 true WO2022111138A1 (zh) 2022-06-02

Family

ID=81659072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124707 WO2022111138A1 (zh) 2020-11-24 2021-10-19 雾化芯及包括其的雾化器和电子烟

Country Status (2)

Country Link
CN (1) CN114532606A (zh)
WO (1) WO2022111138A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277757A1 (en) * 2010-05-15 2011-11-17 Nathan Andrew Terry Atomizer-vaporizer for a personal vaporizing inhaler
CN205962840U (zh) * 2016-07-07 2017-02-22 深圳市合元科技有限公司 雾化器及电子烟
CN110584208A (zh) * 2019-09-06 2019-12-20 深圳麦克韦尔科技有限公司 雾化芯、雾化器和电子雾化装置
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体
CN111138175A (zh) * 2020-01-14 2020-05-12 东莞市陶陶新材料科技有限公司 多孔陶瓷基板及其制备方法、雾化芯
CN111466614A (zh) * 2020-04-02 2020-07-31 深圳麦克韦尔科技有限公司 雾化芯、雾化器和电子雾化装置
CN112493556A (zh) * 2020-11-10 2021-03-16 深圳麦克韦尔科技有限公司 发热体及其制备方法、雾化器和电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110277757A1 (en) * 2010-05-15 2011-11-17 Nathan Andrew Terry Atomizer-vaporizer for a personal vaporizing inhaler
CN205962840U (zh) * 2016-07-07 2017-02-22 深圳市合元科技有限公司 雾化器及电子烟
CN110584208A (zh) * 2019-09-06 2019-12-20 深圳麦克韦尔科技有限公司 雾化芯、雾化器和电子雾化装置
CN111138175A (zh) * 2020-01-14 2020-05-12 东莞市陶陶新材料科技有限公司 多孔陶瓷基板及其制备方法、雾化芯
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体
CN111466614A (zh) * 2020-04-02 2020-07-31 深圳麦克韦尔科技有限公司 雾化芯、雾化器和电子雾化装置
CN112493556A (zh) * 2020-11-10 2021-03-16 深圳麦克韦尔科技有限公司 发热体及其制备方法、雾化器和电子装置

Also Published As

Publication number Publication date
CN114532606A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
US11297880B2 (en) Heater, cartridge, atomizer and electronic cigarette having same
US10039326B2 (en) Ceramic atomizing wick and cigarette cartridge
CN109721343B (zh) 多孔陶瓷原料、多孔陶瓷及其制备方法与应用
CN109875123A (zh) 电子烟雾化器、电子烟、雾化组件及其制备方法
CN104146353B (zh) 一种低温加热型电子烟加热器
JP2021013393A (ja) 隔離された可燃性熱源を含む喫煙物品
CN110506990A (zh) 增香型降温滤棒、应用及卷烟
US10362802B2 (en) Burning type heat source, flavor inhaler, and manufacturing method of burning type heat source
WO2022111135A1 (zh) 雾化芯及包括其的雾化器和电子烟
CN102150943B (zh) 一种薄荷烟草薄片烟丝及其制备方法
WO2022012684A1 (zh) 加热不燃烧烟支及其制备方法和加热不燃烧系统
CN110710731A (zh) 一种电子烟雾化加热装置及其制备方法和电子烟
WO2021103732A1 (zh) 透气度与紧度可调控的干法再造烟叶及其制备方法与应用
WO2019223412A1 (zh) 一种降温滤棒、应用及卷烟
WO2022111138A1 (zh) 雾化芯及包括其的雾化器和电子烟
WO2022111139A1 (zh) 雾化芯及包括其的雾化器和电子烟
CN106820256B (zh) 阻燃接装纸
CN114451585A (zh) 雾化芯及其制备方法、雾化器及电子雾化装置
US20210177047A1 (en) Variable-ventilation filter tip and cigarette
CN108741206A (zh) 具有高导热性能的疏松一体烟草段的低温卷烟及制备方法
WO2023226903A1 (zh) 一种多孔玻璃雾化芯及其制备方法和电子雾化器
CN108420123A (zh) 一种具有果香的疏松一体烟草段的低温卷烟及其制备方法
CN109222224A (zh) 一种降低卷烟燃烧锥温度的方法
CN208957003U (zh) 一种加热不燃烧卷烟
CN108851192A (zh) 应用于低温卷烟的具有薄荷香的高疏松度的烟草薄片及生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896640

Country of ref document: EP

Kind code of ref document: A1