WO2019111703A1 - 信号処理装置、信号処理方法、及び、プログラム - Google Patents

信号処理装置、信号処理方法、及び、プログラム Download PDF

Info

Publication number
WO2019111703A1
WO2019111703A1 PCT/JP2018/042923 JP2018042923W WO2019111703A1 WO 2019111703 A1 WO2019111703 A1 WO 2019111703A1 JP 2018042923 W JP2018042923 W JP 2018042923W WO 2019111703 A1 WO2019111703 A1 WO 2019111703A1
Authority
WO
WIPO (PCT)
Prior art keywords
pwm
signal
modulation
pdm
pulse
Prior art date
Application number
PCT/JP2018/042923
Other languages
English (en)
French (fr)
Inventor
宜紀 田森
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/767,486 priority Critical patent/US10965307B2/en
Publication of WO2019111703A1 publication Critical patent/WO2019111703A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/504Analogue/digital converters with intermediate conversion to time interval using pulse width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M5/00Conversion of the form of the representation of individual digits
    • H03M5/02Conversion to or from representation by pulses
    • H03M5/04Conversion to or from representation by pulses the pulses having two levels
    • H03M5/06Code representation, e.g. transition, for a given bit cell depending only on the information in that bit cell
    • H03M5/08Code representation by pulse width
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/60Analogue/digital converters with intermediate conversion to frequency of pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/82Digital/analogue converters with intermediate conversion to time interval
    • H03M1/822Digital/analogue converters with intermediate conversion to time interval using pulse width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M5/00Conversion of the form of the representation of individual digits
    • H03M5/02Conversion to or from representation by pulses
    • H03M5/04Conversion to or from representation by pulses the pulses having two levels
    • H03M5/06Code representation, e.g. transition, for a given bit cell depending only on the information in that bit cell
    • H03M5/10Code representation by pulse frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • G11B20/1407Digital recording or reproducing using self-clocking codes characterised by the use of two levels code representation depending on a single bit, i.e. where a one is always represented by a first code symbol while a zero is always represented by a second code symbol
    • G11B20/1411Digital recording or reproducing using self-clocking codes characterised by the use of two levels code representation depending on a single bit, i.e. where a one is always represented by a first code symbol while a zero is always represented by a second code symbol conversion to or from pulse width coding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation

Definitions

  • the present technology relates to a signal processing device, a signal processing method, and a program, and in particular, improves the modulation factor of a PWM signal obtained by PWM (Pulse Width Modulation) modulation of an audio signal of PDM (Pulse Density Modulation) signal.
  • PWM Pulse Width Modulation
  • PDM Pulse Density Modulation
  • Patent Document 1 describes PWM modulation used for BTL driving.
  • SE drive may be forced to be employed instead of BTL drive.
  • the modulation rate to the PWM signal is lower than that of the speaker driven by the BTL drive.
  • the output of the amplifier and, consequently, the sound pressure of the speaker may be reduced.
  • the present technology has been made in view of such a situation, and aims to improve the modulation factor of a PWM signal.
  • a signal processing device or program according to the present technology uses PWM (Pulse Width Modulation) having a cycle equal to the cycle of the PDM signal, one of 0 or 1 represented by each bit of the PDM signal obtained by PDM (Pulse Density Modulation) modulation of an audio signal. ) Convert the signal into the longest pulse of the longest pulse width, and convert the other 0 or 1 of the PDM signal into the shortest pulse of the PWM signal at a position adjacent to the center of the period of the PWM signal.
  • a signal processing apparatus including a PWM conversion unit that performs PWM modulation, or a program for causing a computer to function as such a signal processing apparatus.
  • a signal processing method is a PWM (Pulse Width Modulation) signal having a cycle equal to a cycle of the PDM signal, one of 0 or 1 represented by each bit of the PDM signal obtained by PDM (Pulse Density Modulation) modulation of an audio signal.
  • PWM Pulse Width Modulation
  • PDM Pulse Density Modulation
  • one of 0 or 1 represented by each bit of a PDM signal obtained by modulating an audio signal by PDM is the same as the period of the PDM signal. Convert to the longest pulse of the longest pulse width of a PWM (Pulse Width Modulation) signal of a cycle, and the other of 0 or 1 of the PDM signal is the shortest of the PWM signal at a position adjacent to the center of the cycle of the PWM signal. PWM modulation is performed to convert to the shortest pulse of pulse width.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of an audio reproduction device to which the present technology is applied. It is a flowchart explaining the signal processing in a signal processing apparatus. It is a wave form diagram explaining the 1st PWM modulation in SE drive. It is a wave form diagram explaining PWM modulation in BTL drive. It is a wave form diagram explaining the 2nd PWM modulation in SE drive.
  • FIG. 16 is a waveform diagram for explaining another view of the second PWM modulation in SE driving. It is a wave form diagram explaining PWM modulation in BTL drive in case resolution is low. It is a wave form diagram explaining the 1st PWM modulation in SE drive in case resolution is low. It is a wave form diagram explaining the 2nd PWM modulation in SE drive in case resolution is low.
  • Fig. 21 is a block diagram illustrating a configuration example of an embodiment of a computer to which the present technology is applied.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of an audio reproduction device to which the present technology is applied.
  • the audio reproduction device 1 shown in FIG. 1 includes a storage medium 11, a signal processing device 12, and a headphone 13, and reproduces an audio signal.
  • the storage medium 11 stores a PDM signal obtained by subjecting an audio signal to PDM modulation.
  • the PDM signal stored in the storage medium 11 is read from the storage medium 11 and transmitted to the signal processing device 12.
  • DSD Direct Stream Digital
  • the signal processing device 12 is configured to include a PWM conversion unit 21, a drive circuit 22, and an LPF (Low Pass Filter) 23.
  • the PWM converter 21 receives the PDM signal from the storage medium 11.
  • the PWM conversion unit 21 performs PWM modulation of the PDM signal received from the storage medium 11, that is, first PWM modulation in SE drive, second PWM modulation in SE drive, and PWM modulation in BTL drive described later.
  • the second PWM modulation in SE drive is performed.
  • the PWM conversion unit 21 supplies a PWM signal obtained by PWM modulation to the drive circuit 22.
  • the drive circuit 22 incorporates a preamplifier (not shown) and a digital amplifier as a power amplifier, amplifies the PWM signal supplied from the PWM conversion unit 21, and supplies the amplified PWM signal to the LPF 23.
  • the LPF 23 filters the PWM signal supplied from the drive circuit 22, and supplies an audio signal obtained by the filtering to the headphone 13.
  • the headphone 13 is configured to include a speaker 13a of an L (left) channel and a speaker 13b of an R (right) channel.
  • the headphones 13 output sounds corresponding to the audio signal supplied from the LPF 23 from the speakers 13a and 13b.
  • FIG. 2 is a flowchart illustrating signal processing in the signal processing device 12.
  • step S11 the PWM conversion unit 21 receives the PDM signal from the storage medium 11.
  • step S12 the PWM conversion unit 21 performs PWM modulation (pulse width modulation) on the PDM signal received from the storage medium 11, and converts the PDM signal into a PWM signal.
  • the PWM converter 21 supplies the PWM signal to the drive circuit 22.
  • step S13 the drive circuit 22 amplifies the PWM signal supplied from the PWM conversion unit 21.
  • the drive circuit 22 supplies the amplified PWM signal to the LPF 23.
  • step S ⁇ b> 14 the LPF 23 filters the amplified PWM signal supplied from the drive circuit 22.
  • the LPF 23 supplies the audio signal obtained by the filtering to the headphone 13.
  • PWM modulation for converting (modulating) a PDM signal to a PWM signal, which is performed by the PWM conversion unit 21, will be described.
  • FIG. 3 is a waveform diagram for explaining first PWM modulation in SE driving.
  • the vertical axis represents signal level and the horizontal axis represents time. The same applies to FIGS. 4 to 9 described later.
  • the period of the PDM signal is 1 / (64 Fs)
  • the period of the PWM signal obtained by PWM modulation is 1 / (64 Fs) which is the same as the period of the PDM signal. I suppose that there is.
  • PWM modulation will be described for two samples (two cycles) in which 0 and 1 of the PDM signal are continuous.
  • PWM (1) the PWM signal after PWM modulation with respect to 1 of the PDM signal
  • PWM (0) the PWM signal after PWM modulation with respect to 0 of the PDM signal
  • a frequency of a power of 2 of the sampling frequency Fs for example, 1024 Fs of 1024 times is adopted as a frequency of a master clock necessary for conversion (generation) of a PWM signal by PWM modulation.
  • the resolution of the PWM signal obtained by PWM modulation can be represented by the number of slots in one cycle of the PWM signal.
  • a portion where one cycle (1/64 Fs) is H (High) level represents 1 and a portion where one cycle (1/64 Fs) is L (Low) level is 0. Represent.
  • 1 of the PDM signal is converted to PWM (1) which is a pulse having a maximum pulse width in line symmetry at the center of one cycle of the PWM signal.
  • 0 of the PDM signal is converted to PWM (0) which is a pulse with a minimum pulse width that is line symmetrical at the center of one cycle of the PWM signal.
  • FIG. 4 is a waveform diagram for explaining PWM modulation in BTL driving.
  • FIG. 4 a PDM signal similar to that of FIG. 3 is shown.
  • PWM signals on the positive side there are a PWM signal on the positive side (or hot side) and a PWM signal on the negative side (or cold side) as PWM signals.
  • 1 of the PDM signal is a pulse of PWM (1) on the positive side, which is a pulse of the maximum pulse width of one cycle of the PWM signal, and a pulse of the minimum pulse width of one cycle of the PWM signal. It is converted to PWM (1) on the negative side.
  • 0 of the PDM signal is a pulse with a minimum pulse width of one cycle of the PWM signal, and PWM (1) on the positive side and a pulse with the maximum pulse width of one cycle of the PWM signal And are converted to PWM (1) on the negative side.
  • 1 of the PDM signal is, for example, 8 slots on the left side (past direction) and 7 slots on the right side (future direction) from the center of one cycle of the PWM signal.
  • PWM (1) on the positive side which is a pulse of width, and the pulse width pulse of one slot at the eighth slot position (the start position of one cycle) on the left side from the center of one cycle of the PWM signal It is converted to PWM (1).
