WO2022217932A1 - 多孔陶瓷材料、制作方法、多孔陶瓷及应用 - Google Patents

多孔陶瓷材料、制作方法、多孔陶瓷及应用 Download PDF

Info

Publication number
WO2022217932A1
WO2022217932A1 PCT/CN2021/132963 CN2021132963W WO2022217932A1 WO 2022217932 A1 WO2022217932 A1 WO 2022217932A1 CN 2021132963 W CN2021132963 W CN 2021132963W WO 2022217932 A1 WO2022217932 A1 WO 2022217932A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
binder
mass percentage
temperature
powder
Prior art date
Application number
PCT/CN2021/132963
Other languages
English (en)
French (fr)
Inventor
齐会龙
聂革
宋文正
胡勇齐
李俊辉
Original Assignee
深圳市吉迩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市吉迩科技有限公司 filed Critical 深圳市吉迩科技有限公司
Publication of WO2022217932A1 publication Critical patent/WO2022217932A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Definitions

  • the invention relates to the field of porous ceramic manufacturing, in particular to a porous ceramic material, a manufacturing method, a porous ceramic and an application.
  • Aerosol generating devices are used to generate aerosols, and aerosols are often generated by atomization with a porous ceramic atomizing core.
  • Porous ceramic atomizing core is made of porous ceramic.
  • the molded body is filled with inorganic powder and degreased at high temperature.
  • the capillary formed by the inorganic powder is helpful for degreasing, promotes the discharge of part of the liquid-phase organic matter and the decomposed product of the organic material.
  • the inorganic powder helps the molded body to maintain its own shape, avoiding the self-gravity and the degreasing caused by the organic matter. The green body deforms and collapses.
  • the inorganic powder needs to be cleaned after degreasing, which is time-consuming and labor-intensive, and the cleaning process is also easy to damage the ceramics; (2) the surface of the ceramics is adhered due to physical and chemical effects. Inorganic powder is difficult to clean; inorganic powder that cannot completely remove the feeling has the risk of powder falling on the aerosol generating device, which brings great safety hazards to users; (3) The inorganic powder adhered to the ceramic affects the performance of the aerosol generating device. At the same time, the metal heating circuit on the ceramic surface is easy to fall off, and the risk of paste core is high.
  • the purpose of the present invention is to provide a porous ceramic material, a manufacturing method, a porous ceramic and an application, so as to overcome the defects of the current porous ceramic manufacturing process and porous ceramics.
  • the invention discloses a porous ceramic material, comprising ceramic powder and a binder; in terms of mass percentage, the ceramic powder accounts for 55%-80%, and the balance is the binder.
  • the ceramic powder includes the following components: 30-70% of diatomite, 1-20% of quartz sand, 1-20% of glass powder, and 10-50% of pore-forming agent , Kaolin 1-20%, Calcium Carbonate 0-10%, Magnesium Oxide 0-10%, Zinc Oxide 0-10%, Titanium Dioxide 0-10%, Talc 0-15%, Feldspar 0-15%, Sepiolite 0-10%, bentonite 0-5%.
  • the ceramic powder includes the following components by mass percentage: 40%-50% of diatomaceous earth, 5%-10% of quartz sand, 5%-10% of glass powder, and 20% of pore-forming agent -30%, Kaolin 5%-10%, Calcium Carbonate 2-5%, Magnesium Oxide 0-10%, Zinc Oxide 0-10%, Titanium Dioxide 0-10%, Talc 0%-10%, Feldspar 2%- 10%, sepiolite 0-5%, bentonite 0%-5%.
  • the binder includes components: paraffin wax 30-75%, beeswax 1-20%, low density polyethylene 2-35%, stearic acid 1-10%, vegetable oil 0 %-5%, plasticizer 0-10%.
  • the binder includes the following components by mass percentage: 50-60% of paraffin, 5-10% of beeswax, 15-20% of low density polyethylene, 5-10% of stearic acid, vegetable oil 2%-5%, plasticizer 3-8%.
  • the invention also discloses a method for making porous ceramics, comprising:
  • Step 1 Weigh the above-mentioned ceramic powder and the above-mentioned binder in proportion;
  • Step 2 heating the binder in step 1 to be in a molten state, and adding the ceramic powder in step 1 to mix to obtain a premixed material;
  • Step 3 granulate the premixed material in step 2, and then injection-mold to obtain an injection-molded embryo;
  • Step 4 Degreasing and sintering the injection molded body of Step 3 to obtain porous ceramics.
  • step 2 is specifically:
  • step 1 Heat the binder in step 1 to 70°C-170°C, and carry out banburying, kneading or stirring to make the binder in a molten state;
  • step 4 is specifically:
  • the sintering temperature was raised from room temperature to 250°C, and the temperature was maintained for 730 minutes and the holding time was 240 minutes;
  • the sintering temperature was raised from 250°C to 350°C, and the temperature was maintained for 300 minutes and the holding time was 60 minutes;
  • the sintering temperature was raised from 350°C to 500°C, and the temperature was maintained for 150 minutes and the holding time was 60 minutes;
  • the sintering temperature was raised from 500°C to 900°C, and the heating time was 120 min;
  • the sintering temperature was raised from 900°C to 1100°C, and the temperature was maintained for 120 minutes and the holding time was 120 minutes;
  • the sintering temperature was lowered from 1100°C to room temperature to complete the sintering.
  • the step 3 is specifically: granulating the premixed material in step 2, and the granulation temperature is 50 °C-140 °C; injection molding the premixed material to obtain an injection molding embryo, and the injection temperature is 50 °C-140 °C. °C.
  • the ceramic powder includes the following components: 30-70% of diatomite, 1-20% of quartz sand, 1-20% of glass powder, and 10-50% of pore-forming agent , Kaolin 1-20%, Calcium Carbonate 0-10%, Magnesium Oxide 0-10%, Zinc Oxide 0-10%, Titanium Dioxide 0-10%, Talc 0-15%, Feldspar 0-15%, Sepiolite 0-10%, bentonite 0-5%.
  • the ceramic powder includes the following components by mass percentage: 40%-50% of diatomaceous earth, 5%-10% of quartz sand, 5%-10% of glass powder, and 20% of pore-forming agent -30%, Kaolin 5%-10%, Calcium Carbonate 2-5%, Magnesium Oxide 0-10%, Zinc Oxide 0-10%, Titanium Dioxide 0-10%, Talc 0%-10%, Feldspar 2%- 10%, sepiolite 0-5%, bentonite 0%-5%.
  • the binder includes components: paraffin wax 30-75%, beeswax 1-20%, low density polyethylene 2-35%, stearic acid 1-10%, vegetable oil 0 %-5%, plasticizer 0-10%.
  • the binder includes the following components by mass percentage: 50-60% of paraffin, 5-10% of beeswax, 15-20% of low density polyethylene, 5-10% of stearic acid, vegetable oil 2%-5%, plasticizer 3-8%.
  • the invention also discloses a porous ceramic, which is made by the above-mentioned manufacturing method.
  • step 3 of the preparation method is specifically: granulating the premixed material in step 2, and the granulation temperature is 50°C-140°C; injection molding the premixed material to obtain an injection molding embryo, and the injection temperature is 50°C. °C-140°C.
  • the ceramic powder includes the following components: 30-70% of diatomite, 1-20% of quartz sand, 1-20% of glass powder, and 10-50% of pore-forming agent , Kaolin 1-20%, Calcium Carbonate 0-10%, Magnesium Oxide 0-10%, Zinc Oxide 0-10%, Titanium Dioxide 0-10%, Talc 0-15%, Feldspar 0-15%, Sepiolite 0-10%, bentonite 0-5%.
  • the ceramic powder includes the following components by mass percentage: 40%-50% of diatomaceous earth, 5%-10% of quartz sand, 5%-10% of glass powder, and 20% of pore-forming agent -30%, Kaolin 5%-10%, Calcium Carbonate 2-5%, Magnesium Oxide 0-10%, Zinc Oxide 0-10%, Titanium Dioxide 0-10%, Talc 0%-10%, Feldspar 2%- 10%, sepiolite 0-5%, bentonite 0%-5%.
  • the binder includes components: paraffin wax 30-75%, beeswax 1-20%, low density polyethylene 2-35%, stearic acid 1-10%, vegetable oil 0 %-5%, plasticizer 0-10%.
  • the binder includes the following components by mass percentage: 50-60% of paraffin, 5-10% of beeswax, 15-20% of low density polyethylene, 5-10% of stearic acid, vegetable oil 2%-5%, plasticizer 3-8%.
  • the invention also discloses the application of the above-mentioned porous ceramic in the aerosol generating device.
