WO2019106887A1 - エンジン発電機 - Google Patents

エンジン発電機 Download PDF

Info

Publication number
WO2019106887A1
WO2019106887A1 PCT/JP2018/029158 JP2018029158W WO2019106887A1 WO 2019106887 A1 WO2019106887 A1 WO 2019106887A1 JP 2018029158 W JP2018029158 W JP 2018029158W WO 2019106887 A1 WO2019106887 A1 WO 2019106887A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
engine
generator
air
control unit
Prior art date
Application number
PCT/JP2018/029158
Other languages
English (en)
French (fr)
Inventor
要一 山村
恭介 谷口
亘 福本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201880072701.2A priority Critical patent/CN111344477B/zh
Publication of WO2019106887A1 publication Critical patent/WO2019106887A1/ja
Priority to US16/884,267 priority patent/US11199141B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/0205Circuit arrangements for generating control signals using an auxiliary engine speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1508Digital data processing using one central computing unit with particular means during idling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine generator.
  • Portable generators with internal combustion engines are used to power electrical equipment at construction sites, outdoor leisure and stalls.
  • Patent Document 1 it has been proposed to drive an engine at a rotational speed according to the size of a load when the load is started.
  • a portable generator may be used to supply power to an air conditioner mounted on an RV (leisure vehicle).
  • an air conditioner has a motor (induction motor) and a compressor, but when the air conditioner starts up, the motor requires starting power exceeding the rated value. Therefore, even if the user prepared a generator having a power generation capacity corresponding to the rated value of the motor, the air conditioner could not be started.
  • the rotational speed of the engine can not immediately increase to the rotational speed corresponding to the start power of the air conditioner, the engine eventually stalls. Therefore, the user had to buy a generator with a larger power generation capacity again, which was lacking in usability. Therefore, an object of the present invention is to provide an engine generator capable of supplying power without stalling even a load requiring relatively large power at the time of start-up.
  • a control unit that controls the advance angle; An engine generator is provided.
  • an engine generator capable of supplying power without stalling even for a load requiring relatively large power at startup.
  • FIG. 1 is a schematic view showing an engine system 100.
  • Engine system 100 may be referred to as an electronic fuel injection control system.
  • the internal combustion engine 1 is a four-stroke engine.
  • the crankcase 2 accommodates a crankshaft 19.
  • the rotation of the crankshaft 19 moves the piston 4 connected to the connecting rod 3 up and down in the cylinder.
  • a recoil starter 5 for starting the internal combustion engine 1 is connected to the crankshaft 19.
  • the recoil operator rotates the crankshaft 19 by grasping and pulling the handle of the recoil starter 5.
  • the generator 6 is connected to the crankshaft 19, and when the crankshaft 19 rotates, the rotor of the generator 6 rotates to generate electric power.
  • the crank angle of the crankshaft 19 is detected by a crank angle sensor 7.
  • the crank angle sensor 7 may be, for example, a Hall element or the like that detects the magnetism of a magnet provided on a flywheel connected to the crankshaft 19. The detection result of the crank angle sensor 7 may be used to calculate the engine rotational speed.
  • the power supply circuit 8 has an inverter for converting alternating current generated by the generator 6 into alternating current of a constant frequency, a circuit for converting alternating current to direct current, and a circuit for converting the level of direct current voltage.
  • the power supply circuit 8 supplies the power generated by the generator 6 to the control unit 9. When the crankshaft 19 is rotated by the recoil starter 5, the generator 6 generates sufficient power for the control unit 9 to operate.
  • the control unit 9 is an engine control unit (ECU), and controls the power supplied from the power supply circuit 8 to the ignition device 11, the fuel pump 14, the injector 15, the throttle motor 16, and the like.
  • the igniter 11 supplies ignition power for causing the spark plug 12 to spark discharge.
  • the fuel tank 13 is a container for containing fuel.
  • the fuel pump 14 is a pump that supplies the fuel contained in the fuel tank 13 to the injector 15. In FIG. 1, a fuel pump 14 is provided in a fuel tank.
  • the throttle motor 16 is a motor for controlling the inflow amount of air flowing into the cylinder via the intake passage 50.
  • the intake valve 17 is a valve that is opened and closed by a cam or the like that converts the rotational movement of the crankshaft 19 into vertical movement.
  • the intake valve 17 opens in the intake stroke and is basically closed in the compression stroke, the expansion stroke and the exhaust stroke.
  • the exhaust valve 18 is a valve that is opened and closed by a cam or the like that converts the rotational movement of the crankshaft 19 into vertical movement.
  • the exhaust valve 18 opens in the exhaust stroke and is basically closed in the compression stroke, the expansion stroke and the intake stroke. In order to smooth the transition from exhaust to intake, a period may be provided in which the intake valve 17 and the exhaust valve 18 simultaneously open (overlap).
  • the O 2 sensor 42 is a sensor that detects the oxygen concentration in the exhaust gas discharged from the cylinder to the exhaust path 51.
  • the temperature sensor 43 is a sensor that detects the temperature of the internal combustion engine 1.
  • FIG. 2 shows the function of the control unit 9 and the function of the power supply circuit 8.
  • the function of the control unit 9 may be realized by hardware such as an ASIC or an FPGA, or may be realized by the CPU executing a control program stored in a memory.
  • ASIC is an abbreviation of application specific integrated circuit.
  • FPGA is an abbreviation of field programmable gate array.
  • CPU is an abbreviation of central processing unit.
  • the setting unit 20 is a unit for setting control parameters of the internal combustion engine 1.
  • the setting unit 20 controls the throttle motor 16 through the throttle control unit 23 to adjust the inflow of air. Thereby, the engine rotational speed is controlled.
  • the setting unit 20 controls the ignition device 11 through the ignition control unit 24.
  • the ignition control unit 24 adjusts the advance angle of the ignition timing based on the detection result of the crank angle sensor 7.
  • the setting unit 20 may determine the target air-fuel ratio according to the temperature of the internal combustion engine 1 detected by the temperature sensor 43, the load of the generator 6, the on / off of the workout switch 25, and the like.
  • the setting unit 20 converts the detection result of the O 2 sensor 42 into an air-fuel ratio, drives the fuel pump 14 through the pump control unit 27 so that the air-fuel ratio becomes the target air-fuel ratio, and adjusts the fuel supply amount. Good.
  • the setting unit 20 may determine the engine stroke based on the detection result of the crank angle sensor 7 and control the injection timing of the injector 15 through the injector control unit 26 according to the engine stroke.
  • the workout switch 25 is a switch for notifying that an external load is connected (starting supply of a large amount of power) before the external load is connected to the AC outlet 33.
  • the setting unit 20 raises the rotational speed of the internal combustion engine 1 to the workout rotational speed in advance so that the internal combustion engine 1 does not stall even if an external load is connected.
  • the workout rotational speed is higher than the upper limit value during normal operation. Thereby, the generator 6 can temporarily increase the output.