  • 0 of the PDM signal is, for example, a pulse of a pulse width of one slot at the eighth slot position on the left side from the center of one cycle of the PWM signal. It is converted into PWM (0) and PWM (0) on the negative side which is a pulse with a pulse width of 7 slots on the right side by 8 slots on the left side from the center of one cycle of the PWM signal.
  • the speaker 13a and the speaker 13b are driven by the PWM signal after the differential addition.
  • the differentially added PWM signal is a signal obtained by differentially adding the positive side PWM signal and the negative side PWM signal.
  • 1 of the PDM signal becomes PWM (1) which is a pulse with a pulse width of 7 slots to the left and right from the center of one cycle of the PWM signal, and 0 of PDM signal is PWM It becomes PWM (0) which is the pulse which reversed (1 phase) (it made antiphase).
  • the PDM signal is a PWM signal (differential such that the center position of the pulse is positioned at the center of one cycle (of the carrier) of the PWM signal.
  • PWM modulation is performed on the PWM signal after addition. That is, in the first PWM modulation in the SE drive and the PWM modulation in the BTL drive, the PDM signal is PWM-modulated into a pulse having a pulse width axisymmetrical to the center of one cycle.
  • phase modulation when conversion to a PWM signal is performed in which the position of the center of the pulse changes every cycle of the PWM signal, phase modulation is performed, and harmonic distortion or the like is generated along with the phase modulation.
  • phase modulation is performed by performing PWM modulation on a pulse whose pulse width is symmetrical with respect to the center of one cycle of the PWM signal. Can be prevented, and the occurrence of harmonic distortion and the like can be suppressed.
  • the modulation factor of the PWM signal is proportional to the difference between the PWM (1) and PWM (0) pulse widths of the PWM signal corresponding to 1 and 0 of the PDM signal, respectively, and the PWM (1) and PWM (0) It can be determined by calculating the difference in duty ratio.
  • PWM (1) is a pulse with a pulse width of 14 slots in a PWM signal of 16 slots in one cycle
  • PWM (0) is 1
  • the modulation factor of the PWM signal of the first PWM modulation in the SE drive becomes 75% as expressed by the following equation (1).
  • the modulation rate of the PWM signal is 100% indicates that the PWM signal is at the level of the PDM signal before PWM modulation.
  • PWM (1) is a pulse with a pulse width of 15 slots in a PWM signal of 16 slots in one cycle.
  • PWM (0) is a pulse with a pulse width of 1 slot in a PWM signal of 16 slots in 1 cycle. Therefore, the modulation factor of the PWM signal of PWM modulation in BTL driving is 87.5% as shown in the following equation (2).
  • the minimum unit resolution of pulse width
  • the minimum unit the number of slots representing the period of the master clock of the maximum period required when generating the PWM signal.
  • the PDM signal is converted into a pulse that is axisymmetric to the center of one cycle of the PWM signal, so the minimum unit is two slots.
  • the minimum unit is one slot.
  • the modulation factor of the first PWM modulation in SE drive is the PWM modulation in BTL drive. It is lower than the rate.
  • FIG. 5 is a waveform diagram for explaining the second PWM modulation in the SE drive.
  • one of 0 or 1 of the PDM signal is converted into the longest pulse of the longest pulse width of the PWM signal having the same cycle as that of the PDM signal, and 0 or 1 of the PDM signal.
  • the other is converted into the shortest pulse of the shortest pulse width of the PWM signal at a position adjacent to the center of the period of the PWM signal.
  • the PDM signal shown to A and B of FIG. 5 is a PDM signal obtained by carrying out PDM modulation of the audio signal by the sampling frequency of 64 Fs similarly to FIG.
  • 1 of the PDM signal is converted to the longest pulse starting from the beginning of one cycle of the PWM signal, and 0 of the PDM signal ends (falling edge) at the center of one cycle of the PWM signal. It has been converted to the shortest pulse located. That is, 1 of the PDM signal is converted to PWM (1) of the longest pulse with a pulse width of 7 slots on the right and 8 slots to the left from the center of one cycle of the PWM signal, and 0 of the PDM signal is It is converted into PWM (0) of the shortest pulse of the pulse width of one slot adjacent to the left side of the center of one cycle.
  • 1 of the PDM signal is converted to the longest pulse ending at the end of one cycle of the PWM signal, and 0 of the PDM signal is positioned with the start (rising edge) at the center of one cycle of the PWM signal. Converted to the shortest pulse. That is, 1 of the PDM signal is converted to PWM (1) of the longest pulse with a pulse width of 8 slots on the right by 7 slots to the left from the center of one cycle of the PWM signal, and 0 of the PDM signal is It is converted into PWM (0) of the shortest pulse of the pulse width of one slot at a position adjacent to the right of the center of one cycle.
  • the centers of the pulses of PWM (1) and PWM (0) do not coincide with the center of one cycle of the PWM signal, and the pulses of PWM (1) and PWM (0) indicate the PWM signal. It does not seem to be axisymmetric with respect to the center of one cycle of. However, by changing the view of (the section of) one cycle of the PWM signal, the center of each pulse of PWM (1) and PWM (0) in A of FIG. The PWM (1) and PWM (0) pulses are in line symmetry with the center of one cycle of the PWM signal, which coincides with the center of one cycle of the signal.
  • FIG. 6 is a waveform diagram for explaining another view of the second PWM modulation in the SE drive.
  • the dotted lines separating the slots shown in FIGS. 5A and 5B are offset by a half slot, and thus the slots are also offset by a half slot.
  • the PWM (1) and the PWM (0) are each changed by changing the view of one cycle of the PWM signal so that one cycle of the PWM signal is a section of 16 slots shown by D in the figure.
  • the center of the pulse of (1) coincides with the center of one cycle of the PWM signal, and the respective pulses of PWM (1) and PWM (0) are line symmetrical with respect to the center of one cycle of the PWM signal.
  • the PWM signal of the second PWM modulation in the SE drive is a PWM signal of line symmetry with respect to the center of one cycle, similarly to the PWM signal of the first PWM modulation in the SE drive and the PWM modulation in the BTL drive. .
  • the modulation factor of (the PWM signal of) the second PWM modulation in the SE drive is PWM (the same as the first PWM modulation in the SE drive shown in FIG. 3 and the PWM modulation in the BTL drive shown in FIG. 4). It can be obtained by calculating the difference between the duty ratio of 1) and PWM (0).
  • PWM (1) is a pulse with a pulse width of 15 slots in the PWM signal of 16 slots in one cycle, 0) is a pulse with a pulse width of 1 slot in a PWM signal of 16 slots in 1 cycle. Therefore, the modulation factor of the PWM signal of the second PWM modulation in the SE drive is 87.5% as expressed by the following equation (3).
  • Equation (3) in the second PWM modulation in the SE drive, the same modulation factor as in the case of the PWM modulation in the BTL drive shown in FIG. 4 can be achieved.
  • the modulation factor can be improved more than the first PWM modulation in the SE drive of FIG. 3, and the speaker 13a is used when the SE drive is performed. And the sound pressure of the sound output from the speaker 13b can be improved.
  • 1 and 0 of the PDM signal are converted to the maximum and minimum pulse widths of the PWM signal, respectively, so 1 and 0 of the PDM signal is the maximum and
  • the modulation factor is higher than the first PWM modulation in SE drive that is not converted to the minimum pulse width.
  • FIG. 7 is a waveform diagram for explaining PWM modulation in BTL driving when the resolution is low, that is, when the number of slots in one cycle of the PWM signal is small.
  • FIG. 7 two samples (two cycles) of consecutive 0s and 1s of a PDM signal obtained by PDM-modulating an audio signal at a sampling frequency of 256 Fs are shown.
  • one cycle of the PDM signal is 1 / (256 Fs).
  • 1024 Fs is adopted as the frequency of the master clock necessary for generating the PWM signal by PWM modulation.
  • one cycle of the master clock is 1 / (1024 Fs).
  • 1 of the PDM signal has a pulse width of 2 slots on the left and 1 slot on the right from the center of one cycle of the PWM signal.
