WO2019107009A1 - 無人航空機 - Google Patents

無人航空機 Download PDF

Info

Publication number
WO2019107009A1
WO2019107009A1 PCT/JP2018/039150 JP2018039150W WO2019107009A1 WO 2019107009 A1 WO2019107009 A1 WO 2019107009A1 JP 2018039150 W JP2018039150 W JP 2018039150W WO 2019107009 A1 WO2019107009 A1 WO 2019107009A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
holder
unmanned aerial
arm holder
aerial vehicle
Prior art date
Application number
PCT/JP2018/039150
Other languages
English (en)
French (fr)
Inventor
紀代一 菅木
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Priority to US16/617,065 priority Critical patent/US10882600B2/en
Priority to JP2019511513A priority patent/JP6543835B1/ja
Publication of WO2019107009A1 publication Critical patent/WO2019107009A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/37Rotors having articulated joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/42Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters with arrangement for propelling the support stands on wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M3/00Portable or wheeled frames or beds, e.g. for emergency power-supply aggregates, compressor sets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M7/00Details of attaching or adjusting engine beds, frames, or supporting-legs on foundation or base; Attaching non-moving engine parts, e.g. cylinder blocks

Definitions

  • the present invention relates to unmanned aerial vehicle technology, and more particularly to storage technology for unmanned aerial vehicles.
  • Patent Document 1 discloses a multicopter having a foldable arm.
  • a typical multicopter has a structure in which a plurality of arms extend radially from the center of the airframe and a rotor is disposed at the tips of the arms. These arms and rotors occupy most of the horizontal dimensions of the airframe, and are a factor in reducing space efficiency during storage.
  • attaching and detaching the arm every time the multicopter is stored and used is not an efficient operation method.
  • an object of the present invention to provide an unmanned aerial vehicle capable of efficiently reducing the horizontal dimension of the airframe.
  • an unmanned aerial vehicle includes a rotor having a rotary wing, an arm which is a rod-like body for supporting the rotor, and an arm connection portion to which the arm is connected, the arm connection
  • the part has an arm holder which is a fixture for holding a part in the longitudinal direction of the arm, and the part of the arm held by the arm holder slides the arm in the longitudinal direction with respect to the arm holder
  • the arm holder is a movable member that can be displaced in a direction in which the arm is pivoted vertically and / or horizontally.
  • the length from the movable portion (proximal end of the arm) to the tip of the arm is the same as the total length of the arm. Therefore, for example, when the height dimension of the skid (leg portion) of the airframe is shorter than the total length of the arm, the tip of the arm interferes with the ground or the floor surface, so the arm can not be bent vertically for storage.
  • the outer shape of the center frame (the hub portion to which the arm is connected) is smaller than the length of the arm, the space saving effect is limited even if the arm is bent horizontally along the center frame.
  • an arm holder which is a movable member, is separately provided in the arm connection portion, and the arm is supported by the arm holder, and the arm can be slid in the longitudinal direction with respect to the arm holder.
  • the length to the tip of the arm (and the rear end of the arm protruding from the arm holder) can be shortened. This allows, for example, the arm to be vertically disposed even when the height of the skid is shorter than the total length of the arm, and the space saving effect is maximized even when the arm is disposed horizontally along the center frame. It is possible to
  • the range in which the arm holder can pivot the arm in the vertical direction is configured such that the deployed position of the arm at the time of flight is the upper limit thereof.
  • the arm is pulled up by the rotor supported by the arm. Therefore, for example, when the arm is not sufficiently fixed by the arm holder, the arm may be unintentionally pivoted upward during flight. Such an accident can be prevented in advance by adopting a structure in which the arm does not pivot above the deployed position during flight, like the arm holder of this configuration.
  • the arm connection portion has an arm holder support portion which is a pair of plate portions arranged in parallel to sandwich the arm holder, and each of the plate portions constituting the arm holder support portion On the surface of the plate, an arc-shaped elongated hole, a hole formed at the center of a virtual circle including the elongated hole as a circular arc, or a boss projecting to the other plate-like portion from the center of the virtual circle Are formed at positions corresponding to each other, and the arm holder supported by the arm connection portion has an angular range of the elongated hole with the position corresponding to the hole portion or the boss portion as a rotation center. It may be configured to be rotatable.
  • the plate surface of each of the plate-like portions constituting the arm holder support portion has an arc-shaped elongated hole, and a hole bored at the center of a virtual circle including the elongated hole as an arc.
  • the arm holder is formed at a position corresponding to each hole and a screw hole formed at a position corresponding to each long hole, and these holes are communicated with each other
  • An axial hole may be formed, and a screw member may be screwed through the elongated hole in each of the screw holes, and a core rod may be inserted in each of the holes and the axial hole.
  • the unmanned aerial vehicle includes a rotor having a rotary wing, an arm which is a rod-like body supporting the rotor, and an arm connection portion to which the arm is connected.
  • the arm is characterized in that it is provided with a hinge portion which can fold the arm halfway.
  • the length from the movable portion (proximal end of the arm) to the tip of the arm is the same as the total length of the arm. Therefore, for example, when the height of the skid (leg) of the airframe is shorter than the total length of the arm, the arm can not be bent vertically for storage since the tip of the arm interferes with the ground or floor.
  • the external dimension of the center frame (the hub portion to which the arm is connected) is smaller than the length of the arm, the space saving effect is limited even if the arm is bent horizontally along the center frame. . That is, the inability to reduce the total length of the arm is an obstacle to reducing the horizontal dimension of the airframe.
  • a hinge portion capable of bending the arm in the middle is separately provided, and the hinge portion is disposed at an optimum position according to the shape of the machine body. This makes it possible to efficiently reduce the horizontal dimension of the airframe with a simple structure.
  • the arm connection portion has an arm holder which is a fixture for holding a part in the longitudinal direction of the arm, and the portion of the arm held by the arm holder is the arm relative to the arm holder. It is preferable that the change is possible by sliding in the longitudinal direction.
  • the arm longitudinally slidable relative to the arm holder, it is possible, for example, to insert the arm into the arm connection. Thereby, the length from the arm holder to the tip of the arm can be shortened, and the reduction effect of the horizontal dimension is further enhanced.
  • the arm is formed of a cylindrical pipe member, and the arm has an arm side fitting portion which is a fitting portion for preventing the arm from rotating in the circumferential direction, and the arm In the longitudinal direction of the arm, when the side on which the rotor is disposed is the tip end side of the arm and the opposite side is the rear end side of the arm, the arm side fitting portion is the arm relative to the arm holder When it is made to slide to the front end side to the limit, it is preferable to be fitted in the fixed side fitting part which is a fitting part which becomes a pair of the arm side fitting parts.
  • the bent arm can freely rotate in the circumferential direction by releasing the fitting of these fitting parts during storage of the airframe, and the arm contacts peripheral objects. It is possible to prevent in advance the breakage of the arm and the support portion of the arm when it occurs.
  • the arm side fitting portion is a pin protruding from the rear end of the arm, and the pin protrudes parallel to the arm along the arm toward the tip end of the arm.
  • the side fitting portion may be a pin hole formed in the arm holder.
  • the unmanned aerial vehicle of the present invention it is possible to effectively reduce the horizontal dimension of the airframe. This also enables, for example, space efficient storage of a large number of aircraft.
  • a multicopter 10 which is an unmanned aerial vehicle with multiple rotors.
  • the multicopter 10 is a general-purpose airframe, and its application is not particularly limited.