  • the method for producing porous ceramics of the present invention adopts porous ceramics materials and is injection-molded to obtain porous ceramics, which does not need to be filled with inorganic powders for high-temperature degreasing, the porous ceramics does not need to clean the inorganic powders, saves manpower and material resources, and the ceramics are not easily damaged.
  • the aerosol generating device using porous ceramics has no risk of powder falling, and has good safety.
  • the metal heating circuit is not easy to fall off, and the risk of paste core is small.
  • Fig. 1 is a flow chart of a method for making porous ceramics according to an embodiment of the present invention
  • FIG. 2 is a thermal analysis curve diagram of an injection molded body according to an embodiment of the present invention.
  • a porous ceramic material includes ceramic powder and a binder; in terms of mass percentage, the ceramic powder accounts for 55%-80%, and the balance is the binder.
  • the porous ceramic material of the present invention is used for making porous ceramics for sol devices, realizes a degreasing process without buried powder, has high solid content, and has high sintering strength. High performance, the aerosol generating device has a good taste, and the metal heating circuit on the ceramic surface is not easy to fall off, and the risk of paste core is small.
  • the ceramic powder accounts for 55%-80% of the total mass of the porous ceramic material, and the ceramic powder belongs to the solid content.
  • High solid content is beneficial to maintain the shape during the degreasing process without collapse and deformation, but too high
  • the solid content is not conducive to injection molding, so the selection of ceramic powder is 55%-80%.
  • the ceramic powder includes the following components by mass percentage: diatomite 30-70%, quartz sand 1-20%, glass powder 1-20%, pore-forming agent 10-50%, kaolin 1- 20%, calcium carbonate 0-10%, magnesium oxide 0-10%, zinc oxide 0-10%, titanium dioxide 0-10%, talc 0-15%, feldspar 0-15%, sepiolite 0-10% , Bentonite 0-5%.
  • diatomite itself has excellent porous structure, good adsorption and filtration characteristics, low density, and good heat storage.
  • it is used as the main framework material to make porous ceramics, which are used in aerosol generating devices.
  • the atomization filtering effect is good and the weight is light.
  • Quartz sand, glass powder, kaolin, talc, and bentonite are flux components, which can reduce the sintering temperature and promote sintering. Pore formers can be removed during debinding and sintering of porous ceramics to leave a pore structure.
  • Magnesium oxide, zinc oxide and titanium dioxide are additives, which have the functions of adjusting the phase composition of the inorganic phase and sterilizing.
  • the addition of feldspar can easily adjust the strength of porous ceramics.
  • Calcium carbonate can adjust the wetting performance and improve the sintering temperature, and the addition of sepiolite can adjust the overall taste of the aerosol generating device.
  • diatomite can be 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%
  • quartz sand can be 1%, 5%, 10%, 15%, 20%
  • glass powder can be 1%, 5%, 10%, 15%, 20%
  • pore former can be 10%, 15%, 20%, 25%, 30%, 35%
  • kaolin can be 1%, 5%, 10%, 15%, 20%
  • calcium carbonate can be 0-10%
  • magnesium oxide can be 0%, 2%, 5%, 8%, 10%
  • zinc oxide can be 0%, 2%, 5%, 8%, 10%
  • titanium dioxide can be 0%, 2%, 5%, 8%, 10%
  • talc can be 0%, 1 %, 5%, 10%, 15%
  • feldspar can be 0%, 1%, 5%, 10%, 15%
  • sepiolite can be 0%, 2%, 5%, 8%, 10%
  • Bentonite can be 0%, 1%, 2%,
  • the ceramic powder includes the following components by mass: 40%-50% of diatomaceous earth, 5%-10% of quartz sand, and 5% of glass powder -10%, pore former 20%-30%, kaolin 5%-10%, calcium carbonate 2-5%, magnesium oxide 0-10%, zinc oxide 0-10%, titanium dioxide 0-10%, talc 0% -10%, feldspar 2%-10%, sepiolite 0-5%, bentonite 0%-5%.
  • diatomite can be 40%, 42%, 44%, 46%, 48%, quartz sand can be 5%, 7%, 8%, 10%
  • glass powder can be 5% , 7%, 8%, 10%
  • pore-forming agent can be 20%, 22%, 24%, 26%, 28%, 30%
  • kaolin can be 5%, 7%, 8%, 10%
  • calcium carbonate Can be 2%, 3%, 4%, 5%
  • magnesium oxide can be 0%, 2%, 4%, 6%, 8%, 10%
  • zinc oxide can be 0%, 2%, 4%, 6 %, 8%, 10%
  • titanium dioxide can be 0%, 2%, 4%, 6%, 8%, 10%
  • talc can be 0%, 2%, 4%, 6%, 8%, 10%
  • Feldspar can be 2%, 4%, 6%, 8%, 10%
  • sepiolite can be 0%, 1%, 2%, 3%, 4%, 5%
  • bentonite
  • the binder comprises the following components by mass percentage: paraffin wax 30-75%, beeswax 1-20%, low density polyethylene 2-35%, stearic acid 1-10%, vegetable oil 0%-5%, plasticizer 0-10%.
  • the main function of the binder in this embodiment is to impart fluidity to the ceramic powder, which is conducive to molding, and can be completely removed during the degreasing process to form a porous structure.
  • paraffin wax as a low molecular weight organic substance, has good thermochemical properties and can be easily removed at high temperature, and is used as the main material of the binder.
  • the binder is applied to ceramic powder. When making porous ceramics, the binder is easy to remove and clean, and the aerosol generating device has a better and clean taste.
  • the melting point of beeswax is higher than that of paraffin, which is beneficial to widen the removal temperature range and avoid bubbling caused by the violent volatilization of the binder at the paraffin removal temperature.
  • low-density polyethylene is the high-temperature skeleton of the binder.
  • Stearic acid facilitates the dispersion of ceramic powders and binders.
  • Vegetable oil is used as a lubricant to facilitate the release of the material during the molding process.
  • Plasticizers can improve the plasticity of injection molded bodies.
  • paraffin can be 30%, 35%, 40%, 45%, 55%, 60%, 65%, 70%, 75%, beeswax 1%, 5%, 10%, 15% , 20%, LDPE 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, stearic acid 1%, 2%, 4%, 6%, 8%, 10%, vegetable oil 0%, 1%, 2%, 3%, 4%, 5%, plasticizer 0%, 2%, 4%, 6%, 8%, 10%.
  • the binder includes the following components by mass percentage: 50-60% of paraffin, 5-10% of beeswax, 15-20% of low density polyethylene, 5-10% stearic acid, 2%-5% vegetable oil, 3-8% plasticizer.
  • paraffin wax can be 50%, 52%, 54%, 56%, 58%, 60%
  • beeswax can be 5%, 7%, 9%, 10%
  • low density polyethylene can be 15%, 16%, 18%, 20%
  • stearic acid can be 5%, 7%, 9%, 10%
  • vegetable oil can be 2%, 3%, 4%, 5%
  • plasticizer can be 3 %, 5%, 7%, 8%.
  • a ceramic powder comprises the following components by mass percentage: 50% of diatomite, 5% of quartz sand, 6% of glass powder, 30% of pore-forming agent, 5% of kaolin, and 4% of feldspar.
  • a ceramic powder comprises the following components by mass percentage: 50% of diatomaceous earth, 5% of quartz sand, 10% of glass powder, 30% of pore-forming agent, and 5% of kaolin.
  • a ceramic powder comprising the following components by mass percentage: 40% of diatomaceous earth, 5% of quartz sand, 5% of glass powder, 10% of pore-forming agent, 7% of kaolin, 5% of magnesium oxide, and 5% of zinc oxide 5%, titanium dioxide 5%, talc 10%, feldspar 5%, bentonite 3%.
  • a ceramic powder comprising the following components by mass percentage: 30% of diatomite, 5% of quartz sand, 5% of glass powder, 10% of pore-forming agent, 2% of kaolin, 5% of calcium carbonate, and 5% of magnesium oxide 5%, zinc oxide 5%, titanium dioxide 5%, talc 10%, feldspar 5%, sepiolite 10%, bentonite 3%.
  • a binder comprises the following components by mass percentage: 60% of paraffin, 10% of beeswax, 15% of low density polyethylene, 5% of stearic acid, 5% of vegetable oil, and 5% of plasticizer.
  • a binder comprises the following components by mass percentage: 70% of paraffin wax, 10% of beeswax, 15% of low density polyethylene, and 5% of stearic acid.
  • a binder comprising the following components by mass percentage: 70% of paraffin wax, 7% of beeswax, 15% of low density polyethylene, 5% of stearic acid, and 3% of vegetable oil.
