WO2019106795A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2019106795A1
WO2019106795A1 PCT/JP2017/043118 JP2017043118W WO2019106795A1 WO 2019106795 A1 WO2019106795 A1 WO 2019106795A1 JP 2017043118 W JP2017043118 W JP 2017043118W WO 2019106795 A1 WO2019106795 A1 WO 2019106795A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
refrigerant
pipe
compressor
heat exchanger
Prior art date
Application number
PCT/JP2017/043118
Other languages
English (en)
French (fr)
Inventor
宗希 石山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/763,801 priority Critical patent/US11635234B2/en
Priority to JP2019556487A priority patent/JP7107964B2/ja
Priority to EP17933630.0A priority patent/EP3719413A4/en
Priority to PCT/JP2017/043118 priority patent/WO2019106795A1/ja
Priority to CN201780097178.4A priority patent/CN111386434A/zh
Publication of WO2019106795A1 publication Critical patent/WO2019106795A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that recovers refrigeration oil in a refrigerant circuit to a compressor.
  • a refrigeration cycle apparatus that includes a refrigerant circuit in which a compressor, a first heat exchanger, a pressure reducing device, and a second heat exchanger are connected by a refrigerant pipe.
  • refrigeration oil may be discharged from the compressor together with the refrigerant, and refrigeration oil may stay in the refrigerant circuit.
  • the refrigeration oil stagnates in the refrigerant circuit, the amount of refrigeration oil in the compressor decreases, a load is applied to the shaft in the compressor, and the compressor is likely to break down.
  • Patent Document 1 discloses a technique for increasing the operating frequency of a compressor in order to recover refrigeration oil accumulated in a refrigerant circuit to the compressor.
  • FIG. 13 is a diagram showing time changes of the frequency of the compressor, the room temperature, and the amount of refrigerating machine oil in the compressor in the prior art.
  • the time change at the time of heating operation is shown by FIG.
  • refrigeration oil is discharged from the inside of the compressor into the refrigerant circuit when the compressor is started.
  • the compressor operates at a low frequency, refrigeration oil stagnates in the refrigerant pipe and is hardly returned to the compressor.
  • refrigerator oil in the refrigerant in the gas phase has a high viscosity and is difficult to move only by the flow of the refrigerant in the gas phase. Therefore, when the refrigeration cycle apparatus is operated intermittently, the amount of refrigeration oil in the compressor gradually decreases each time the compressor is activated, and an oil depletion state occurs in which the amount of refrigeration oil in the compressor falls below the lower limit value.
  • an oil recovery operation is performed to increase the operating frequency of the compressor.
  • An object of the present disclosure is to provide a refrigeration cycle apparatus capable of recovering refrigeration oil to a compressor while suppressing occurrence of a failure of the compressor.
  • the refrigeration cycle apparatus of the present disclosure includes a refrigerant circuit and a controller.
  • the compressor, the first heat exchanger, the pressure reducing device, and the second heat exchanger are connected by a refrigerant pipe.
  • the control device switches the operation mode of the refrigeration cycle device between the first operation mode and the second operation mode.
  • the refrigerant pipe includes a first pipe connected to one port of the first heat exchanger.
  • the first operation mode is a mode in which the refrigerant is circulated in the refrigerant circuit so that the refrigerant in the gas phase flows into the first pipe.
  • the second operation mode is a mode in which the refrigerant is circulated in the refrigerant circuit such that the refrigerant in the liquid phase state or the gas-liquid two-phase state flows to the first pipe.
  • the first pipe constitutes a flow passage between the compressor and the first heat exchanger in the first operation mode.
  • the flow direction of the refrigerant in the first pipe in the second operation mode is opposite to the flow direction of the refrigerant in the first pipe in the first operation mode.
  • refrigeration oil can be recovered to the compressor while suppressing the occurrence of a failure of the compressor.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. FIG. 7 is a diagram showing the flow direction of the refrigerant in the oil recovery operation mode in the first embodiment.
  • 5 is a flowchart showing a flow of processing of the control device 10 according to the first embodiment.