  • “upper”, “lower”, and “vertical” in the following description are directions parallel to the z-axis of the coordinate axis display depicted in FIG. 1, and the arrow direction of the z-axis is the upper side.
  • “horizontal” means the xy plane direction in the same coordinate axis display.
  • FIG. 1 and 2 are perspective views showing the appearance of a multicopter 10 according to the present embodiment (hereinafter, also referred to as "this example").
  • FIG. 1 is a view showing the arm arrangement at the time of flight of the multicopter 10.
  • FIG. 2 is a view showing the arm arrangement when the multicopter 10 is stored.
  • the multicopter 10 includes a rotor R having a propeller 82 which is a rotary wing, an arm 70 which is a rod-like body for supporting the rotor R, and a center frame 50 which is an arm connection portion to which the arm 70 is connected.
  • the rotor R is screwed to a motor mount 71 provided at the tip of the arm 70.
  • the center frame 50 has an arm holder 60 which is a fixture for holding a part of the arm 70 in the longitudinal direction.
  • the arm holder 60 in this example is a movable member that can be pivoted in the direction in which the arm 70 is pivoted up and down. The portion of the arm 70 held by the arm holder 60 can be changed by sliding the arm 70 with respect to the arm holder 60 in the longitudinal direction.
  • the center frame 50 is a simple structure in which two rectangular plates with four corners cut off in a plan view are arranged in parallel, and a control system of the airframe is arranged inside thereof.
  • the arm holders 60 in this example are disposed at positions corresponding to the four corners of the center frame 50.
  • the center frame 50 has an arm holder support 51 formed of a pair of plate-like portions 51 a and 51 b arranged in parallel to sandwich the arm holder 60, and the arm holder 60 is pivoted to the arm holder support 51. It is supported possible.
  • the four sets of arm holder support portions 51, the arm holder 60, the arms 70 supported thereby, and the rotor R all have the same structure.
  • the form of the arm connection part of this invention is not limited to the center frame 50 of this example.
  • the arm connection portion according to the present invention is a part of the airframe of an unmanned aerial vehicle, and any shape or structure can be used as long as the arm holder can be rotatably supported.
  • the multicopter 10 at the time of flight is arranged horizontally with the arm 70 pulled out from the arm holder 60 to the tip side thereof.
  • the movable range of the arm holder 60 of this example has an upper limit of the arrangement of the arm 70 of FIG. 1, and is about 90 degrees from when the arm 70 is vertical with its tip facing downward.
  • the height dimension of the skid 59 (leg) of the multicopter 10 of this example is shorter than the entire length of the arm 70. Therefore, when the arm 70 is turned downward as it is from the arrangement of FIG. 1, the tip of the arm 70 interferes with the ground or floor surface, and it can not be turned until it becomes vertical.
  • the multicopter 10 of the present example by inserting the arm 70 into the arm holder 60, the length from the movable portion (arm holder 60) when pivoting the arm 70 to the tip of the arm 70 can be shortened. Thereby, even when the height dimension of the skid 59 is shorter than the total length of the arm 70, the arm 70 can be erected vertically by avoiding the arm 70 interfering with the ground or floor (see FIG. 2). ).
  • the propeller 82 is removed in FIG. 2, the effort which attaches or detaches the propeller 82 can also be reduced by making the propeller 82 foldable.
  • FIG. 3 and 4 are side views showing the movable structure of the arm 70.
  • FIG. 3 is a side view showing the arm arrangement when the multicopter 10 is in flight.
  • FIG. 4 is a side view showing the arm arrangement when the multicopter 10 is stored.
  • the arm holder 60 of this example can rotate the range of the arc angle (about 90 degrees) of the long hole 511 with the position of the hole 512 of the arm holder support 51 (plate-like portions 51a and 51b) as the rotation center. It is assumed. When changing the arrangement angle of the arm holder 60, the screw member 52 screwed through the long hole 511 may be loosened and the screw member 52 may be moved along the long hole 511.
  • the arm holder 60 of this example deploys the arm 70 horizontally. This is an arm arrangement at the time of flight of the multicopter 10. Then, when the screw member 52 is moved to the lower end of the elongated hole 511, the tip of the arm 70 is directed downward and the arm 70 is vertically disposed. During flight of the multicopter 10, the thrust of the rotor R supported by the arm 70 pulls the arm 70 upward. Therefore, for example, if the arm holder 60 does not sufficiently fix the arm, the arm 70 may unintentionally pivot upward during flight. Such an accident is prevented by the structure in which the arm holder 60 of this example does not pivot above the deployed position at the time of flight.
  • the arm holder 60 of this example can slide the arm 70 along the longitudinal direction L by loosening the screw 69 of the clamp part 62 of the arm holder 60.
  • the arm 70 By inserting the arm 70 to the arm holder 60, of the overall length L 1 of the arm 70, it is possible to shorten the length L 2 from the arm holder 60 to the tip.
  • the arm 70 vertically without interfering with the ground or the floor surface.
  • the reduction effect of the horizontal dimension of the multicopter 10 is enhanced, and, for example, a large number of airframes can be stored space-efficiently.
  • the procedure for changing the arm arrangement at the time of flight of the multicopter 10 (FIG. 3) to the arm arrangement at the time of storage (FIG. 4) is as follows. First, (1) the propeller 82 is removed (the propeller 83 may be a foldable propeller). (2) Loosen the screw member 52 of the arm holder support portion 51 and the screw 69 of the arm holder 60, (3) pivot the arm 70 downward (arrow T), and (4) insert the arm 70 into the arm holder 60 (Arrow S). Steps (3) and (4) may be performed in parallel so that the tip of the arm 70 does not contact the ground or floor, or the multicopter 10 is tilted and (3) is performed to the end, and then You may go to (4).
  • FIG. 5 is a side view of the arm holder support portion 51 (plate-like portion 51a).
  • FIG. 6 is a perspective view (FIG. 6 (a)) and a side view (FIG. 6 (b)) showing the structure of the arm holder 60. As shown in FIG.
  • the plate surfaces of the plate-like portions 51a and 51b constituting the arm holder support portion 51 are pierced at the center of a virtual circle c including the arc-shaped elongated hole 511 and the elongated hole 511 as an arc. Holes 512 are formed at positions corresponding to each other.
  • the arm holder 60 is a substantially cylindrical fixture.
  • the arm holder 60 of this example includes a cylindrical base 61, a clamp 62 which is an enlarged diameter part provided at one end in the cylinder axial direction a of the base 61, and an expansion provided at the other end. It is comprised by the flange part 63 which is a diameter part.
  • the flange portion 63 screw holes 632 formed at positions corresponding to the long holes 511 of the arm holder support portion 51 are formed. Further, the flange portion 63 is formed at a position corresponding to each hole portion 512 of the arm holder support portion 51, and an axial hole 631 which is a through hole communicating the hole portion 512 is formed. The core rod 53 is inserted into the hole 512 and the shaft hole 631. The screw member 52 is screwed into the screw hole 632 of the flange portion 63 through the long hole 511.
  • the screw member 52 in this example has a lever portion 521 for tightening or loosening it without using a tool.
  • the arm holder 60 can turn the angle range in which the long hole 511 is formed, with the position of the hole 512 as the rotation center.
  • a pin hole 635 which is a hole portion penetrating in the cylinder axial direction a is formed. The purpose of the pin holes 635 will be described later.
  • a first slit 622 is formed which is a gap separating these in the cylinder axial direction a.
  • the first slit 622 is formed over the upper half of the base 61.
  • a second slit 623 which is a gap separating the upper end portion in the circumferential direction r is formed.
  • the upper end portion is provided with a screw hole 621 penetrating the second slit 613.
  • the screw 69 is screwed into the screw hole 621 and tightened, so that the clamp portion 62 is deformed to narrow its inner diameter, whereby the arm 70 inserted into the arm holder 60 is tightened and fixed to the arm holder 60 Ru.
  • the arm holder support portion 51 reciprocates the arm holder 60 at the rotation center thereof (the hole portion 512 and the shaft hole 631 in which the core rod 53 is inserted)
  • the arm holder 60 can be stably supported by supporting it at two points of the screw hole 632) in which the screw member 52 is screwed through 511.
  • the form of the arm holder of this invention is not limited to the arm holder 60 of this example.
  • the arm holder of the present invention can change the holding position in the longitudinal direction of the arm, and the shape and structure thereof are not limited as long as the arm can be displaced in the direction of pivoting the arm vertically and / or horizontally.