  • the PWM (1) on the negative side which is a pulse with a pulse width of one slot at the second slot position from the center of one cycle of the PWM signal.
  • 0 of the PDM signal is 1 slot of the position of the second slot on the left side from the center of 1 cycle of the PWM signal.
  • Pulse width PWM (0) on the positive side, and 2 slots on the left side from the center of one cycle of the PWM signal, and PWM (0) on the negative side which is a pulse with a pulse width of 1 slot on the right It is converted.
  • 1 of the PDM signal is 1 from the center of one cycle of the PWM signal to the left and right, respectively. It becomes PWM (1) which is a pulse of the pulse width of a slot, and 0 of a PDM signal becomes PWM (0) which is a pulse which reversed PWM (1) (it made reverse phase).
  • FIG. 8 is a waveform diagram for explaining the first PWM modulation in SE driving when the resolution is low, that is, when the number of slots in one cycle is small.
  • FIG. 8 a PDM signal similar to that of FIG. 7 is shown.
  • 1024 Fs is adopted as the frequency of the master clock.
  • the resolution of the PWM signal that is, the number of slots in one cycle of the PWM signal is four slots in FIG. 8 while it is sixteen slots in FIG.
  • 1 of the PDM signal is a pulse with a pulse width of 1 slot left and right from the center of 1 cycle of the PWM signal. Converted to PWM (1).
  • 0 of the PDM signal is converted to PWM (0) which is a pulse with a pulse width of 1 slot to the left and right from the center of 1 cycle of the PWM signal. Therefore, when the resolution is as low as 4 slots, in the first PWM modulation in SE drive, the PDM signal is converted into a PWM signal of the same pulse as that of PWM (1) and PWM (0).
  • the PWM (1) and the PWM (0) become the same pulse to perform the PWM modulation (substantially) Can not.
  • FIG. 9 is a waveform diagram for explaining the second PWM modulation in the SE drive when the resolution is low.
  • FIG. 9 PDM signals similar to those in FIGS. 7 and 8 are shown.
  • 1024 Fs is adopted as the frequency of the master clock.
  • the resolution of the PWM signal that is, the number of slots in one cycle of the PWM signal is 16 slots in FIG. 5, while it is 4 slots in FIG.
  • the second PWM modulation in SE drive of A in FIG. 5 is referred to as PWM modulation of pattern 1, and the PWM signal obtained by PWM modulation of pattern 1 is referred to as PWM signal of pattern 1.
  • the second PWM modulation in SE driving in B of FIG. 5 is referred to as PWM modulation of pattern 2 and the PWM signal obtained by PWM modulation of pattern 2 is referred to as PWM signal of pattern 2.
  • 1 of the PDM signal is converted to PWM (1) of the longest pulse of the pulse width of 1 slot by 2 slots from the center of one cycle of the PWM signal to the left and 0 of the PDM signal is converted to PWM (0) of the shortest pulse of the pulse width of one slot at a position adjacent to the left side of the center of one cycle of the PWM signal.
  • 1 of the PDM signal is converted into PWM (1) of the longest pulse with a pulse width of 2 slots on the right side, with 1 slot left from the center of 1 cycle of the PWM signal.
  • 0 of the PDM signal is converted to PWM (0) of the shortest pulse of the pulse width of one slot at a position adjacent to the right of the center of one cycle of the PWM signal.
  • the PWM modulation can be performed even when the resolution of the PWM signal is low enough that the PWM modulation can not be performed in the first PWM modulation in the SE drive.
  • the modulation factor of the PWM signal in the SE drive can be improved more than the first PWM modulation in the SE drive. Furthermore, by improving the modulation factor of the PWM signal, it is possible to increase the output level of the drive circuit 22 in SE driving (sound pressure output from the speaker 13a or the speaker 13b of the headphone 13).
  • the modulation factor of the first PWM modulation in SE drive is lower than the modulation factor of the PWM modulation in BTL drive. Therefore, in SE driving, when adopting the first PWM modulation in SE driving, it becomes difficult to design a level diagram to match the output levels of the drive circuit 22 between SE driving and BTL driving.
  • the second PWM modulation in the SE drive when the second PWM modulation in the SE drive is employed, the same modulation factor can be achieved by the second PWM modulation in the SE drive and the PWM modulation in the BTL drive. Therefore, when adopting the second PWM modulation in SE drive, it is possible to reduce the level of difficulty in designing a level diagram that matches the output level of drive circuit 22 between SE drive and BTL drive.
  • the SE drive is used in the SE drive. Even if PWM modulation is difficult in the first PWM modulation, PWM modulation can be performed according to the second PWM modulation in SE driving.
  • 1 of the PDM signal is converted to the longest pulse of the PWM signal, and 0 of the PDM signal is converted to the shortest pulse of the PWM signal. However, 0 of the PDM signal is converted to the longest pulse of the PWM signal.
  • the signal 1 may be converted to the shortest pulse of the PWM signal.
  • FIG. 10 shows a configuration example of an embodiment of a computer in which a program for executing the series of processes described above is installed.
  • a central processing unit (CPU) 101 executes various processes according to a program stored in a read only memory (ROM) 102 or a program loaded from a storage unit 108 to a random access memory (RAM) 103. Do.
  • the RAM 103 also stores data necessary for the CPU 101 to execute various processes.
  • the CPU 101, the ROM 102, and the RAM 103 are interconnected via a bus 104.
  • An input / output interface 105 is also connected to the bus 104.
  • the input / output interface 105 includes an input unit 106 including a keyboard and a mouse, an output unit 107 including a display including an LCD (liquid crystal display) and a speaker, and a storage unit 108 including a hard disk and the like.
  • a communication unit 109 configured of an adapter or the like is connected. The communication unit 109 performs communication processing via a network such as the Internet, for example.
  • the drive 110 is also connected to the input / output interface 105 as necessary, and removable media 111 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory are appropriately attached, and a computer program read from them is It is installed in the storage unit 108 as necessary.
  • removable media 111 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory are appropriately attached, and a computer program read from them is It is installed in the storage unit 108 as necessary.
  • the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
  • the present technology can be configured as follows. (1) The longest pulse of the longest pulse width of a PWM (Pulse Width Modulation) signal having the same cycle as that of the PDM signal, one of 0 or 1 represented by each bit of the PDM signal obtained by PDM (Pulse Density Modulation) modulation of an audio signal. And a PWM converter for performing PWM modulation to convert the 0 or 1 of the PDM signal into the shortest pulse of the PWM signal at a position adjacent to the center of the cycle of the PWM signal. Signal processor. (2) The signal processing device according to (1), wherein the PWM conversion unit converts 1 of the PDM signal into the longest pulse, and converts 0 of the PDM signal into the shortest pulse.
  • PWM Pulse Width Modulation
  • the PWM conversion unit converts 1 of the PDM signal into the longest pulse starting from the beginning of the cycle of the PWM signal, and the shortest pulse whose end is located at the center of the cycle of the PWM signal with 0 of the PDM signal.
  • the signal processing device according to (1) or (2).
  • the PWM conversion unit converts 1 of the PDM signal into the longest pulse ending at the end of the cycle of the PWM signal, and the shortest pulse in which 0 of the PDM signal is located at the center of the cycle of the PWM signal.
  • the signal processing device according to (1) or (2).
  • a drive circuit for amplifying the PWM signal The signal processing apparatus according to any one of (1) to (4), further comprising: an LPF (Low Pass Filter) for filtering the PWM signal amplified by the drive circuit.
  • LPF Low Pass Filter
  • PWM Pulse Width Modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本技術は、PWM信号の変調率の向上を図ることができるようにする信号処理装置、信号処理方法、及び、プログラムに関する。 オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、PDM信号の0又は1の他方を、PWM信号の周期の中心に隣接する位置のPWM信号の最も短いパルス幅の最短パルスに変換するPWM変調が行われる。本技術は、例えば、オーディオ信号を再生するオーディオ再生装置に適用できる。

