WO2023226523A1 - 一种多孔玻璃及其制备方法和应用 - Google Patents

一种多孔玻璃及其制备方法和应用 Download PDF

Info

Publication number
WO2023226523A1
WO2023226523A1 PCT/CN2023/080743 CN2023080743W WO2023226523A1 WO 2023226523 A1 WO2023226523 A1 WO 2023226523A1 CN 2023080743 W CN2023080743 W CN 2023080743W WO 2023226523 A1 WO2023226523 A1 WO 2023226523A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous glass
fiber
hours
pore
glass
Prior art date
Application number
PCT/CN2023/080743
Other languages
English (en)
French (fr)
Inventor
周前远
龙继才
付磊
杨聪明
周宏明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023226523A1 publication Critical patent/WO2023226523A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/002Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of fibres, filaments, yarns, felts or woven material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/08Other methods of shaping glass by foaming
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/119Deposition methods from solutions or suspensions by printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • This application belongs to the technical field of porous glass preparation, and specifically relates to a porous glass and its preparation method and application.
  • An electronic atomizer is a product that uses atomization and other methods to turn atomization media into steam, allowing users to smoke.
  • the atomizing core is the core component of the electronic atomizer and plays a vital role in the taste, aerosol volume and other performance of the electronic atomizer.
  • porous ceramics are used as the atomization core. Most use diatomaceous earth, silica, alumina, etc. as raw materials, adding glass powder, pore-forming agents, etc., and the porous particles produced by the accumulation of sintering particles are ceramics. Porous ceramics are used as the atomization core, which has the characteristics of good uniformity, long life, delicate taste, and high degree of mechanization. However, the porous ceramic atomizing core has a certain proportion of semi-closed pores and fine pores, which can easily cause adsorption of low-viscosity components in the atomizing medium, thereby affecting the smoking taste and aroma reduction. At the same time, the porous ceramic atomizing core has a rough microscopic surface and low continuity, and cannot be used with a thin film heating film.
  • porous glass Compared with porous ceramics, porous glass has the characteristics of smooth and continuous microstructure, a lower ratio of micro-nano pores, and is less likely to adsorb atomized media.
  • porous glass is generally prepared by pore-forming agent method, foaming method or sponge dipping method.
  • the foaming method is to soften, foam, and anneal glass to prepare porous glass. It is difficult to accurately control the size of the sample, and the closed cell rate is high.
  • the sponge impregnation method uses sponge as the skeleton, debonding, and sintering to prepare porous glass.
  • the pore diameter is too large (greater than 300 ⁇ m), the pores are unevenly distributed, and the sintering is easy to collapse, so it is not suitable as an atomization core.
  • the pore structure is easy to collapse, and the requirements of continuous microstructure and high porosity cannot be guaranteed at the same time.
  • the technical problem to be solved by this application is to overcome the shortcomings of the porous glass atomization core in the prior art such as low porosity and easy collapse of the pore structure, thereby providing a porous glass and its preparation method and application.
  • This application provides a porous glass with a porosity of 50-70% and an average pore diameter of 10-200 ⁇ m.
  • the mass percentage of the added phase is 1-50%.
  • the fiber component has a diameter of 3-30 ⁇ m and a length of 50-500 ⁇ m; if the diameter and length of the fiber component are not within the above range, the fiber component needs to be pretreated to the above size.
  • Typical non-limiting fiber components with specific diameters and lengths can be obtained by ball milling and screening.
  • fiber components can be obtained by the following methods:
  • dispersants include but are not limited to: stearic acid, oleic acid, paraffin, polyethylene glycol, etc.
  • solvents include but are not limited to: water, alcohol, ethyl acetate, etc.
  • the high-energy ball mill adopts planetary ball mill, the ball milling speed is 100-500r/min, and the ball milling time is 0.5-5h.
  • the mesh size of the sieve after drying is 40-100 mesh (sieving only makes the fiber dispersed more evenly, the actual fiber mesh number is much lower than 40-100 mesh, the laser particle size test result is About 15-100 ⁇ m).
  • the fiber raw materials include but are not limited to ceramic fibers and/or glass fibers.
  • the fibers mainly play a skeleton role in this application.
  • the softening point of the selected fiber raw materials can play a skeleton role when it is above the sintering temperature in the preparation method.
  • the fiber may be at least one of silicon carbide fiber, silicon nitride fiber, aluminum silicate fiber, quartz fiber, mullite fiber, alumina fiber, and hydroxyapatite fiber.
  • the added phase is at least one of albite, silica, kaolin, alumina, diatomite, hydroxyapatite, and zeolite.
  • the added phase is used to modify the strength, thermal expansion coefficient, thermal conductivity, etc. of porous glass. There are no special requirements for its source and composition.
  • the softening temperature of the glass powder is 600-1200°C;
  • the pore-forming agent material is carbon powder, PS (polystyrene), PMMA (polymethylmethacrylate), PLA (polylactic acid), PVA (polyvinyl alcohol), PET (polyethylene terephthalate) At least one of ethylene glycol formate) and ASA (engineering plastics);
  • the particle size of the pore-forming agent is 10-300 ⁇ m.
  • This application also provides a method for preparing porous glass, which includes the following steps:
  • the raw materials are mixed to prepare a green body, which is debonded and sintered to obtain the porous glass.
  • its raw material composition is the same as that of the above-mentioned porous glass
  • the debinding temperature is 200-800°C, and the debinding time is 5-50 hours; this application has no special requirements for the specific operation of debinding, as long as the debinding is ensured to be clean.
  • the sintering temperature is 900-1250°C, and the sintering time is 10-180 minutes.
  • This application also provides an atomization core, including the above-mentioned porous glass or the porous glass prepared by the above-mentioned preparation method.
  • the atomization core uses porous glass 1 as a base, and a heating unit 2 is provided on the base.
  • the heating unit is a heating wire, a heating mesh or a heating film.
  • heating wire Or the heating mesh needs to be embedded during the green molding process, and then sintered together with the molded body to obtain a porous glass atomization core; when using a heating film, thick screen printing can be used on the porous glass substrate.