  • FIG. 7 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2. It is a figure which shows the flow of a refrigerant
  • FIG. 17 is a diagram showing the flow of the refrigerant in the cooling operation mode in the second embodiment.
  • FIG. 7 is a flowchart showing a flow of processing of a control device according to Embodiment 2; It is a figure which shows the mode of the refrigerator oil in piping when the flow velocity of the refrigerant
  • FIG. It is a figure which shows the flow of the refrigerant
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment.
  • a refrigeration cycle apparatus 100 includes a refrigerant circuit 20 in which a compressor 1, a four-way valve 2, a first heat exchanger 3, a pressure reducing device 4 and a second heat exchanger 5 are connected by refrigerant piping.
  • the refrigerant is circulated in the refrigerant circuit 20.
  • the first heat exchanger 3 is installed in a room to be air conditioned.
  • the compressor 1, the four-way valve 2, the pressure reducing device 4 and the second heat exchanger 5 are integrated as an outdoor unit and installed outdoors.
  • the refrigerant pipe includes a gas pipe 11, a liquid pipe 12, a refrigerant suction pipe 13, a refrigerant discharge pipe 14, a gas extension pipe 15, and a liquid extension pipe 16.
  • the compressor 1 is formed with a suction port 1a and a discharge port 1b.
  • Four ports E to H are formed in the four-way valve 2.
  • the first heat exchanger 3 is provided with two ports P1 and P2.
  • the second heat exchanger 5 is provided with two ports P3 and P4.
  • the gas pipe 11 connects one port P 3 of the second heat exchanger 5 and the port E of the four-way valve 2.
  • the liquid pipe 12 connects the other port P 4 of the second heat exchanger 5 and the pressure reducing device 4.
  • the refrigerant suction pipe 13 connects the port F of the four-way valve 2 to the suction port 1 a of the compressor 1.
  • the refrigerant discharge pipe 14 connects the port H of the four-way valve 2 and the discharge port 1 b of the compressor 1.
  • the gas extension pipe 15 connects the port G of the four-way valve 2 and the port P1 of the first heat exchanger 3.
  • the liquid extension pipe 16 connects the port P 2 of the first heat exchanger 3 and the pressure reducing device 4.
  • the compressor 1 compresses the refrigerant sucked from the suction port 1a, and discharges the high temperature and high pressure gas phase refrigerant from the discharge port 1b.
  • the compressor 1 is filled with a refrigerator oil for lubricating internal parts. A part of the refrigeration oil inside the compressor 1 is discharged from the discharge port 1 b together with the refrigerant when the compressor 1 is in operation.
  • the four-way valve 2 is controlled by the control device 10 described later to be in either the heating operation state or the cooling operation state.
  • the heating operation state the port E and the port F communicate with each other, and the port G and the port H communicate with each other.
  • the port E and the port H are in communication, and the port F and the port G are in communication.
  • the first heat exchanger 3 exchanges heat between the refrigerant and the room air.
  • the first heat exchanger 3 operates as an evaporator in the cooling operation, and operates as a condenser in the heating operation.
  • the first heat exchanger 3 blows room air toward the fins, for example, a heat transfer pipe for passing the refrigerant, a fin for increasing the heat transfer area between the refrigerant flowing through the heat transfer pipe and the room air, and And a blower.
  • the pressure reducing device 4 expands and reduces the pressure of the refrigerant passing therethrough.
  • the pressure reducing device 4 is formed of, for example, an electronic expansion valve capable of changing the opening degree.
  • the second heat exchanger 5 exchanges heat between the refrigerant and the outdoor air.
  • the second heat exchanger 5 operates as a condenser in the cooling operation, and operates as an evaporator in the heating operation.
  • the second heat exchanger 5 blows room air toward the fins and a fin for increasing a heat transfer area between the refrigerant flowing through the heat transfer tube and the room air, and a heat transfer tube through which the refrigerant passes. And a blower.
  • the refrigeration cycle apparatus 100 further includes a timer 50, a sensor 51, and the control device 10.
  • the timer 50 counts the operating time of the compressor 1.