Description

信号処理装置、信号処理方法、及び、プログラム
 本技術は、信号処理装置、信号処理方法、及び、プログラムに関し、特に、PDM(Pulse Density Modulation)信号のオーディオ信号をPWM(Pulse Width Modulation)変調して得られるPWM信号の変調率の向上を図ることができるようにする信号処理装置、信号処理方法、及び、プログラムに関する。
 スピーカ(にオーディオ信号を供給するアンプ)を駆動する駆動方式には、BTL(Balance Transformer Less)駆動と、SE(Single End)駆動とがある。例えば、特許文献1には、BTL駆動に用いられるPWM変調が記載されている。
特開2000-68835号公報
 スピーカでオーディオ信号を再生する場合、ノイズ低減等の音質に関わる観点からは、SE駆動よりもBTL駆動でスピーカを駆動するほうが性能が優れている。
 しかしながら、コストやシステムサイズ等の制約から、BTL駆動ではなく、SE駆動を採用せざるを得ないことがある。SE駆動でスピーカを駆動する場合、BTL駆動でスピーカを駆動するよりもPWM信号への変調率が低くなる。その結果、アンプの出力、ひいては、スピーカの音圧が低下する恐れがある。
 本技術は、このような状況に鑑みてなされたものであり、PWM信号の変調率の向上を図ることができるようにするものである。
 本技術の信号処理装置又はプログラムは、オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行うPWM変換部を備える信号処理装置又はそのような信号処理装置としてコンピュータを機能させるためのプログラムである。
 本技術の信号処理方法は、オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行う信号処理方法である。
 本技術の信号処理装置、信号処理方法、及び、プログラムにおいては、オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調が行われる。
 本技術によれば、PWM信号の変調率の向上を図ることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用したオーディオ再生装置の一実施の形態の構成例を示すブロック図である。 信号処理装置における信号処理を説明するフローチャートである。 SE駆動における第1のPWM変調を説明する波形図である。 BTL駆動におけるPWM変調を説明する波形図である。 SE駆動における第2のPWM変調を説明する波形図である。 SE駆動における第2のPWM変調の別の見方を説明する波形図である。 分解能が低い場合のBTL駆動におけるPWM変調を説明する波形図である。 分解能が低い場合のSE駆動における第1のPWM変調を説明する波形図である。 分解能が低い場合のSE駆動における第2のPWM変調を説明する波形図である。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 <1.オーディオ再生装置の構成例>
 図1は、本技術を適用したオーディオ再生装置の一実施の形態の構成例を示すブロック図である。
 図1に示されるオーディオ再生装置1は、記憶媒体11、信号処理装置12、及び、ヘッドホン13を備えて構成され、オーディオ信号を再生する。
 記憶媒体11は、オーディオ信号がPDM変調されたPDM信号を記憶している。記憶媒体11に記憶されたPDM信号は、記憶媒体11から読み出され、信号処理装置12に送信される。
 ここで、記憶媒体11で記憶されているPDM信号は、オーディオ信号を、例えば、CD-DA(Compact Disc Digital Audio)規格の44.1kHzのサンプリング周波数Fsの2のべき乗倍の、例えば、64倍にあたる2.8224MHz(=64Fs)のサンプリング周波数でPDM変調した1ビットの信号であるとする。
 オーディオ信号のPDM信号としては、DSD(Direct Stream Digital)と呼ばれる信号等がある。
 信号処理装置12は、PWM変換部21、ドライブ回路22、及び、LPF(Low Pass Filter)23を備えて構成される。
 PWM変換部21は、記憶媒体11からのPDM信号を受信する。PWM変換部21は、記憶媒体11から受信したPDM信号のPWM変調、すなわち、後述するSE駆動における第1のPWM変調、SE駆動における第2のPWM変調、及び、BTL駆動におけるPWM変調のうちの、特に、SE駆動における第2のPWM変調を行う。PWM変換部21は、PWM変調によって得られるPWM信号をドライブ回路22に供給する。
 ドライブ回路22は、図示せぬプリアンプやパワーアンプとしてのデジタルアンプを内蔵し、PWM変換部21から供給されるPWM信号の増幅を行い、増幅したPWM信号をLPF23に供給する。
 LPF23は、ドライブ回路22から供給されるPWM信号のフィルタリングを行い、そのフィルタリングにより得られるオーディオ信号をヘッドホン13に供給する。
 ヘッドホン13は、L(Left)チャネルのスピーカ13a、及び、R(Right)チャネルのスピーカ13bを備えて構成される。
 ヘッドホン13は、LPF23から供給されてくるオーディオ信号に対応する音響を、スピーカ13a及びスピーカ13bから出力する。
 図2は、信号処理装置12における信号処理を説明するフローチャートである。
 ステップS11において、PWM変換部21は、記憶媒体11からPDM信号を受信する。
 ステップS12において、PWM変換部21は、記憶媒体11から受信したPDM信号にPWM変調(パルス幅変調)を行い、PDM信号をPWM信号に変換する。PWM変換部21は、そのPWM信号をドライブ回路22に供給する。
 ステップS13において、ドライブ回路22は、PWM変換部21から供給されたPWM信号を増幅する。ドライブ回路22は、増幅したPWM信号をLPF23に供給する。
 ステップS14において、LPF23は、ドライブ回路22から供給された増幅されたPWM信号のフィルタリングを行う。LPF23は、フィルタリングにより得られるオーディオ信号をヘッドホン13に供給する。
 <2.PWM変調>
 以下、PWM変換部21で行われる、PDM信号をPWM信号に変換(変調)するPWM変調について説明する。
 図3は、SE駆動における第1のPWM変調を説明する波形図である。
 図3において、縦軸は信号レベルを表し、横軸は時間を表す。後述する図4ないし図9においても同様である。
 なお、以下では、特に断わらない限り、PDM信号の周期は、1/(64Fs)であることとし、PWM変調により得られるPWM信号の周期も、PDM信号の周期と同一の1/(64Fs)であることとする。
 また、PWM変調については、PDM信号の0と1とが連続する2サンプル分(2周期分)を対象に説明する。
 さらに、PDM信号の1に対するPWM変調後のPWM信号をPWM(1)と記載し、PDM信号の0に対するPWM変調後のPWM信号をPWM(0)と記載することとする。
 また、PWM変換部21において、PWM変調によるPWM信号の変換(生成)に必要なマスタークロックの周波数としては、サンプリング周波数Fsの2のべき乗倍の周波数、例えば、1024倍の1024Fsを採用することとする。
 PWM変調によって得られるPWM信号の分解能は、PWM信号の1周期のスロット数で表すことができる。1周期のスロット数は、マスタークロックの周波数/PWM信号の(キャリア)周波数で求めることができ、図3では(後述する図4ないし図6でも同様)、16スロット(=1024Fs/(64Fs))である。本実施の形態では、PWM信号の1周期のスロット数として、偶数が採用されることとする。
 また、PDM信号において、1周期(1/64Fs)がH(High)レベルになっている部分が1を表し、1周期(1/64Fs)がL(Low)レベルになっている部分が0を表す。
 SE駆動における第1のPWM変調では、PDM信号の1は、PWM信号の1周期の中心に線対称の最大のパルス幅のパルスであるPWM(1)に変換される。また、SE駆動における第1のPWM変調では、PDM信号の0は、PWM信号の1周期の中心に線対称の最小のパルス幅のパルスであるPWM(0)に変換される。
 したがって、図3において、SE駆動における第1のPWM変調では、PDM信号の1は、PWM信号の1周期の中心から左右にそれぞれ7スロットのパルス幅のパルスであるPWM(1)に変換される。また、SE駆動における第1のPWM変調では、PDM信号の0は、PWM信号の1周期の中心から左右にそれぞれ1スロットのパルス幅のパルスであるPWM(0)に変換される。
 図4は、BTL駆動におけるPWM変調を説明する波形図である。
 図4においては、図3と同様のPDM信号が示されている。
 ここで、BTL駆動については、PWM信号として、positive側(又はホット側)のPWM信号と、negative側(又はコールド側)のPWM信号とがある。
 BTL駆動におけるPWM変調では、PDM信号の1は、PWM信号の1周期の最大のパルス幅のパルスであるpositive側のPWM(1)と、PWM信号の1周期の最小のパルス幅のパルスであるnegative側のPWM(1)とに変換される。
 さらに、BTL駆動におけるPWM変調では、PDM信号の0は、PWM信号の1周期の最小のパルス幅のパルスであるpositive側のPWM(1)と、PWM信号の1周期の最大のパルス幅のパルスであるnegative側のPWM(1)とに変換される。
 したがって、図4において、BTL駆動におけるPWM変調では、PDM信号の1は、例えば、PWM信号の1周期の中心から、左側(過去方向)に8スロットで、右側(未来方向)に7スロットのパルス幅のパルスであるpositive側のPWM(1)と、PWM信号の1周期の中心から、左側に8スロット目の位置(1周期の開始位置)の1スロットのパルス幅のパルスであるnegative側のPWM(1)とに変換される。