  • a binder comprises the following components by mass percentage: 70% of paraffin wax, 7% of beeswax, 15% of low density polyethylene, 3% of stearic acid, and 5% of plasticizer.
  • a method for making porous ceramics includes:
  • Step 1 Weigh the ceramic powder described in the above embodiment and the binder described in the above embodiment in proportion;
  • Step 2 heating the binder in step 1 to be in a molten state, and adding the ceramic powder in step 1 to mix to obtain a premixed material;
  • Step 3 granulate the premixed material in step 2, and then injection-mold to obtain an injection-molded embryo;
  • Step 4 Degreasing and sintering the injection molded body of Step 3 to obtain porous ceramics.
  • the ceramic powders described in the above embodiments and the binder described in the above embodiments are used to prepare porous ceramics through injection molding, and it is not necessary to use inorganic powders for filling and high-temperature degreasing.
  • Porous ceramics do not need to clean the inorganic powder, saving manpower and material resources, and the ceramics are not easy to be damaged.
  • the aerosol generating device using porous ceramics has no risk of powder falling, and has good safety.
  • the metal heating circuit is not easy to fall off, and the risk of paste core is small.
  • the non-buried powder degreasing technology can realize the integration of decalcification, complete the product in one furnace, and save time.
  • the buried powder is degreasing for about 40 hours, the sticky powder on the surface is taken out for about 4 hours, placed in a sintering furnace for high temperature sintering for about 6 hours, and the heating time is about 6 hours, and the temperature is kept for 2 hours. Remove after cooling.
  • the manufacturing method of the porous ceramic in this embodiment can save the time for cleaning the surface sticky powder.
  • Step 4 may specifically include: first degreasing the injection-molded green body in step 3, and then sintering the injection-molded green body to obtain porous ceramics.
  • the injection molded embryo body was degreased for 40 hours, and after being taken out, it was directly placed in a sintering furnace for high temperature sintering for a heating time of about 6 hours, kept for 2 hours, and taken out after cooling with the furnace.
  • the present embodiment saves the time for cleaning the surface sticking powder and the step of cleaning the powder, thereby avoiding the damage of the ceramic substrate caused by this step, and the yield is increased from about 94% to about 99%.
  • step 4 may also be as follows: firstly perform high-temperature degreasing and sintering of the injection-molded green body of step 3 to obtain porous ceramics. Specifically, high temperature degreasing and sintering were carried out for 42 hours, and the furnace was cooled and taken out. Compared with the existing process, this embodiment realizes degreasing and sintering, and only uses the same high-temperature furnace to realize the two steps of degreasing and sintering, which reduces the number of equipment, shortens the total time of degreasing and sintering, and does not need to clean the sticky powder, and the product is cleaner. Safer, with a yield rate close to 100%.
  • step 2 heating makes the binder in a molten state, so that the ceramic powder can be fully mixed and fused.
  • step 3 the particles of step 2 are uniformly injected into the embryo body.
  • the step 1 further includes the steps of: drying the ceramic powder, the drying temperature is 70°C-90°C, and the drying time is 1.5h-2.5h.
  • the drying temperature is 80°C, and the drying time is 2h. After drying, it can be cooled naturally for later use.
  • the purpose of drying is to remove the moisture in the ceramic powder and prevent uncontrollable pores during the injection molding process when there is too much moisture.
  • the step 2 is as follows: heating the binder in step 1 to 70°C-170°C, and performing banburying, kneading or stirring to make the binder in a molten state; adding the ceramic powder in step 1 and mixing for 2 hours -5h to obtain premixed material.
  • Banbury, kneading or stirring can be selected to mix the binder.
  • Banbury, kneading or stirring is carried out by means of a corresponding Banbury mixer, kneader, mixer.
  • the step 3 is specifically: granulating the premixed material in step 2, and the granulation temperature is 50°C-140°C; injection molding the premixed material to obtain an injection molding embryo, and the injection temperature is 50°C-140°C .
  • the injection-molded body is further subjected to the steps of removing the cap and the parting line.
  • the step 4 is specifically as follows: raising the sintering temperature from room temperature to 250° C., and keeping the temperature for 730 minutes and holding time for 240 minutes; raising the sintering temperature from 250° C. to 350° C. and keeping the temperature for 300 minutes.
  • the holding time is 60min; the sintering temperature is raised from 350°C to 500°C, and the temperature is kept for 150min, and the holding time is 60min; the sintering temperature is raised from 500°C to 900°C, and the heating time is 120min;
  • the temperature is raised to 1100°C, and the temperature is maintained for 120 minutes and the holding time is 120 minutes; the sintering temperature is lowered from 1100°C to room temperature to complete the sintering.
  • the thermal analysis curve (DG-DSC curve) of the injection molded body is shown in Figure 2.
  • the injection molded body is slowly heated from room temperature to 250 °C to avoid deformation of the body caused by too fast heating; 250 °C to 350 °C is the stage of violent volatilization of organic substances. , reduce the heating rate to ensure clean removal of organic matter.
  • the organic matter is basically completely volatilized, and then the temperature is rapidly increased, and the porous ceramics with uniform distribution of pores are obtained by heat preservation and sintering at 1100 °C.
  • the ceramic powder weighed in the step 1 accounts for 55%-80% of the total mass of the ceramic powder and the binder, and the balance is the binder.
  • Ceramic powder belongs to the solid content, and the high solid content is beneficial to maintain the shape during the degreasing process without collapsing and deforming. But too high solid content is not conducive to injection molding, the selection of ceramic powder is 55%-80%.
  • the proportion of the ceramic powder is 70%, and the proportion of the binder is 30% by mass percentage.
  • the proportion of each component is: diatomite 50%, quartz sand 5%, glass powder 6%, pore-forming agent 30%, kaolin 5%, feldspar 4%.
  • the proportion of each component is: paraffin 60%, beeswax 10%, low density polyethylene 15%, stearic acid 5%, vegetable oil 5%, plasticizer 5% .
  • the porous ceramic obtained by this formula has a porosity of ⁇ 60% and a pore size of about 20um, which satisfies the high reduction degree of porous ceramics and has an excellent taste.
  • the proportion of ceramic powder is 75%, and the proportion of binder is 25% by mass percentage.
  • the proportion of each component in the ceramic powder and the proportion of each component of the binder are the same as the above, and will not be repeated.
  • the porous ceramic obtained by this formula has a porosity of ⁇ 60% and a pore diameter of about 20um, which satisfies the high reduction degree of porous ceramics and has an excellent taste.
  • a porous ceramic is produced by the above-mentioned method for manufacturing the porous ceramic.
  • the porous ceramic produced by this method does not need to clean the inorganic powder, saves manpower and material resources, the ceramic is not easily damaged, there is no risk of powder falling, and the safety is good.
  • porous ceramic of the present invention is used in an aerosol generating device, the aerosol generating device has no risk of powder falling, and has good safety, the metal heating circuit is not easy to fall off, and the risk of paste core is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