  • the arm 70 is formed of a cylindrical pipe material. And arm 70 has an arm side fitting part which is a fitting part which prevents that arm 70 rotates to a peripheral direction.
  • the arm side fitting portion in this example is a pin 721 which protrudes from a retaining ring 72 provided at the rear end of the arm 70. The pins 721 project along the arm 70 in parallel to the tip of the arm 70.
  • the arm holder 60 has a fixed side fitting portion which is a pair of fitting portions of the pins 721.
  • the fixed side fitting portion in this example is a pin hole 635 formed in the flange portion 63 of the arm holder 60.
  • the pin 721 is fitted in the pin hole 635 when the arm 70 is slid to the end side of the arm holder 60 to the limit.
  • the angular position of the arm 70 in the present example is fixed by the engagement of the pin 721 and the pin hole 635. This prevents the arm 70 from rotating unintentionally during flight. In addition to this, the positioning accuracy at the time of deployment of the arm 70 is also enhanced.
  • the fixed side fitting portion of the present invention does not have to be always provided in the arm holder 60, and may be provided in the arm holder support portion 51 or the center frame 50. Further, the configurations of the arm side fitting portion and the fixed side fitting portion of the present invention are not limited to the pin 721 and the pin hole 635.
  • the shape and structure of the arm side fitting portion and the fixed side fitting portion are not limited as long as the angular position in the circumferential direction of the arm can be fixed by fitting.
  • the form of the arm of the present invention is not limited to the arm 70, and may be, for example, an arm of a square cylinder or a square bar.
  • FIGS. 7 and 8 are views showing a modification of the arm movable structure of the multicopter 10.
  • FIG. 7 is a side view showing the arm arrangement at the time of flight of the multicopter 10 according to the present modification.
  • FIG. 8 is a side view showing the arm arrangement at the time of storage of the multicopter 10 according to the present modification.
  • the arm holder 60 is non-rotatably fixed to the arm support portion 51, and the arm 70 is provided with a hinge portion 75 which can bend the arm 70 halfway.
  • the hinge portion 75 By adjusting in accordance with the position of the hinge portion 75 in the height dimensions of the skid 59, of the overall length L 1 of the arm 70, housed so as not to interfere with the length L 3 that is bent downward to the ground or floor surface , That part can be placed vertically
  • the long hole 511 is not formed in the arm support portion 51, and instead, the hole portion 513 which is a through hole similar to the hole portion 512 is formed. .
  • the screw member 52 is inserted into the hole 513 and screwed into the screw hole 632 of the arm holder 60.
  • the arm holder 60 is immovably fixed to the arm support 51.
  • the hinge portion 75 is a general hinge for a pipe material. By pulling out the lock pin 751 fixing the hinge portion 75, the hinge portion 75 can be opened and closed. When the lock pin 751 is pulled out, the tip end of the arm 70 hangs down by its own weight. The position of the hinge portion 75 in the longitudinal direction L of the arm 70 by adjusting in accordance with the height dimensions of the skid 59, it is possible to adjust the length L 3 of the distal end of the arm 70 hangs down. This prevents contact of the arm 70 with the ground or floor.
  • the arm 70 can be slid along the longitudinal direction L by loosening the screw 69 of the clamp portion 62 of the arm holder 60.
  • the arm 70 By inserting the arm 70 to the arm holder 60, of the overall length L 1 of the arm 70, it is possible to shorten the length L 2 from the arm holder 60 to the tip of the side (here, the outer shape of the rotor R are ignored ). This further enhances the effect of reducing the horizontal dimensions of the multicopter 10.
  • the arm 70 when the arm 70 is inserted into the arm holder 60, the fitting of the pin 721 of the arm 70 and the pin hole 635 of the arm holder 60 is released, and the arm 70 can freely rotate in the circumferential direction.
  • the arm 70 is freely rotated to release the external force, so that the hinge portion 75 or the arm holder support portion 51 Damage is prevented.
  • FIG. 9 is a block diagram showing the functional configuration of the multicopter 10 of this example.
  • the functions of the multicopter 10 mainly include a flight controller FC which is a control unit, four rotors R and an arm 70 for supporting the rotors, and an ESC 27 (electric speed controller) which is a drive circuit of a brushless motor 81 provided in the rotor R. It comprises a receiver 42 for receiving steering signals from the driver (transmitter 41) and a battery 29 for supplying power thereto.
  • the flight controller FC includes a controller 20 which is a microcontroller.
  • the control device 20 includes a CPU 21 which is a central processing unit, and a memory 22 which is a storage device such as a RAM, a ROM, and a flash memory.
  • the flight controller FC further includes a flight control sensor group S including an IMU 23 (Inertial Measurement Unit), a GPS receiver 24, an altitude sensor 25, and an electronic compass 26, which are connected to the controller 20. It is done.
  • IMU 23 Inertial Measurement Unit
  • GPS receiver 24 GPS receiver
  • altitude sensor 25 GPS receiver
  • electronic compass 26 electronic compass
  • the IMU 23 is a sensor that detects the tilt of the multicopter 10's airframe, and is mainly composed of a 3-axis acceleration sensor and a 3-axis angular velocity sensor.
  • a barometric pressure sensor is used as the height sensor 25 in this example.
  • the altitude sensor 25 calculates the altitude above sea level (altitude) of the multicopter 10 from the detected atmospheric pressure altitude.
  • a three-axis geomagnetic sensor is used for the electronic compass 26 in this example.
  • the electronic compass 26 detects the azimuth of the nose of the multicopter 10.
  • the GPS receiver 24 is precisely a receiver of a navigation satellite system (NSS).
  • the GPS receiver 24 acquires current longitude and latitude values from a Global Navigation Satellite System (GNSS) or a Regional Navigational Satellite System (RNSS).
  • GNSS Global Navigation Satellite System
  • RNSS Regional Navigational Satellite System
  • the flight controller FC can obtain the position information of its own aircraft including the latitude and longitude in flight, altitude, and the azimuth angle of the nose as well as the tilt and rotation of the aircraft by these flight control sensor groups S. It is done.
  • the multicopter 10 may fly indoors.
  • beacons for transmitting radio signals are arranged at predetermined intervals in a facility, and the relative distance between the multicopter 10 and each beacon is measured from the radio wave strength of the signals received from these beacons, and the multicopter in the facility It is conceivable to identify ten positions.
  • a distance measuring sensor using a laser, infrared rays, ultrasonic waves, etc. is separately mounted, and the distance between the floor (or ceiling) or wall in the facility and the multicopter 10 is measured, and the multi The position of the copter 10 may be specified.
  • the controller 20 has a flight control program FS which is a program for controlling the attitude of the multicopter 10 during flight and basic flight operations.
  • the flight control program FS adjusts the rotation speed of each rotor R based on the information acquired from the flight control sensor group S, and causes the multicopter 10 to fly while correcting the attitude and position disturbance of the airframe.
  • the control device 20 further includes an autonomous flight program AP which is a program for causing the multicopter 10 to fly autonomously.
  • a flight plan FP is registered in the memory 22 of the control device 20.
  • the flight plan FP is a parameter in which the latitude and longitude of the destination and transit point of the multicopter 10, the altitude and the speed during flight, and the like are designated.
  • the autonomous flight program AP can make the multicopter 10 fly autonomously according to the flight plan FP, with an instruction from the transmitter 41, a predetermined time, etc. as a start condition.
  • the multicopter 10 of the present example is an unmanned aerial vehicle equipped with advanced flight control functions.
  • the rotary wing aircraft of the present invention is not limited to the form of the multicopter 10, for example, an airframe in which some sensors are omitted from the flight control sensor group S, or it can fly by manual steering alone without an autonomous flight function. Aircraft can also be used.
  • the range of this invention is not limited to this, A various change can be added in the range which does not deviate from the main point of invention.
  • the multicopter 10 of the above embodiment and modification reduces the horizontal dimension of the airframe by utilizing the space in the height direction
  • the configuration of the arm, arm holder, and arm support portion of the present invention can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Catching Or Destruction (AREA)
  • Toys (AREA)