 さらに、図4において、BTL駆動におけるPWM変調では、PDM信号の0は、例えば、PWM信号の1周期の中心から、左側に8スロット目の位置の1スロットのパルス幅のパルスであるpositive側のPWM(0)と、PWM信号の1周期の中心から、左側に8スロットで、右側に7スロットのパルス幅のパルスであるnegative側のPWM(0)とに変換される。
 BTL駆動では、差動加算後のPWM信号により、スピーカ13a及びスピーカ13b(にオーディオ信号を供給するドライブ回路22)が駆動される。差動加算後のPWM信号とは、positive側のPWM信号とnegative側のPWM信号とが差動加算された信号である。差動加算後のPWM信号では、PDM信号の1は、PWM信号の1周期の中心から、左右にそれぞれ7スロットのパルス幅のパルスであるPWM(1)になり、PDM信号の0は、PWM(1)を反転した(逆相にした)パルスであるPWM(0)になる。
 ここで、SE駆動における第1のPWM変調及びBTL駆動におけるPWM変調では、パルスの中心の位置がPWM信号の(キャリアの)1周期の中心に位置するように、PDM信号がPWM信号(差動加算後のPWM信号)にPWM変調される。すなわち、SE駆動における第1のPWM変調及びBTL駆動におけるPWM変調では、PDM信号が、1周期の中心に対して線対称のパルス幅のパルスにPWM変調される。
 PWM変調において、PWM信号の1周期ごとにパルスの中心の位置が変化するPWM信号への変換が行われると、位相変調が行われ、その位相変調に伴って高調波歪み等が発生する。しかしながら、SE駆動における第1のPWM変調及びBTL駆動におけるPWM変調のように、PWM信号の1周期の中心に対して線対称のパルス幅のパルスにPWM変調することで、位相変調が行われることを防止することができ、高調波歪み等の発生を抑制することができる。
 ここで、図3及び図4におけるPWM信号の変調率について説明する。
 PWM信号の変調率は、PDM信号の1及び0のそれぞれに対応するPWM信号のPWM(1)及びPWM(0)のパルス幅の差分に比例し、PWM(1)とPWM(0)とのデューティー比の差を計算することで求めることができる。
 図3のSE駆動における第1のPWM変調のPWM信号については、PWM(1)は、1周期が16スロットのPWM信号において、14スロットのパルス幅のパルスであり、PWM(0)は、1周期が16スロットのPWM信号において、2スロットのパルス幅のパルスである。したがって、SE駆動における第1のPWM変調のPWM信号の変調率は、以下の式(1)のように、75%になる。ここで、PWM信号の変調率が100%であることは、PWM信号がPWM変調前のPDM信号のレベルになっていることを表す。
 {(14/16)-(2/16)}×100%=75%
                          ・・・(1)
 図4のBTL駆動におけるPWM変調のPWM信号については、例えば、positive側のPWM信号に注目すると、PWM(1)は、1周期が16スロットのPWM信号において、15スロットのパルス幅のパルスであり、PWM(0)は、1周期が16スロットのPWM信号において、1スロットのパルス幅のパルスである。したがって、BTL駆動におけるPWM変調のPWM信号の変調率は、以下の式(2)のように、87.5%になる。
 {(15/16)-(1/16)}×100%=87.5%
                          ・・・(2)
 PWM信号のパルスのパルス幅を、なるべく大きなスロット数の単位で表現するときに、そのなるべく大きなスロット数の単位を最小単位(パルス幅の分解能)ということとする。すなわち、PWM信号が生成される際に必要とされる最大周期のマスタークロックの周期を表すスロット数を最小単位ということとする。
 SE駆動における第1のPWM変調では、PDM信号は、PWM信号の1周期の中心に線対称となるようなパルスに変換されるため、最小単位が2スロットである。これに対して、BTL駆動におけるPWM変調では、最小単位が1スロットである。
 最小単位が大きいと、変調率が低くなるので、SE駆動における第1のPWM変調とBTL駆動におけるPWM変調とでは、SE駆動における第1のPWM変調の変調率が、BTL駆動におけるPWM変調の変調率よりも低くなる。
 図5は、SE駆動における第2のPWM変調を説明する波形図である。
 SE駆動における第2のPWM変調では、PDM信号の0又は1の一方が、PDM信号の周期と同一の周期のPWM信号の最も長いパルス幅の最長パルスに変換され、PDM信号の0又は1の他方が、PWM信号の周期の中心に隣接する位置のPWM信号の最も短いパルス幅の最短パルスに変換される。
 図5のA及びBに示すPDM信号は、図3と同様に、オーディオ信号を64Fsのサンプリング周波数でPDM変調することにより得られるPDM信号である。
 図5のAにおいては、PDM信号の1が、PWM信号の1周期の先頭から開始する最長パルスに変換され、PDM信号の0が、PWM信号の1周期の中心に終端(立ち下がりエッジ)が位置する最短パルスに変換されている。すなわち、PDM信号の1が、PWM信号の1周期の中心から左側に8スロットで、右側に7スロットのパルス幅の最長パルスのPWM(1)に変換され、PDM信号の0が、PWM信号の1周期の中心の左側に隣接する位置の1スロットのパルス幅の最短パルスのPWM(0)に変換されている。
 図5のBにおいては、PDM信号の1が、PWM信号の1周期の終わりで終了する最長パルスに変換され、PDM信号の0が、PWM信号の1周期の中心に始端(立ち上がりエッジ)が位置する最短パルスに変換されている。すなわち、PDM信号の1が、PWM信号の1周期の中心から左側に7スロットで、右側に8スロットのパルス幅の最長パルスのPWM(1)に変換され、PDM信号の0が、PWM信号の1周期の中心の右側に隣接する位置の1スロットのパルス幅の最短パルスのPWM(0)に変換されている。
 図5のAでは、一見、PWM(1)及びPWM(0)のパルスの中心が、PWM信号の1周期の中心と一致せず、PWM(1)及びPWM(0)のパルスが、PWM信号の1周期の中心に対して線対称になっていないように見える。しかしながら、PWM信号の1周期(の区間)の見方を変えることで、後述する図6で説明するように、図5のAのPWM(1)及びPWM(0)それぞれのパルスの中心は、PWM信号の1周期の中心と一致し、PWM(1)及びPWM(0)それぞれパルスは、PWM信号の1周期の中心に対して線対称になっている。
 以上の点、図5のBについても同様である。
 図6は、SE駆動における第2のPWM変調の別の見方を説明する波形図である。
 図6においては、図5のA及びBに示されているスロットを区切る点線が半スロットだけずれており、したがって、スロットも半スロットだけずれている。図6に示すように、PWM信号の1周期を、図中Dで示す16スロットの区間とするように、PWM信号の1周期の見方を変えることにより、PWM(1)及びPWM(0)それぞれのパルスの中心が、PWM信号の1周期の中心と一致し、PWM(1)及びPWM(0)それぞれのパルスが、PWM信号の1周期の中心に対して線対称になる。したがって、SE駆動における第2のPWM変調のPWM信号は、SE駆動における第1のPWM変調やBTL駆動におけるPWM変調のPWM信号と同様に、1周期の中心に対して線対称のPWM信号である。
 以上にように、SE駆動における第2のPWM変調でも、PWM信号のパルスの中心の位置が、PWM信号の1周期の中心に位置する(線対称性を有する)ので、位相変調に起因する高調波歪み等の発生を防ぐことができる。
 SE駆動における第2のPWM変調(のPWM信号)の変調率は、図3で示したSE駆動における第1のPWM変調、及び、図4で示したBTL駆動におけるPWM変調と同様に、PWM(1)とPWM(0)とのデューティー比の差を計算することで求めることができる。
 図5(及び図6)のSE駆動における第2のPWM変調のPWM信号については、PWM(1)は、1周期が16スロットのPWM信号において、15スロットのパルス幅のパルスであり、PWM(0)は、1周期が16スロットのPWM信号において、1スロットのパルス幅のパルスである。したがって、SE駆動における第2のPWM変調のPWM信号の変調率は、以下の式(3)のように、87.5%になる。
 {(15/16)-(1/16)}×100%=87.5%
                          ・・・(3)
 式(3)によれば、SE駆動における第2のPWM変調において、図4に示したBTL駆動におけるPWM変調の場合と同一の変調率を達成することができる。
 したがって、図5のSE駆動における第2のPWM変調によれば、図3のSE駆動における第1のPWM変調よりも、変調率を向上させることができ、SE駆動が行われる場合に、スピーカ13a及びスピーカ13bから出力される音響の音圧を向上させることができる。
 ここで、SE駆動における第2のPWM変調では、PDM信号の1及び0が、PWM信号の最大及び最小のパルス幅にそれぞれ変換されるので、PDM信号の1及び0が、PWM信号の最大及び最小のパルス幅に変換されないSE駆動における第1のPWM変調よりも、変調率が高くなる。
 図7は、分解能が低い場合、すなわち、PWM信号の1周期のスロット数が少ない場合のBTL駆動におけるPWM変調を説明する波形図である。
 図7においては、オーディオ信号を256Fsのサンプリング周波数でPDM変調したPDM信号の、0と1とが連続する2サンプル分(2周期分)が示されている。ここで、PDM信号の1周期は1/(256Fs)である。
 また、図7では、図4と同様に、PWM変調によるPWM信号の生成に必要なマスタークロックの周波数に、1024Fsが採用されている。ここで、マスタークロックの1周期は1/(1024Fs)である。
 さらに、PWM信号の分解能、すなわち、PWM信号の1周期のスロット数は、図4では、16スロットであるのに対して、図7では、4(=1024Fs/(256Fs))スロットになっている。