  • the sensor 51 detects the degree of superheat of the refrigerant between the gas extension pipe 15 and the first heat exchanger 3.
  • the sensor 51 measures the temperature and pressure of the refrigerant, and calculates the degree of superheat from the measured temperature and pressure.
  • Control device 10 controls refrigerant circuit 20 to switch the operation mode of refrigeration cycle device 100.
  • the control device 10 includes a central processing unit (CPU), a storage device, an input / output buffer, and the like (all are not shown).
  • the CPU executes the program stored in the storage device to switch the operation mode of the refrigeration cycle apparatus 100.
  • the control device 10 When receiving the cooling operation instruction, the control device 10 controls the four-way valve 2 to the cooling operation state, and operates the refrigeration cycle apparatus 100 in the cooling operation mode.
  • the refrigerant is the compressor 1, the refrigerant discharge pipe 14, the four-way valve 2, the gas pipe 11, the second heat exchanger 5, the liquid pipe 12, the pressure reducing device 4, the liquid extension pipe 16, the first heat exchanger 3, the gas extension pipe 15, the four-way valve 2, and the refrigerant suction pipe 13 circulate in this order.
  • the control device 10 receives the heating operation instruction, the control device 10 controls the four-way valve 2 to the heating operation state, and operates the refrigeration cycle apparatus 100 in the heating operation mode.
  • the refrigerant is the compressor 1, the refrigerant discharge pipe 14, the four-way valve 2, the gas extension pipe 15, the first heat exchanger 3, the liquid extension pipe 16, the pressure reducing device 4, the liquid pipe 12, the second heat exchange , The gas pipe 11, the four-way valve 2, and the refrigerant suction pipe 13 in this order.
  • the flow direction of the refrigerant in the heating operation mode is indicated by an arrow.
  • the first heat exchanger 3 is installed indoors, and the compressor 1, the four-way valve 2, the pressure reducing device 4 and the second heat exchanger 5 are installed outdoors. Therefore, the gas extension pipe 15 and the liquid extension pipe 16 are longer than the gas pipe 11, the liquid pipe 12, the refrigerant suction pipe 13, and the refrigerant discharge pipe 14. Furthermore, when the first heat exchanger 3 is installed at a position higher than the outdoor unit, at least a part of the gas extension pipe 15 and the liquid extension pipe 16 is disposed along the vertical direction. Therefore, when the refrigeration cycle apparatus 100 is operating in the heating operation mode, the refrigerator oil discharged together with the refrigerant in the gas phase state from the compressor 1 can pass through the gas extension pipe 15 extending long and upward. As a result, the gas is easily retained in the gas extension pipe 15. Therefore, the controller 10 switches the operation mode of the refrigeration cycle apparatus 100 between the heating operation mode and the oil recovery operation mode in order to recover the refrigeration oil accumulated in the gas extension pipe 15 in the compressor 1.
  • FIG. 2 is a diagram showing the flow direction of the refrigerant in the oil recovery operation mode in the first embodiment.
  • the control device 10 controls the four-way valve 2 to the cooling operation state. Therefore, the refrigerant circulates through the refrigerant circuit 20 as in the cooling operation mode. That is, the refrigerant flows in the opposite direction to the heating operation mode.
  • the gas extension pipe 15 is disposed upward toward the first heat exchanger 3
  • the flow direction of the refrigerant in the gas extension pipe 15 is oil recovery while it is upward in the heating operation mode. In the operation mode, it is downward.
  • refrigeration oil accumulated in the gas extension pipe 15 can be easily returned to the compressor 1.
  • control device 10 controls the refrigerant circuit 20 so that the degree of superheat output from the sensor 51 becomes 0 K or less.
  • the control device 10 controls the degree of pressure reduction of the pressure reducing device 4 or controls the heat exchange capacity of the first heat exchanger 3.
  • the degree of pressure reduction of the pressure reducing device 4 is controlled by the degree of opening of the pressure reducing device 4 which is an expansion valve.
  • the gas-liquid two-phase refrigerant flows through the gas extension pipe 15.