  • the pattern of the heating film is designed, and then the porous glass atomization core is obtained through the sintering step.
  • Typical and non-limiting, thick film resistance heating films are prepared using screen printing technology.
  • the main components of the thick film are nickel-based alloys, iron-based alloys, silver alloys, titanium alloys, aluminum alloys, stainless steel, etc., including Fe, Cr, Ni , Ti, Pa, Pt, Al, Mo, Si, Ag and other elements, the thick film protrusion thickness is 11-100 ⁇ m, the penetration thickness is 10-100 ⁇ m, the line width is 250-450 ⁇ m, and the line spacing is 300 ⁇ m-900 ⁇ m, using For patterns such as S, M, and ⁇ , the heating film sintering temperature is 700-1200°C, and the sintering time is 0.5-3h.
  • Typical and non-limiting, thin film resistance heating films are prepared by spraying or magnetron sputtering.
  • the main components of the film are nickel-based alloys, silver alloys, titanium alloys, aluminum alloys, stainless steel, etc., including Fe, Cr, Ni, Ti, Pa , Pt, Al, Mo, Si, Ag and other elements, the film protruding thickness is 0.5-5 ⁇ m.
  • This application also provides an electronic atomizer, including the above-mentioned atomizing core.
  • the porous glass provided by this application has a porosity of 50-80% and a pore diameter of 10-200 ⁇ m. Compared with porous ceramics, porous glass has a smooth and continuous surface, which can be well adapted to the thin film heating film and improves the stability of the thin film heating film. By limiting the porosity and pore size of porous glass, this application can reduce the adsorption of low-viscosity components in the atomization medium by the porous glass matrix, and use it as the heating element matrix in the atomization core to improve the taste and taste of the electronic atomizer. Aroma reduction.
  • the porous glass provided by this application includes the following raw materials in mass percentage: glass powder 20-80%; fiber component 5-50%; pore-forming agent 10-70%; additional phase 0- 50%.
  • This application uses glass powder as the main component and adds fiber components as the skeleton to prevent the collapse of the pore structure caused by the softening flow of the glass, ensuring the pore structure of the porous glass to a great extent.
  • the prepared porous glass has a relatively high porosity.
  • the characteristics of high (50-80%), suitable pore size (10-200 ⁇ m), smooth and continuous internal surface can reduce the adsorption of low-viscosity components in the atomization medium by the porous matrix and ensure the full atomization of the components of the atomization medium.
  • As the base of the heating element in the atomizer core it improves the taste and aroma reduction of the electronic atomizer.
  • the atomization core provided by this application has a permeable, smooth and continuous pore structure. Compared with the porous ceramic heating core, the oil conduction resistance is smaller and the oil conduction speed is faster. This ensures sufficient oil supply during the atomization process and increases the aerosol volume. and nicotine satisfaction.
  • Figure 1 is the surface (left picture) and cross-sectional (right picture) morphology of the porous glass prepared in Example 1 of the present application;
  • Figure 2 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 2 of the present application;
  • Figure 3 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 3 of the present application;
  • Figure 4 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 4 of the present application;
  • Figure 5 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Example 5 of the present application;
  • Figure 6 is the surface (left picture) and cross-sectional (right picture) morphology of the porous glass prepared in Example 6 of the present application;
  • Figure 7 is the surface (left picture) and cross-section (right picture) morphology of the porous glass prepared in Comparative Example 1 of the present application;
  • Figure 8 is a schematic structural diagram of the atomizing core provided by this application.
  • This embodiment provides an atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 3 hours. It is kept at 200°C for 3 hours. It is heated to 200°C at a constant speed to 250°C for 3 hours. It is kept at 250°C for 3 hours.
  • 250°C is heated to 300°C at a constant speed, the time is 3h, 300°C is kept for 3 hours, 300°C is heated to 350°C at a constant speed, the time is 3h, 350°C is kept for 3 hours, 350°C is heated to 600°C at a constant speed, the time is 4h, 600 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 60 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 1.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides an atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 2.
  • a thick film resistive heating film is printed by screen printing, using a nickel-based Alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements), the thick film protrusion thickness is about 60 ⁇ m, the penetration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, and the line spacing is 600 ⁇ m , the sintering temperature is 1000°C, the time is 30min, and the atomizing core is obtained.
  • nickel-based Alloy specific element composition: nickel, iron, chromium, copper, molybdenum and other elements
  • This embodiment provides an atomizing core, and its preparation method includes the following steps:
  • the green body debinding process is: the room temperature is heated to 200°C at a constant speed for 4 hours, the temperature is maintained at 200°C for 5 hours, the temperature is raised to 200°C at a constant speed for 6 hours, the temperature is maintained at 250°C for 6 hours, and the temperature is heated from 250°C to 300°C at a constant speed.
  • the time is 5h, keep 300°C for 6 hours, 300°C is heated to 350°C at a constant speed, the time is 6h, 350°C is kept for 4 hours, 350°C is heated to 700°C at a constant speed, the time is 6h, 700°C is kept for 2 hours, the sintering temperature is 1100 °C, the sintering time is 60min, the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and the shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 3.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides an atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1000°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 4.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides an atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1000°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 5.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the protruding thickness of the thick film is about 70 ⁇ m.