 分解能が4スロットである場合のBTL駆動におけるPWM変調では、図7に示すように、PDM信号の1は、PWM信号の1周期の中心から、左側に2スロットで、右側に1スロットのパルス幅のパルスであるpositive側のPWM(1)と、PWM信号の1周期の中心から、左側に2スロット目の位置の1スロットのパルス幅のパルスであるnegative側のPWM(1)とに変換される。
 さらに、分解能が4スロットである場合のBTL駆動におけるPWM変調では、図7に示すように、PDM信号の0は、PWM信号の1周期の中心から、左側に2スロット目の位置の1スロットのパルス幅のパルスであるpositive側のPWM(0)と、PWM信号の1周期の中心から、左側に2スロットで、右側に1スロットのパルス幅のパルスであるnegative側のPWM(0)とに変換される。
 以上のようなpositive側のPWM信号とnegative側のPWM信号とが差動加算された差動加算後のPWM信号では、PDM信号の1は、PWM信号の1周期の中心から、左右にそれぞれ1スロットのパルス幅のパルスであるPWM(1)になり、PDM信号の0は、PWM(1)を反転した(逆相にした)パルスであるPWM(0)になる。
 図8は、分解能が低い場合、すなわち、1周期のスロット数が少ない場合のSE駆動における第1のPWM変調を説明する波形図である。
 図8においては、図7と同様のPDM信号が示されている。
 また、図8では、図3と同様に、マスタークロックの周波数には、1024Fsが採用されている。
 さらに、PWM信号の分解能、すなわち、PWM信号の1周期のスロット数は、図3では、16スロットであるのに対して、図8では、4スロットになっている。
 分解能が4スロットである場合のSE駆動における第1のPWM変調では、図8に示すように、PDM信号の1は、PWM信号の1周期の中心から、左右にそれぞれ1スロットのパルス幅のパルスであるPWM(1)に変換される。また、SE駆動における第1のPWM変調では、PDM信号の0は、PWM信号の1周期の中心から、左右にそれぞれ1スロットのパルス幅のパルスであるPWM(0)に変換される。したがって、分解能が4スロットのように低い場合、SE駆動における第1のPWM変調では、PDM信号は、PWM(1)とPWM(0)とが同一のパルスのPWM信号に変換される。
 以上のように、PWM信号の分解能が低い場合、SE駆動における第1のPWM変調では、PWM(1)とPWM(0)とが同一のパルスとなり、PWM変調を行うことが(実質的に)できない。
 図9は、分解能が低い場合のSE駆動における第2のPWM変調を説明する波形図である。
 図9においては、図7及び図8と同様のPDM信号が示されている。
 また、図9では、図3と同様に、マスタークロックの周波数には、1024Fsが採用されている。
 さらに、PWM信号の分解能、すなわち、PWM信号の1周期のスロット数は、図5では、16スロットであるのに対して、図9では、4スロットになっている。
 ここで、図5のAのSE駆動における第2のPWM変調を、パターン1のPWM変調といい、パターン1のPWM変調で得られるPWM信号を、パターン1のPWM信号という。また、図5のBのSE駆動における第2のPWM変調を、パターン2のPWM変調といい、パターン2のPWM変調で得られるPWM信号を、パターン2のPWM信号という。
 図9のパターン1のPWM信号においては、PDM信号の1が、PWM信号の1周期の中心から左側に2スロットで、右側に1スロットのパルス幅の最長パルスのPWM(1)に変換され、PDM信号の0が、PWM信号の1周期の中心の左側に隣接する位置の1スロットのパルス幅の最短パルスのPWM(0)に変換されている。
 また、図9のパターン2のPWM信号においては、PDM信号の1が、PWM信号の1周期の中心から左側に1スロットで、右側に2スロットのパルス幅の最長パルスのPWM(1)に変換され、PDM信号の0が、PWM信号の1周期の中心の右側に隣接する位置の1スロットのパルス幅の最短パルスのPWM(0)に変換されている。
 したがって、SE駆動における第2のPWM変調によれば、SE駆動における第1のPWM変調ではPWM変調できない程度にPWM信号の分解能が低い場合でも、PWM変調を行うことができる。
 以上のように、SE駆動における第2のPWM変調によれば、SE駆動における第1のPWM変調よりも、SE駆動においてPWM信号の変調率を向上させることができる。さらに、PWM信号の変調率が向上することで、SE駆動でのドライブ回路22の出力レベル(ヘッドホン13のスピーカ13a又はスピーカ13bから出力される音圧)を大きくすることができる。
 また、SE駆動における第1のPWM変調とBTL駆動におけるPWM変調とでは、SE駆動における第1のPWM変調の変調率が、BTL駆動におけるPWM変調の変調率よりも低くなる。そのため、SE駆動において、SE駆動における第1のPWM変調を採用する場合には、SE駆動とBTL駆動とでドライブ回路22の出力レベルを一致させるようなレベルダイヤグラムの設計が難しくなる。
 一方、SE駆動において、SE駆動における第2のPWM変調を採用する場合には、SE駆動における第2のPWM変調と、BTL駆動におけるPWM変調とで同一の変調率を達成することができる。したがって、SE駆動における第2のPWM変調を採用する場合には、SE駆動とBTL駆動とでドライブ回路22の出力レベルを一致させるようなレベルダイヤグラムの設計の難易度を低化させることができる。
 さらに、マスタークロックの周波数が低いことや、PDM信号のサンプリング周波数が高いこと等によって、PWM信号の分解能(1周期のスロット数)が低い場合に、SE駆動が用いられる場合には、SE駆動における第1のPWM変調ではPWM変調が困難であっても、SE駆動における第2のPWM変調によれば、PWM変調を行うことができる。
 なお、図5では、PDM信号の1をPWM信号の最長パルスに変換し、PDM信号の0をPWM信号の最短パルスに変換したが、PDM信号の0をPWM信号の最長パルスに変換し、PDM信号の1をPWM信号の最短パルスに変換してもよい。
 <3.本技術を適用したコンピュータの説明>
 次に、上述したPWM変換部21の一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。
 そこで、図10は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示している。
 図10において、CPU(Central Processing Unit)101は、ROM(Read Only Memory)102に記憶されているプログラム、又は記憶部108からRAM(Random Access Memory)103にロードされたプログラムに従って各種の処理を実行する。RAM103にはまた、CPU101が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU101、ROM102、及びRAM103は、バス104を介して相互接続されている。このバス104にはまた、入出力インタフェース105も接続されている。
 入出力インタフェース105には、キーボード、マウスなどによりなる入力部106、LCD(liquid crystal display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部107、ハードディスクなどより構成される記憶部108、モデム、ターミナルアダプタなどより構成される通信部109が接続されている。通信部109は、例えばインターネットなどのネットワークを介しての通信処理を行う。
 入出力インタフェース105にはまた、必要に応じてドライブ110が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア111が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部108にインストールされる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外に効果があってもよい。
 <その他>
 本技術は、以下のような構成をとることができる。
(1)
 オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行うPWM変換部
 を備える信号処理装置。
(2)
 前記PWM変換部は、前記PDM信号の1を前記最長パルスに変換し、前記PDM信号の0を前記最短パルスに変換する
 (1)に記載の信号処理装置。
(3)
 前記PWM変換部は、前記PDM信号の1を前記PWM信号の周期の先頭から開始する前記最長パルスに変換し、前記PDM信号の0を前記PWM信号の周期の中心に終端が位置する前記最短パルスに変換する
 (1)又は(2)に記載の信号処理装置。
(4)
 前記PWM変換部は、前記PDM信号の1を前記PWM信号の周期の終わりで終了する前記最長パルスに変換し、前記PDM信号の0を前記PWM信号の周期の中心に始端が位置する前記最短パルスに変換する
 (1)又は(2)に記載の信号処理装置。
(5)
 前記PWM信号を増幅するドライブ回路と、
 前記ドライブ回路で増幅された前記PWM信号のフィルタリングを行うLPF(Low Pass Filter)と
 をさらに備える
 (1)ないし(4)のいずれかに記載の信号処理装置。
(6)
 オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行う
 信号処理方法。
(7)
 オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行う
 処理をコンピュータに実行させるプログラム。
 1 オーディオ再生装置, 11 記憶媒体, 12 信号処理装置, 13 ヘッドホン, 13a,13b スピーカ, 21 PWM変換部, 22 ドライブ回路, 23 LPF, 101 CPU, 102 ROM, 103 RAM, 104 バス, 105 入出力インタフェース, 106 入力部, 107 出力部, 108 記憶部, 109 通信部, 110 ドライブ, 111 リムーバブルディスク