多孔陶瓷材料、制作方法、多孔陶瓷及应用。多孔陶瓷材料包括陶瓷粉料和粘结剂;按质量百分计,陶瓷粉料占比为55%-80%,余量为粘结剂。多孔陶瓷制作方法:采用多孔陶瓷材料,通过注塑成型,制得多孔陶瓷,不需要用无机粉体进行填埋高温脱脂,多孔陶瓷不需要清理无机粉,节省人力物力,陶瓷不容易损坏,采用多孔陶瓷的气溶胶发生装置无掉粉风险,安全性好,金属发热线路不容易脱落,糊芯风险小。

Description

多孔陶瓷材料、制作方法、多孔陶瓷及应用
本申请要求于2021年04月15日提交中国专利局、申请号为202110408028.9,发明名称为“多孔陶瓷材料、制作方法、多孔陶瓷及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及多孔陶瓷制作领域,尤其涉及一种多孔陶瓷材料、制作方法、多孔陶瓷及应用。
背景技术
气溶胶发生装置用于产生气溶胶,其中经常采用多孔陶瓷雾化芯雾化产生气溶胶。多孔陶瓷雾化芯采用多孔陶瓷制成。目前,气溶胶发生装置用的多孔陶瓷在制作过程中,成型后,将成型体用无机粉进行填埋并高温脱脂。无机粉形成的毛细管有助于脱脂的进行,促进部分液相有机物的排出和有机材料分解产物的脱出,另一方面无机粉帮助成型体维持自身形状,避免因自身重力和有机物的脱出后导致的坯体变形和坍塌。
但是这种无机粉填埋的工艺,存在着诸多缺点:(1)脱脂后需要清理无机粉,耗时耗力,清理过程也容易损坏陶瓷;(2)陶瓷的表面因物理、化学作用粘上无机粉,难以清理;无法完全清除感觉的无机粉在气溶胶发生装置上有掉粉的风险,给用户带来了极大的安全 隐患;(3)陶瓷粘上无机粉影响气溶胶发生装置的口感,同时陶瓷表面的金属发热线路容易脱落,糊芯风险大。
发明内容
本发明的目的是提供一种多孔陶瓷材料、制作方法、多孔陶瓷及应用,以克服目前多孔陶瓷制作工艺及多孔陶瓷的缺陷。
本发明公开了一种多孔陶瓷材料,包括陶瓷粉料和粘结剂;按质量百分计,所述陶瓷粉料占比为55%-80%,余量为所述粘结剂。
可选的,按质量百分计,所述陶瓷粉料包括以下的组分:硅藻土30-70%、石英砂1-20%、玻璃粉1-20%、造孔剂10-50%、高岭土1-20%、碳酸钙0-10%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0-15%、长石0-15%、海泡石0-10%、膨润土0-5%。
可选的,所述陶瓷粉料包括以下按质量百分计的组分:硅藻土40%-50%、石英砂5%-10%、玻璃粉5%-10%、造孔剂20%-30%、高岭土5%-10%、碳酸钙2-5%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0%-10%、长石2%-10%、海泡石0-5%、膨润土0%-5%。
可选的,按质量百分计,所述粘结剂包括组分:石蜡30-75%、蜂蜡1-20%、低密度聚乙烯2-35%、硬质酸1-10%、植物油0%-5%、增塑剂0-10%。
可选的,所述粘结剂包括以下按质量百分计的组分:石蜡50-60%、蜂蜡5-10%、低密度聚乙烯15-20%、硬质酸5-10%、植物油2%-5%、增塑剂3-8%。
本发明还公开了一种多孔陶瓷制作方法,包括:
步骤1:按比例称取如上所述的陶瓷粉料以及如上所述的粘结剂;
步骤2:加热步骤1的粘结剂呈熔融状态,并加入步骤1的陶瓷粉料混合,得到预混物料;
步骤3:对步骤2的预混物料造粒,然后注塑成型,得到注塑胚体;
步骤4:脱脂、烧结步骤3的注塑胚体,得到多孔陶瓷。
可选的,所述步骤2具体为:
加热步骤1的粘结剂至70℃-170℃,并进行密炼、捏合或搅拌,使粘结剂呈熔融状态;
加入步骤1的陶瓷粉料混合2h-5h,得到预混物料。
可选的,所述步骤4具体为:
将烧结温度从室温升至250℃,并保温,升温时间为730min,保温时间为240min;
将烧结温度从250℃升至350℃,并保温,升温时间为300min,保温时间为60min;
将烧结温度从350℃升至500℃,并保温,升温时间为150min,保温时间为60min;
将烧结温度从500℃升至900℃,升温时间为120min;
将烧结温度从900℃升至1100℃,并保温,升温时间为120min,保温时间为120min;
将烧结温度从1100℃降至室温,完成烧结。
可选的,所述步骤3具体为:对步骤2的预混物料造粒,造粒温度为50℃-140℃;对预混物料注塑成型,得到注塑胚体,注塑温度为50℃-140℃。
可选的,按质量百分计,所述陶瓷粉料包括以下的组分:硅藻土30-70%、石英砂1-20%、玻璃粉1-20%、造孔剂10-50%、高岭土1-20%、碳酸钙0-10%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0-15%、长石0-15%、海泡石0-10%、膨润土0-5%。
可选的,所述陶瓷粉料包括以下按质量百分计的组分:硅藻土40%-50%、石英砂5%-10%、玻璃粉5%-10%、造孔剂20%-30%、高岭土5%-10%、碳酸钙2-5%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0%-10%、长石2%-10%、海泡石0-5%、膨润土0%-5%。
可选的,按质量百分计,所述粘结剂包括组分:石蜡30-75%、蜂蜡1-20%、低密度聚乙烯2-35%、硬质酸1-10%、植物油0%-5%、增塑剂0-10%。
可选的,所述粘结剂包括以下按质量百分计的组分:石蜡50-60%、蜂蜡5-10%、低密度聚乙烯15-20%、硬质酸5-10%、植物油2%-5%、增塑剂3-8%。
本发明还公开了一种多孔陶瓷,采用如上所述的制作方法制成。
可选的,所述制备方法的步骤3具体为:对步骤2的预混物料造粒,造粒温度为50℃-140℃;对预混物料注塑成型,得到注塑胚体,注塑温度为50℃-140℃。
可选的,按质量百分计,所述陶瓷粉料包括以下的组分:硅藻土 30-70%、石英砂1-20%、玻璃粉1-20%、造孔剂10-50%、高岭土1-20%、碳酸钙0-10%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0-15%、长石0-15%、海泡石0-10%、膨润土0-5%。
可选的,所述陶瓷粉料包括以下按质量百分计的组分:硅藻土40%-50%、石英砂5%-10%、玻璃粉5%-10%、造孔剂20%-30%、高岭土5%-10%、碳酸钙2-5%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0%-10%、长石2%-10%、海泡石0-5%、膨润土0%-5%。
可选的,按质量百分计,所述粘结剂包括组分:石蜡30-75%、蜂蜡1-20%、低密度聚乙烯2-35%、硬质酸1-10%、植物油0%-5%、增塑剂0-10%。
可选的,所述粘结剂包括以下按质量百分计的组分:石蜡50-60%、蜂蜡5-10%、低密度聚乙烯15-20%、硬质酸5-10%、植物油2%-5%、增塑剂3-8%。
本发明还公开了一种如上所述的多孔陶瓷在气溶胶发生装置中的应用。
本发明的多孔陶瓷制作方法,采用多孔陶瓷材料,通过注塑成型,制得多孔陶瓷,不需要用无机粉体进行填埋高温脱脂,多孔陶瓷不需要清理无机粉,节省人力物力,陶瓷不容易损坏,采用多孔陶瓷的气溶胶发生装置无掉粉风险,安全性好,金属发热线路不容易脱落,糊芯风险小。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明实施例多孔陶瓷制作方法的流程图;
图2是本发明实施例注塑坯体的热分析曲线图。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
一种多孔陶瓷材料,包括陶瓷粉料和粘结剂;按质量百分计,所述陶瓷粉料占比为55%-80%,余量为所述粘结剂。
本发明的多孔陶瓷材料,用于制作溶胶装置用多孔陶瓷,实现无埋粉脱脂工艺,固含量高,烧结强度高,制作出的溶胶装置用多孔陶瓷不容易损坏,无掉粉的风险,安全性高,气溶胶发生装置口感好,同时陶瓷表面的金属发热线路不容易脱落,糊芯风险小。
在本实施例中,陶瓷粉料占多孔陶瓷材料总质量的55%-80%,陶瓷粉料属于其中的固含量,高固含量有益于在脱脂过程中保持形状而不坍塌变形,但过高的固含量不利于注塑成型,所以陶瓷粉料选为55%-80%。
具体地,陶瓷粉料包括以下按质量百分计的组分:硅藻土30-70%、石英砂1-20%、玻璃粉1-20%、造孔剂10-50%、高岭土1-20%、碳酸钙0-10%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0-15%、长石0-15%、海泡石0-10%、膨润土0-5%。
在本方案中,硅藻土自身具有优良的多孔结构,具有很好的吸附过滤特性,密度小,蓄热性好,在本方案中作为主要骨架材料,制作多孔陶瓷,应用在气溶胶发生装置中,在气溶胶发生装置使用过程中,雾化过滤效果好,质量轻。石英砂,玻璃粉,高岭土,滑石,膨润土为助熔成分,可以降低烧结温度,促进烧结。造孔剂可以在多孔陶瓷脱脂烧结过程中除去而留下孔结构。氧化镁、氧化锌、二氧化钛为添加剂,具有调节无机相的相成分、杀菌等作用。长石的加入可以方便调整多孔陶瓷的强度。碳酸钙可以调整润湿性能,改善烧结温度,海泡石加入可以调节气溶胶发生装置的综合口感。
其中,按质量百分计,硅藻土可以是30%、35%、40%、45%、50%、55%、60%、65%、70%,石英砂可以是1%、5%、10%、15%、20%,玻璃粉可以是1%、5%、10%、15%、20%,造孔剂可以是10%、15%、20%、25%、30%、35%、40%、45%、50%,高岭土可以是1%、5%、10%、15%、20%,碳酸钙可以是0-10%、氧化镁可以是0%、2%、5%、8%、10%,氧化锌可以是0%、2%、5%、8%、10%,二氧化钛可以是0%、2%、5%、8%、10%,滑石可以是0%、1%、5%、10%、15%,长石可以是0%、1%、5%、10%、15%,海泡石可以是0%、2%、5%、8%、10%,膨润土可以是0%、1%、2%、3%、4%、5%。
作为本实施例陶瓷粉料进一步优选的技术方案,所述陶瓷粉料包括以下按质量百分计的组分:硅藻土40%-50%、石英砂5%-10%、玻璃粉5%-10%、造孔剂20%-30%、高岭土5%-10%、碳酸钙2-5%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0%-10%、长石2%-10%、海泡石0-5%、膨润土0%-5%。
其中,按质量百分计,硅藻土可以是40%、42%、44%、46%、48%,石英砂可以是5%、7%、8%、10%,玻璃粉可以是5%、7%、8%、10%,造孔剂可以是20%、22%、24%、26%、28%、30%,高岭土可以是5%、7%、8%、10%,碳酸钙可以是2%、3%、4%、5%,氧化镁可以是0%、2%、4%、6%、8%、10%,氧化锌可以是0%、2%、4%、6%、8%、10%,二氧化钛可以是0%、2%、4%、6%、8%、10%,滑石可以是0%、2%、4%、6%、8%、10%,长石可以是2%、4%、6%、8%、10%,海泡石可以是0%、1%、2%、3%、4%、5%,膨润土可以是0%、1%、2%、3%、4%、5%。其中,碳酸钙太多会导致收缩比较大,尺寸一致性差,强度也会降低,其在2-5%的范围中,收缩小,尺寸一致性好,强度大。
另一方面,所述粘结剂包括以下按质量百分计的组分:石蜡30-75%、蜂蜡1-20%、低密度聚乙烯2-35%、硬质酸1-10%、植物油0%-5%、增塑剂0-10%。
本实施例中粘结剂的主要作用是赋予陶瓷粉料流动性,利于成型,并且可以在脱脂过程中全部排除,形成孔状结构。在本实施例中,石蜡作为小分子量有机物具有良好的热化学性能,在高温下容易脱除干净,作为粘结剂主料。粘结剂应用于陶瓷粉料,在制作多孔陶瓷时, 粘结剂容易脱除干净,气溶胶发生装置的口感更好干净。蜂蜡熔点比石蜡高一些,利于增宽脱除温度区间,避免在石蜡脱除温度下粘结剂剧烈挥发带来鼓泡。低密度聚乙烯作为高粘度高弹性材料,是粘结剂的高温骨架。硬脂酸有利于陶瓷粉料和粘结剂的分散。植物油作为润滑剂,利于材料成型过程中的脱模。增塑剂可以提高注塑坯体的塑性。
其中,按质量百分计,石蜡可以是30%、35%、40%、45%、55%、60%、65%、70%、75%,蜂蜡1%、5%、10%、15%、20%,低密度聚乙烯2%、5%、10%、15%、20%、25%、30%、35%,硬质酸1%、2%、4%、6%、8%、10%,植物油0%、1%、2%、3%、4%、5%、增塑剂0%、2%、4%、6%、8%、10%。
作为本实施例粘结剂进一步优选的技术方案,所述粘结剂包括以下按质量百分计的组分:石蜡50-60%、蜂蜡5-10%、低密度聚乙烯15-20%、硬质酸5-10%、植物油2%-5%、增塑剂3-8%。
其中,按质量百分计,石蜡可以是50%、52%、54%、56%、58%、60%,蜂蜡可以是5%、7%、9%、10%,低密度聚乙烯可以是15%、16%、18%、20%,硬质酸可以是5%、7%、9%、10%,植物油可以是2%、3%、4%、5%,增塑剂可以是3%、5%、7%、8%。
实施例2
一种陶瓷粉料,包括以下按质量百分计的组分:硅藻土50%,石英砂5%,玻璃粉6%,造孔剂30%,高岭土5%,长石4%。
实施例3
一种陶瓷粉料,包括以下按质量百分计的组分:硅藻土50%,石 英砂5%,玻璃粉10%,造孔剂30%,高岭土5%。
实施例4
一种陶瓷粉料,包括以下按质量百分计的组分:硅藻土40%,石英砂5%,玻璃粉5%,造孔剂10%,高岭土7%,氧化镁5%,氧化锌5%,二氧化钛5%,滑石10%,长石5%、膨润土3%。
实施例5
一种陶瓷粉料,包括以下按质量百分计的组分:硅藻土30%,石英砂5%,玻璃粉5%,造孔剂10%,高岭土2%,碳酸钙5%,氧化镁5%,氧化锌5%,二氧化钛5%,滑石10%,长石5%、海泡石10%,膨润土3%。
实施例6
一种粘结剂,包括以下按质量百分计的组分:石蜡60%,蜂蜡10%,低密度聚乙烯15%,硬脂酸5%,植物油5%,增塑剂5%。
实施例7
一种粘结剂,包括以下按质量百分计的组分:石蜡70%,蜂蜡10%,低密度聚乙烯15%,硬脂酸5%。
实施例8
一种粘结剂,包括以下按质量百分计的组分:石蜡70%,蜂蜡7%,低密度聚乙烯15%,硬脂酸5%,植物油3。
实施例9
一种粘结剂,包括以下按质量百分计的组分:石蜡70%,蜂蜡7%,低密度聚乙烯15%,硬脂酸3%,增塑剂5%。
实施例10
如图1所示,一种多孔陶瓷制作方法,包括:
步骤1:按比例称取如上述实施例所述的陶瓷粉料以及上述实施例所述的粘结剂;
步骤2:加热步骤1的粘结剂呈熔融状态,并加入步骤1的陶瓷粉料混合,得到预混物料;
步骤3:对步骤2的预混物料造粒,然后注塑成型,得到注塑胚体;
步骤4:脱脂、烧结步骤3的注塑胚体,得到多孔陶瓷。
本实施例的多孔陶瓷制作方法,采用上述实施例所述的陶瓷粉料以及上述实施例所述的粘结剂,通过注塑成型,制得多孔陶瓷,不需要用无机粉体进行填埋高温脱脂,多孔陶瓷不需要清理无机粉,节省人力物力,陶瓷不容易损坏。应用在气溶胶发生装置中,采用多孔陶瓷的气溶胶发生装置无掉粉风险,安全性好,金属发热线路不容易脱落,糊芯风险小。
本实施例中,无埋粉脱脂技术可以实现脱烧一体,一次进炉完成产品,节约时间。而现有的无机粉填埋工艺,埋粉脱脂约40小时,取出清理表面的粘粉约4个小时,放置于烧结炉内进行高温烧结升温时间约6个小时,保温2个小时,随炉冷却后取出。本实施例的多孔陶瓷制作方法,可以省去清理表面粘粉的时间。
步骤4具体可以为:先脱脂步骤3的注塑胚体,在烧结注塑胚体,得到多孔陶瓷。具体的,注塑胚体脱脂40小时,取出后直接放置于 烧结炉内进行高温烧结升温时间约6个小时,保温2个小时,随炉冷却后取出。本实施例比现有工艺节省了清理表面粘粉的时间,省去了清粉的步骤,从而避免了本步骤带来的陶瓷基体的破坏,良率从94%左右提升至99%左右。
在另一实施例中,步骤4也可以为:先同时进行高温脱脂和烧结步骤3的注塑胚体,得到多孔陶瓷。具体的,高温脱脂和烧结42小时,随炉冷却后取出。本实施例比现有工艺实现脱脂和烧结,只用同一台高温炉就可实现脱脂和烧结两个步骤,缩减了设备数量,缩短了脱脂烧结总时间,且无需清理粘粉,产品更洁净,更安全,良率为接近100%。
在步骤2中,加热使粘结剂呈熔融状态,可以使得陶瓷粉料充分混合融合,步骤3中对步骤2的颗粒均匀的注塑胚体。
具体的,所述步骤1还包括步骤:干燥陶瓷粉料,干燥温度为70℃-90℃,干燥时间为1.5h-2.5h。优选的,干燥温度为80℃,干燥时间为2h。在干燥后可以自然冷却,以备后用。干燥的目的是除去陶瓷粉料中的水分,防止水分过多的情况下,注塑过程中产生不可控制的气孔。
具体的,所述步骤2具体为:加热步骤1的粘结剂至70℃-170℃,并进行密炼、捏合或搅拌,使粘结剂呈熔融状态;加入步骤1的陶瓷粉料混合2h-5h,得到预混物料。密炼、捏合或搅拌可以选择其一,以将粘结剂混匀。密炼、捏合或搅拌通过相应的密炼机、捏合机、搅拌机执行。
具体的,所述步骤3具体为:对步骤2的预混物料造粒,造粒温度为50℃-140℃;对预混物料注塑成型,得到注塑胚体,注塑温度为50℃-140℃。在得到注塑坯体后,进一步对注塑坯体进行除去披锋、合模线步骤。
所述步骤4具体为:将烧结温度从室温升至250℃,并保温,升温时间为730min,保温时间为240min;将烧结温度从250℃升至350℃,并保温,升温时间为300min,保温时间为60min;将烧结温度从350℃升至500℃,并保温,升温时间为150min,保温时间为60min;将烧结温度从500℃升至900℃,升温时间为120min;将烧结温度从900℃升至1100℃,并保温,升温时间为120min,保温时间为120min;将烧结温度从1100℃降至室温,完成烧结。
如图2所示注塑坯体的热分析曲线(DG-DSC曲线),注塑坯体在室温至250℃缓慢升温,避免升温过快导致的坯体变形;250℃-350℃为有机物剧烈挥发阶段,降低升温速率,保证有机物脱除干净。500℃有机物基本挥发完全,之后快速升温,1100℃保温烧结得到孔隙均匀分布的多孔陶瓷。
具体的,按质量百分计,所述步骤1称取的陶瓷粉料占陶瓷粉料和粘结剂总质量的55%-80%,余量为粘结剂。陶瓷粉料属于其中的固含量,高固含量有益于在脱脂过程中保持形状而不坍塌变形。但是过高的固含量不利于注塑成型,陶瓷粉料选为55%-80%。
更具体的,在其中一个实施例中,按质量百分计,陶瓷粉料的占比为70%,粘结剂的占比为30%。其中,在陶瓷粉料中,按质量百分 计,各组分的占比为:硅藻土50%,石英砂5%,玻璃粉6%,造孔剂30%,高岭土5%,长石4%。在粘结剂中,按质量百分计,各组分的占比为:石蜡60%,蜂蜡10%,低密度聚乙烯15%,硬脂酸5%,植物油5%,增塑剂5%。如表1所示,该配方获得的多孔陶瓷孔隙率≥60%,孔径约20um,满足多孔陶瓷的高还原度,口感优。
表1
烧结温度 孔隙率 孔径 口感
1100℃ 63.97% 25.53um
在其中一个实施例中,按质量百分计,陶瓷粉料的占比为75%,粘结剂的占比为25%。其中,在陶瓷粉料中的各组分的占比、粘结剂各组分的占比与上述相同,不再赘述。如表2所示,该配方获得的多孔陶瓷孔隙率≥60%,孔径约20um,满足多孔陶瓷的高还原度,口感优。
表2
烧结温度 孔隙率 孔径 口感
1120℃ 63.16% 20.7um
实施例11
一种多孔陶瓷,采用如上所述的多孔陶瓷制作方法制成。通过该方法制成的多孔陶瓷,不需要清理无机粉,节省人力物力,陶瓷不容易损坏,无掉粉风险,安全性好,气溶胶发生装置的金属发热线路不容易脱落,糊芯风险小。
实施例12
一种如上所述的多孔陶瓷在气溶胶发生装置中的应用。本发明的多孔陶瓷用在气溶胶发生装置中,气溶胶发生装置无掉粉风险,安全性好,金属发热线路不容易脱落,糊芯风险小。
需要说明的是,本方案中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本发明的保护范围。
以上内容是结合具体的可选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (20)

  1. 一种多孔陶瓷材料,包括陶瓷粉料和粘结剂,按质量百分计,所述陶瓷粉料占比为55%-80%,余量为所述粘结剂。
  2. 如权利要求1所述的多孔陶瓷材料,其中,按质量百分计,所述陶瓷粉料包括以下的组分:硅藻土30-70%、石英砂1-20%、玻璃粉1-20%、造孔剂10-50%、高岭土1-20%、碳酸钙0-10%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0-15%、长石0-15%、海泡石0-10%、膨润土0-5%。
  3. 如权利要求2所述的一种多孔陶瓷材料,其中,所述陶瓷粉料包括以下按质量百分计的组分:硅藻土40%-50%、石英砂5%-10%、玻璃粉5%-10%、造孔剂20%-30%、高岭土5%-10%、碳酸钙2-5%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0%-10%、长石2%-10%、海泡石0-5%、膨润土0%-5%。
  4. 如权利要求1所述的一种多孔陶瓷材料,其中,按质量百分计,所述粘结剂包括组分:石蜡30-75%、蜂蜡1-20%、低密度聚乙烯2-35%、硬质酸1-10%、植物油0%-5%、增塑剂0-10%。
  5. 如权利要求4所述的一种多孔陶瓷材料,其中,所述粘结剂包括以下按质量百分计的组分:石蜡50-60%、蜂蜡5-10%、低密度聚乙烯15-20%、硬质酸5-10%、植物油2%-5%、增塑剂3-8%。
  6. 一种多孔陶瓷制作方法,包括:
    步骤1:按比例称取如权利要求1所述的陶瓷粉料以及粘结剂;
    步骤2:加热步骤1的粘结剂呈熔融状态,并加入步骤1的陶瓷 粉料混合,得到预混物料;
    步骤3:对步骤2的预混物料造粒,然后注塑成型,得到注塑胚体;
    步骤4:脱脂、烧结步骤3的注塑胚体,得到多孔陶瓷。
  7. 如权利要求6所述的多孔陶瓷制作方法,其中,所述步骤2具体为:
    加热步骤1的粘结剂至70℃-170℃,并进行密炼、捏合或搅拌,使粘结剂呈熔融状态;
    加入步骤1的陶瓷粉料混合2h-5h,得到预混物料。
  8. 如权利要求6至7任意一项所述的多孔陶瓷制作方法,其中,所述步骤4具体为:
    将烧结温度从室温升至250℃,并保温,升温时间为730min,保温时间为240min;
    将烧结温度从250℃升至350℃,并保温,升温时间为300min,保温时间为60min;
    将烧结温度从350℃升至500℃,并保温,升温时间为150min,保温时间为60min;
    将烧结温度从500℃升至900℃,升温时间为120min;
    将烧结温度从900℃升至1100℃,并保温,升温时间为120min,保温时间为120min;
    将烧结温度从1100℃降至室温,完成烧结。
  9. 如权利要求6至7任意一项所述的多孔陶瓷制作方法,其中, 所述步骤3具体为:对步骤2的预混物料造粒,造粒温度为50℃-140℃;对预混物料注塑成型,得到注塑胚体,注塑温度为50℃-140℃。
  10. 如权利要求6所述的多孔陶瓷制作方法,其中,按质量百分计,所述陶瓷粉料包括以下的组分:硅藻土30-70%、石英砂1-20%、玻璃粉1-20%、造孔剂10-50%、高岭土1-20%、碳酸钙0-10%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0-15%、长石0-15%、海泡石0-10%、膨润土0-5%。
  11. 如权利要求10所述的多孔陶瓷制作方法,其中,所述陶瓷粉料包括以下按质量百分计的组分:硅藻土40%-50%、石英砂5%-10%、玻璃粉5%-10%、造孔剂20%-30%、高岭土5%-10%、碳酸钙2-5%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0%-10%、长石2%-10%、海泡石0-5%、膨润土0%-5%。
  12. 如权利要求6所述的多孔陶瓷制作方法,其中,按质量百分计,所述粘结剂包括组分:石蜡30-75%、蜂蜡1-20%、低密度聚乙烯2-35%、硬质酸1-10%、植物油0%-5%、增塑剂0-10%。
  13. 如权利要求12所述的多孔陶瓷制作方法,其中,所述粘结剂包括以下按质量百分计的组分:石蜡50-60%、蜂蜡5-10%、低密度聚乙烯15-20%、硬质酸5-10%、植物油2%-5%、增塑剂3-8%。
  14. 一种多孔陶瓷,通过权利要求6至8任意一项所述的制备方法制得。
  15. 如权利要求14所述的多孔陶瓷,其中,所述制备方法的步骤 3具体为:对步骤2的预混物料造粒,造粒温度为50℃-140℃;对预混物料注塑成型,得到注塑胚体,注塑温度为50℃-140℃。
  16. 如权利要求14所述的多孔陶瓷,其中,按质量百分计,所述陶瓷粉料包括以下的组分:硅藻土30-70%、石英砂1-20%、玻璃粉1-20%、造孔剂10-50%、高岭土1-20%、碳酸钙0-10%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0-15%、长石0-15%、海泡石0-10%、膨润土0-5%。
  17. 如权利要求16所述的多孔陶瓷,其中,所述陶瓷粉料包括以下按质量百分计的组分:硅藻土40%-50%、石英砂5%-10%、玻璃粉5%-10%、造孔剂20%-30%、高岭土5%-10%、碳酸钙2-5%、氧化镁0-10%、氧化锌0-10%、二氧化钛0-10%、滑石0%-10%、长石2%-10%、海泡石0-5%、膨润土0%-5%。
  18. 如权利要求14所述的多孔陶瓷,其中,按质量百分计,所述粘结剂包括组分:石蜡30-75%、蜂蜡1-20%、低密度聚乙烯2-35%、硬质酸1-10%、植物油0%-5%、增塑剂0-10%。
  19. 如权利要求18所述的多孔陶瓷,其中,所述粘结剂包括以下按质量百分计的组分:石蜡50-60%、蜂蜡5-10%、低密度聚乙烯15-20%、硬质酸5-10%、植物油2%-5%、增塑剂3-8%。
  20. 一种如权利要求14至19任一项所述的多孔陶瓷在气溶胶发生装置中的应用。
PCT/CN2021/132963 2021-04-15 2021-11-25 多孔陶瓷材料、制作方法、多孔陶瓷及应用 WO2022217932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110408028.9A CN115215676A (zh) 2021-04-15 2021-04-15 多孔陶瓷材料、制作方法、多孔陶瓷及应用
CN202110408028.9 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022217932A1 true WO2022217932A1 (zh) 2022-10-20

Family

ID=83604621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132963 WO2022217932A1 (zh) 2021-04-15 2021-11-25 多孔陶瓷材料、制作方法、多孔陶瓷及应用

Country Status (2)

Country Link
CN (1) CN115215676A (zh)
WO (1) WO2022217932A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959923A (zh) * 2023-01-03 2023-04-14 深圳市卓尔悦电子科技有限公司 多孔陶瓷、雾化芯、雾化装置及多孔陶瓷制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713379A (zh) * 2019-12-02 2020-01-21 湖南福美来电子陶瓷有限公司 一种多孔陶瓷雾化芯及其制备方法
CN111153686A (zh) * 2020-01-14 2020-05-15 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
CN111205104A (zh) * 2020-01-14 2020-05-29 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷及其制备方法
CN112592200A (zh) * 2020-12-18 2021-04-02 深圳市康泓威科技有限公司 雾化芯用纳米多孔陶瓷及其制备方法
CN113149697A (zh) * 2021-04-23 2021-07-23 深圳市基克纳科技有限公司 一种组合物及含连续玻璃相的多孔陶瓷雾化芯
CN113480327A (zh) * 2021-07-16 2021-10-08 深圳市吉迩科技有限公司 雾化芯、多孔陶瓷及多孔陶瓷的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290851B (zh) * 2008-06-13 2011-06-22 北京有色金属研究总院 一种用粉末注射成型制备电真空吸气元件的方法
CN107324801A (zh) * 2017-06-21 2017-11-07 东莞华晶粉末冶金有限公司 一种陶瓷注射成型材料及其制备方法
CN110526735B (zh) * 2019-09-29 2022-06-24 深圳羽制科技有限公司 一种电子烟装置用多孔陶瓷及其制备方法
CN110742314B (zh) * 2019-10-22 2022-11-25 深圳羽制科技有限公司 一种电子烟雾化芯多孔陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713379A (zh) * 2019-12-02 2020-01-21 湖南福美来电子陶瓷有限公司 一种多孔陶瓷雾化芯及其制备方法
CN111153686A (zh) * 2020-01-14 2020-05-15 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
CN111205104A (zh) * 2020-01-14 2020-05-29 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷及其制备方法
CN112592200A (zh) * 2020-12-18 2021-04-02 深圳市康泓威科技有限公司 雾化芯用纳米多孔陶瓷及其制备方法
CN113149697A (zh) * 2021-04-23 2021-07-23 深圳市基克纳科技有限公司 一种组合物及含连续玻璃相的多孔陶瓷雾化芯
CN113480327A (zh) * 2021-07-16 2021-10-08 深圳市吉迩科技有限公司 雾化芯、多孔陶瓷及多孔陶瓷的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115959923A (zh) * 2023-01-03 2023-04-14 深圳市卓尔悦电子科技有限公司 多孔陶瓷、雾化芯、雾化装置及多孔陶瓷制备方法

Also Published As

Publication number Publication date
CN115215676A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2022135010A1 (zh) 一种多孔陶瓷雾化芯及其制备方法和电子烟
WO2023284425A1 (zh) 雾化芯、多孔陶瓷及多孔陶瓷的制备方法
WO2023065702A1 (zh) 多孔陶瓷雾化芯及其制备方法和电子烟
CN110526686B (zh) 一种渗油多孔陶瓷、制备方法及其在电子烟的应用
WO2023000573A1 (zh) 微孔陶瓷雾化芯及其制备方法
CN111153686A (zh) 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
WO2022217932A1 (zh) 多孔陶瓷材料、制作方法、多孔陶瓷及应用
KR20080044344A (ko) 고다공도 금속 바이포러스 발포체
CN110041096A (zh) 硅藻土基多孔陶瓷及其制备方法和系统
WO2021163922A1 (zh) 电子烟雾化组件及其制造方法
WO2024000915A1 (zh) 多孔陶瓷雾化芯及其制备方法和气溶胶产生装置
CN102642240A (zh) 铁氧体磁芯坯体的制造方法以及铁氧体磁芯的制造方法
CN104736221A (zh) 强度更高的莫来石基铸铁过滤器
CN113749305B (zh) 一种电子烟多孔陶瓷雾化芯及其制备方法
WO2023015741A1 (zh) 雾化基材、制造雾化基材的浆料及雾化基材的制造方法
CN112679202A (zh) 一种多孔陶瓷组合物及其制备方法和应用该陶瓷组合物的电子烟雾化芯
CN113105260A (zh) 低导热率高孔隙率电子烟雾化芯用多孔陶瓷及其制备方法
CN102266906B (zh) 一种易脱除陶瓷型芯的制备方法
KR20070096131A (ko) 소결 지르코늄실리케이트 비드의 제조 방법 및 이 제조방법에 의해 제조된 소결 지르코늄실리케이트 비드
CN105502953B (zh) 铁封玻璃粉浆料及其制备方法
CN113845354A (zh) 一种刺激性小的尼古丁盐雾化器的制备方法
JP2006516678A5 (zh)
CN114149248B (zh) 多孔陶瓷材料及其制备方法、发热组件、雾化器和电子烟
CN209721959U (zh) 制备硅藻土基多孔陶瓷的系统
CN107473771A (zh) 一种泡沫陶瓷滤料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936798

Country of ref document: EP

Kind code of ref document: A1