Abstract

機体の水平寸法を効率的に縮小可能な無人航空機を提供する。 ロータと、アームと、アーム接続部と、を備え、アーム接続部は、アームの長手方向における一部を保持する固定具であるアームホルダを有し、アームホルダが保持するアームの部位は、アームホルダに対してアームをその長手方向にスライドさせることで変更可能であり、アームホルダは、アームを上下および/または左右に旋回させる向きに変位可能な可動部材である無人航空機、および、ロータと、アームと、アーム接続部と、を備え、アームには、該アームをその中途で折り曲げ可能なヒンジ部が設けられている無人航空機により解決する。

Description

無人航空機
 本発明は無人航空機技術に関し、特に、無人航空機の保管技術に関する。
 従来、産業用無人ヘリコプターに代表される小型の無人航空機は、機体が高価で入手困難なうえ、安定して飛行させるためには操作に熟練が必要とされるものであった。しかし近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良が大きく進み、これにより無人航空機の操作性が著しく向上するとともに、高性能な機体を安価に入手できるようになった。こうした背景から現在、特に小型のマルチコプターについては、趣味目的だけでなく、広範な分野における種々のミッションへの応用が試行されている。
 下記特許文献1には、折り畳み可能なアームを備えるマルチコプターが開示されている。
特開2016-064768号公報
 例えばマルチコプターを使った運輸サービスなど、多数のマルチコプターを運用する用途においては、マルチコプターを保管するときのスペース効率が問題となる。一般的なマルチコプターは、複数のアームが機体の中心から放射状に延び、それらアームの先端にロータが配置される構造となっている。これらアームやロータは、機体の水平方向の寸法の大半を占めており、保管時のスペース効率を下げる要因となっている。一方、マルチコプターを保管・使用する度にアームを着脱することも効率的な運用方法とはいえない。
 上記問題に鑑み、本発明が解決しようとする課題は、機体の水平寸法を効率的に縮小可能な無人航空機を提供することにある。
 上記課題を解決するため、本発明の無人航空機は、回転翼を有するロータと、前記ロータを支持する棒状体であるアームと、前記アームが接続されるアーム接続部と、を備え、前記アーム接続部は、前記アームの長手方向における一部を保持する固定具であるアームホルダを有し、前記アームホルダが保持する前記アームの部位は、前記アームホルダに対して前記アームをその長手方向にスライドさせることで変更可能であり、前記アームホルダは、前記アームを上下および/または左右に旋回させる向きに変位可能な可動部材であることを特徴とする。
 ロータを支持するアームをその基端部から折り曲げる構造においては、その可動部(アームの基端部)からアームの先端までの長さはアームの全長と同じである。よって、例えば機体のスキッド(脚部)の高さ寸法がアームの全長よりも短い場合、アームの先端が地面や床面に干渉するため、アームを鉛直に折り曲げて保管することはできない。また、アームの長さに対してセンターフレーム(アームが接続されるハブ部)の外形が小さい場合、アームをセンターフレームに沿って水平に折り曲げたとしても、その省スペース効果は限定的である。そこで、可動部材であるアームホルダをアーム接続部に別途設け、アームホルダでアームを支持するとともに、アームホルダに対してアームをその長手方向にスライド可能とすることにより、可動部(アームホルダ)からアームの先端(およびアームホルダから突き出したアームの後端)までの長さを、短くすることができる。これにより、例えばスキッドの高さがアームの全長よりも短い場合でもアームを鉛直に配置することが可能となり、アームをセンターフレームに沿って水平に配置するときにも、その省スペース効果を最大化することが可能となる。
 また、前記アームホルダが前記アームを上下方向に旋回可能な範囲は、飛行時における前記アームの展開位置をその上限とする構成とすることが好ましい。
 無人航空機の飛行中は、アームに支持されたロータにより、アームは上方へと引き上げられる。そのため、例えばアームホルダによるアームの固定が不十分であった場合、飛行中にアームが意図せず上方に旋回してしまうことが考えられる。本構成のアームホルダのように、アームが飛行時の展開位置よりも上には旋回しない構造とすることにより、このような事故を未然に防止することができる。
 また、前記アーム接続部は、前記アームホルダを挟むように平行に配置された一対の板状部であるアームホルダ支持部を有しており、前記アームホルダ支持部を構成する前記各板状部の板面には、円弧形状の長穴と、該長穴を円弧として含む仮想円の中心に穿たれた孔部または該仮想円の中心から互いに他方の前記板状部側に突き出したボス部と、が互いに対応する位置に形成されており、前記アーム接続部に支持された前記アームホルダは、前記孔部または前記ボス部に対応する位置を回動中心として、前記長穴の角度範囲を回動可能である構成としてもよい。
 アームホルダ支持部により、アームホルダをその回動中心(孔部やボス部の位置に対応する部位)と往復動部(長穴に沿って往復動する部位)の2点で支持することにより、アームホルダを安定して支持することが可能となる。そして、長穴のいずれか一方の端部まで回動させたアームホルダの配置角度を、飛行時にアームを展開したときの配置角度と一致させることにより、アームの展開時における位置決め精度が高められる。さらに、飛行中にアームが意図せず上方に旋回してしまうことも防ぐことができる。
 また、このとき、前記アームホルダ支持部を構成する前記各板状部の板面には、円弧形状の長穴と、該長穴を円弧として含む仮想円の中心に穿たれた孔部と、が互いに対応する位置に形成されており、前記アームホルダは、前記各長穴に対応する位置に形成されたねじ穴と、前記各孔部に対応する位置に形成され、これら孔部を連通する軸穴と、を有しており、前記各ねじ穴には前記長穴を通してねじ部材が螺合され、前記各孔部および前記軸穴には芯棒が挿通される構成としてもよい。
 また、上記課題を解決するため、本発明の無人航空機は、回転翼を有するロータと、前記ロータを支持する棒状体であるアームと、前記アームが接続されるアーム接続部と、を備え、前記アームには、該アームをその中途で折り曲げ可能なヒンジ部が設けられていることを特徴とする。
 ロータを支持するアームをその基端部から折り曲げる構造においては、その可動部(アームの基端部)からアームの先端までの長さはアームの全長と同じである。よって、例えば機体のスキッド(脚部)の高さがアームの全長よりも短い場合、アームの先端が地面や床面に干渉するため、アームを鉛直に折り曲げて保管することはできない。また、アームの長さに対してセンターフレーム(アームが接続されるハブ部)の外形寸法が小さい場合、アームをセンターフレームに沿って水平に折り曲げたとしても、その省スペース効果は限定的である。つまり、アームの全長を短縮できないことが機体の水平寸法を縮小する上で支障となっている。そこで、本発明では、アームをその中途で折り曲げ可能なヒンジ部を別途設け、機体の形状に応じた最適な位置にそのヒンジ部を配置する。これにより、簡易な構造で効率的に機体の水平寸法を縮小することが可能となる。