Claims (7)

  1.  オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行うPWM変換部
     を備える信号処理装置。
  2.  前記PWM変換部は、前記PDM信号の1を前記最長パルスに変換し、前記PDM信号の0を前記最短パルスに変換する
     請求項1に記載の信号処理装置。
  3.  前記PWM変換部は、前記PDM信号の1を前記PWM信号の周期の先頭から開始する前記最長パルスに変換し、前記PDM信号の0を前記PWM信号の周期の中心に終端が位置する前記最短パルスに変換する
     請求項2に記載の信号処理装置。
  4.  前記PWM変換部は、前記PDM信号の1を前記PWM信号の周期の終わりで終了する前記最長パルスに変換し、前記PDM信号の0を前記PWM信号の周期の中心に始端が位置する前記最短パルスに変換する
     請求項2に記載の信号処理装置。
  5.  前記PWM信号を増幅するドライブ回路と、
     前記ドライブ回路で増幅された前記PWM信号のフィルタリングを行うLPF(Low Pass Filter)と
     をさらに備える
     請求項1に記載の信号処理装置。
  6.  オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行う
     信号処理方法。
  7.  オーディオ信号をPDM(Pulse Density Modulation)変調したPDM信号の各ビットが表す0又は1の一方を、前記PDM信号の周期と同一の周期のPWM(Pulse Width Modulation)信号の最も長いパルス幅の最長パルスに変換し、前記PDM信号の0又は1の他方を、前記PWM信号の周期の中心に隣接する位置の前記PWM信号の最も短いパルス幅の最短パルスに変換するPWM変調を行う
     処理をコンピュータに実行させるプログラム。
PCT/JP2018/042923 2017-12-05 2018-11-21 信号処理装置、信号処理方法、及び、プログラム WO2019111703A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/767,486 US10965307B2 (en) 2017-12-05 2018-11-21 Signal processing apparatus, signal processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017233096 2017-12-05
JP2017-233096 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111703A1 true WO2019111703A1 (ja) 2019-06-13

Family

ID=66750920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042923 WO2019111703A1 (ja) 2017-12-05 2018-11-21 信号処理装置、信号処理方法、及び、プログラム

Country Status (2)

Country Link
US (1) US10965307B2 (ja)
WO (1) WO2019111703A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11606459B2 (en) * 2018-01-11 2023-03-14 Honor Device Co., Ltd. Terminal device, and DSD audio playback circuit and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068835A (ja) * 1998-08-25 2000-03-03 Sony Corp デジタル−アナログ変換装置
JP2000068841A (ja) * 1998-08-18 2000-03-03 Mitsubishi Electric Corp D/a変換装置
JP2003229768A (ja) * 2002-02-05 2003-08-15 Sharp Corp パルス符号変調信号再生装置
JP2006042315A (ja) * 2004-06-24 2006-02-09 Sony Corp デルタシグマ変調装置及びデルタシグマ変調方法
JP2008035027A (ja) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd デルタシグマ変調型da変換装置
JP2009005302A (ja) * 2007-06-25 2009-01-08 Yamaha Corp デジタルアンプ装置
US20100289546A1 (en) * 2006-03-31 2010-11-18 Nxp B.V. Digital signal converter
JP2016019274A (ja) * 2014-07-11 2016-02-01 ソニー株式会社 信号処理装置および信号処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI264179B (en) * 2004-02-17 2006-10-11 Sunplus Technology Co Ltd Circuit and method for pulse width modulation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068841A (ja) * 1998-08-18 2000-03-03 Mitsubishi Electric Corp D/a変換装置
JP2000068835A (ja) * 1998-08-25 2000-03-03 Sony Corp デジタル−アナログ変換装置
JP2003229768A (ja) * 2002-02-05 2003-08-15 Sharp Corp パルス符号変調信号再生装置
JP2006042315A (ja) * 2004-06-24 2006-02-09 Sony Corp デルタシグマ変調装置及びデルタシグマ変調方法
US20100289546A1 (en) * 2006-03-31 2010-11-18 Nxp B.V. Digital signal converter
JP2008035027A (ja) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd デルタシグマ変調型da変換装置
JP2009005302A (ja) * 2007-06-25 2009-01-08 Yamaha Corp デジタルアンプ装置
JP2016019274A (ja) * 2014-07-11 2016-02-01 ソニー株式会社 信号処理装置および信号処理方法

Also Published As

Publication number Publication date
US10965307B2 (en) 2021-03-30
US20200382130A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US8094835B2 (en) Signal processing apparatus
US20100318205A1 (en) Signal processing apparatus and signal processing method
JP4882353B2 (ja) パルス幅変調増幅器
KR100565103B1 (ko) 스위칭 증폭기에서의 출력 펄스 폭 변조 방법 및 그 장치
WO2019111703A1 (ja) 信号処理装置、信号処理方法、及び、プログラム
WO2005099208A1 (ja) 伝送信号生成装置
JP4444037B2 (ja) デジタルパルス幅変調信号発生器
US9936282B2 (en) Over-sampling digital processing path that emulates Nyquist rate (non-oversampling) audio conversion
JP4728943B2 (ja) オーディオ処理回路、その起動方法ならびにそれらを利用した電子機器
JP2009005073A (ja) デジタルアナログ変換器と歪補正回路
JP2008166864A (ja) D級増幅器
JPH0955634A (ja) 高調波付加回路
US20220191074A1 (en) Signal processing device, signal processing method, and program
JP2016063300A (ja) オーディオアンプ、電子機器、オーディオ信号の再生方法
JP2006211056A (ja) 複数チャネルd級アンプ
JP2009010528A (ja) パルス幅変調信号生成方法、パルス幅変調信号生成装置
WO2020218027A1 (ja) 信号処理装置および方法、並びにプログラム
JP7455500B2 (ja) 音響装置
JP6293951B1 (ja) 音声再生装置
JP3264155B2 (ja) 信号処理装置
WO2020040068A1 (ja) 音声処理装置、音声処理方法及び音声処理プログラム
JP6235182B1 (ja) 音声再生装置
JP3003198B2 (ja) パルス幅変調装置
WO2020003745A1 (ja) オーディオ装置、オーディオ再生方法及びオーディオ再生プログラム
Harris et al. Intelligent Class D Amplifier Controller Integrated Circuit as an Ingredient Technology for Multi-Channel Amplifier Modules of Greater than 50Watts/Channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP