WO2017183551A1 - 無人航空機 - Google Patents

無人航空機 Download PDF

Info

Publication number
WO2017183551A1
WO2017183551A1 PCT/JP2017/015108 JP2017015108W WO2017183551A1 WO 2017183551 A1 WO2017183551 A1 WO 2017183551A1 JP 2017015108 W JP2017015108 W JP 2017015108W WO 2017183551 A1 WO2017183551 A1 WO 2017183551A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
cargo compartment
main body
rotor blades
Prior art date
Application number
PCT/JP2017/015108
Other languages
English (en)
French (fr)
Inventor
紀代一 菅木
和雄 市原
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Priority to JP2018513140A priority Critical patent/JP6375506B2/ja
Priority to US16/089,305 priority patent/US10647404B2/en
Publication of WO2017183551A1 publication Critical patent/WO2017183551A1/ja
Priority to US16/576,250 priority patent/US10773785B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/294Rotors arranged in the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/22Other structures integral with fuselages to facilitate loading, e.g. cargo bays, cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • B64C1/063Folding or collapsing to reduce overall dimensions, e.g. foldable tail booms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/28Parts of fuselage relatively movable to improve pilots view
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/30Parts of fuselage relatively movable to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/30Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with provision for reducing drag of inoperative rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/50Blades foldable to facilitate stowage of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/56Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D9/00Equipment for handling freight; Equipment for facilitating passenger embarkation or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0045Fuselages characterised by special shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/60UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to an unmanned aerial vehicle.
  • the problem to be solved by the present invention is that a large number of airframes can be stored in a space-efficient manner, and the luggage can be safely and stably transported, and the loading and unloading work can be efficiently performed. It is to provide an unmanned aerial vehicle that can be performed automatically.
  • an unmanned aerial vehicle of the present invention includes a plurality of rotor blades, and a housing of the unmanned aircraft supports a main body unit in which a cargo compartment that is a hollow portion is integrated, and the rotor blades.
  • a housing of the unmanned aircraft supports a main body unit in which a cargo compartment that is a hollow portion is integrated, and the rotor blades.
  • Each arm part and each set of the rotor blades supported by the arm part constitutes a retractable rotor blade, and each retractable rotor blade includes one of the retractable rotor blades.
  • a part or the whole can be stored in the cargo compartment.
  • the unmanned aerial vehicle of this configuration has a cargo compartment integrated with the main body, and can store these arms and rotor blades in the cargo compartment, thereby increasing the number of unmanned aircraft that can be stored in the storage space. .
  • the unmanned aerial vehicle of this configuration is previously provided with a cargo compartment, it is not necessary to separately attach a dedicated attachment or the like when carrying the cargo. Also, by securing a large cargo compartment, various numbers, sizes and types of luggage can be transported. Furthermore, since the center of gravity is prevented from being excessively lowered as compared with the configuration in which the luggage is arranged below the aircraft, it is easy to maintain the balance of the aircraft. More specifically, in an unmanned aerial vehicle including a plurality of rotor blades, horizontal position control, movement control, and attitude control are realized by inclining the entire body. Generally, the lower the center of gravity, the more stable the aircraft, but this has the disadvantage that the aircraft is less likely to tilt.
  • the other casing can be placed above the casing.
  • the unmanned aerial vehicle of this configuration enables the storage space of the unmanned aerial vehicle to be used three-dimensionally as a volume including not only the area but also the height by allowing the casings to be stacked upward. Furthermore, by storing the arms and rotor blades in the cargo compartment, the number of unmanned aircraft that can be stored in the storage space can be maximized.
  • each arm portion is supported by the main body portion so that the base end portion, which is the end portion on the main body portion side in the longitudinal direction, is pivotable, and the retractable type with the base end portion as a pivot center. It is preferable that the retractable rotor blade is stored in the cargo compartment or deployed from the cargo compartment by rotating the rotor blade.
  • the retractable rotor blade can be stored and deployed simply by rotating the retractable rotor blade around its base end and storing it in the cargo compartment.
  • the number of rotor blades that can be mounted by arranging two retractable rotor blades that share the same pivot center of the arm as a unit and shifting their vertical positions (axial direction of the pivot center).
  • the maximum lift of the aircraft can be increased, and heavy objects can be transported more stably.
  • the two retractable rotor blades constituting the one unit can be deployed at positions that do not overlap each other in the circumferential direction of the main body.
  • the unmanned aerial vehicle of this configuration can reduce such lift loss by being able to deploy two retractable rotor blades constituting one unit at positions where they do not overlap each other.
  • the cargo compartment has an opening at the top.
  • the vehicle further includes one or a plurality of containers that can be attached to and detached from the cargo compartment, and the transported goods are placed in the container and accommodated in the cargo compartment.
  • the container has a uniform shape.
  • the cargo compartment may be configured to accommodate at least a part of the plurality of retractable rotor blades and the container at the same time.
  • Energy efficiency during transportation can be increased by making the number of rotor blades adjustable according to the load capacity.
  • a plurality of through-holes communicating with the cargo compartment are formed on the outer peripheral surface of the main body, and each arm is a base that is an end on the main body in the longitudinal direction. An end is inserted into the through hole and supported by the main body, and the arm is further inserted into the through hole by inserting the arm into the through hole, and the arm is removed from the main body. It is good also as a structure by which the said retractable rotary blade is expand
  • the retractable rotary blade By sliding the arm part in the longitudinal direction and taking it in and out of the cargo compartment, the retractable rotary blade (arm part) can be easily stored and deployed.
  • the rotor blades preferably have blades that can be folded in the circumferential direction.
  • the unmanned aircraft can be stored more compactly by storing the arm in the cargo compartment and folding the blade along the outer shape of the main body.
  • Each of the retractable rotor blades has two rotor blades that are coaxially arranged vertically, and a plurality of the retractable rotor blades are disposed along the circumferential direction of the main body. It is preferable.
  • Each retractable rotor blade is provided with two rotor blades, so that the lift of the unmanned aerial vehicle can be increased and the payload of the unmanned aircraft can be increased.
  • the unmanned aerial vehicle according to the present invention, a large number of airframes can be stored in a space-efficient manner, and the load can be safely and stably transported, and the loading and unloading work can be efficiently performed. Can be performed automatically.
  • FIG. 1 is an external perspective view of an unmanned aerial vehicle according to an embodiment. It is a block diagram which shows the function structure of the unmanned aerial vehicle concerning embodiment. It is an enlarged view of the part enclosed with the broken line A of FIG. It is an external appearance perspective view which shows a mode that the retractable rotary blade was accommodated in the cargo compartment. It is a top view of the unmanned aerial vehicle of FIG. It is an external appearance perspective view of the unmanned aerial vehicle according to another embodiment. It is a top view which shows the accommodation structure of an arm.
  • the multicopter 90 of this embodiment is an example of an unmanned aerial vehicle including a plurality of rotor blades.
  • “upper” and “lower” refer to the vertical direction in FIG. 1 and mean a direction parallel to the z-axis direction shown in the coordinate axis display of each figure.
  • “horizontal” refers to the xy plane direction in the same coordinate axis display.
  • the “circumferential direction” of the multicopter 90 (and the multicopter 96 according to another embodiment) means a circumferential direction along the yaw direction.
  • the multi-copter 90 is integrally provided with the cargo compartment 13 in the casing 10, the influence on the balance of the aircraft due to the load is reduced as compared with the configuration in which the luggage is arranged below the aircraft. Yes.
  • the lower the center of gravity the more stable the aircraft, but this has the disadvantage that the aircraft is less likely to tilt.
  • the load 91 is accommodated in the housing 10, thereby reducing the difficulty of maintaining the balance of the aircraft.
  • the multicopter 90 it is possible to achieve so-called containerization by packaging the luggage 91 by using a container 14 of a predetermined size as a packing unit.
  • the flight controller FC includes a control device 20 that is a microcontroller.
  • the control device 20 includes a CPU 21 that is a central processing unit, a memory 22 that is a storage device such as a ROM and a RAM, and a PWM controller 23 that controls the rotation speed and rotation speed of each motor 41 via the ESC 43.
  • the memory 22 of the control device 20 stores a flight control program FCP, which is a program in which a flight control algorithm for controlling the attitude and basic flight operation of the multicopter 90 during flight is installed.
  • the flight control program FCP adjusts the number of rotations of each rotor R based on the current position acquired from a sensor or the like according to an instruction from the operator (control terminal 95), and corrects the attitude and position disturbance of the fuselage. Fly 90.
  • the operation of the multicopter 90 can be performed by the operator from the control terminal 95.
  • parameters such as latitude and longitude, flight altitude, and flight route are registered in advance in the flight control program FCP and autonomously set to the destination. It is also possible to make it fly (hereinafter referred to as “autopilot”).
  • autopilot The multicopter 90 according to the present embodiment is basically assumed to fly autonomously toward a predetermined destination by the autopilot.
  • the multicopter 90 in this embodiment has an advanced flight control function.
  • the unmanned aircraft according to the present invention may be any aircraft that has a cargo compartment and can fly by a plurality of rotor blades.
  • an aircraft in which some sensors are omitted from a sensor or the like, or an autopilot function is not provided.
  • An unmanned aerial vehicle of the present invention includes an airframe or an airframe that can fly only by manual control.
  • the multicopter 90 according to the present embodiment is suitable for carrying luggage outdoors such as detecting latitude and longitude during flight by the GPS receiver 32.
  • an unmanned aircraft includes a short-range wireless communication module.
  • it is possible to carry the luggage in the facility by specifying the current flight position from Wi-Fi (registered trademark) access points and Bluetooth (registered trademark) Low Low Energy beacons distributed in the facility It is done.
  • FIG. 2 is an enlarged view of a portion surrounded by a broken line A in FIG.
  • Each set of the arm portion 11 of the multicopter 90 and the blades 42 supported by the arm portion 11 constitutes a retractable rotor blade SR (SR1, SR2).
  • SR1, SR2 retractable rotor blade
  • the base end part 11a which is the edge part by the side of the main-body part 12 in the longitudinal direction is supported by the main-body part 12 so that rotation is possible.
  • a rotor guard 11b that protects the blade 42 is disposed at the distal end that is the end opposite to the base end 11a of each arm 11.
  • the rotor guard 11b has an arbitrary configuration and may be omitted. In the present embodiment, the rotor guard 11 b is regarded as a part of the arm portion 11.
  • Each retractable rotor blade SR of the present embodiment is arranged with two retractable rotor blades SR1 and SR2 having a common rotation center as a unit. As shown in FIG. 1, the retractable rotor blades SR ⁇ b> 1 and SR ⁇ b> 2 are arranged in four units along the circumferential direction of the main body 12. As described above, the number of rotors R, that is, the number of retractable rotor blades SR, can be appropriately changed on condition that there are a plurality of rotors.
  • FIG. 4 is an external perspective view showing a state in which the retractable rotor blade SR of the multicopter 90 is accommodated in the cargo compartment 13.
  • slide plates 133 which are plate-like members slidable up and down, are arranged on both side surfaces in the x direction of the coordinate axis display of FIG.
  • the slide plate 133 of the present embodiment is manually opened and closed, it may be opened and closed using an actuator such as a servo mechanism.
  • the retractable rotor blade SR can be easily stored and deployed by the above configuration.
  • FIG. 5 is a plan view of the multicopter 90 of FIG.
  • the retractable rotary blades SR ⁇ b> 1 and SR ⁇ b> 2 can be deployed at positions that do not overlap each other in the circumferential direction of the main body 12. More specifically, there is a difference of 90 ° between the deployment angles of the retractable rotor blades SR1 and SR2, and the retractable rotor blade SR1 has a deployment angle that is 90 ° larger than the deployment angle of the retractable rotor blade SR2. have. Accordingly, the blades 42 of the retractable rotor blades SR1 and SR2 are arranged at positions that do not overlap with each other in the circumferential direction of the main body 12.
  • the retractable rotary blade SR of the present embodiment is rotatable in the horizontal direction and is stored in the cargo compartment 13 from the side opening 132.
  • the storage method of the retractable rotary blade SR in the cargo compartment 13 is based on this. It is not limited. For example, when the retractable rotor blade SR of each unit is configured only by the retractable rotor blade SR1, the retractable rotor blade SR1 is rotated in the vertical direction and stored in the cargo compartment 13 from the upper surface opening 131. Conceivable. Further, the retractable rotary blade SR may be removed and stored in the cargo compartment 13.
  • the retractable rotor blade SR of the present embodiment is assumed to be manually stored in the cargo compartment 13 by rotating the retractable rotor blade SR, but this is performed using an actuator such as a servo mechanism. May be.
  • the multicopter 90 of the present embodiment is configured so that the cargo 91 can be accommodated in the cargo compartment 13, the cargo compartment 13 can also be used as a storage space dedicated to the retractable rotary blade SR. In that case, the upper surface opening 131 may not be provided.
  • the body portion 12 of the multicopter 90 is provided with a skid coupling portion 15 on the upper surface thereof.
  • the skid connecting portions 15 are arranged at four corners on the upper surface of the main body portion 12, and the positions of these skid connecting portions 15 correspond to the positions of leg portions (skids) (not shown) of the multicopter 90.
  • the skid connecting portion 15 is formed with a recess into which the leg portion is inserted. Since the multicopter 90 according to the present embodiment includes the skid coupling portion 15, when the casings 10 of other multicopters 90 are placed above the multicopter 90, the positioning of these casings 10 becomes easy. In addition, the stability when a plurality of casings 10 are stacked is enhanced.
  • the multicopter 90 enables the storage space to be used three-dimensionally as a volume including not only the area but also the height by allowing a plurality of casings 10 to be stacked. . Further, by storing the retractable rotary blade SR in the cargo compartment 13, the number of units that can be stored in the storage space can be maximized.
  • the casing 16 of the multicopter 96 is mainly composed of a substantially rectangular parallelepiped box-shaped main body portion 18 and a plurality of arm portions 17 extending radially in the horizontal direction from portions corresponding to the apexes in the circumferential direction of the main body portion 18. It is configured.
  • Each arm part 17 consists of two pipe materials arrange
  • Two rotors R 1 and R 2 that are coaxially arranged in the vertical direction are attached to the tips of the respective arm portions 17.
  • the rotors R 1 and R 2 have blades 45 that can be folded in the circumferential direction.
  • Each set of the arm 17 and the supported blade 45 of this embodiment constitutes a retractable rotary blade ER.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catching Or Destruction (AREA)

Abstract

荷物の運搬に最適化され、荷物の積み下ろしや機体管理を効率的に行うことができる無人航空機を提供する。 複数の回転翼を備える無人航空機であって、前記無人航空機の筐体は、中空部である貨物室が一体化された本体部と、前記各回転翼を支持する複数のアーム部と、を有し、前記アーム部および該アーム部に支持された前記回転翼の各組は、それぞれ格納式回転翼を構成しており、前記各格納式回転翼は、その一部または全体を前記貨物室に格納可能であることを特徴とする無人航空機により解決する。

Description

無人航空機
 本発明は無人航空機に関する。
 従来、産業用無人ヘリコプターに代表される小型の無人航空機は、機体が高価で入手困難なうえ、安定して飛行させるためには操作に熟練が必要とされるものであった。しかし近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良が大きく進み、これにより無人航空機の操作性が著しく向上するとともに、高性能な機体を安価に入手できるようになった。こうした背景から現在、特に小型のマルチコプターについては、趣味目的だけでなく、広範な分野における種々のミッションへの応用が試行されている。
特開2010-120641号公報
 無人航空機による荷物の運搬が実用化されると、その運搬性能や安全性のみならず、多数の機体を保管するときのスペース効率や、荷物の積み下ろし作業の効率に対する要求も厳しくなることが予測される。
 上記問題に鑑み、本発明が解決しようとする課題は、多数の機体をスペース効率よく保管することができ、また、荷物を安全に安定して運搬することができるとともに、荷物の積み下ろし作業を効率的に行うことができる無人航空機を提供することにある。
 上記課題を解決するため、本発明の無人航空機は、複数の回転翼を備え、前記無人航空機の筐体は、中空部である貨物室が一体化された本体部と、前記各回転翼を支持する複数のアーム部と、を有し、前記アーム部および該アーム部に支持された前記回転翼の各組はそれぞれ格納式回転翼を構成しており、前記各格納式回転翼は、その一部または全体を前記貨物室に格納可能であることを特徴とする。
 一般的なマルチコプターは、複数のアームが機体の中心から放射状に延びており、それらアームの先端に回転翼が配置されている。そのため、使用しないマルチコプターを保管するときには、これらアームや回転翼がかさばることになる。本構成の無人航空機は、本体部と一体化された貨物室を備え、貨物室にこれらアームや回転翼を格納可能であることにより、保管スペースに保管可能な無人航空機の台数を増やすことができる。
 また、本構成の無人航空機は、その筐体に予め貨物室が設けられていることにより、荷物を運搬するにあたり、専用のアタッチメントなどを別途取り付ける必要がない。また、貨物室を広く確保することにより、様々な数、大きさ、種類の荷物を運搬することが可能となる。さらに、機体の下方に荷物を配置する構成と比べ、重心が過度に低くなることが防止されるため、機体のバランスを維持しやすくなる。より具体的には、複数の回転翼を備える無人航空機においては、機体全体を傾斜させることで水平方向の位置制御と移動制御、および姿勢の制御を実現している。一般的に重心が低いほうが機体は安定するが、これには機体が傾斜しにくくなるという弊害がともなう。機体が傾斜しにくくなることにより、機体の機敏な制御が困難となる。このため、重心をある程度高くとり、機体を傾斜しやすくさせることが、機体の安定にとっては重要である。本構成の無人航空機では、その筐体内に荷物が収容されることにより、このような、機体のバランス維持の困難性が軽減されている。
 また、前記筐体は、その上方に他の前記筐体を載置可能であることが好ましい。
 本構成の無人航空機は、筐体を上方に積み上げ可能とすることにより、無人航空機の保管スペースを、その面積だけではなく、高さを含む容積として三次元的に利用することができる。さらに、貨物室にアームと回転翼とを格納することにより、保管スペースに保管可能な無人航空機の台数を最大化することができる。
 また、前記各アーム部は、その長手方向における前記本体部側の端部である基端部が前記本体部に回動可能に支持されており、前記基端部を回動中心として前記格納式回転翼を回動させることにより、該格納式回転翼が、前記貨物室に格納または該貨物室から展開されることが好ましい。
 格納式回転翼を、その基端部を中心に回動させて貨物室に格納する構成とすることにより、格納式回転翼を簡便に格納および展開することが可能となる。
 また、前記各基端部は前記本体部に対して水平方向に回動可能であり、前記格納式回転翼は、回動中心を共通とする二基を一単位として、前記本体部の周方向に沿って複数単位配置されている構成としてもよい。
 アームの回動中心を共通とする二基の格納式回転翼を一単位として、それらの上下方向(回動中心の軸方向)の位置をずらして配置することにより、搭載可能な回転翼の数を増やし、機体の最大揚力を高めることができ、重量物をより安定して運搬することが可能となる。
 また、前記一単位を構成する二基の前記格納式回転翼は、前記本体部の周方向において互いに重ならない位置に展開可能であることが好ましい。
 二つの回転翼を上下方向に重ねて配置した場合、特にこれら回転翼の間隔が狭いときは、揚力のロスが大きくなるという問題がある。本構成の無人航空機は、一単位を構成する二基の格納式回転翼を、これらが互いに重ならない位置に展開できることにより、このような揚力のロスを低減することが可能とされている。
 また、前記貨物室はその上部に開口が設けられていることが好ましい。
 一般的なマルチコプターに荷物を取り付ける場合、機体を一度持ち上げてその下に荷物を固定する必要があり、荷物の取り付け作業が煩雑となる。これは荷物の取り外し作業についても同様である。また、ワイヤーなどのひも状部材で機体に荷物を吊り下げる場合、着陸している機体の下部に横から荷物を連結する必要があり、荷物を簡便に連結するためには、その吊り下げ構造に工夫が必要となる。また、上でも述べたように、機体に荷物を吊り下げて運搬する場合、機体の重心が低くなることにより、機体の離陸時や飛行時における安定性が損なわれるという問題がある。本構成の無人航空機では、貨物室の上部に開口が設けられており、貨物室に対して上から荷物を収容し、また取り出すことが可能とされている。これにより荷物の積み下ろし作業を効率化することができる。
 また、前記貨物室への着脱が可能な一または複数のコンテナをさらに有し、運搬物は前記コンテナに入れられて前記貨物室に収容されることが好ましい。
 また、前記コンテナは画一的な形状であることが好ましい。
 貨物室に荷物を直接収容して緩衝材などで隙間を埋める作業は定型化が困難であり、物流プロセス全体で見たときに効率がよいとはいい難い。所定サイズの容器体を単位として荷物をパッケージングすることにより、いわゆるコンテナリゼーションを図ることができ、梱包作業の効率化や自動化が可能となる。
 また、前記貨物室には、前記複数の格納式回転翼の少なくとも一部と前記コンテナとを同時に収容可能である構成としてもよい。
 荷物の積載量に応じて回転翼の数を調節可能とすることにより、運搬時におけるエネルギー効率を高めることができる。
 また、本発明の無人航空機は、前記本体部の外周面に前記貨物室に連通された複数の貫通穴が形成され、前記各アーム部はその長手方向における前記本体部側の端部である基端部が前記貫通穴に挿入されて前記本体部に支持されており、前記アーム部を前記貫通穴にさらに差し込むことで該アーム部が前記貨物室に収容され、前記アーム部を前記本体部から引き出すことで前記格納式回転翼が展開される構成としてもよい。
 アーム部を長手方向にスライドさせて貨物室から出し入れすることにより、格納式回転翼(アーム部)を簡便に格納および展開することが可能となる。
 また、前記各回転翼は、周方向へ折り畳み可能なブレードを有していることが好ましい。
 アーム部を貨物室に格納し、ブレードを本体部の外形に沿って折り畳むことにより、無人航空機をよりコンパクトに保管することができる。
 また、前記各格納式回転翼はそれぞれ、上下に同軸配置された二基の前記回転翼を有しており、前記格納式回転翼は、前記本体部の周方向に沿って複数配置されていることが好ましい。
 各格納式回転翼がそれぞれ二基の回転翼を備えることにより、無人航空機の揚力が高められ、無人航空機の可搬重量を大きくすることができる。
 以上のように、本発明にかかる無人航空機によれば、多数の機体をスペース効率よく保管することができ、また、荷物を安全に安定して運搬することができるとともに、荷物の積み下ろし作業を効率的に行うことが可能となる。
実施形態にかかる無人航空機の外観斜視図である。 実施形態にかかる無人航空機の機能構成を示すブロック図である。 図1の破線Aで囲んだ部分の拡大図である。 格納式回転翼が貨物室に収容された様子を示す外観斜視図である。 図1の無人航空機の平面図である。 他の実施形態にかかる無人航空機の外観斜視図である。 アームの収容構造を示す平面図である。
 以下、本発明の実施形態について図面を用いて詳細に説明する。本実施形態のマルチコプター90は複数の回転翼を備える無人航空機の一例である。尚、以下の説明における「上」および「下」とは、図1における上下方向をいい、各図の座標軸表示に示されるz軸方向に平行な方向を意味している。同様に、「水平」とは同座標軸表示におけるxy平面方向をいう。また、マルチコプター90(および他の実施形態のマルチコプター96)について「周方向」とは、ヨー方向に沿った周方向を意味している。
[コンテナ構成]
 図1はマルチコプター90の外観斜視図である。マルチコプター90の筐体10は、主に、略直方体の箱形の本体部12、および本体部12の周方向における各頂点に相当する部位から水平方向に放射状に延びた複数のアーム部11により構成されている。各アーム部11にはそれぞれ、固定ピッチの回転翼であるブレード42を有するローターが支持されている。本体部12の内部には、上部に開口131を有する貨物室13が設けられている。
 マルチコプター90は、その筐体10に貨物室13が分離不能に一体的に設けられていることにより、荷物91の運搬に際して別途専用のアタッチメントや機材を取り付ける必要がない。尚、本発明における「運搬物」とは、いわゆる荷物であり、無人航空機により運搬・運送される物品を意味している
 一般的なマルチコプターに荷物を取り付ける場合、機体を一度持ち上げてその下に荷物を固定する必要があり、荷物の取り付け作業が煩雑となる。これは荷物の取り外し作業についても同様である。また、ワイヤーなどのひも状部材で機体に荷物を吊り下げる場合、着陸している機体の下部に横から荷物を連結する必要があり、荷物を簡便に連結するためには、その吊り下げ構造に工夫が必要となる。マルチコプター90は、貨物室13の上部に開口131が設けられていることにより、作業者は貨物室13に対して上からアクセスすることができる。これにより、荷物91の積み下ろし作業が効率化されている。
 また、マルチコプター90は、その筐体10に貨物室13が一体的に設けられていることにより、機体の下方に荷物を配置する構成と比べて、荷重による機体バランスへの影響が軽減されている。一般的に重心が低いほうが機体は安定するが、これには機体が傾斜しにくくなるという弊害がともなう。機体が傾斜しにくくなることにより、機体の機敏な制御が困難となる。このため、重心をある程度高くとり、機体を傾斜しやすくさせることが、機体の安定にとって重要である。本実施形態のマルチコプター90では、その筐体10内に荷物91が収容されることにより、このような、機体のバランス維持の困難性が軽減されている。
 貨物室13は、貨物室13に装着可能な容器体である4個のコンテナ14を有している。マルチコプター90の運搬物である荷物91は、まずコンテナ14単位にまとめられ、そしてコンテナ14ごと貨物室13に収容される。本実施形態におけるコンテナ14は、梱包作業の効率化および単純化のため画一的な形状とされているが、本発明のコンテナはコンテナ14の形態には限定されない。本発明のコンテナの形状は、組み合わせたときに貨物室に隙間なく収まる形状であればよく、例えばサイズの異なる複数種類のコンテナを用意して、運搬可能な荷物の大きさに幅をもたせることもできる。さらには、貨物室の全容積を独占する一つの容器体のみを用意してもよい。
 マルチコプター90では、所定サイズのコンテナ14を梱包単位として荷物91をパッケージングすることにより、いわゆるコンテナリゼーションを図ることが可能とされている。
 尚、本発明の貨物室はコンテナを備えることが望ましいが、コンテナは必須の構成ではない。コンテナを用いず直接貨物室に荷物を収容した方が都合よい場合や、直接収容することに特に作業効率上の問題がない場合は、上面開口部131に別途蓋体など設けて直接収容すればよい。
[飛行機能]
 図2はマルチコプター90の機能構成を示すブロック図である。マルチコプター90の機体には、フライトコントローラ20、複数のローターRおよびこれらローターRの回転を制御するESC43(Electric Speed Controller)、オペレータの操縦端末95と無線通信を行う無線送受信器33、および、これらに電力を供給するバッテリー51が搭載されている。
 各ローターRは、DCモータであるモータ41、およびその出力軸に取り付けられたブレード42により構成されている。ESC43はローターRのモータ41に接続されており、フライトコントローラFCから指示された速度でモータ41を回転させる。尚、本実施形態におけるマルチコプター11は、8基のローターRが搭載されたオクトコプターであるが、ローターRの数は8基には限定されず、ローターRを4基備えたクアッドコプターとしてもよい。その他、求められる飛行安定性や許容されるコスト等に応じて、ローターRが6基のヘキサコプター、さらには8基よりも多くのローターを備えるものまで適宜変更可能である。
 フライトコントローラFCは、マイクロコントローラである制御装置20を備えている。制御装置20は、中央処理装置であるCPU21、ROMやRAMなどの記憶装置であるメモリ22、および、ESC43を介して各モータ41の回転数および回転速度を制御するPWMコントローラ23を備えている。
 フライトコントローラFCはさらに、飛行制御センサ群31およびGPS受信器32(以下、これらを総称して「センサ等」ともいう。)を備えており、これらは制御装置20に接続されている。本実施形態におけるマルチコプター90の飛行制御センサ群31には、加速度センサ、角速度センサ、気圧センサ(高度センサ)、地磁気センサ(方位センサ)などが含まれている。制御装置20は、これらセンサ等により、機体の傾きや回転のほか、飛行中の緯度経度、飛行高度、および機首の方位角を含む自機の位置情報を取得可能とされている。
 制御装置20のメモリ22には、マルチコプター90の飛行時における姿勢や基本的な飛行動作を制御する飛行制御アルゴリズムが実装されたプログラムである飛行制御プログラムFCPが記憶されている。飛行制御プログラムFCPは、オペレータ(操縦端末95)からの指示に従い、センサ等から取得した現在位置を基に各ローターRの回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター90を飛行させる。
 マルチコプター90の操縦は、オペレータが操縦端末95から行うことも可能であるが、例えば、緯度経度、飛行高度、飛行ルートなどのパラメータを飛行制御プログラムFCPに予め登録しておき、目的地へ自律的に飛行させることも可能である(以下、このような自律飛行のことを「オートパイロット」という。)。本実施形態のマルチコプター90は、基本的にはこのオートパイロットにより所定の目的地に向かって自律飛行させることが想定されている。
 このように、本実施形態におけるマルチコプター90は高度な飛行制御機能を備えている。ただし、本発明における無人航空機は、貨物室を備え、複数の回転翼により飛行が可能な機体であればよく、例えばセンサ等から一部のセンサが省略された機体や、オートパイロット機能を備えない機体、または手動操縦のみにより飛行可能な機体も本発明の無人航空機には含まれている。また、本実施形態におけるマルチコプター90は、GPS受信器32により飛行中の緯度経度を検知するなど、屋外における荷物の運搬に好適化されているが、例えば無人航空機が近距離無線通信モジュールを備え、施設内に分散配置されたWi-Fi(登録商標)アクセスポイントやBluetooth(登録商標) Low Energyビーコンなどから現在の飛行位置を特定することで、施設内における荷物の運搬を行うことなども考えられる。
[省スペース構成]
 図2は、図1の破線Aで囲んだ部分の拡大図である。マルチコプター90のアーム部11およびその支持されたブレード42の各組は、それぞれ格納式回転翼SR(SR1,SR2)を構成している。各アーム部11は、その長手方向における本体部12側の端部である基端部11aが、本体部12に回動可能に支持されている。各アーム部11の基端部11aの反対側の端部である先端部には、ブレード42を保護するローターガード11bが配置されている。ローターガード11bは任意の構成であり省略してもよい。本実施形態では、ローターガード11bをアーム部11の一部とみなす。
 本実施形態の各格納式回転翼SRは、回動中心を共通とする二基の格納式回転翼SR1,SR2を一単位として配置されている。図1に示されるように、格納式回転翼SR1,SR2は、本体部12の周方向に沿って4単位配置されている。上でも述べたように、ローターRの数、すなわち格納式回転翼SRの数は、複数であることを条件に適宜変更可能である。本実施形態では、回動中心を共通とする二基の格納式回転翼SR1,SR2を一単位として、これらの上下方向の位置をずらして配置することで搭載可能な格納式回転翼SRの数を増やし、機体の最大揚力を高めている。これにより重い荷物を安定して運搬することが可能とされている。
 図4は、マルチコプター90の格納式回転翼SRが貨物室13内に収容された様子を示す外観斜視図である。マルチコプター90の貨物室13は、図4の座標軸表示のx方向におけるその両側面に、上下へスライド可能な板状部材であるスライドプレート133が配置されている。本実施形態のスライドプレート133は手動で開閉することを想定しているが、サーボ機構などのアクチュエータを用いて開閉してもよい。
 図4に示されるように、スライドプレート133を上方へスライドさせると、貨物室13の側面開口部132が開口する。その後、基端部11aを回動中心として格納式回転翼SR1,SR2を側面開口部132側に回動させることで、これら格納式回転翼SR1,SR2を貨物室13に格納することができる。本実施形態のマルチコプター90では、上記構成により、格納式回転翼SRを簡便に格納および展開することが可能とされている。
 図5は図1のマルチコプター90の平面図である。図5に示されるように、格納式回転翼SR1,SR2は、本体部12の周方向において互いに重ならない位置に展開可能とされている。より具体的には、格納式回転翼SR1,SR2の展開角度には90°の差が設けられており、格納式回転翼SR1は格納式回転翼SR2の展開角度よりもさらに90°大きな展開角度を有している。これにより、格納式回転翼SR1,SR2のブレード42は、本体部12の周方向において互いに重ならない位置に配置される。二つの回転翼を上下に重なるように配置した場合、特にこれら回転翼の間隔が狭いときは、揚力のロスが大きくなるという問題がある。本実施形態のマルチコプター90では、一単位を構成する格納式回転翼SR1,SR2を、これらのブレード42が互いに重ならない位置に展開可能とすることにより、このような揚力のロスが低減されている。
 本実施形態の格納式回転翼SRは、水平方向に回動可能とされ、側面開口部132から貨物室13に格納されるが、格納式回転翼SRの貨物室13への格納方法はこれに限定されない。例えば、各単位の格納式回転翼SRが格納式回転翼SR1のみから構成される場合は、格納式回転翼SR1を垂直方向に回動させて上面開口部131から貨物室13に格納する構成も考えられる。さらには、格納式回転翼SRを取り外して貨物室13に格納してもよい。また、本実施形態の格納式回転翼SRは、手動で格納式回転翼SRを回動させて貨物室13に格納することを想定しているが、これはサーボ機構などのアクチュエータを用いて行ってもよい。
 一般的なマルチコプターは、マルチコプター90と同様に、複数のアームが機体の中心から放射状に延びており、それらアームの先端に回転翼が配置されている。そのため、使用しない機体を保管するときには、これら回転翼やアームがかさばることになる。マルチコプター90は、貨物室13を備え、貨物室13にこれらアーム11とブレード42とを格納可能な構成とされていることにより、所定の面積の保管スペースに保管可能な無人航空機の台数を増やすことが可能とされている。
 尚、本実施形態のマルチコプター90は、その貨物室13に荷物91が収容可能な構成とされているが、貨物室13を格納式回転翼SR専用の格納空間とすることもできる。その場合、上面開口部131は設けなくてもよい。
 図1および図3に示されるように、マルチコプター90の本体部12は、その上面にスキッド連結部15が設けられている。スキッド連結部15は、本体部12の上面における四隅に配置されており、これらスキッド連結部15の位置は、マルチコプター90の図示しない脚部(スキッド)の位置に対応している。スキッド連結部15には、かかる脚部が嵌入される凹部が形成されている。本実施形態のマルチコプター90は、スキッド連結部15を備えていることにより、その上方に他のマルチコプター90の筐体10を載置したときに、これらの筐体10の位置決めが容易になるとともに、筐体10を複数積み上げたときの安定性が高められている。
 本実施形態のマルチコプター90は、その筐体10を複数台積み上げ可能とすることにより、保管スペースをその面積だけではなく高さを含む容積として三次元的に利用することが可能とされている。さらに、貨物室13に格納式回転翼SRを格納することにより、保管スペースに保管可能な台数を最大化することが可能とされている。
 本実施形態では、マルチコプター90の保管時には、コンテナ14は全て取り外されており、貨物室13には格納式回転翼SRのみが格納されている。これは、荷物91を運搬するときにのみ貨物室13にコンテナ14を取り付ける運用を想定したものであり、これにより保管スペースをさらに効率的に使用することが可能とされている。コンテナ14または格納式回転翼SRによる貨物室13の独占的な使用は、上記の理由によるものであり、コンテナ14と格納式回転翼SRとを同時に貨物室13に収容可能な構成としてもよい。例えば、少量の荷物91を収容可能な薄型のコンテナ14´を用意し、貨物室13にコンテナ14´を取り付けるとともに、格納式回転翼SR1,SR2のうち、下側の格納式回転翼SR2のみを貨物室13に格納することが考えられる。このように、荷物91の積載量に応じて駆動するローターRの数を調節可能とすることで、荷物91の運搬時におけるエネルギー効率を高めることができる。
[他の実施形態]
 以下、図6および図7を用いて本発明の他の実施形態について説明する。図6は本発明の他の実施形態にかかる無人航空機であるマルチコプター96の外観斜視図である。図7はマルチコプター96のアーム部17の収容構造を示す平面図である。なお、以下の説明では、先の実施形態と同一または同様の構成については、先の実施形態と同じ符号を付してその詳細な説明を省略する。また、マルチコプター96の基本的な飛行機能は先の実施形態のマルチコプター90と同一であるためその説明を省略する。
 マルチコプター96の筐体16は、主に、略直方体の箱形の本体部18、および、本体部18の周方向における各頂点に相当する部位から水平方向に放射状に延びる複数のアーム部17により構成されている。各アーム部17は上下に平行に配置された二本のパイプ材からなる。各アーム部17の先端にはそれぞれ、上下に同軸配置された二基のローターR,Rが取り付けられている。ローターR,Rは周方向へ折り畳み可能なブレード45を有している。本実施形態のアーム17およびその支持されたブレード45の各組は、それぞれ格納式回転翼ERを構成している。
 本体部18の内部には、上部に上面開口部131を有する貨物室13が設けられている。図6のマルチコプター96は、貨物室13にその全容積を独占する一つのコンテナ18が装着されている。
 本体部18の外周面のうち上記各頂点に相当する部位には、貨物室13に連通された貫通穴181が形成されている。図6の各アーム部17は、その長手方向における本体部18側の端部である基端部17a(図7参照)が貫通穴181に挿入され、図示しない固定構造により本体部18に支持されている。
 図7に示されるように、本実施形態のマルチコプター96では、アーム部17を図6の状態から貫通穴181にさらに差し込むことにより、コンテナ14を取り出した後の貨物室13にアーム部17を収容することができる。これに加え、ブレード45を本体部18の外形に沿って折り畳むことにより、マルチコプター96をコンパクトに保管することができる。なお、本実施形態のマルチコプター96の貨物室13も荷物91が収容可能な構成とされているが、貨物室13をアーム部17専用の格納空間とすることも可能である。その場合、上面開口部131は設けなくてもよい。
 格納式回転翼ERを展開するときには、アーム部17を本体部18から引き出して、ブレード45を開けばよい。このように、本実施形態のマルチコプター96では、アーム部17を長手方向にスライドさせて貨物室13から出し入れすることにより、格納式回転翼ERを簡便に格納および展開することが可能とされている。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。

 

Claims (12)

  1.  複数の回転翼を備える無人航空機であって、
     前記無人航空機の筐体は、中空部である貨物室が一体化された本体部と、前記各回転翼を支持する複数のアーム部と、を有し、
     前記アーム部および該アーム部に支持された前記回転翼の各組は、それぞれ格納式回転翼を構成しており、
     前記各格納式回転翼は、その一部または全体を前記貨物室に格納可能であることを特徴とする無人航空機。
  2.  前記筐体は、その上方に他の前記筐体を載置可能であることを特徴とする請求項1に記載の無人航空機。
  3.  前記各アーム部は、その長手方向における前記本体部側の端部である基端部が前記本体部に回動可能に支持されており、
     前記基端部を回動中心として前記格納式回転翼を回動させることにより、該格納式回転翼が、前記貨物室に格納または該貨物室から展開されることを特徴とする請求項1に記載の無人航空機。
  4.  前記各基端部は前記本体部に対して水平方向に回動可能であり、
     前記格納式回転翼は、回動中心を共通とする二基を一単位として、前記本体部の周方向に沿って複数単位配置されていることを特徴とする請求項3に記載の無人航空機。
  5.  前記一単位を構成する二基の前記格納式回転翼は、前記本体部の周方向において互いに重ならない位置に展開可能であることを特徴とする請求項4に記載の無人航空機。
  6.  前記貨物室はその上部に開口が設けられていることを特徴とする請求項1に記載の無人航空機。
  7.  前記貨物室への着脱が可能な一または複数のコンテナをさらに有し、
     運搬物は前記コンテナに入れられて前記貨物室に収容されることを特徴とする請求項1に記載の無人航空機。
  8.  前記コンテナは画一的な形状であることを特徴とする請求項7に記載の無人航空機。
  9.  前記貨物室には、前記複数の格納式回転翼の少なくとも一部と前記コンテナとを同時に収容可能であることを特徴とする請求項7または請求項8に記載の無人航空機。
  10.  前記本体部の外周面には、前記貨物室に連通された複数の貫通穴が形成されており、
     前記各アーム部は、その長手方向における前記本体部側の端部である基端部が前記貫通穴に挿入されて前記本体部に支持されており、
     前記アーム部を前記貫通穴にさらに差し込むことで該アーム部が前記貨物室に格納され、前記アーム部を前記本体部から引き出すことで前記格納式回転翼が展開されることを特徴とする請求項1に記載の無人航空機。
  11.  前記各回転翼は、周方向へ折り畳み可能なブレードを有していることを特徴とする請求項10に記載の無人航空機。
  12.  前記各格納式回転翼はそれぞれ、上下に同軸配置された二基の前記回転翼を有していることを特徴とする請求項10に記載の無人航空機。

     
PCT/JP2017/015108 2016-04-19 2017-04-13 無人航空機 WO2017183551A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018513140A JP6375506B2 (ja) 2016-04-19 2017-04-13 無人航空機
US16/089,305 US10647404B2 (en) 2016-04-19 2017-04-13 Unmanned aerial vehicle
US16/576,250 US10773785B2 (en) 2016-04-19 2019-09-19 Unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-083760 2016-04-19
JP2016083760 2016-04-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/089,305 A-371-Of-International US10647404B2 (en) 2016-04-19 2017-04-13 Unmanned aerial vehicle
US16/576,250 Division US10773785B2 (en) 2016-04-19 2019-09-19 Unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2017183551A1 true WO2017183551A1 (ja) 2017-10-26

Family

ID=60116199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015108 WO2017183551A1 (ja) 2016-04-19 2017-04-13 無人航空機

Country Status (3)

Country Link
US (2) US10647404B2 (ja)
JP (1) JP6375506B2 (ja)
WO (1) WO2017183551A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107009A1 (ja) * 2017-11-30 2019-06-06 株式会社プロドローン 無人航空機
JP2019085085A (ja) * 2017-11-09 2019-06-06 石川 誠司 リング状あるいは円盤状の翼断面の主構造体に3個以上の回転翼を接合した航空機
WO2019126275A1 (en) * 2017-12-21 2019-06-27 Wing Aviation Llc Methods and systems for door-enabled loading and release of payloads in an unmanned aerial vehicle (uav)
JP2019163059A (ja) * 2017-11-06 2019-09-26 株式会社エアロネクスト 飛行体及び飛行体の制御方法
WO2019207558A1 (ja) * 2018-04-25 2019-10-31 株式会社プロドローン 無人航空機
EP3659912A1 (en) * 2018-11-30 2020-06-03 Fundación Tecnalia Research & Innovation Aerial vehicles with uncoupled degrees of freedom
JP2020527498A (ja) * 2017-07-17 2020-09-10 グリフ アビエーション エーエスGriff Aviation As 空中ビークル、有利に揺動可能なアームマウントを有するマルチコプター
JP2021059199A (ja) * 2019-10-04 2021-04-15 ヤマハ発動機株式会社 無人航空機および輸送方法
DE102020200746A1 (de) 2020-01-22 2021-07-22 Volkswagen Aktiengesellschaft Multicopter und Verfahren zum Betreiben eines Multicopters
CN113772096A (zh) * 2021-08-16 2021-12-10 航天时代飞鹏有限公司 一种货运无人机定点抛投系统及货物定点抛投方法
JP2021193015A (ja) * 2020-06-08 2021-12-23 株式会社エアロネクスト 飛行体及びこれを用いた荷物の輸送方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589263B1 (ko) * 2015-06-09 2016-01-28 한국항공우주연구원 프로펠러부 전개식 무인 비행체
WO2018032415A1 (en) * 2016-08-17 2018-02-22 SZ DJI Technology Co., Ltd. Systems and methods for operating unmanned aerial vehicles
FR3070607B1 (fr) * 2017-09-07 2020-09-04 Parrot Drones Drone a voilure tournante comprenant une structure de drone pliable
US10870486B2 (en) * 2017-09-22 2020-12-22 Stephen Lee Bailey Diamond quadcopter
US11014663B1 (en) * 2017-10-31 2021-05-25 Toyota Motor Engineering & Manufacturing North America, Inc. Aerial vehicle with a flight module
US11453513B2 (en) 2018-04-26 2022-09-27 Skydio, Inc. Autonomous aerial vehicle hardware configuration
US11794888B1 (en) * 2018-05-18 2023-10-24 Taylor & Lego Holdings, Llc. Unmanned aerial vehicle
US10946959B2 (en) * 2018-10-09 2021-03-16 Arizechukwu Nwosu Drone configured for multiple uses
CN110481787A (zh) * 2019-07-16 2019-11-22 中国特种飞行器研究所 一种无人运输机
KR102339790B1 (ko) * 2019-11-05 2021-12-16 울산과학기술원 환자 이송 장치
EP3854677A1 (en) * 2020-01-23 2021-07-28 BAE SYSTEMS plc Airframe and method of assembling an airframe
WO2021148775A1 (en) * 2020-01-23 2021-07-29 Bae Systems Plc Airframe and method for assembling an airframe
US20230083990A1 (en) * 2020-02-29 2023-03-16 Aeronext Inc. Frame assembly and method for manufacturing same
US11845544B2 (en) * 2020-12-28 2023-12-19 Textron Innovations, Inc. Foldable aircraft
US11845530B2 (en) * 2021-03-24 2023-12-19 Sierra Nevada Corporation Compact foldable multicopter unmanned aerial vehicle for cargo delivery
CN113184163B (zh) * 2021-05-28 2024-01-19 北京九天行歌航天科技有限公司 一种飞行救援装置及其使用方法
US11753137B2 (en) 2021-08-31 2023-09-12 Textron Systems Corporation Utilizing a customizable fuselage assembly for an unmanned aerial vehicle
US20230348099A1 (en) * 2022-04-27 2023-11-02 Skydio, Inc. Base Stations For Unmanned Aerial Vehicles (UAVs)
KR102608605B1 (ko) * 2023-04-28 2023-11-30 이상묵 날개 접이식 드론

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008499A1 (en) * 2007-02-16 2009-01-08 Donald Orval Shaw Modular flying vehicle
JP2014212479A (ja) * 2013-04-19 2014-11-13 ソニー株式会社 制御装置、制御方法及びコンピュータプログラム
WO2015109322A1 (en) * 2014-01-20 2015-07-23 Robodub Inc. Multicopters with variable flight characteristics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789341B2 (en) 2004-04-14 2010-09-07 Arlton Paul E Rotary wing aircraft having a non-rotating structural backbone and a rotor blade pitch controller
US20100044499A1 (en) 2008-08-22 2010-02-25 Draganfly Innovations Inc. Six rotor helicopter
CA2840554C (en) * 2010-06-29 2022-01-04 Aerovironment, Inc. Uav having modularized compartments and fluid drain ports
US10155585B2 (en) 2013-03-14 2018-12-18 Aeryon Labs Inc. Folding propellers system
US9573683B2 (en) * 2014-04-28 2017-02-21 Arch-Aerial, Llc Collapsible multi-rotor UAV
FR3025495A1 (fr) 2014-09-05 2016-03-11 Heliceo Vehicule sans pilote embarque
KR101589263B1 (ko) * 2015-06-09 2016-01-28 한국항공우주연구원 프로펠러부 전개식 무인 비행체

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008499A1 (en) * 2007-02-16 2009-01-08 Donald Orval Shaw Modular flying vehicle
JP2014212479A (ja) * 2013-04-19 2014-11-13 ソニー株式会社 制御装置、制御方法及びコンピュータプログラム
WO2015109322A1 (en) * 2014-01-20 2015-07-23 Robodub Inc. Multicopters with variable flight characteristics

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527498A (ja) * 2017-07-17 2020-09-10 グリフ アビエーション エーエスGriff Aviation As 空中ビークル、有利に揺動可能なアームマウントを有するマルチコプター
JP7130681B2 (ja) 2017-07-17 2022-09-05 グリフ アビエーション エーエス 空中ビークル、有利に揺動可能なアームマウントを有するマルチコプター
JP2019163059A (ja) * 2017-11-06 2019-09-26 株式会社エアロネクスト 飛行体及び飛行体の制御方法
JP2019085085A (ja) * 2017-11-09 2019-06-06 石川 誠司 リング状あるいは円盤状の翼断面の主構造体に3個以上の回転翼を接合した航空機
WO2019107009A1 (ja) * 2017-11-30 2019-06-06 株式会社プロドローン 無人航空機
US10882600B2 (en) 2017-11-30 2021-01-05 Prodrone Co., Ltd. Foldable unmanned aerial vehicle
US11186368B2 (en) 2017-12-21 2021-11-30 Wing Aviation Llc Methods and systems for door-enabled loading and release of payloads in an unmanned aerial vehicle (UAV)
AU2018392452B2 (en) * 2017-12-21 2022-02-03 Wing Aviation Llc Methods and systems for door-enabled loading and release of payloads in an unmanned aerial vehicle (UAV)
US11858633B2 (en) 2017-12-21 2024-01-02 Wing Aviation Llc Methods and systems for door-enabled loading and release of payloads in an unmanned aerial vehicle (UAV)
WO2019126275A1 (en) * 2017-12-21 2019-06-27 Wing Aviation Llc Methods and systems for door-enabled loading and release of payloads in an unmanned aerial vehicle (uav)
JP2019194064A (ja) * 2018-04-25 2019-11-07 株式会社プロドローン 無人航空機
WO2019207558A1 (ja) * 2018-04-25 2019-10-31 株式会社プロドローン 無人航空機
EP3659912A1 (en) * 2018-11-30 2020-06-03 Fundación Tecnalia Research & Innovation Aerial vehicles with uncoupled degrees of freedom
JP7443365B2 (ja) 2018-11-30 2024-03-05 フンダシオン テクナリア リサーチ アンド イノヴェイション 分離した自由度を有する航空機
WO2020109100A1 (en) * 2018-11-30 2020-06-04 Fundación Tecnalia Research & Innovation Aerial vehicles with uncoupled degrees of freedom
JP2022509697A (ja) * 2018-11-30 2022-01-21 フンダシオン テクナリア リサーチ アンド イノヴェイション 分離した自由度を有する航空機
JP7153003B2 (ja) 2019-10-04 2022-10-13 ヤマハ発動機株式会社 無人航空機および輸送方法
JP2021059199A (ja) * 2019-10-04 2021-04-15 ヤマハ発動機株式会社 無人航空機および輸送方法
DE102020200746B4 (de) 2020-01-22 2022-03-31 Volkswagen Aktiengesellschaft Multicopter und Verfahren zum Betreiben eines Multicopters
DE102020200746A1 (de) 2020-01-22 2021-07-22 Volkswagen Aktiengesellschaft Multicopter und Verfahren zum Betreiben eines Multicopters
JP2021193015A (ja) * 2020-06-08 2021-12-23 株式会社エアロネクスト 飛行体及びこれを用いた荷物の輸送方法
JP7376118B2 (ja) 2020-06-08 2023-11-08 株式会社エアロネクスト 飛行体及びこれを用いた荷物の輸送方法
CN113772096A (zh) * 2021-08-16 2021-12-10 航天时代飞鹏有限公司 一种货运无人机定点抛投系统及货物定点抛投方法
CN113772096B (zh) * 2021-08-16 2024-06-11 航天时代飞鹏有限公司 一种货运无人机定点抛投系统及货物定点抛投方法

Also Published As

Publication number Publication date
US20190112025A1 (en) 2019-04-18
US20200140057A1 (en) 2020-05-07
US10647404B2 (en) 2020-05-12
US10773785B2 (en) 2020-09-15
JPWO2017183551A1 (ja) 2018-07-26
JP6375506B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6375506B2 (ja) 無人航空機
CN208585509U (zh) 空气动力学装运包装
CN109789926B (zh) 投递用旋翼机
US10377482B2 (en) Remotely controlled modular VTOL aircraft and re-configurable system using same
US8876057B2 (en) Aerodynamic integration of a payload container with a vertical take-off and landing aircraft
CN111512253A (zh) 绳钩的主动位置控制
EP3841013B1 (en) External containment apparatus for unmanned aerial vehicle
US10479499B2 (en) Self-contained aerial cargo vehicle
US20170217562A1 (en) Unmanned inflatable aircraft
JP6178949B1 (ja) 無人航空機
CN111527028A (zh) 由uav自动拾取运载物的系统和方法
AU2020287661B2 (en) Suspended aerial vehicle system with thruster stabilization
WO2020197416A1 (en) Unmanned aerial vehicle shipping container
WO2020136804A1 (ja) 無人航空機
KR101914622B1 (ko) 천이 비행용 다목적 무인 비행체
JP6889299B1 (ja) 飛行体及び荷物仕分システム
JP7153003B2 (ja) 無人航空機および輸送方法
JP7244955B2 (ja) 飛行体及び飛行体の飛行方法
US20220185477A1 (en) Autorotating payload delivery device
WO2023026338A1 (ja) 飛行体
JP7265776B2 (ja) 飛行体
JP2024095506A (ja) 航空機装置(変形形態)、自走式モジュール、ペイロード、ペイロードを移動させるシステム及び方法(変形形態)
NZ796350A (en) Suspended aerial vehicle system with thruster stabilization

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785890

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13-02-2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17785890

Country of ref document: EP

Kind code of ref document: A1