  • the setting unit 20 causes the internal combustion engine 1 to transition to the workout state in accordance with the workout instruction input from the workout switch 25 or the workout instruction received from the remote controller or the smartphone through the communication circuit 21.
  • the workout state is a state in which the internal combustion engine 1 is operating at a workout rotational speed.
  • the timer 28 is a timer for monitoring the duration so that the duration of the workout state does not exceed the time limit. The internal combustion engine 1 is thereby protected.
  • Determination unit 29 determines whether internal combustion engine 1 can transition to the workout state.
  • the output unit 37 outputs a warning when the internal combustion engine 1 can not transition to the workout state. This is because if the air conditioner or the like is connected when the internal combustion engine 1 can not transition to the workout state, the internal combustion engine 1 stalls.
  • the output unit 37 may output a notification indicating that the internal combustion engine 1 can transition to the workout state (that is, that an air conditioner or the like can be connected). This will allow the user to safely connect an external load such as an air conditioner to the AC outlet 33.
  • the inverter 30 is a conversion circuit that converts the alternating current generated by the generator 6 into an alternating current of a predetermined frequency.
  • the rectifier circuit 31 is a circuit that rectifies the alternating current generated by the alternating current generated by the generator 6.
  • the smoothing circuit 32 is a circuit that smoothes the pulsating flow generated by the rectifier circuit 31 to generate a direct current. Thereby, for example, a DC voltage of 12 V is generated.
  • the control unit 9 may perform PWM control of the power supplied to the fuel pump 14 according to the load of the generator 6 or the internal combustion engine 1.
  • the DC / DC converter 35 is a circuit that converts the level of the DC voltage. For example, the DC / DC converter 35 converts a 12V DC voltage into a 5V or 3.3V DC voltage. The DC / DC converter 35 supplies a DC voltage from the DC outlet 34 to an external load.
  • the inverter 30 supplies an AC voltage to an external load through the AC outlet 33.
  • a switch 36 (option) which can be turned on / off by the setting unit 20 may be provided between the inverter 30 and the AC outlet 33.
  • the switch 36 may be a semiconductor switch or a relay circuit.
  • the setting unit 20 may turn off the switch 36 until transition to the workout state is possible when the workout instruction is received, and may switch on the switch 36 when transition to the workout state is possible. Thereby, the stall of the internal combustion engine 1 may be suppressed.
  • the output monitoring unit 52 monitors the output of the generator 6. For example, when the AC outlet 33 has a plurality of outlet receptacles, power can be supplied to a plurality of external loads. Therefore, when trying to connect the air conditioner to the outlet receptacle, it is conceivable that another external load is already connected to another outlet receptacle. Therefore, if the sum of the activation power of the air conditioner and the power supplied to another external load exceeds the workout power, the generator 6 can not supply the activation power to the air conditioner. Therefore, based on the monitoring result of the output monitoring unit 52, the determining unit 29 may determine whether transition to the workout state is possible (whether start power can be supplied to the air conditioner). Here, it is assumed that the power generation capacity of the generator 6 in the workout state and the start power of the air conditioner substantially match.
  • FIG. 3 is a flowchart for explaining the workout operation.
  • the setting unit 20 determines whether a workout instruction has been accepted. When a workout instruction is accepted through the workout switch 25 or the communication circuit 21, the setting unit 20 proceeds to S302.
  • the workout instruction may be, for example, switching the workout switch 25 from off to on.
  • the determination unit 29 acquires the state of the internal combustion engine 1 and the state of the generator 6. For example, the determination unit 29 may acquire the engine temperature from the temperature sensor 43. The determination unit 29 may acquire information indicating the current output of the generator 6 from the output monitoring unit 52. The determination unit 29 may acquire the opening degree (throttle opening degree or throttle margin) of the throttle motor 16 through the throttle control unit 23.
  • the determination unit 29 may determine whether the internal combustion engine 1 can work out based on the state of the internal combustion engine 1 and the state of the generator 6.
  • the conditions (workout conditions) which can be worked out are, for example, as follows. ⁇ The engine temperature is below the temperature threshold ⁇ The current output of the generator 6 is below the output threshold ⁇ Throttle margin is above the threshold If the workout condition is satisfied, the determination unit 29 proceeds to S304 . If the workout condition is not satisfied, the determination unit 29 proceeds to S310.
  • the determination unit 29 outputs, to the output unit 37, a warning indicating that the workout is not possible.
  • the output unit 37 may turn on a red LED indicating that workout is not possible.
  • the output unit 37 may have a display device that displays a message indicating that workout is not possible.
  • the output unit 37 may transmit a warning to the remote control or the smartphone through the communication circuit 21.
  • the determination unit 29 or the setting unit 20 resets the timer 28 to start counting.
  • the timer 28 measures the duration of the workout operation.
  • the setting unit 20 reads control parameters for the workout operation from the memory 22, and sets them in the throttle control unit 23, the ignition control unit 24, the pump control unit 27, and the like.
  • the control parameters include, for example, a target rotational speed, an air-fuel ratio, an advance angle of ignition timing, and the like.
  • FIG. 4 shows the relationship between the rotational speed, the shaft output and the output torque.
  • the axial output of the internal combustion engine 1 is the product of torque and rotational speed. For example, if the torque is constant with respect to the rotational speed, the shaft output increases in proportion to the rotational speed. That is, the output of the generator 6 also increases in proportion to the rotational speed. If it is attempted to rapidly supply power to the external load, the rotational speed of the internal combustion engine 1 decreases. For example, when the air conditioner is connected to the generator 6, the internal combustion engine 1 operating at the idle rotation speed is stalled. Therefore, before the air conditioner is connected to the generator 6, the control unit 9 increases the rotational speed of the internal combustion engine 1 to the workout rotational speed.
  • the control unit 9 may start supply of power to the external load when the rotational speed of the internal combustion engine 1 reaches the workout rotational speed.
  • FIG. 5 shows the relationship between the air fuel ratio (A / F ratio) and the shaft output.
  • a / F ratio air fuel ratio
  • the axial power of a gasoline engine is the largest when the A / F ratio is from 12.0 to 12.5.
  • H2O and CO2 are produced by reacting the hydrocarbon contained in gasoline with the oxygen contained in the air.
  • the A / F ratio which does not become surplus both in air and oxygen is 14.7.
  • the A / F ratio is generally set to 14.7 (stoichiometric control).
  • the A / F ratio is increased to about 18 (lean burn control).
  • the control unit 9 cancels the stoichiometric control or the lean burn control, and sets the A / F ratio to any value of 12.0 or more and 12.5 or less. As shown in FIG. 5, it is expected that the axial power will be maximum when the A / F ratio is in the range of 12.0 or more and 12.5 or less.
  • FIG. 6 shows the relationship between the rotational speed and the output torque.
  • the ignition timing at which the maximum output torque can be expected is called MBT (Minimum-advanced for Best Torque).
  • MBT Minimum-advanced for Best Torque
  • the setting unit 20 sets the ignition timing to MBT. This maximizes the output expectation value.
  • the determination unit 29 acquires the state of the internal combustion engine 1, the state of the generator 6, and the count value (timer value) of the timer 28.
  • the determination unit 29 determines whether or not the internal combustion engine 1 can continue the workout operation.
  • the conditions (continuation conditions) which can continue workout operation are as follows, for example. ⁇
  • the engine temperature is below the temperature threshold ⁇
  • the current output of the generator 6 is below the maximum output value ⁇
  • the throttle margin is above the threshold ⁇
  • Workout continuation time measured by the timer 28 is below the limit time If it is determined that the internal combustion engine 1 can continue the workout, the process returns to S306. On the other hand, when the determination unit 29 determines that the internal combustion engine 1 can not continue the workout operation, the process proceeds to S308.
  • the setting unit 20 reads out control parameters for normal operation from the memory 22, and sets them in the throttle control unit 23, the ignition control unit 24, the pump control unit 27, and the like.
  • the control parameters include, for example, a target rotational speed, an air-fuel ratio, an advance angle of ignition timing, and the like.
  • engine system 100 is an example of an engine generator.
  • the throttle motor 16 is an example of a throttle that adjusts the inflow of air supplied to the internal combustion engine 1.
  • the fuel pump 14 and the injector 15 are an example of an injection device that injects or supplies fuel to the internal combustion engine 1.
  • the igniter 11 is an example of an igniter for igniting a mixed gas of fuel and air in the internal combustion engine 1.
  • the generator 6 is an example of a generator driven by the internal combustion engine 1 to generate electric power.
  • the AC outlet 33 is an example of a supply unit that supplies the power generated by the generator 6 to an external load (such as an RV air conditioner).
  • the workout switch 25 and the communication circuit 21 are an example of a reception unit that receives a notice indicating that power is supplied from the supply unit to an external load.
  • the advance notice suggests the start of large power supply.
  • the control unit 9 receives a notice in the reception unit, the inflow amount of air, the air-fuel ratio due to the injection amount of fuel, and the ignition timing of the igniter advance so that the power that can be supplied by the generator 6 is temporarily increased. Control the corners.
  • an engine generator that supplies power to a load requiring a relatively large amount of power at the time of start-up and is resistant to stalling is provided.
  • the timer 28 is an example of a timer that starts counting when a notice is accepted.
  • the control unit 9 increases the inflow of air so that the power that can be supplied by the generator 6 is enhanced when the advance notice is received, makes the air-fuel ratio rich due to the injection of fuel rich, and the ignition timing of the igniter Increase the advance angle of
  • the control unit 9 sets the inflow amount of air, the air-fuel ratio resulting from the injection amount of fuel, and the advance angle of the ignition timing of the igniter : Return to the parameter for normal operation).
  • An external load using an induction motor such as an air conditioner requires a large amount of power at startup. However, the time required for a large amount of power is not so long. Therefore, fuel consumption can be reduced by limiting the time for operating the internal combustion engine 1 at the work-out rotational speed. In addition, the mechanical load on the internal combustion engine 1 will be reduced.
  • the determination unit 29 is an example of an output determination unit that determines whether the output of the generator 6 exceeds a predetermined threshold value when the advance notice is received. If the output of the generator 6 exceeds a predetermined threshold value, the control unit 9 prohibits the primary increase of power. On the other hand, control part 9 permits primary increase of electric power, if the output of generator 6 does not exceed a predetermined threshold. Thereby, the stall of the internal combustion engine 1 is suppressed. It is also conceivable that the generator 6 is already supplying power to another external unit before connecting an external load such as an air conditioner. In such a case, there is a possibility that starting power can not be supplied sufficiently to an external load such as an air conditioner. Therefore, by prohibiting or permitting the primary increase of the electric power according to the current output of the generator 6, the stall of the internal combustion engine 1 is suppressed.
  • the temperature sensor 43 is an example of a temperature sensor that detects the temperature of the internal combustion engine 1.
  • Determination unit 29 is an example of a temperature determination unit that determines whether or not the temperature of internal combustion engine 1 is a temperature at which the primary increase of electric power is permitted when the advance notice is received.
  • the control unit 9 prohibits the primary increase of electric power if the temperature of the internal combustion engine 1 is not a temperature at which the primary increase of electric power can be permitted. Further, the control unit 9 permits the primary increase of the electric power if the temperature of the internal combustion engine 1 is a temperature at which the primary increase of the electric power can be permitted. Thereby, the stall of the internal combustion engine 1 is suppressed.
  • the determination unit 29 is an example of a throttle determination unit that determines whether or not the throttle opening margin is equal to or greater than a predetermined threshold.
  • the control unit 9 prohibits the primary increase of the power if the margin of the throttle opening is not more than the predetermined threshold, and permits the primary boost of the power if the allowance of the throttle opening is not less than the predetermined threshold. Thereby, the stall of the internal combustion engine 1 is suppressed while securing the controllability of the throttle.
  • the output unit 37 is an example of an output unit that outputs a notification that warns that an excessive external load is connected to the supply unit when primary increase of power is to be inhibited. This will prevent the user from connecting excessive external loads.
  • the workout switch 25 is an example of a switch that switches between a state in which a primary increase in power is required and a state in which the primary increase in power is released.
  • the communication circuit 21 is an example of communication means for receiving an instruction to switch between the state of requesting the primary increase of power and the state of releasing the primary increase of power.
  • the control unit 9 may set the air-fuel ratio to 12.0 or more and 12.5 or less in order to temporarily increase the power that can be supplied by the generator 6. This is because, as shown in FIG. 5, the shaft output is expected to be maximum at an air-fuel ratio of 12.0 or more and 12.5 or less.
  • the control unit 9 may set the ignition timing of the ignition device 11 to MBT (minimum advanced for the best torque) in order to temporarily increase the power that can be supplied by the generator 6. This is because the MBT is expected to maximize the output torque.
  • MBT maximum advanced for the best torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

ワークアウトスイッチ25や通信回路21などは外部負荷に対して電力を供給すること(供給開始)を示す予告を受け付ける。制御部9は予告が受け付けられると、発電機6で供給できる電力が一時的に増強されるよう空気の流入量、燃料の噴射量に起因した空燃比および点火装置の点火時期の進角を制御する。

Description

エンジン発電機
 本発明はエンジン発電機に関する。
 内燃エンジンを有した携帯型発電機は建設現場やアウトドアレジャー、屋台で電気機器に電力を供給するために使用される。特許文献1によれば、負荷の起動時に負荷の大きさに応じた回転速度でエンジンを駆動することが提案されている。
特開2013-106447号公報
 ところで、RV(レジャーヴィークル)に搭載されるエアコンに電力を供給するために携帯型発電機が利用されることもある。このようなエアコンはモータ(誘導電動機)とコンプレッサを有しているが、エアコンの起動時にモータが定格値を超える起動電力を必要とする。そのため、モータの定格値に相当する発電容量の発電機をユーザが用意しても、エアコンを起動できなかった。特許文献1のような手法では、エアコンの起動電力に対応した回転速度までエンジンの回転速度がすぐには上昇できないため、結局のところエンジンが失速してしまう。したがって、ユーザは、より大きな発電容量の発電機を買いなおさなければならず、ユーザビリティが欠けていた。そこで、本発明は、起動時において比較的に大きな電力を必要とする負荷に対しても失速せずに電力を供給できるエンジン発電機を提供することを目的とする。
 本発明によれば、たとえば、
 エンジンと、
 前記エンジンに供給される空気の流入量を調整するスロットルと、
 前記エンジンに燃料を噴射する噴射装置と、
 前記エンジンにおいて前記燃料と前記空気との混合気体に点火する点火装置と、
 前記エンジンにより駆動されて発電する発電機と、
 前記発電機により生成された電力を外部負荷に供給する供給部と、
 前記外部負荷に対して前記供給部から電力を供給することを示す予告を受け付ける受付部と、
 前記受付部に前記予告が受け付けられると、前記発電機で供給できる電力が一時的に増強されるよう前記空気の流入量、前記燃料の噴射量に起因した空燃比および前記点火装置の点火時期の進角を制御する制御部と、
を有する、エンジン発電機が提供される。
 本発明によれば、起動時において比較的に大きな電力を必要とする負荷に対しても失速せずに電力を供給できるエンジン発電機が提供される。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
エンジンシステムを示す概略図 制御部と電源回路を示すブロック図 ワークアウト運転を説明するフローチャート 回転速度と軸出力との関係を示す図 A/F比と軸出力との関係を示す図 回転速度と出力トルクとの関係を示す図
 ●実施例1
 <エンジンシステム>
 図1はエンジンシステム100を示す概略図である。エンジンシステム100は電子燃料噴射制御システムと呼ばれてもよい。内燃エンジン1は4ストローク式のエンジンである。クランクケース2にはクランクシャフト19が収容されている。クランクシャフト19が回転することでコンロッド3に連結されたピストン4をシリンダ内で上下運動させる。クランクシャフト19には内燃エンジン1を始動するためのリコイルスターター5が連結されている。リコイル操作者はリコイルスターター5の把手を掴んで引っ張ることでクランクシャフト19を回転させる。クランクシャフト19には発電機6が連結されており、クランクシャフト19が回転することで発電機6のローターが回転して発電する。クランクシャフト19のクランク角はクランク角センサ7によって検知される。クランク角センサ7は、たとえば、クランクシャフト19に連結されたフライホイールに設けられたマグネットの磁気を検知するホール素子などであってもよい。クランク角センサ7の検知結果はエンジン回転速度を演算するために使用されてもよい。電源回路8は発電機6により生成された交流を、一定周波数の交流に変換するインバータや、交流を直流に変換する回路、直流電圧のレベルを変換する回路などを有している。電源回路8は発電機6により生成された電力を制御部9に供給する。なお、リコイルスターター5によってクランクシャフト19が回転すると、発電機6は制御部9が動作するのに十分な電力を発生する。制御部9はエンジン制御ユニット(ECU)であり、電源回路8から点火装置11、燃料ポンプ14、インジェクタ15およびスロットルモータ16などに供給する電力を制御する。点火装置11は、点火プラグ12に火花放電させるための点火電力を供給する。燃料タンク13は燃料を収容する容器である。燃料ポンプ14は燃料タンク13に収容されている燃料をインジェクタ15に供給するポンプである。図1において燃料ポンプ14は燃料タンク内に設けられている。スロットルモータ16は吸気経路50を介してシリンダに流入する空気の流入量を制御するためのモータである。吸気バルブ17はクランクシャフト19の回転運動を上下運動に変換するカム等によって開閉するバルブである。吸気バルブ17は吸気行程において開き、圧縮行程、膨張行程および排気行程では基本的に閉じている。排気バルブ18はクランクシャフト19の回転運動を上下運動に変換するカム等によって開閉するバルブである。排気バルブ18は排気行程において開き、圧縮行程、膨張行程および吸気行程においては基本的に閉じている。排気から吸気への遷移をスムーズにするために、吸気バルブ17と排気バルブ18とが同時に開く期間が設けられてもよい(オーバーラップ)。O2センサ42はシリンダから排気経路51へ排出された排気ガス中における酸素濃度を検知するセンサである。温度センサ43は内燃エンジン1の温度を検知するセンサである。
 <制御部と電源回路>
 図2は制御部9の機能と電源回路8の機能を示している。制御部9の機能はASICやFPGAなどのハードウエアにより実現されてもよいし、CPUがメモリに記憶されている制御プログラムを実行することで実現されてもよい。ASICは特定用途集積回路の略称である。FPGAはフィールドプラグラマブルゲートアレイの略称である。CPUは中央演算処理装置の略称である。
 設定部20は内燃エンジン1の制御パラメータを設定するユニットである。設定部20は、スロットル制御部23を通じてスロットルモータ16を制御し、空気の流入量を調整する。これにより、エンジン回転速度が制御される。設定部20は点火制御部24を通じて点火装置11を制御する。点火制御部24は、クランク角センサ7の検知結果に基づき点火時期の進角を調整する。設定部20は、温度センサ43により検知された内燃エンジン1の温度や発電機6の負荷、ワークアウトスイッチ25のオン/オフなどに応じて目標空燃比を決定してもよい。設定部20は、O2センサ42の検知結果を空燃比に変換し、この空燃比が目標空燃比となるようにポンプ制御部27を通じて燃料ポンプ14を駆動し、燃料の供給量を調整してもよい。設定部20はクランク角センサ7の検知結果に基づきエンジン行程を判別し、エンジン行程にしたがってインジェクタ制御部26を通じてインジェクタ15の噴射タイミングを制御してもよい。ワークアウトスイッチ25は、外部負荷がACアウトレット33に接続されるのに先立って、外部負荷が接続すること(大きな電力の供給を開始すること)を予告するためのスイッチである。設定部20は、ワークアウトスイッチ25により予告が受け付けられると、外部負荷が接続されても内燃エンジン1が失速しないように、内燃エンジン1の回転速度をワークアウト回転速度まで予め上昇させる。ワークアウト回転速度は、通常運転時における上限値よりも高い。これにより、発電機6は一時的に出力を増強できるようになる。設定部20は、ワークアウトスイッチ25から入力されるワークアウト指示または通信回路21を通じてリモコンまたはスマートフォンなどから受信されるワークアウト指示にしたがって、内燃エンジン1をワークアウト状態に遷移させる。ワークアウト状態とは、内燃エンジン1がワークアウト回転速度で動作している状態である。タイマー28はワークアウト状態の継続時間が制限時間を超えないように継続時間を監視するためのタイマーである。これにより内燃エンジン1が保護される。判定部29は、内燃エンジン1がワークアウト状態に遷移できるかどうかを判定する。出力部37は、内燃エンジン1がワークアウト状態に遷移できないときに警告を出力する。内燃エンジン1がワークアウト状態に遷移できないときにエアコンなどが接続されてしまうと、内燃エンジン1が失速してしまうからである。なお、内燃エンジン1がワークアウト状態に遷移可能となったこと(つまり、エアコンなどを接続可能となったこと)を示す通知を出力部37が出力してもよい。これによりユーザは安心してエアコンなどの外部負荷をACアウトレット33に接続できるようになろう。
 電源回路8においてインバータ30は、発電機6により生成された交流を所定周波数の交流に変換する変換回路である。整流回路31は発電機6により生成された交流により生成された交流を整流する回路である。平滑回路32は整流回路31により生成された脈流を平滑して直流を生成する回路である。これにより、たとえば、12Vの直流電圧が生成される。制御部9は発電機6や内燃エンジン1の負荷に応じて燃料ポンプ14に供給される電力をPWM制御してもよい。DC/DCコンバータ35は直流電圧のレベルを変換する回路である。たとえば、DC/DCコンバータ35は、12Vの直流電圧を5Vや3.3Vの直流電圧に変換する。DC/DCコンバータ35は、DCアウトレット34から外部負荷に直流電圧を供給する。
 インバータ30は、ACアウトレット33を通じて外部負荷に交流電圧を供給する。とりわけ、インバータ30とACアウトレット33との間には、設定部20によりオン/オフを切り替えられるスイッチ36(オプション)が設けられていてもよい。スイッチ36は、半導体スイッチやリレー回路などであってもよい。設定部20はワークアウト指示が受け付けられたときに、ワークアウト状態に遷移可能となるまでスイッチ36をオフにし、ワークアウト状態に遷移可能となるとスイッチ36をオンに切り替えてもよい。これにより、内燃エンジン1の失速が抑制されてもよい。
 出力監視部52は発電機6の出力を監視する。たとえば、ACアウトレット33が複数のコンセントレセプタクルを有している場合、複数の外部負荷に対して電力が供給可能である。そのため、エアコンをコンセントレセプタクルに接続しようとしたときに、すでに別の外部負荷が別のコンセントレセプタクルに接続されていることも考えられる。そのため、エアコンの起動電力と、別の外部負荷に供給されている電力との合計値が、ワークアウト電力を超えていれば、発電機6はエアコンに起動電力を供給できない。そのため、判定部29は、出力監視部52の監視結果に基づいてワークアウト状態に遷移可能かどうか(エアコンに起動電力を供給できるかどうか)を判定してもよい。ここで、ワークアウト状態における発電機6の発電能力とエアコンの起動電力とはほぼ一致していることが想定されている。
 <フローチャート>
 図3はワークアウト運転を説明するフローチャートである。
 S301で設定部20はワークアウト指示が受け付けられているかどうかを判定する。ワークアウトスイッチ25や通信回路21を通じてワークアウト指示が受け付けられると、設定部20はS302に進む。ワークアウト指示は、たとえば、ワークアウトスイッチ25をオフからオンに切り替えることであってもよい。
 S302で判定部29は内燃エンジン1の状態と発電機6の状態を取得する。たとえば、判定部29は温度センサ43からエンジン温度を取得してもよい。判定部29は出力監視部52から発電機6の現在出力を示す情報を取得してもよい。判定部29はスロットル制御部23を通じてスロットルモータ16の開度(スロットル開度またはスロットル余裕度)を取得してもよい。
 S303で判定部29は内燃エンジン1の状態と発電機6の状態に基づき内燃エンジン1がワークアウト可能かどうかを判定してもよい。ワークアウトが可能な条件(ワークアウト条件)は、たとえば、以下のとおりである。
・エンジン温度が温度閾値以下であること
・発電機6の現在出力が出力閾値以下であること
・スロットル余裕度が閾値以上であること
判定部29はワークアウト条件が満たされていればS304に進む。判定部29はワークアウト条件が満たされていなければS310に進む。S310で判定部29は出力部37にワークアウトが不可能であることを示す警告を出力する。たとえば、出力部37は、ワークアウトが不可能であることを示す赤色LEDを点灯してもよい。あるいは、出力部37は、ワークアウトが不可能であることを示すメッセージを表示する表示装置を有していてもよい。また、出力部37は通信回路21を通じてリモコンやスマートフォンに警告を送信してもよい。
 S304で判定部29または設定部20はタイマー28をリセットしてカウントをスタートさせる。タイマー28はワークアウト運転の継続時間を計測する。
 S305で設定部20は、メモリ22からワークアウト運転用の制御パラメータを読み出して、スロットル制御部23、点火制御部24、ポンプ制御部27などに設定する。制御パラメータは、たとえば、目標回転速度、空燃比、点火時期の進角などを含む。
 図4は回転速度、軸出力および出力トルクの関係を示している。内燃エンジン1の軸出力はトルクと回転速度の積である。たとえば、回転速度に対してトルクが一定であれば、回転速度に比例して軸出力が増加する。つまり、回転速度に比例して発電機6の出力も増加する。外部負荷に対して急激に電力を供給しようとすると、内燃エンジン1の回転速度は低下する。たとえば、アイドル回転速度で動作している内燃エンジン1は、発電機6にエアコンが接続されると、失速してしまう。そこで、発電機6にエアコンが接続される前に、制御部9は、内燃エンジン1の回転速度をワークアウト回転速度まで上昇させる。エアコンが接続されると、内燃エンジン1の回転速度はワークアウト回転速度よりも低下するが、失速を免れることができる。このように、制御部9は、内燃エンジン1の回転速度がワークアウト回転速度に到達すると、外部負荷への電力の供給を開始してもよい。
 図5は空燃比(A/F比)と軸出力との関係を示している。一般にA/F比が12.0から12.5までであるときに、ガソリンエンジンの軸出力は最も大きくなることが知られている。一方でガソリンに含まれる炭化水素と空気に含まれる酸素を反応させることで、H2OとCO2が生成される。ここで、空気と酸素とのどちらも余剰とならないA/F比(ストイキ)は14.7であることも知られている。排気ガスエミッションに重点を置く場合、A/F比は14.7に設定されることが一般的である(ストイキ制御)。また、燃料消費の抑制に重点を置く場合、A/F比が18程度まで大きくされる(リーンバーン制御)。この場合、軸出力はかなり低下するため、発電機6の負荷駆動能力も低下する。ただし、発電機6で軽負荷を駆動するにはこの状態でも十分である。ワークアウト指示が入力されると、制御部9は、ストイキ制御またはリーンバーン制御を取りやめ、A/F比を12.0以上でかつ12.5以下のいずれかの値に設定する。図5が示すように、A/F比が12.0以上でかつ12.5以下の範囲では軸出力が最大となることが期待される。
 図6は回転速度と出力トルクとの関係を示している。最大の出力トルクが期待できる点火時期はMBT(Minimum-advanced for Best Torque)と呼ばれる。しかし、内燃エンジン1の回転の安定を優先するため、点火時期がMBTに設定されないことがほとんどである。そこで、ワークアウト指示が入力されると、設定部20は、点火時期をMBTに設定する。これにより、出力期待値が最大となる。
 S306で判定部29は内燃エンジン1の状態、発電機6の状態、および、タイマー28のカウント値(タイマー値)を取得する。
 S307で判定部29は内燃エンジン1がワークアウト運転を継続可能かどうかを判定する。ワークアウト運転を継続可能な条件(継続条件)は、たとえば、以下のとおりである。
・エンジン温度が温度閾値以下であること
・発電機6の現在出力が最大出力値以下であること
・スロットル余裕度が閾値以上であること
・タイマー28により計測されたワークアウト継続時間が制限時間以下であること
判定部29は内燃エンジン1がワークアウトを継続可能であると判定すると、S306に戻る。一方で、判定部29は内燃エンジン1がワークアウト運転を継続可能でないと判定すると、S308に進む。
 S308で設定部20は、メモリ22から通常運転用の制御パラメータを読み出して、スロットル制御部23、点火制御部24、ポンプ制御部27などに設定する。制御パラメータは、たとえば、目標回転速度、空燃比、点火時期の進角などを含む。
 <まとめ>
 本発明によれば、エンジンシステム100はエンジン発電機の一例である。スロットルモータ16は内燃エンジン1に供給される空気の流入量を調整するスロットルの一例である。燃料ポンプ14およびインジェクタ15は内燃エンジン1に燃料を噴射ないしは供給する噴射装置の一例である。点火装置11は内燃エンジン1において燃料と空気との混合気体に点火する点火装置の一例である。発電機6は内燃エンジン1により駆動されて発電する発電機の一例である。ACアウトレット33は発電機6により生成された電力を外部負荷(RVエアコンなど)に供給する供給部の一例である。ワークアウトスイッチ25や通信回路21などは外部負荷に対して供給部から電力を供給することを示す予告を受け付ける受付部の一例である。このように予告は大きな電力の供給開始を示唆している。制御部9は受付部に予告が受け付けられると、発電機6で供給できる電力が一時的に増強されるよう空気の流入量、燃料の噴射量に起因した空燃比および点火装置の点火時期の進角を制御する。これより、起動時において比較的に大きな電力を必要とする負荷に対して電力を供給しつつ失速もしにくいエンジン発電機が提供される。
 図2が示すようにタイマー28は予告が受け付けられると計時を開始するタイマーの一例である。制御部9は、予告が受け付けられると発電機6で供給できる電力が増強されるよう空気の流入量を増加させ、燃料の噴射量に起因した空燃比をリッチにし、かつ、点火装置の点火時期の進角を増加させる。制御部9は、タイマー28により計時された時間が所定時間以上になると、空気の流入量、燃料の噴射量に起因した空燃比、および、点火装置の点火時期の進角を元の値(例:通常運転用のパラメータ)に戻す。エアコンなど誘導電動機を用いる外部負荷は起動時に大きな電力を必要とする。ただし、大きな電力が必要となる時間はそれほど長くはない。そこで、内燃エンジン1をワークアウト回転速度で稼働させる時間を制限することで、燃料消費を低減することができる。また、内燃エンジン1の機械的な負担も軽減されよう。
 判定部29は、予告が受け付けられると、発電機6の出力が所定閾値を超えているかどうかを判定する出力判定手段の一例である。制御部9は発電機6の出力が所定閾値を超えていれば電力の一次的増強を禁止する。一方で、制御部9は、発電機6の出力が所定閾値を超えていなければ電力の一次的増強を許可する。これにより、内燃エンジン1の失速が抑制される。エアコンなどの外部負荷を接続する前に、すでに別の外部不可に発電機6が電力を供給していることも考えられる。このような場合にはエアコンなどの外部負荷に対して十分か起動電力を供給できない可能性がある。そこで、発電機6の現在出力に応じてば電力の一次的増強を禁止または許可することで、内燃エンジン1の失速が抑制される。
 温度センサ43は内燃エンジン1の温度を検知する温度センサの一例である。判定部29は、予告が受け付けられると、内燃エンジン1の温度が電力の一次的増強を許可可能な温度であるかどうかを判定する温度判定手段の一例である。制御部9は、内燃エンジン1の温度が電力の一次的増強を許可可能な温度でなければ電力の一次的増強を禁止する。また、制御部9は、内燃エンジン1の温度が電力の一次的増強を許可可能な温度であれば電力の一次的増強を許可する。これにより、内燃エンジン1の失速が抑制される。
 判定部29はスロットルの開きの余裕度が所定閾値以上かどうかを判定するスロットル判定手段の一例である。制御部9はスロットルの開きの余裕度が所定閾値以上でなければ電力の一次的増強を禁止し、スロットルの開きの余裕度が所定閾値以上であれば電力の一次的増強を許可する。これにより、スロットルの制御性を確保しつつ、内燃エンジン1の失速が抑制される。
 出力部37は電力の一次的増強を禁止すべきときに供給部に過大な外部負荷が接続されることを警告する通知を出力する出力手段の一例である。これにより、ユーザが過大な外部負荷を接続しないようになろう。
 ワークアウトスイッチ25は電力の一次的増強を要求する状態と電力の一次的増強を解除した状態とを切り替えるスイッチの一例である。通信回路21は電力の一次的増強を要求する状態と電力の一次的増強を解除した状態とを切り替える指示を受信する通信手段の一例である。
 制御部9は、発電機6で供給できる電力を一時的に増強するために空燃比を12.0以上でかつ12.5以下に設定してもよい。これは、図5が示すように12.0以上でかつ12.5以下の空燃比では軸出力が最大となることが期待されるからである。
 制御部9は、発電機6で供給できる電力を一時的に増強するために点火装置11の点火時期をMBT(ミニマムアドバンスドフォーベストトルク)に設定してもよい。MBTでは出力トルクが最大となることが期待されるからである。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。

Claims (10)

  1.  エンジンと、
     前記エンジンに供給される空気の流入量を調整するスロットルと、
     前記エンジンに燃料を噴射する噴射装置と、
     前記エンジンにおいて前記燃料と前記空気との混合気体に点火する点火装置と、
     前記エンジンにより駆動されて発電する発電機と、
     前記発電機により生成された電力を外部負荷に供給する供給部と、
     前記外部負荷に対して前記供給部から電力を供給することを示す予告を受け付ける受付部と、
     前記受付部に前記予告が受け付けられると、前記発電機で供給できる電力が一時的に増強されるよう前記空気の流入量、前記燃料の噴射量に起因した空燃比および前記点火装置の点火時期の進角を制御する制御部と、
    を有する、エンジン発電機。
  2.  前記予告が受け付けられると計時を開始するタイマーをさらに有し、
     前記制御部は、前記予告が受け付けられると前記発電機で供給できる電力が増強されるよう前記空気の流入量を増加させ、前記燃料の噴射量に起因した空燃比をリッチにし、かつ、前記点火装置の点火時期の進角を増加させ、前記タイマーにより計時された時間が所定時間以上になると、前記空気の流入量、前記燃料の噴射量に起因した空燃比、および、前記点火装置の点火時期の進角を元の値に戻す、請求項1に記載のエンジン発電機。
  3.  前記予告が受け付けられると、前記発電機の出力が所定閾値を超えているかどうかを判定する判定手段をさらに有し、
     前記制御部は前記発電機の出力が所定閾値を超えていれば前記電力の一次的増強を禁止し、前記発電機の出力が所定閾値を超えていなければ前記電力の一次的増強を許可する、請求項1または2に記載のエンジン発電機。
  4.  前記エンジンの温度を検知する温度センサと、
     前記予告が受け付けられると、前記エンジンの温度が前記電力の一次的増強を許可可能な温度であるかどうかを判定する判定手段と、
    をさらに有し、
     前記制御部は、前記エンジンの温度が前記電力の一次的増強を許可可能な温度でなければ前記電力の一次的増強を禁止し、前記エンジンの温度が前記電力の一次的増強を許可可能な温度であれば前記電力の一次的増強を許可する、請求項1または2に記載のエンジン発電機。
  5.  前記スロットルの開きの余裕度が所定閾値以上かどうかを判定する判定手段をさらに有し、
     前記制御部は前記スロットルの開きの余裕度が所定閾値以上でなければ前記電力の一次的増強を禁止し、前記スロットルの開きの余裕度が所定閾値以上であれば前記電力の一次的増強を許可する、請求項1または2に記載のエンジン発電機。
  6.  前記電力の一次的増強を禁止すべきときに前記供給部に過大な外部負荷が接続されることを警告する通知を出力する出力手段をさらに有する、請求項3ないし5のいずれか一項に記載のエンジン発電機。
  7.  前記受付部は前記電力の一次的増強を要求する状態と前記電力の一次的増強を解除した状態とを切り替えるスイッチを含む、請求項1ないし6のいずれか一項に記載のエンジン発電機。
  8.  前記受付部は前記電力の一次的増強を要求する状態と前記電力の一次的増強を解除した状態とを切り替える指示を受信する通信手段を含む、請求項1ないし6のいずれか一項に記載のエンジン発電機。
  9.  前記制御部は、前記発電機で供給できる電力を一時的に増強するために前記空燃比を12.0以上でかつ12.5以下に設定する、請求項1ないし8のいずれか一項に記載のエンジン発電機。
  10.  前記制御部は、前記発電機で供給できる電力を一時的に増強するために前記点火装置の点火時期をMBT(ミニマムアドバンスドフォーベストトルク)に設定する、請求項1ないし9のいずれか一項に記載のエンジン発電機。
PCT/JP2018/029158 2017-11-29 2018-08-03 エンジン発電機 WO2019106887A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880072701.2A CN111344477B (zh) 2017-11-29 2018-08-03 发动机发电机
US16/884,267 US11199141B2 (en) 2017-11-29 2020-05-27 Generator driven by engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-229336 2017-11-29
JP2017229336A JP6786467B2 (ja) 2017-11-29 2017-11-29 エンジン発電機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/884,267 Continuation US11199141B2 (en) 2017-11-29 2020-05-27 Generator driven by engine

Publications (1)

Publication Number Publication Date
WO2019106887A1 true WO2019106887A1 (ja) 2019-06-06

Family

ID=66663852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029158 WO2019106887A1 (ja) 2017-11-29 2018-08-03 エンジン発電機

Country Status (4)

Country Link
US (1) US11199141B2 (ja)
JP (1) JP6786467B2 (ja)
CN (1) CN111344477B (ja)
WO (1) WO2019106887A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106888A1 (ja) * 2017-11-29 2019-06-06 本田技研工業株式会社 エンジン発電機
CN113489394B (zh) * 2021-07-09 2023-08-18 钱江集团温岭正峰动力有限公司 一种发动机驱动的直流发电机控制方法及系统
CN117605589B (zh) * 2024-01-24 2024-03-29 山西汇达电信设备有限公司 一种柴油发电机的节能控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162025A (ja) * 1984-02-01 1985-08-23 Hokuetsu Kogyo Co Ltd エンジン発電機制御方法
JPH06213122A (ja) * 1993-01-22 1994-08-02 Sanshin Ind Co Ltd エンジンの点火時期制御装置
JP2009219315A (ja) * 2008-03-12 2009-09-24 Toshiba Corp 電力系統監視制御システム
JP2010048154A (ja) * 2008-08-21 2010-03-04 Yanmar Co Ltd エンジン制御装置
JP2010246297A (ja) * 2009-04-08 2010-10-28 Nippon Sharyo Seizo Kaisha Ltd 発電機の電圧切替装置
JP2013106447A (ja) * 2011-11-15 2013-05-30 Hokuetsu Kogyo Co Ltd エンジン駆動型インバータ発電機の制御方法,及びエンジン駆動型インバータ発電機

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074998A (ja) * 1983-09-29 1985-04-27 Hokuetsu Kogyo Co Ltd エンジン駆動発電機制御方式
US5218945A (en) * 1992-06-16 1993-06-15 Gas Research Institute Pro-active control system for a heat engine
JP2000027631A (ja) * 1998-07-08 2000-01-25 Honda Motor Co Ltd 電気加熱式触媒の通電制御装置
US6408625B1 (en) * 1999-01-21 2002-06-25 Cummins Engine Company, Inc. Operating techniques for internal combustion engines
JP3969623B2 (ja) * 2000-06-30 2007-09-05 本田技研工業株式会社 エンジン駆動発電装置
JP4082657B2 (ja) * 2001-07-19 2008-04-30 ヤマハモーターパワープロダクツ株式会社 インバータ式発電機
US20030144773A1 (en) * 2001-12-27 2003-07-31 Tatsuya Sumitomo Control unit for hybrid vehicle
US6943531B2 (en) * 2002-03-20 2005-09-13 Yamaha Hatsudoki Kabushiki Kaisha Portable power supply incorporating a generator driven by an engine
JP4114529B2 (ja) * 2002-07-04 2008-07-09 国産電機株式会社 内燃機関駆動車両及び内燃機関駆動車両用動力伝達装置の断続判定装置
JP2004274842A (ja) * 2003-03-06 2004-09-30 Suzuki Motor Corp 交流発電機の発電制御装置
US7259664B1 (en) * 2004-06-16 2007-08-21 Chahee Peter Cho Sensorless fuel level and oil change indicators
JP4617746B2 (ja) * 2004-07-07 2011-01-26 国産電機株式会社 電源装置を搭載した内燃機関駆動車両の制御装置
JP4481103B2 (ja) * 2004-08-10 2010-06-16 本田技研工業株式会社 車両の発電制御装置、及び、その装置を搭載した車両
JP4701081B2 (ja) * 2005-12-19 2011-06-15 日立オートモティブシステムズ株式会社 自動車,自動車の発電機制御装置及び車両駆動装置
JP4682901B2 (ja) * 2006-04-04 2011-05-11 株式会社デンソー 発電制御システム
US7598623B2 (en) * 2006-12-29 2009-10-06 Cummins Power Generation Ip, Inc. Distinguishing between different transient conditions for an electric power generation system
US7497285B1 (en) * 2007-11-15 2009-03-03 Vladimir Radev Hybrid electric vehicle
JP5647503B2 (ja) * 2010-12-09 2014-12-24 大阪瓦斯株式会社 発電設備
EP2832568B1 (en) * 2012-03-28 2019-11-27 Kubota Corporation Hybrid work vehicle
US20140358340A1 (en) * 2013-05-28 2014-12-04 Vladimir Radev Hybrid electric vehicle
HUE059817T2 (hu) * 2016-02-25 2022-12-28 Basler Electric Co Rendszer és eljárás dízelgenerátor összeállítás integrált vezérlõrendszeréhez
WO2019106888A1 (ja) * 2017-11-29 2019-06-06 本田技研工業株式会社 エンジン発電機
US10773704B1 (en) * 2019-04-03 2020-09-15 Ford Gloabal Technologies, LLC Systems and methods for controlling engine operation to support external electric loads
US10941704B2 (en) * 2019-04-03 2021-03-09 Ford Global Technologies, Llc Systems and methods for controlling engine operation to support external electric loads

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162025A (ja) * 1984-02-01 1985-08-23 Hokuetsu Kogyo Co Ltd エンジン発電機制御方法
JPH06213122A (ja) * 1993-01-22 1994-08-02 Sanshin Ind Co Ltd エンジンの点火時期制御装置
JP2009219315A (ja) * 2008-03-12 2009-09-24 Toshiba Corp 電力系統監視制御システム
JP2010048154A (ja) * 2008-08-21 2010-03-04 Yanmar Co Ltd エンジン制御装置
JP2010246297A (ja) * 2009-04-08 2010-10-28 Nippon Sharyo Seizo Kaisha Ltd 発電機の電圧切替装置
JP2013106447A (ja) * 2011-11-15 2013-05-30 Hokuetsu Kogyo Co Ltd エンジン駆動型インバータ発電機の制御方法,及びエンジン駆動型インバータ発電機

Also Published As

Publication number Publication date
CN111344477A (zh) 2020-06-26
US20200284211A1 (en) 2020-09-10
US11199141B2 (en) 2021-12-14
CN111344477B (zh) 2022-04-29
JP6786467B2 (ja) 2020-11-18
JP2019100198A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP4925976B2 (ja) 内燃機関制御装置
US20090020092A1 (en) Engine starting device
US11199141B2 (en) Generator driven by engine
US6868832B2 (en) Electronic controlled fuel injection apparatus of internal combustion engine
US9429086B2 (en) Engine control device and cogeneration apparatus employing the engine control device
CN107366599A (zh) 用于控制发动机的启动的系统
JP2010249084A (ja) 汎用内燃機関の点火制御装置
US7878173B2 (en) Control device for marine engine
JP2009019577A (ja) 内燃機関の制御装置
JP2008202557A (ja) エンジン制御方法及び制御装置
US10968849B2 (en) Engine system
EP3533993B1 (en) Method for controlling an engine unit for a straddled vehicle, engine unit and straddled vehicle
US11070154B2 (en) Engine generator
JP2013194637A (ja) エンジン制御装置
EP3608530B1 (en) Engine system
CN207715243U (zh) 一种舷外机上的电控系统
JP7263798B2 (ja) エンジン装置およびエンジン装置の制御方法
US7826955B2 (en) General-purpose internal combustion engine
JP4159040B2 (ja) 内燃エンジンの電子制御式燃料噴射装置
US11746735B2 (en) Method for controlling start of engine-driven generator
JP2019100197A (ja) 燃料噴射制御装置およびエンジンシステム
JP2014070491A (ja) ガスエンジンの始動時初期化処理装置
JP2005307855A (ja) エンジン点火装置
JP2023167604A (ja) 車両制御装置
JP2004360792A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883539

Country of ref document: EP

Kind code of ref document: A1