  • the infiltration thickness is about 20 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This embodiment provides an atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the pore structure of the obtained porous glass is shown in Figure 7.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the infiltration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, the line spacing is 600 ⁇ m, the sintering temperature is 1000°C, the time is 30 minutes, and the atomization core is obtained.
  • This comparative example provides an atomizing core, and its preparation method includes the following steps:
  • the debinding process of the green body is: debinding is carried out in this temperature range.
  • the room temperature is heated to 200°C at a constant speed for 4 hours. It is kept at 200°C for 4 hours.
  • the temperature is raised to 200°C at a constant speed to 250°C for 4 hours. It is kept at 250°C for 4 hours.
  • 250°C is heated to 300°C at a constant speed for 4 hours
  • 300°C is kept for 4 hours
  • 300°C is heated to 350°C at a constant speed for 4 hours
  • 350°C is kept for 4 hours
  • 350°C is heated to 700°C at a constant speed for 6 hours, 700 °C for 2 hours.
  • the sintering temperature is 1100°C and the sintering time is 30 minutes.
  • the size of the green body after sintering is 4 ⁇ 9 ⁇ 4.4, and its shape is shown in Figure 8.
  • the sintering temperature is 1100°C and the sintering time is 60 minutes.
  • a thick film resistance heating film is printed by screen printing, using a nickel-based alloy (specific element composition: nickel, iron, chromium, copper, molybdenum and other elements).
  • the thickness of the thick film protrusion is about 60 ⁇ m.
  • the penetration thickness is about 30 ⁇ m, the pattern is as shown in Figure 8, the line width is 300 ⁇ m, and the line spacing is 600 ⁇ m.
  • the sintering temperature is 1000°C and the time is 30 minutes to obtain the atomizing core.
  • This application uses the drainage method for porosity testing. First, weigh the dry weight M 0 of the porous glass, then place the porous glass in a container, submerge it with deionized water, and use a vacuum drying oven to evacuate for about 20 minutes. Remove the water, weigh the wet weight M 1 , and then put it into deionized water to weigh the floating weight M 2 .
  • the porosity is obtained by the following formula. Three samples from the same batch are tested and the average value is taken.
  • This application uses a pore size analyzer (bubble point analyzer) to conduct pore size testing and use this to determine the pore size distribution of porous glass.
  • a pore size analyzer bubble point analyzer
  • d max is the maximum pore diameter
  • is the surface tension of the wetting fluid
  • is the contact angle between the wetting fluid and the material to be tested
  • ⁇ P is the gas pressure difference on both sides of the sample to be tested.
  • the air pressure test range is 0-300KPa.
  • This application uses the same atomization medium to conduct the oil conduction speed test.
  • Weigh 1g of the mixed solvent of glycerol (VG) and propylene glycol (PG), where PG:VG 1:1, and drop it into a container with a diameter of 2mm.
  • the liquid level is about 1-3 mm lower than the height of the porous sample.
  • the taste evaluation standards mainly include the following evaluation indicators, aroma concentration, irritation (miscellaneous gas), smoke volume, sweetness, throat hit, smoke humidity, Aroma restoration and satisfaction.
  • the maximum score for each evaluation index is 10 points, and the scoring unit for each evaluation index is 0.5 points. Except for irritation (gas), which is scored in the reverse direction, the other indicators are scored in the positive direction.
  • aroma concentration the sensory intensity of the nasal cavity and oral cavity to the overall aerosol
  • irritation the sensory perception of irritation to the mouth, throat, and nasal cavity of the smoke after the atomization medium is atomized, such as Granular feeling, pinprick feeling, miscellaneous gas, etc.
  • Aerosol volume the total amount of aerosol formed after the atomization medium is atomized, and the amount of aerosol felt through the mouth and visually observed after exhalation.
  • Sweetness the intensity of the sweetness perceived in the mouth after atomization of the atomized medium and the intensity of the sweet aroma felt in the nasal cavity
  • throat hit the physical sense of the impact of the aerosol on the throat after inhaling the aerosol Intensity
  • aerosol humidity the degree of dryness and wetness of aerosol particle droplet molecules perceived by the oral cavity and nasal cavity
  • aroma reduction degree the mixing uniformity and coordination of the aroma after the atomization medium is atomized
  • satisfaction the same number of puffs , the short-term brain excitement caused by the absorption of nicotine into the lungs can include symptoms such as numbness in the head and dizziness.
  • the atomizing cores of the same shape and size and the ceramic atomizing core (Shenzhen Maxwell Technology Co., Ltd., Feelm heating element) prepared in the Examples and Comparative Examples of the present application were selected to conduct basic performance tests and to smoke the cigarettes. .
  • Comparative Example 1 has a low porosity and pore size.
  • the solvent cannot reach the surface of the sample, and the oil conduction time cannot be calculated, nor can the taste and aroma reduction degree be scored.
  • Comparative Example 1 only uses glass, pore-forming agents and additive phases to prepare porous glass, with fewer surface pores and mostly closed pores in the internal structure.
  • the pores on the surface and inside are significantly increased, and most of them are open pores.
  • the porosity of Comparative Example 1 is only 5%, while the examples provided in this application have increased the porosity and pore diameter of the sample by adding fiber components as the skeleton. improvement.
  • Example 6 part of the zeolite powder was added as an additive phase. Compared with Example 2, due to the reduction in the amount of fibers that produce the stacking effect, the porosity and pore size of the sample were slightly reduced, and granular zeolite can be clearly seen in the cross section. Powder. After adding zeolite powder, it has little effect on the overall taste, but it can increase the strength of the heating element to a certain extent and improve the deformation of the heating element.
  • the atomizing core prepared by the embodiment of the present application has a significantly improved oil conduction speed.
  • the glass is smooth and continuous, the phase separation transmission, aroma reduction degree and overall taste score are reduced. It has also been greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本申请属于多孔玻璃制备技术领域,具体涉及一种多孔玻璃及其制备方法和应用。所述多孔玻璃以原料的总质量计,包括如下质量百分含量的原料:玻璃粉20-80%;纤维组分5-50%;造孔剂10-70%;添加相0-50%。本申请以玻璃粉为主体成分,通过添加纤维组分作为骨架,防止了因玻璃软化流动造成的孔隙结构坍塌,极大程度的保证了多孔玻璃的孔隙结构,制备得到的多孔玻璃具有孔隙率较高(50-80%)、孔径合适(10-200μm)、内部表面光滑、连续特点,能够减少多孔基体对雾化介质中低粘度成分的吸附,保证了雾化介质成分的充分雾化,作为电子雾化器中发热体的基体,提升了电子雾化器的口感和香气还原度。

Description

一种多孔玻璃及其制备方法和应用
交叉引用
本申请要求在2022年5月25日提交中国国家知识产权局、申请号为202210579323.5、发明名称为“一种多孔玻璃及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于多孔玻璃制备技术领域,具体涉及一种多孔玻璃及其制备方法和应用。
背景技术
电子雾化器是一种通过雾化等手段,将雾化介质等变成蒸汽,让用户吸食的一种产品。雾化芯是电子雾化器的核心部件,对电子雾化器的口感、气溶胶量等性能起到了至关重要的的作用。
封闭式电子雾化器大部分采用多孔陶瓷作为雾化芯,大多数采用硅藻土、氧化硅、氧化铝等为原料,加入玻璃粉、造孔剂等,通过烧结制备的颗粒堆积产生的多孔陶瓷。采用多孔陶瓷作雾化芯,具有均一性好,寿命长,口感细腻、械化程度高等特点。但是,多孔陶瓷雾化芯具有一定的比例的半闭孔和微细孔隙的特点,容易造成对雾化介质中低粘度成分的吸附,进而影响抽吸口感和香气还原度。同时,多孔陶瓷雾化芯微观表面粗糙、连续性较低,无法搭配薄膜发热膜。
与多孔陶瓷相比,多孔玻璃具有微观结构光滑连续、微纳孔比例较低的特点,不易对雾化介质产生吸附的特点。目前,多孔玻璃的制备,一般采用造孔剂法、发泡法或者海绵浸渍法。发泡法是使玻璃软化、发泡、退火制备的多孔玻璃,较难精确控制样品的尺寸,而且闭孔率较高。海绵浸渍法,以海绵为骨架、排胶、烧结制备多孔玻璃,但是,存在孔径过大(大于300μm)、孔隙分布不均、烧结易坍塌的现象,不适合作为雾化芯。直接采用造孔剂法制备的样品,玻璃达到软化点后,孔隙结构容易坍塌,无法同时保证微观结构连续和高孔隙率两方面的要求。
因此,有待开发一种以多孔玻璃的制备方法,以及以此为基础制备的雾化 芯。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的多孔玻璃雾化芯孔隙率低、孔隙结构容易坍塌等缺陷,从而提供一种多孔玻璃及其制备方法和应用。
为此,本申请提供如下技术方案:
本申请提供一种多孔玻璃,所述多孔玻璃的孔隙率为50-70%,平均孔径为10-200μm。
可选的,以原料的总质量计,包括纤维组分15-50%。
可选的,以原料的总质量计,包括如下质量百分含量的原料:
玻璃粉20-70%;纤维组分15-50%;造孔剂10-70%;添加相0-50%;
可选的,所述添加相的质量百分含量为1-50%。
可选的,所述纤维组分的直径为3-30μm,长度为50-500μm;如果纤维组分的直径和长度不在上述范围内,需要对纤维组分预处理至上述尺寸。
典型非限定性的,特定直径和长度的纤维组分可以通过球磨,筛分得到,具体的,可以通过如下方法获得纤维组分:
先对纤维原料进行剪断过筛;称取剪断过筛后的纤维、分散剂、溶剂进行高能球磨;将磨好后的纤维进行干燥,随后进行过筛,随后取筛下的纤维,对直径、长度进行SEM观察。通过工艺参数控制纤维的长度和直径,其中,剪断过筛的筛网目数为10-40目。
其中,分散剂包括但不仅限于:硬脂酸、油酸、石蜡、聚乙二醇等。
其中,溶剂包括但不仅限于:水、酒精、乙酸乙酯等。
其中,高能球磨采用行星球磨,球磨转速为100-500r/min,球磨时间为0.5-5h。
典型非限定性的,干燥后过筛的筛网目数为40-100目(过筛只是让纤维分散更加均匀一点,实际的纤维目数是远低于40-100目的,激光粒度测试结果为 15-100μm左右)。
所述纤维原料包括但不限于陶瓷纤维和/或玻璃纤维,纤维在本申请中主要起到骨架作用,所选纤维原料的软化点在制备方法中的烧结温度以上即可起到骨架作用。典型非限定性的,所述纤维可以为碳化硅纤维,氮化硅纤维,硅酸铝纤维,石英纤维,莫来石纤维,氧化铝纤维,羟基磷石灰纤维中的至少一种。
可选的,所述添加相为钠长石,氧化硅,高岭土,氧化铝,硅藻土,羟基磷石灰,沸石中的至少一种。本申请中,添加相是用于对多孔玻璃的强度、热膨胀系数、热导率等进行改性,对于其来源和组成,没有特殊要求。
可选的,所述玻璃粉的软化温度为600-1200℃;
和/或,所述造孔剂材料为碳粉、PS(聚苯乙烯)、PMMA(聚甲基丙烯酸甲酯)、PLA(聚乳酸)、PVA(聚乙烯醇)、PET(聚对苯二甲酸乙二醇酯)、ASA(工程塑料)中的至少一种;
和/或,所述造孔剂的粒径为10-300μm。
本申请还提供一种多孔玻璃的制备方法,包括如下步骤:
将各原料混合,制备生坯,经排胶,烧结,得到所述多孔玻璃。
可选的,其原料组成同上述多孔玻璃的原料组成;
和/或,采用流延工艺,注塑工艺,干压工艺,凝胶注模成型工艺中的任一种制备生坯;按照电子雾化器结构需要设计产品的形状和尺寸。
和/或,所述排胶温度为200-800℃,排胶时间为5-50h;本申请对于排胶的具体操作没有特殊要求,只要保证排胶干净即可。
和/或,所述烧结温度为900-1250℃,烧结时间为10-180min。
其中,根据生坯的成型工艺的不同,制备工艺的流程和工艺参数会有所差异。
本申请还提供一种雾化芯,包括上述的多孔玻璃或上述的制备方法制备得到的多孔玻璃。
典型非限定性的,如图8所示,所述雾化芯以多孔玻璃1为基体,基体上设置有发热单元2,所述发热单元为发热丝,发热网或发热膜。其中,发热丝 或发热网需要在生坯成型过程中嵌入,然后与成型坯体一起进行烧结,得到多孔玻璃雾化芯;当采用发热膜的时候,可以在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜或者喷涂、磁控溅射薄膜电阻发热膜的形式,设计发热膜的图案,然后再经过烧结步骤得到多孔玻璃雾化芯。
典型非限定性的,采用丝网印刷工艺制备厚膜电阻发热膜,厚膜的主要成分为镍基合金、铁基合金、银合金、钛合金、铝合金、不锈钢等,包含Fe、Cr、Ni、Ti、Pa、Pt、Al、Mo、Si、Ag等元素,厚膜突出厚度为11-100μm,下渗厚度为10-100μm,线宽为250-450μm,线距为300μm-900μm,采用的图案S、M、Ω等图案,发热膜烧结温度为700-1200℃,烧结时间为0.5-3h。
典型非限定性的,采用喷涂或者磁控溅射制备薄膜电阻发热膜,薄膜的主要成分为镍基合金、银合金、钛合金、铝合金、不锈钢等,包含Fe、Cr、Ni、Ti、Pa、Pt、Al、Mo、Si、Ag等元素,薄膜突出厚度为0.5-5μm。
本申请还提供一种电子雾化器,包括上述的雾化芯。
本申请技术方案,具有如下优点:
本申请提供的多孔玻璃,所述多孔玻璃的孔隙率为50-80%,孔径为10-200μm。多孔玻璃与多孔陶瓷相比表面光滑连续,可以很好的适配薄膜发热膜,提高了薄膜发热膜的稳定性。本申请通过对多孔玻璃的孔隙率和孔径的限定,能够减少多孔玻璃基体对雾化介质中低粘度成分的吸附,以其作为雾化芯中发热体基体,提升了电子雾化器的口感和香气还原度。
本申请提供的多孔玻璃,以原料的总质量计,包括如下质量百分含量的原料:玻璃粉20-80%;纤维组分5-50%;造孔剂10-70%;添加相0-50%。本申请以玻璃粉为主体成分,通过添加纤维组分作为骨架,防止了因玻璃软化流动造成的孔隙结构坍塌,极大程度的保证了多孔玻璃的孔隙结构,制备得到的多孔玻璃具有孔隙率较高(50-80%)、孔径合适(10-200μm)、内部表面光滑、连续的特点,能够减少多孔基体对雾化介质中低粘度成分的吸附,保证了雾化介质成分的充分雾化,作为雾化芯中发热体基体,提升了电子雾化器的口感和香气还原度。
本申请提供的雾化芯,孔隙结构贯通、光滑连续,与多孔陶瓷发热芯相比导油阻力较小、导油速度较快,保证了雾化过程中供油的充足,提高了气溶胶量和尼古丁满足感。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1制备的多孔玻璃表面(左图)和断面(右图)形貌;
图2是本申请实施例2制备的多孔玻璃表面(左图)和断面(右图)形貌;
图3是本申请实施例3制备的多孔玻璃表面(左图)和断面(右图)形貌;
图4是本申请实施例4制备的多孔玻璃表面(左图)和断面(右图)形貌;
图5是本申请实施例5制备的多孔玻璃表面(左图)和断面(右图)形貌;
图6是本申请实施例6制备的多孔玻璃表面(左图)和断面(右图)形貌;
图7是本申请对比例1制备的多孔玻璃表面(左图)和断面(右图)形貌;
图8是本申请提供的雾化芯结构示意图;
附图标记:
1、多孔玻璃;2、发热单元。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种雾化芯,其制备方法包括如下步骤:
先对莫来石纤维进行剪断,采用20目筛网进行过筛,称取过筛后的莫来石纤维100g、硬脂酸5g、体积浓度为100%的酒精100g,进行行星球磨,其中球 料比3:1,球磨转速为300r/min,球磨时间为30min。将磨好后的莫来石纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉35g(软化温度1080℃,下同)、50μm PMMA造孔剂40g、球磨过筛后的莫来石纤维25g,采用三维混料机,混料2h。采用注塑成型,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为3小时,200℃保温3h,200℃匀速升温至250℃,时间为3h,250℃保温3小时,250℃匀速升温至300℃,时间为3h,300℃保温3小时,300℃匀速升温至350℃,时间为3h,350℃保温3小时,350℃匀速升温至600℃,时间为4h,600℃保温2小时。烧结温度为1100℃,烧结时间为60min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图1所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例2
本实施例提供一种雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉35g、100μm ASA造孔剂40g,球磨过筛后的氧化铝纤维25g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1100℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图2所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基 合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例3
本实施例提供一种雾化芯,其制备方法包括如下步骤:
先对硅酸铝纤维进行剪断,采用40目筛网进行过筛,称取过筛后的硅酸铝纤维100g、硬脂酸10g、体积浓度为100%酒精100g,进行行星球磨,其中球料比5:1,球磨转速为400r/min,球磨时间为2h。将磨好后的硅酸铝纤维在100℃烘箱内进行干燥,随后采用60目的筛网进行过筛。
按照质量称取3000目玻璃粉35g、200μm PET造孔剂40g、球磨过筛后的硅酸铝纤维25g,采用三维混料机,混料3h。采用注塑成型工艺,进行生坯的制备,
生坯排胶工艺为:室温匀速升温至200℃,时间为4小时,200℃保温5h,200℃匀速升温至250℃,时间为6h,250℃保温6小时,250℃匀速升温至300℃,时间为5h,300℃保温6小时,300℃匀速升温至350℃,时间为6h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时,烧结温度为1100℃,烧结时间为60min,烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图3所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例4
本实施例提供一种雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉20g、100μm ASA造孔剂30g,球磨过筛后的氧化铝纤维50g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1000℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图4所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例5
本实施例提供一种雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目玻璃粉80g、100μm ASA造孔剂15g,球磨过筛后的氧化铝纤维5g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1000℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图5所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为70μm左右,下渗厚度为20μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
实施例6
本实施例提供一种雾化芯,其制备方法包括如下步骤:
先对氧化铝纤维进行剪断,采用10目筛网进行过筛,称取过筛后的氧化铝纤维100g、硬脂酸3g、体积浓度为100%的酒精100g,进行行星球磨,其中球料比6:1,球磨转速为400r/min,球磨时间为60min。将磨好后氧化铝纤维在100℃烘箱内进行干燥,随后采用40目的筛网进行过筛。
按照质量称取3000目的玻璃粉35g、100μm ASA造孔剂40g,球磨过筛后的氧化铝纤维20g,并添加30μm左右的沸石粉末5g,采用三维混料机,混料3h。采用注塑工艺,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1100℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。所得多孔玻璃的孔隙结构如图7所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm,烧结温度为1000℃,时间为30min,得到雾化芯。
对比例1
本对比例提供一种雾化芯,其制备方法包括如下步骤:
按照质量称取玻璃粉60g、100μm ASA造孔剂40g,采用三维混料机,混料3h。采用注塑成型,进行生坯的制备。
生坯排胶工艺为:排胶是在此温度区间进行,室温匀速升温至200℃,时间为4小时,200℃保温4h,200℃匀速升温至250℃,时间为4h,250℃保温4小时,250℃匀速升温至300℃,时间为4h,300℃保温4小时,300℃匀速升温至350℃,时间为4h,350℃保温4小时,350℃匀速升温至700℃,时间为6h,700℃保温2小时。烧结温度为1100℃,烧结时间为30min。烧结后坯体尺寸为4×9×4.4,形状如图8所示。烧结温度为1100℃,烧结时间为60min,得到的多孔玻璃孔隙结构如图6所示。
在多孔玻璃基体上,采用丝网印刷的方式印刷厚膜电阻发热膜,采用镍基合金(具体元素组成:镍、铁、铬、铜、钼等元素),厚膜突出厚度为60μm左右,下渗厚度为30μm左右,图案如图8所示,线宽为300μm,线距为600μm, 烧结温度为1000℃,时间为30min,得到雾化芯。
测试例
1、孔隙率和孔径测试
本申请采用排水法进行孔隙率测试,先称取多孔玻璃的干重M0,再将多孔玻璃置于容器中,用去离子水淹没,采用真空干燥箱抽真空20min左右,将多孔玻璃表面的水去除,称取湿重M1,再置入去离子水中称取浮重M2,通过以下公式得到孔隙率,同一批样品测试三个取平均值。
本申请通过孔径分析仪(泡点仪),进行孔径测试,并以此判断多孔玻璃的孔径分布。
采用氮气对多孔玻璃高压侧持续施加压力,当样品一侧的气体穿过样品到达另一侧的浸润液中而产生气泡,用此方法计算出的即为样品最大孔径,通过增大压力可测试更小的孔径,公式如下所示:
dmax=4γcosθ/ΔP
其中dmax为最大孔径,γ为润湿液表面张力,θ为润湿液与待测材料间的接触角,ΔP为待测样品两侧气体压差。
以平均孔径作为参考数值,气压测试范围为0-300KPa。参照标准GB/T 5249-1985,ISO 4003-1977。
2、导油速率
本申请采用同一种雾化介质进行导油速度测试,称取1g丙三醇(VG)和丙二醇(PG)混合溶剂,其中PG:VG=1:1,滴入直径为2mm的容器内,溶剂的液面高度低于多孔样品的高度1-3mm左右,置于光学显微镜下,将多孔基体置于容器中央后开始计时,通过光学显微镜观察溶剂完全充满多孔样品的上表面后停止计时。
3、品吸测试
口感品吸,由5人组成的口感品吸小组分别进行感官评价,口感评价标准主要包括以下评价指标,香气浓度、刺激性(杂气)、烟雾量、甜度、击喉感、烟雾湿度、香气还原度、满足感。每个评价指标的最大分均为10分,各评价指标均以0.5分为计分单位,除刺激性(杂气)为反向打分外,其余指标为正向打分。
8个指标评价的含义为,香气浓度:鼻腔和口腔对整体气溶胶的感官浓厚程度;刺激性:雾化介质雾化后的烟气在口腔、喉部、鼻腔对刺激性的感官感受,如颗粒感、针刺感以及杂气等;气溶胶量:雾化介质雾化后形成气溶胶的总量,以及通过口腔感受及呼出后目视到的气雾量的大小。甜度:雾化介质雾化后在口腔内感知到的甜味强弱程度以及鼻腔内感受到的甜香强弱程度;击喉感:吸入气溶胶后,气雾对喉部冲击的物理感官强度;气溶胶湿度:气溶胶颗粒液滴分子被口腔、鼻腔感知到的干湿程度;香气还原度:雾化介质雾化出来后的香气的混合均匀度和协调度;满足感:同等口数下,尼古丁被肺部吸收反应出的短时间大脑兴奋的感受,可以是头部的麻感、晕等症状。
表1评价标准
选取本申请实施例和对比例制备得到的相同形状和尺寸的雾化芯以及陶瓷雾化芯(深圳市麦克韦尔科技有限公司,Feelm发热体),进行基本性能测试,并进行装烟品吸。
表2
其中,对比例1,孔隙率孔径较低,进行导油测试时,溶剂无法到达样品表面,不能进行导油时间的计算,也无法进行口感和香气还原度的评分。
从上表的结果可以看出,与陶瓷雾化芯相比,多孔玻璃雾化芯的导油得到了较大的提高,口感和香气还原度感也得到一定的提高。
通过图1-7的微观形貌的对比,对比例1仅采用玻璃、造孔剂和添加相制备多孔玻璃,表面孔隙较少,内部结构大部分为闭孔,通过添加纤维组分作为骨架,表面和内部的孔隙明显增多,大部分为开孔。同时,通过孔隙率和孔径测试数据也可以看到,对比例1的孔隙率仅5%,而本申请提供的实施例通过添加纤维组分作为骨架后,样品孔隙率、孔径均得到了较大的提升。
实施例6,添加了部分沸石粉体作为添加相,与实施例2相比,由于产生堆架效果的纤维量减少,样品的孔隙率孔径略有降低,断面可以明显的看到颗粒状的沸石粉体。加入沸石粉体后,对整体口感影响不大,但是可以一定程度的提升发热体的强度,改善发热体的变形。
采用本申请实施例制备的雾化芯和现有的陶瓷雾化芯相比,导油速度得到了明显的提升,同时由于玻璃光滑连续,减少了分相传输,香气还原度和整体的口感评分也得到了较大的提升。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (10)

  1. 一种多孔玻璃,其特征在于,所述多孔玻璃的孔隙率为50-70%,平均孔径为10-200μm。
  2. 根据权利要求1所述的多孔玻璃,其特征在于,以原料的总质量计,包括纤维组分15-50%。
  3. 根据权利要求2所述的多孔玻璃,其特征在于,以原料的总质量计,包括如下质量百分含量的原料:
    玻璃粉20-70%;纤维组分15-50;造孔剂为10-70%;添加相0-50%;
    可选的,所述添加相的质量百分含量为1-50%。
  4. 根据权利要求2或3所述的多孔玻璃,其特征在于,所述纤维组分的直径为3-30μm,长度为20-500μm;
    和/或,所述纤维组分为碳化硅纤维,氮化硅纤维,硅酸铝纤维,石英纤维,莫来石纤维,氧化铝纤维,羟基磷石灰纤维中的至少一种。
  5. 根据权利要求3所述的多孔玻璃,其特征在于,所述添加相为钠长石,氧化硅,高岭土,氧化铝,硅藻土,羟基磷石灰,沸石中的至少一种。
  6. 根据权利要求3-5任一项所述的多孔玻璃,其特征在于,所述玻璃粉的软化温度为600-1200℃;
    和/或,所述造孔剂材料为碳粉、聚苯乙烯、聚甲基丙烯酸甲酯、聚乳酸、聚乙烯醇、聚对苯二甲酸乙二醇酯、工程塑料中的至少一种;
    和/或,所述造孔剂的粒径为10-300μm。
  7. 一种多孔玻璃的制备方法,其特征在于,包括如下步骤:
    将各原料混合,制备生坯,经排胶,烧结,得到所述多孔玻璃。
  8. 根据权利要求7所述的多孔玻璃的制备方法,其特征在于,其原料组成同权利要求2-6任一项中所述多孔玻璃的原料组成;
    和/或,采用流延工艺,注塑工艺,干压工艺,凝胶注模程序工艺中的任一种制备生坯;
    和/或,所述排胶温度为200-800℃,排胶时间为5-50h;
    和/或,所述烧结温度为900-1250℃,烧结时间为10-180min。
  9. 一种雾化芯,其特征在于,包括权利要求1-6任一项所述的多孔玻璃或权利要求7-8任一项所述的制备方法制备得到的多孔玻璃。
  10. 一种电子雾化器,其特征在于,包括权利要求9所述的雾化芯。
PCT/CN2023/080743 2022-05-25 2023-03-10 一种多孔玻璃及其制备方法和应用 WO2023226523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210579323.5A CN114804639A (zh) 2022-05-25 2022-05-25 一种多孔玻璃及其制备方法和应用
CN202210579323.5 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226523A1 true WO2023226523A1 (zh) 2023-11-30

Family

ID=82516333

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/080743 WO2023226523A1 (zh) 2022-05-25 2023-03-10 一种多孔玻璃及其制备方法和应用
PCT/CN2023/095363 WO2023226903A1 (zh) 2022-05-25 2023-05-19 一种多孔玻璃雾化芯及其制备方法和电子雾化器

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095363 WO2023226903A1 (zh) 2022-05-25 2023-05-19 一种多孔玻璃雾化芯及其制备方法和电子雾化器

Country Status (2)

Country Link
CN (2) CN114804639A (zh)
WO (2) WO2023226523A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804639A (zh) * 2022-05-25 2022-07-29 深圳麦克韦尔科技有限公司 一种多孔玻璃及其制备方法和应用
CN115611520B (zh) * 2022-10-13 2024-05-14 深圳市赛尔美电子科技有限公司 多孔玻璃雾化芯及其制备方法和加热雾化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176942A (zh) * 2013-05-23 2014-12-03 天津大学 一种莫来石多晶纤维增强泡沫玻璃
CN110477463A (zh) * 2019-09-11 2019-11-22 深圳市博迪科技开发有限公司 一种多孔玻璃雾化装置及包含其的电子烟
KR102211643B1 (ko) * 2019-07-25 2021-02-02 서울시립대학교 산학협력단 우수한 강도를 지닌 발포 유리 및 이의 제조방법
CN113387572A (zh) * 2021-05-20 2021-09-14 深圳市基克纳科技有限公司 一种含空心玻璃粉的多孔材料及其制备方法与应用
JP2022011691A (ja) * 2020-06-30 2022-01-17 株式会社ノリタケカンパニーリミテド 多孔質セラミック発熱体
CN114451586A (zh) * 2022-01-17 2022-05-10 惠州市新泓威科技有限公司 具有纳米金属镀膜层的雾化芯
CN114804639A (zh) * 2022-05-25 2022-07-29 深圳麦克韦尔科技有限公司 一种多孔玻璃及其制备方法和应用
CN114890677A (zh) * 2022-01-20 2022-08-12 深圳麦克韦尔科技有限公司 多孔发热基材制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003464B1 (ko) * 1991-03-25 1994-04-22 한국유리공업 주식회사 큰 개방기공용적을 갖는 다공질 소결유리의 제조방법
CN102167517A (zh) * 2010-12-30 2011-08-31 陕西科技大学 一种高强多孔玻璃的制备方法
DE102015113124A1 (de) * 2015-08-10 2017-02-16 Schott Ag Offenporige Sintergläser zur Verwendung in elektronischen Zigaretten
WO2021163922A1 (zh) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 电子烟雾化组件及其制造方法
CN113173801B (zh) * 2021-04-28 2022-12-13 深圳市基克纳科技有限公司 一种多孔材料及其制备方法与应用
CN113354289A (zh) * 2021-05-20 2021-09-07 深圳市基克纳科技有限公司 一种无铅多孔材料及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176942A (zh) * 2013-05-23 2014-12-03 天津大学 一种莫来石多晶纤维增强泡沫玻璃
KR102211643B1 (ko) * 2019-07-25 2021-02-02 서울시립대학교 산학협력단 우수한 강도를 지닌 발포 유리 및 이의 제조방법
CN110477463A (zh) * 2019-09-11 2019-11-22 深圳市博迪科技开发有限公司 一种多孔玻璃雾化装置及包含其的电子烟
JP2022011691A (ja) * 2020-06-30 2022-01-17 株式会社ノリタケカンパニーリミテド 多孔質セラミック発熱体
CN113387572A (zh) * 2021-05-20 2021-09-14 深圳市基克纳科技有限公司 一种含空心玻璃粉的多孔材料及其制备方法与应用
CN114451586A (zh) * 2022-01-17 2022-05-10 惠州市新泓威科技有限公司 具有纳米金属镀膜层的雾化芯
CN114890677A (zh) * 2022-01-20 2022-08-12 深圳麦克韦尔科技有限公司 多孔发热基材制备方法
CN114804639A (zh) * 2022-05-25 2022-07-29 深圳麦克韦尔科技有限公司 一种多孔玻璃及其制备方法和应用

Also Published As

Publication number Publication date
CN114804639A (zh) 2022-07-29
WO2023226903A1 (zh) 2023-11-30
CN117125900A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2023226523A1 (zh) 一种多孔玻璃及其制备方法和应用
CN109437875B (zh) 微孔陶瓷、陶瓷发热体及其制备方法和应用
CN109875123A (zh) 电子烟雾化器、电子烟、雾化组件及其制备方法
CN109721344A (zh) 多孔陶瓷材料、多孔陶瓷及其制备方法
CN113511886B (zh) 陶瓷雾化芯及其制备方法
CN102574040B (zh) 施加有耐腐蚀玻璃涂层的用于过滤熔融金属的多孔陶瓷
CN114532618B (zh) 多孔陶瓷流延浆料、多孔陶瓷雾化芯及制备方法
CN110447962A (zh) 雾化元件和电子烟
CN107160534A (zh) 一种三维打印生物陶瓷复合支架及其应用
JP2021528062A (ja) タバコムースの製造方法
WO2005099940A1 (en) Method of manufacturing of a sintered metal fiber medium
JP2023501121A (ja) エアロゾル発生物品のための発泡体を形成する方法及びその発泡体
WO2021036533A1 (zh) 一种环氧树脂复合定形相变材料及其制备方法和应用
CN113429217A (zh) 多孔陶瓷基体的制备方法及雾化芯、雾化器、电子烟
KR20230160778A (ko) 비연소 가열 제품을 위한 실리카 겔 냉각부
Yang et al. Formation, morphology and control of high-performance biomedical polyurethane porous membranes by water micro-droplet induced phase inversion
CN114394849A (zh) 一种多孔陶瓷复合材料及多孔陶瓷复合材料的制备方法
WO2023202266A1 (zh) 一种金属发热膜及其制备方法和应用
JP2019515855A5 (zh)
CN111838752B (zh) 一种加热不燃烧卷烟用降温材料及其制备方法
JP4922921B2 (ja) 金属繊維非焼結体の製造方法
Rahamin et al. Development of cellulose aerogel as a new material for the reduction of harmful substances in cigarette smoke
CN207733661U (zh) 一种发烟制品
CH695337A5 (de) Verfahren und Vorrichtung zur Heissformgebung von geschmolzenen Glasposten.
CN114149248A (zh) 多孔陶瓷材料及其制备方法、发热组件、雾化器和电子烟

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810598

Country of ref document: EP

Kind code of ref document: A1