 また、前記アーム接続部は、前記アームの長手方向における一部を保持する固定具であるアームホルダを有し、前記アームホルダが保持する前記アームの部位は、前記アームホルダに対して前記アームをその長手方向にスライドさせることで変更可能であることが好ましい。
 アームをアームホルダに対して長手方向にスライド可能とすることにより、例えばアームをアーム接続部内に差し込むことが可能となる。これにより、アームホルダからアームの先端までの長さを短くすることができ、水平寸法の縮小効果がさらに高められる。
 また、前記アームは円筒形状のパイプ材により構成されており、前記アームは、該アームが周方向へ回転することを阻止する嵌合部であるアーム側嵌合部を有しており、前記アームの長手方向において、前記ロータが配置される側を前記アームの先端側、その反対側を前記アームの後端側としたときに、前記アーム側嵌合部は、前記アームホルダに対して前記アームをその先端側に限界までスライドさせたときに、前記アーム側嵌合部の対となる嵌合部である固定側嵌合部に嵌合されることが好ましい。
 アーム側嵌合部および固定側嵌合部を嵌合させてアームの周方向への回転を係止することにより、飛行時にアームが意図せず回転することを防ぐことができる。これに加え、アームの展開時における位置決め精度も高められる。また、これをヒンジ部と組み合わせた場合には、機体の保管時にこれら嵌合部の嵌合を解除することで、折り曲げられたアームが周方向に自由に回転可能となり、アームが周辺物に接触したときにアームやアームの支持部が破損することを未然に防止することができる。
 また、このとき、前記アーム側嵌合部は、前記アームの後端部から突き出したピンであり、前記ピンは、前記アームに沿って平行に、前記アームの先端側に突出しており、前記固定側嵌合部は、前記アームホルダに形成されたピン穴である構成としてもよい。
 以上のように、本発明の無人航空機によれば、機体の水平寸法を効率的に縮小することが可能となる。これにより、例えば多数の機体をスペース効率よく保管することも可能となる。
マルチコプターの飛行時におけるアーム配置を示す斜視図である。 マルチコプターの保管時におけるアーム配置を示す斜視図である。 アームの可動構造を示す側面図(マルチコプターの飛行時におけるアーム配置)である。 アームの可動構造を示す側面図(マルチコプターの保管時におけるアーム配置)である。 アームホルダ支持部の側面図である。 アームホルダの構造を示す斜視図および側面図である。 アームの可動構造の変形例を示す側面図(マルチコプターの飛行時におけるアーム配置)である。 アームの可動構造の変形例を示す側面図(マルチコプターの保管時におけるアーム配置)である。 マルチコプターの機能構成を示すブロック図である。
 以下、本発明の実施形態について図面を用いて説明する。以下に説明する実施形態は、複数のロータを備える無人航空機であるマルチコプター10についての例である。マルチコプター10は汎用的な機体であり、その用途は特に制限されない。なお、以下の説明における「上」および「下」、「鉛直」とは、図1に描かれた座標軸表示のz軸に平行な方向であって、z軸の矢示方向を上とする。また、「水平」とは同座標軸表示におけるx-y平面方向をいう。
(構成概要)
 図1および図2は、本実施形態(以下、「本例」ともいう。)にかかるマルチコプター10の外観を示す斜視図である。図1は、マルチコプター10の飛行時におけるアーム配置を示す図である。図2は、マルチコプター10の保管時におけるアーム配置を示す図である。
 マルチコプター10は、回転翼であるプロペラ82を有するロータR、ロータRを支持する棒状体であるアーム70、および、アーム70が接続されるアーム接続部であるセンターフレーム50を備えている。ロータRは、アーム70の先端に設けられたモータマウント71にねじ固定されている。センターフレーム50は、アーム70の長手方向における一部を保持する固定具であるアームホルダ60を有している。本例のアームホルダ60は、アーム70を上下に旋回させる向きに回動可能な可動部材である。アームホルダ60が保持するアーム70の部位は、アーム70をアームホルダ60に対してその長手方向にスライドさせることで変更可能である。
 センターフレーム50は、平面視四隅が切り落とされた2枚の矩形板が平行に配置された簡易な構造であり、その内側には機体の制御システムが配置されている。本例のアームホルダ60は、センターフレーム50の上記四隅に相当する位置に配置されている。センターフレーム50は、アームホルダ60を挟むように平行に配置された一対の板状部51a,51bからなるアームホルダ支持部51を有しており、アームホルダ60はアームホルダ支持部51に回動可能に支持されている。これら4組のアームホルダ支持部51、アームホルダ60、これに支持されるアーム70、およびロータRは全て同じ構造である。なお、本発明のアーム接続部の形態は本例のセンターフレーム50には限定されない。本発明のアーム接続部は、無人航空機の機体の一部であり、アームホルダを回動可能に支持可能な部材であればその形状や構造は問わない。
 図1に示されるように、飛行時におけるマルチコプター10は、アーム70がアームホルダ60からその先端側に限界まで引き出され、水平に配置されている。本例のアームホルダ60の可動範囲は、図1のアーム70の配置を上限とし、そこからアーム70がその先端を下に向けて鉛直となるまでの約90度の範囲である。
 本例のマルチコプター10が有するスキッド59(脚部)は、その高さ寸法がアーム70の全長よりも短い。そのため、アーム70を図1の配置からそのまま下方に旋回させた場合、アーム70の先端が地面や床面に干渉し、これを鉛直となるまで旋回させることができない。本例のマルチコプター10では、アームホルダ60にアーム70を差し込むことで、アーム70を旋回させるときの可動部(アームホルダ60)からアーム70の先端までの長さを短くすることができる。これにより、スキッド59の高さ寸法がアーム70の全長より短い場合でも、地面や床面にアーム70が干渉することを避け、アーム70を鉛直に立てることが可能とされている(図2参照)。なお、図2ではプロペラ82が取り外されているが、プロペラ82を折りたたみ式にすることでプロペラ82を着脱する手間を減らすこともできる。
(アームの可動構造)
 図3および図4はアーム70の可動構造を示す側面図である。図3は、マルチコプター10の飛行時におけるアーム配置を示す側面図である。図4は、マルチコプター10の保管時におけるアーム配置を示す側面図である。
 本例のアームホルダ60は、アームホルダ支持部51(板状部51a,51b)の孔部512の位置を回動中心として、長穴511の円弧角(約90度)の範囲を回動可能とされている。アームホルダ60の配置角度を変更するときには、長穴511を通して螺合されたねじ部材52を緩め、ねじ部材52を長穴511に沿って移動させればよい。
 本例のアームホルダ60は、ねじ部材52を長穴511の上端まで移動させると、アーム70を水平に展開する。これはマルチコプター10の飛行時におけるアーム配置である。そして、ねじ部材52を長穴511の下端まで移動させると、アーム70の先端を下に向けてアーム70を鉛直に配置する。マルチコプター10の飛行中は、アーム70に支持されたロータRの推力により、アーム70は上方へ引き上げられる。そのため、例えばアームホルダ60によるアームの固定が不十分であった場合、飛行中にアーム70が意図せず上方に旋回してしまうこともありえる。本例のアームホルダ60は、アーム70が飛行時の展開位置よりも上には旋回しない構造とされていることにより、このような事故が未然に防止される。
 そして、本例のアームホルダ60は、アームホルダ60のクランプ部62のねじ69を緩めることで、アーム70をその長手方向Lに沿ってスライドさせることができる。アーム70をアームホルダ60に差し込むことにより、アーム70の全長Lのうち、アームホルダ60から先端までの長さLを短くすることができる。これにより、アーム70を地面や床面に干渉させることなくこれを鉛直に配置することが可能とされている。アーム70を鉛直に立てることでマルチコプター10の水平寸法の縮小効果が高められ、例えば多数の機体をスペース効率よく保管することができる。
 マルチコプター10の飛行時におけるアーム配置(図3)から、保管時におけるアーム配置(図4)に変更する手順は次の通りである。まず、(1)プロペラ82を取り外す(プロペラ83を折りたたみ式プロペラとしてもよい)。そして、(2)アームホルダ支持部51のねじ部材52とアームホルダ60のねじ69を緩め、(3)アーム70を下方に旋回させ(矢印T)、(4)アーム70をアームホルダ60に差し込む(矢印S)。手順の(3)と(4)は、アーム70の先端が地面や床面に接触しないように並行して行ってもよく、または、マルチコプター10を傾けて(3)を最後まで行い、その後に(4)を行ってもよい。
(アームホルダの回動構造)
 以下、図5および図6を用いて、アームホルダ支持部51とアームホルダ60の構造をより詳細に説明する。図5はアームホルダ支持部51(板状部51a)の側面図である。図6はアームホルダ60の構造を示す斜視図(図6(a))および側面図(図6(b))である。
 図5に示されるように、アームホルダ支持部51を構成する板状部51a,51bの板面には、円弧形状の長穴511と、長穴511を円弧として含む仮想円cの中心に穿たれた孔部512と、が互いに対応する位置に形成されている。
 図6に示されるように、アームホルダ60は略円筒形状の固定具である。本例のアームホルダ60は、円筒形状の基部61と、基部61の筒軸方向aにおける一方の端部に設けられた拡径部であるクランプ部62、および他方の端部に設けられた拡径部であるフランジ部63と、により構成されている。
 フランジ部63には、アームホルダ支持部51の各長穴511に対応する位置に形成されたねじ穴632が形成されている。また、フランジ部63には、アームホルダ支持部51の各孔部512に対応する位置に形成され、これら孔部512を連通する貫通孔である軸穴631が形成されている。これら孔部512および軸穴631には芯棒53が挿通されている。フランジ部63のねじ穴632には長穴511を通してねじ部材52が螺合される。本例のねじ部材52は、工具を使わずにこれを締めたり緩めたりするためのレバー部521を有している。これにより、アームホルダ60は、孔部512の位置を回動中心として、長穴511が形成された角度範囲を回動可能とされている。
 また、フランジ部63には、筒軸方向aに貫通した孔部であるピン穴635が形成されている。ピン穴635の目的については後述する。
 クランプ部62と基部61との境界には、これらを筒軸方向aに分離する隙間である第1スリット622が形成されている。第1スリット622は、基部61の上側半分にわたって形成されている。また、クランプ部62の上端部には、上端部を円周方向rに分離する隙間である第2スリット623が形成されている。かかる上端部には、第2スリット613をまたいで貫通したねじ穴621が設けられている。ねじ穴621にねじ69が螺合され、これが締め付けられることで、クランプ部62はその内径を狭めるように変形し、これにより、アームホルダ60に挿通されたアーム70がアームホルダ60に締め付け固定される。
 このように、本例のマルチコプター10では、アームホルダ支持部51が、アームホルダ60をその回動中心(芯棒53が挿通された孔部512および軸穴631)と往復動部(長穴511を通してねじ部材52が螺合されたねじ穴632)の2点で支持することにより、アームホルダ60を安定して支持することが可能とされている。そして、ねじ部材52を長穴511の上端まで移動させたときのアームホルダ60の配置角度と、飛行時にアーム70を展開するときの配置角度とが一致していることにより、アーム70の展開時における位置決め精度が高められている。なお、アームホルダ支持部51の孔部512と芯棒53は、これらに代えて、板状部51a,51bの対向面から互いに他方の板状部51a,51b側、つまり軸穴631側に突き出したボス部としてもよい。
 なお、本発明のアームホルダの形態は本例のアームホルダ60には限定されない。本発明のアームホルダは、アームの長手方向における保持位置を変更することができ、また、アームを上下および/または左右に旋回させる向きに変位可能であればその形状や構造は問わない。
(アームの回転制限構造)
 図3および図4に示されるように、アーム70は円筒形状のパイプ材により構成されている。そして、アーム70は、アーム70が周方向へ回転することを阻止する嵌合部であるアーム側嵌合部を有している。本例におけるアーム側嵌合部は、アーム70の後端に設けられた抜け止めリング72から突き出したピン721である。ピン721は、アーム70に沿って平行に、アーム70の先端側に突出している。
 アームホルダ60は、ピン721の対となる嵌合部である固定側嵌合部を有している。本例における固定側嵌合部は、アームホルダ60のフランジ部63に形成されたピン穴635である。ピン721は、アームホルダ60に対してアーム70をその先端側に限界までスライドさせたときにピン穴635に嵌合される。
 本例のアーム70は、ピン721およびピン穴635が嵌合することでその周方向の角度位置が固定される。これにより、飛行中にアーム70が意図せず回転することが防止されている。また、これに加え、アーム70の展開時における位置決め精度も高められている。なお、本発明の固定側嵌合部は常にアームホルダ60に設けられる必要はなく、アームホルダ支持部51やセンターフレーム50に設けられてもよい。また、本発明のアーム側嵌合部と固定側嵌合部の形態も、ピン721とピン穴635には限定されない。アーム側嵌合部および固定側嵌合部は、嵌合によりアームの周方向の角度位置を固定可能であれば、その形状や構造は問わない。さらには、本発明のアームの形態もアーム70には限定されず、例えば角筒材や角棒材のアームとしてもよい。
(変形例)
 図7および図8は、マルチコプター10のアーム可動構造の変形例を示す図である。図7は、本変形例にかかるマルチコプター10の飛行時におけるアーム配置を示す側面図である。図8は、本変形例にかかるマルチコプター10の保管時におけるアーム配置を示す側面図である。
 本変形例では、アームホルダ60がアーム支持部51に回動不能に固定されており、アーム70には、アーム70をその中途で折り曲げ可能なヒンジ部75が設けられている。このヒンジ部75の位置をスキッド59の高さ寸法等に応じて調節することにより、アーム70の全長Lのうち、下方に折り曲げられる長さLを地面や床面に干渉しない程度に収め、その部分を鉛直に配置することができる
 より具体的には、本変形例のマルチコプター10は、アーム支持部51に長穴511が形成されておらず、代わりに孔部512と同様の貫通孔である孔部513が形成されている。孔部513にはねじ部材52が差し込まれ、アームホルダ60のねじ穴632に螺合されている。これによりアームホルダ60はアーム支持部51に対して移動不能に固定される。
 ヒンジ部75は、パイプ材用の一般的な蝶番である。ヒンジ部75を固定しているロックピン751を引き抜くことで、ヒンジ部75は開閉可能となる。ロックピン751を引き抜くと、アーム70の先端側は自重で垂れ下がる。アーム70の長手方向Lにおけるヒンジ部75の位置をスキッド59の高さ寸法等に応じて調節することにより、アーム70の先端部が垂れ下がる長さLを調節することができる。これにより、地面や床面へのアーム70の接触が防止される。
 また、本変形例のマルチコプター10でも、アームホルダ60のクランプ部62のねじ69を緩めることで、アーム70をその長手方向Lに沿ってスライドさせることができる。アーム70をアームホルダ60に差し込むことにより、アーム70の全長Lのうち、アームホルダ60から側方の先端までの長さLを短くすることができる(ここではロータRの外形は無視する。)。これにより、マルチコプター10の水平寸法の縮小効果がさらに高められる。
 また、アーム70をアームホルダ60に差し込むと、アーム70のピン721とアームホルダ60のピン穴635の嵌合が解除され、アーム70が周方向に自由に回転可能となる。これにより、例えばマルチコプター10の運搬時や保管時にアーム70の垂れ下がった部分が周辺物に接触した場合でも、アーム70が自由に回転して外力を逃がすため、ヒンジ部75やアームホルダ支持部51の破損が防止される。
(機能構成)
 図9は本例のマルチコプター10の機能構成を示すブロック図である。マルチコプター10の機能は、主に、制御部であるフライトコントローラFC、4基のロータRとこれを支持するアーム70、ロータRが備えるブラシレスモータ81の駆動回路であるESC27(Electric Speed Controller)、操縦者(送信機41)からの操縦信号を受信する受信器42、および、これらに電力を供給するバッテリー29により構成されている。
 フライトコントローラFCは、マイクロコントローラである制御装置20を備えている。制御装置20は、中央処理装置であるCPU21、RAMやROM・フラッシュメモリなどの記憶装置からなるメモリ22を有している。
 フライトコントローラFCはさらに、IMU23(Inertial Measurement Unit:慣性計測装置)、GPS受信器24、高度センサ25、および電子コンパス26を含む飛行制御センサ群Sを有しており、これらは制御装置20に接続されている。
 IMU23はマルチコプター10の機体の傾きを検出するセンサであり、主に3軸加速度センサおよび3軸角速度センサにより構成されている。本例の高度センサ25には気圧センサが用いられている。高度センサ25は、検出した気圧高度からマルチコプター10の海抜高度(標高)を算出する。高度センサ25の態様としてはこの他にも、例えばレーザや赤外線、超音波などを利用した測距センサを地表に向けて、対地高度を得る方法が考えられる。本例の電子コンパス26には3軸地磁気センサが用いられている。電子コンパス26はマルチコプター10の機首の方位角を検出する。GPS受信器24は、正確には航法衛星システム(NSS:Navigation Satellite System)の受信器である。GPS受信器24は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)または地域航法衛星システム(RNSS:Regional Navigational Satellite System)から現在の経緯度値を取得する。フライトコンローラFCは、これら飛行制御センサ群Sにより、機体の傾きや回転のほか、飛行中の経緯度、高度、および機首の方位角を含む自機の位置情報を取得することが可能とされている。
 なお、本例の飛行制御センサ群Sは屋外用の構成とされているが、マルチコプター10は屋内を飛行するものであってもよい。例えば、無線信号を送出するビーコンを施設内に所定間隔で配置し、これらビーコンから受信した信号の電波強度からマルチコプター10と各ビーコンとの相対的な距離を計測し、その施設内におけるマルチコプター10の位置を特定することが考えられる。または、マルチコプター10に別途カメラを搭載し、カメラで撮影した周囲の映像から画像認識により施設内の特徴箇所を検出し、これに基づいて施設内における位置を特定することも可能である。同様に、レーザや赤外線、超音波などを利用した測距センサを別途搭載し、施設内の床面(または天井面)や壁面とマルチコプター10との距離を計測して、その施設内におけるマルチコプター10の位置を特定してもよい。
 制御装置20は、マルチコプター10の飛行時における姿勢や基本的な飛行動作を制御するプログラムである飛行制御プログラムFSを有している。飛行制御プログラムFSは、飛行制御センサ群Sから取得した情報を基に個々のロータRの回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター10を飛行させる。
 制御装置20はさらに、マルチコプター10を自律飛行させるプログラムである自律飛行プログラムAPを有している。そして、制御装置20のメモリ22には、マルチコプター10の目的地や経由地の経緯度、飛行中の高度や速度などが指定されたパラメータである飛行計画FPが登録されている。自律飛行プログラムAPは、送信機41からの指示や所定の時刻などを開始条件として、飛行計画FPに従ってマルチコプター10を自律的に飛行させることができる。
 このように、本例のマルチコプター10は高度な飛行制御機能を備えた無人航空機である。ただし、本発明の回転翼航空機はマルチコプター10の形態には限定されず、例えば飛行制御センサ群Sから一部のセンサが省略された機体や、自律飛行機能を備えず手動操縦のみにより飛行可能な機体を用いることもできる。
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えることができる。例えば、上記実施形態および変形例のマルチコプター10は、高さ方向のスペースを利用して機体の水平寸法を縮小しているが、本発明のアーム、アームホルダ、アーム支持部の構成を利用すれば、アームを水平方向に折り曲げてスペース効率を高めることも可能である。

Claims (7)

  1.  回転翼を有するロータと、
     前記ロータを支持する棒状体であるアームと、
     前記アームが接続されるアーム接続部と、を備え、
     前記アーム接続部は、前記アームの長手方向における一部を保持する固定具であるアームホルダを有し、
     前記アームホルダが保持する前記アームの部位は、前記アームホルダに対して前記アームをその長手方向にスライドさせることで変更可能であり、
     前記アームホルダは、前記アームを上下および/または左右に旋回させる向きに変位可能な可動部材であることを特徴とする無人航空機。
  2.  前記アームホルダが前記アームを上下方向に旋回可能な範囲は、飛行時における前記アームの展開位置をその上限とすることを特徴とする請求項1に記載の無人航空機。
  3.  前記アーム接続部は、前記アームホルダを挟むように平行に配置された一対の板状部であるアームホルダ支持部を有しており、
     前記アームホルダ支持部を構成する前記各板状部の板面には、円弧形状の長穴と、該長穴を円弧として含む仮想円の中心に穿たれた孔部または該仮想円の中心から互いに他方の前記板状部側に突き出したボス部と、が互いに対応する位置に形成されており、
     前記アーム接続部に支持された前記アームホルダは、前記孔部または前記ボス部に対応する位置を回動中心として、前記長穴の角度範囲を回動可能であることを特徴とする請求項1または請求項2に記載の無人航空機。
  4.  前記アームホルダ支持部を構成する前記各板状部の板面には、円弧形状の長穴と、該長穴を円弧として含む仮想円の中心に穿たれた孔部と、が互いに対応する位置に形成されており、
     前記アームホルダは、前記各長穴に対応する位置に形成されたねじ穴と、前記各孔部に対応する位置に形成され、これら孔部を連通する軸穴と、を有しており、
     前記各ねじ穴には前記長穴を通してねじ部材が螺合され、前記各孔部および前記軸穴には芯棒が挿通されることを特徴とする請求項3に記載の無人航空機。
  5.  回転翼を有するロータと、
     前記ロータを支持する棒状体であるアームと、
     前記アームが接続されるアーム接続部と、を備え、
     前記アームには、該アームをその中途で折り曲げ可能なヒンジ部が設けられており、
     前記アーム接続部は、前記アームの長手方向における一部を保持する固定具であるアームホルダを有し、
     前記アームホルダが保持する前記アームの部位は、前記アームホルダに対して前記アームをその長手方向にスライドさせることで変更可能であることを特徴とする無人航空機。
  6.  前記アームは円筒形状のパイプ材により構成されており、
     前記アームは、該アームが周方向へ回転することを阻止する嵌合部であるアーム側嵌合部を有しており、
     前記アームの長手方向において、前記ロータが配置される側を前記アームの先端側、その反対側を前記アームの後端側としたときに、
     前記アーム側嵌合部は、前記アームホルダに対して前記アームをその先端側に限界までスライドさせたときに、前記アーム側嵌合部の対となる嵌合部である固定側嵌合部に嵌合されることを特徴とする請求項1または請求項5に記載の無人航空機。
  7.  前記アーム側嵌合部は、前記アームの後端部から突き出したピンであり、
     前記ピンは、前記アームに沿って平行に、前記アームの先端側に突出しており、
     前記固定側嵌合部は、前記アームホルダに形成されたピン穴であることを特徴とする請求項6に記載の無人航空機。

     
PCT/JP2018/039150 2017-11-30 2018-10-22 無人航空機 WO2019107009A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/617,065 US10882600B2 (en) 2017-11-30 2018-10-22 Foldable unmanned aerial vehicle
JP2019511513A JP6543835B1 (ja) 2017-11-30 2018-10-22 無人航空機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-229747 2017-11-30
JP2017229747 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107009A1 true WO2019107009A1 (ja) 2019-06-06

Family

ID=66664894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039150 WO2019107009A1 (ja) 2017-11-30 2018-10-22 無人航空機

Country Status (3)

Country Link
US (1) US10882600B2 (ja)
JP (1) JP6543835B1 (ja)
WO (1) WO2019107009A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466736A (zh) * 2019-09-26 2019-11-19 吉林大学 一种无人机机臂折叠装置及无人机
RU210795U1 (ru) * 2021-07-26 2022-05-05 Евгений Александрович Толстыко Механизм складывания лучей для мультикоптеров

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170043870A1 (en) * 2015-06-01 2017-02-16 SZ DJI Technology Co., Ltd. Systems and methods for foldable arms
CN106477024A (zh) * 2016-12-08 2017-03-08 天津中翔腾航科技股份有限公司 一种可折叠的八旋翼无人机
JP2017109626A (ja) * 2015-12-17 2017-06-22 株式会社ザクティ 飛行体
CN106892095A (zh) * 2017-02-21 2017-06-27 宿州瑞丰农业科技有限公司 一种多旋翼植保无人机
WO2017154551A1 (ja) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 飛行体
WO2017183551A1 (ja) * 2016-04-19 2017-10-26 株式会社プロドローン 無人航空機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774982B2 (en) * 2010-08-26 2014-07-08 Leptron Industrial Robotic Helicopters, Inc. Helicopter with multi-rotors and wireless capability
JP6202533B2 (ja) 2014-09-25 2017-09-27 勉 横山 マルチコプター
CN108602555A (zh) * 2016-01-29 2018-09-28 深圳市大疆创新科技有限公司 具有可变形臂的无人飞行器
CN107902070B (zh) * 2017-10-27 2024-06-11 陈淇健 一种机架中心件及基于该机架中心件的多旋翼无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170043870A1 (en) * 2015-06-01 2017-02-16 SZ DJI Technology Co., Ltd. Systems and methods for foldable arms
JP2017109626A (ja) * 2015-12-17 2017-06-22 株式会社ザクティ 飛行体
WO2017154551A1 (ja) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 飛行体
WO2017183551A1 (ja) * 2016-04-19 2017-10-26 株式会社プロドローン 無人航空機
CN106477024A (zh) * 2016-12-08 2017-03-08 天津中翔腾航科技股份有限公司 一种可折叠的八旋翼无人机
CN106892095A (zh) * 2017-02-21 2017-06-27 宿州瑞丰农业科技有限公司 一种多旋翼植保无人机

Also Published As

Publication number Publication date
JP6543835B1 (ja) 2019-07-17
US20200269965A1 (en) 2020-08-27
JPWO2019107009A1 (ja) 2019-12-12
US10882600B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP6675657B2 (ja) 無人航空機
JP6606648B1 (ja) 無人航空機
JP2017136914A (ja) 無人回転翼機
CN112937836A (zh) 使用机架的无人机
EP3921232B1 (en) Aerial vehicle
JP6543835B1 (ja) 無人航空機
JP6592680B1 (ja) 無人航空機
JP6683357B1 (ja) 導通検査システム
JP2017193208A (ja) 小型無人航空機
JP6746137B2 (ja) 無人航空機
JP6872815B1 (ja) 無人航空機
JP6721191B2 (ja) 回転翼航空機
JP6592679B1 (ja) 無人航空機
JP6579523B2 (ja) 飛行機能付加装置およびロータユニット
JP6661136B1 (ja) 無人航空機
JP6561273B2 (ja) 着脱式ユニットおよびこれを用いたセンサ較正方法
JP2021088256A (ja) 無人航空機
JP6555793B1 (ja) 飛行装置
WO2018016514A1 (ja) 姿勢安定化装置およびこれを備える無人航空機
CN213905577U (zh) 一种无人机用gps天线伸缩底座
US11898690B1 (en) Spherical field of view (FOV) multiple payloads gimbal system and method of manufacturing and using the same
US20190071186A1 (en) Motor Mounting for an Unmanned Aerial System
JP2019043394A (ja) 回転翼航空機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511513

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882561

Country of ref document: EP

Kind code of ref document: A1