  • the refrigeration oil accumulated in the gas extension pipe 15 dissolves in the refrigerant in the gas-liquid two-phase state and easily moves, and is easily recovered by the compressor 1.
  • the control device 10 switches the operation mode every specified time based on the integrated value of the operation time counted by the timer 50. Specifically, when the heating operation mode continues for the first specified time, the control device 10 switches the operation mode of the refrigeration cycle device to the oil recovery operation mode. The control device 10 switches the operation mode of the refrigeration cycle apparatus to the heating operation mode when the oil recovery operation mode continues for the second specified time.
  • FIG. 3 is a flowchart showing the flow of processing of the control device 10 according to the first embodiment.
  • FIG. 3 shows the process when the heating operation instruction is received.
  • the control device 10 receives a heating operation instruction.
  • the control device 10 controls the four-way valve 2 to the heating operation state, and starts the operation in the heating operation mode.
  • the control device 10 controls the timer 50 to start counting operation time.
  • step S4 the control device 10 determines whether or not the integrated value A of the operating time is less than the first specified time B. If the integrated value A of the operating time is less than the first prescribed time B (YES in step S4), the process returns to step S4. If the integrated value A of the operating time is equal to or greater than the first specified time B (NO in step S4), the control device 10 switches the operating mode of the refrigeration cycle apparatus 100 to the oil recovery operating mode in step S5. That is, the control device 10 switches the four-way valve 2 to the cooling operation state.
  • control device 10 resets the integrated value A of the operation time to 0 in step S6, and acquires the degree of superheat indicating the refrigerant state between the gas extension pipe 15 and the first heat exchanger 3 from the sensor 51 in step S7. Do.
  • step S8 the control device 10 determines whether the degree of superheat acquired from the sensor 51 is 0 K or less. If the degree of superheat is greater than 0 K (NO in step S8), control device 10 controls refrigerant circuit 20 so that the degree of superheat decreases in step S9. For example, the controller 10 increases the opening degree of the pressure reducing device 4. Alternatively, the control device 10 weakens the blowing amount of the blower of the first heat exchanger 3.
  • control device 10 determines whether integrated value A of the operating time is less than second prescribed time C or not in step S10.
  • the integrated value A of the operating time indicates the elapsed time from step S6. If the degree of superheat is 0 K or less (YES in step S8), the process also proceeds to step S10. If the integrated value A of the operating time is less than the second specified time C (YES in step S10), the process returns to step S7. That is, control is performed so that the refrigerant between the gas extension pipe 15 and the first heat exchanger 3 is in a gas-liquid two-phase state until the second specified time C elapses after the oil recovery operation mode is started. Be done.
  • the refrigerant in the gas-liquid two-phase state continues to flow through the gas extension pipe 15 in the opposite direction to the heating operation mode.
  • the refrigeration oil accumulated in the gas extension pipe 15 in the heating operation mode moves with the refrigerant in the gas-liquid two-phase state in the oil recovery operation mode, and is recovered by the compressor 1.
  • step S10 When the integrated value A of the operating time becomes equal to or greater than the second prescribed time C (NO in step S10), the control device 10 returns the operating mode of the refrigeration cycle apparatus 100 to the heating operation mode in step S11. Reset integrated value A to 0. After step S12, the process returns to step S4.
  • the refrigeration cycle apparatus 100 includes the refrigerant circuit 20 and the control device 10.
  • the refrigerant circuit 20 is a circuit in which the compressor 1, the first heat exchanger 3, the pressure reducing device 4 and the second heat exchanger 5 are connected by a refrigerant pipe.
  • the control device 10 switches the operation mode of the refrigeration cycle apparatus 100 between the heating operation mode (first operation mode) and the oil recovery operation mode (second operation mode).
  • the refrigerant pipe includes a gas extension pipe (first pipe) 15 connected to the port (first port) P1 of the first heat exchanger 3.
  • the heating operation mode is a mode in which the refrigerant is circulated in the refrigerant circuit 20 so that the refrigerant in the gas phase flows into the gas extension pipe 15.
  • the oil recovery operation mode is a mode in which the refrigerant is circulated in the refrigerant circuit 20 so that the gas-liquid two-phase refrigerant flows into the gas extension pipe 15.
  • the gas extension pipe 15 constitutes a flow path between the compressor 1 and the first heat exchanger 3 in the heating operation mode.
  • the flow direction of the refrigerant in the gas extension pipe 15 in the oil recovery operation mode is opposite to the flow direction of the refrigerant in the gas extension pipe 15 in the heating operation mode.
  • the gas extension piping 15 comprises the flow path between the compressor 1 and the 1st heat exchanger 3 in heating operation mode.
  • the refrigeration oil discharged from the compressor 1 flows in the gas extension pipe 15 together with the refrigerant in the gas phase.
  • refrigerator oil is hard to move because it has high viscosity.
  • the refrigerator oil becomes more difficult to move. As a result, refrigeration oil stagnates in the gas extension pipe 15.
  • the controller 10 switches the operation mode of the refrigeration cycle apparatus 100 between the heating operation mode and the oil recovery operation mode in order to recover the refrigeration oil accumulated in the gas extension pipe 15 in the compressor 1.
  • the gas-liquid two-phase refrigerant flows into the gas extension pipe 15.
  • Refrigerant oil dissolves in the gas-liquid two-phase refrigerant and becomes easy to move. Therefore, it becomes easy to collect refrigeration oil which has been stagnated in the compressor 1.
  • the flow direction of the refrigerant in the gas extension pipe 15 in the oil recovery operation mode is opposite to the flow direction of the refrigerant in the gas extension pipe 15 in the heating operation mode. Therefore, even if the gas extension pipe 15 is disposed vertically upward toward the first heat exchanger 3, refrigeration oil can be easily recovered to the compressor 1.
  • the refrigeration oil can be recovered to the compressor 1 without raising the operating frequency of the compressor 1 in a state where the refrigeration oil is small. That is, while suppressing generation
  • the refrigeration cycle apparatus 100 further includes a sensor 51 for detecting the state of the refrigerant between the gas extension pipe 15 and the first heat exchanger 3.
  • the refrigerant circuit 20 includes a four-way valve 2 for switching the flow direction of the refrigerant in the refrigerant circuit 20.
  • the control device 10 controls the four-way valve 2 to switch between the heating operation mode and the oil recovery operation mode.
  • the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the gas extension pipe 15, the first heat exchanger 3, the pressure reducing device 4, the second heat exchanger 5, and the four-way valve 2 (gas pipe 11
  • the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the second heat exchanger 5, the pressure reducing device 4, the first heat exchanger 3, the gas extension pipe 15 and the four-way valve 2.
  • the control device 10 controls the refrigerant circuit 20 so that the state detected by the sensor 51 indicates a gas-liquid two-phase state in the oil recovery operation mode.
  • the control device 10 may control the degree of pressure reduction of the pressure reducing device 4 or the heat exchange capacity of the first heat exchanger 3.
  • control device 10 controls the four-way valve 2 to reverse the flow direction of the refrigerant in the gas extension pipe 15 in the oil recovery operation mode to the flow direction of the refrigerant in the gas extension pipe 15 in the heating operation mode.
  • the control device 10 can reliably cause the gas-liquid two-phase refrigerant to flow through the gas extension pipe 15.
  • the control device 10 switches the operation mode of the refrigeration cycle apparatus 100 to the oil recovery operation mode when the heating operation mode continues for the first prescribed time B, and performs refrigeration when the oil recovery operation mode continues for the second prescribed time C.
  • the operation mode of the cycle apparatus 100 is switched to the heating operation mode.
  • the operation mode is switched every specified time, so that the refrigeration oil accumulated in the gas extension pipe 15 is periodically collected by the compressor 1.
  • FIG. 4 is a schematic configuration diagram of a refrigeration cycle apparatus according to a second embodiment.
  • a refrigeration cycle apparatus 100 a according to the second embodiment includes a refrigerant circuit 20 a instead of the refrigerant circuit 20 as compared to the refrigeration cycle apparatus 100 according to the first embodiment, and a control device 10.
  • the controller 10a is provided instead of the controller 10a.
  • the refrigerant circuit 20a is different from the refrigerant circuit 20 shown in FIG. 1 in that the refrigerant circuit 20a includes the flow path switching circuit 8.
  • the flow path switching circuit 8 includes four gate valves 81 to 84.
  • the gate valve 81 is disposed between the port G of the four-way valve 2 and the gas extension pipe 15 to open and close the flow path between the two.
  • the gate valve 82 is disposed between the port G of the four-way valve 2 and the liquid extension pipe 16 to open and close the flow path between the two.
  • the gate valve 83 is disposed between the pressure reducing device 4 and the gas extension pipe 15 to open and close the flow path between them.
  • the gate valve 84 is disposed between the pressure reducing device 4 and the liquid extension pipe 16 to open and close the flow path between them.
  • the control device 10a controls the four-way valve 2 and the flow path switching circuit 8 to switch the operation mode of the refrigeration cycle apparatus 100a to any of the heating operation mode, the cooling operation mode, and the oil recovery operation mode.
  • the heating operation mode and the cooling operation mode are collectively referred to as a normal operation mode.
  • control device 10a controls the four-way valve 2 to switch from the cooling operation mode to the heating operation mode or from the heating operation mode to the cooling operation mode.
  • control device 10a controls the flow path switching circuit 8 to switch the operation mode of the refrigeration cycle apparatus 100a between the normal operation mode (the cooling operation mode or the heating operation mode) and the oil recovery operation mode.
  • the control device 10a controls the gate valves 81 and 84 in the open state and the gate valves 82 and 83 in the closed state in the normal operation mode.
  • the compressor 1 and the gas extension pipe 15 are connected, and the pressure reducing device 4 and the liquid extension pipe 16 are connected. Connected (first connection state).
  • the control device 10a controls the gate valves 81 and 84 in the closed state and the gate valves 82 and 83 in the open state.
  • the control device 10a controls the gate valves 81 and 84 in the closed state and the gate valves 82 and 83 in the open state.
  • the compressor 1 and the liquid extension pipe 16 are connected, and the pressure reducing device 4 and the gas extension pipe 15 are connected. Connected (second connection state).
  • the flow of the refrigerant in the heating operation mode is indicated by an arrow.
  • the refrigerant is the compressor 1, the four-way valve 2, the gate valve 81, the gas extension pipe 15, the first heat exchanger 3, the liquid extension pipe 16, the gate valve 84, the pressure reduction
  • the apparatus 4, the second heat exchanger 5 and the four-way valve 2 circulate in this order.
  • FIG. 5 is a diagram showing the flow of the refrigerant when the heating operation mode is switched to the oil recovery operation mode.
  • the refrigerant is the compressor 1, the four-way valve 2, the gate valve 82, the liquid extension pipe 16, the first heat exchanger 3, the gas extension pipe 15, The gate valve 83, the pressure reducing device 4, the second heat exchanger 5, and the four-way valve 2 circulate in this order.
  • the flow direction of the refrigerant in the gas extension pipe 15 in the oil recovery operation mode is opposite to the flow direction of the refrigerant in the gas extension pipe 15 in the heating operation mode.
  • the flow direction of the refrigerant in the gas extension pipe 15 is oil recovery while it is upward in the heating operation mode. In the operation mode, it is downward.
  • refrigeration oil accumulated in the gas extension pipe 15 in the heating operation mode can be easily returned to the compressor 1.
  • the refrigerant in the liquid phase or gas-liquid two-phase state condensed in the first heat exchanger 3 flows through the gas extension pipe 15.
  • the refrigeration oil accumulated in the gas extension pipe 15 dissolves in the liquid phase or the gas-liquid two-phase refrigerant and moves easily, and the pressure reducing device 4, the second heat exchanger 5 and the four-way valve 2 It passes and is easily recovered to the compressor 1.
  • FIG. 6 is a diagram showing the flow of the refrigerant in the cooling operation mode in the second embodiment.
  • the refrigerant in the cooling operation mode, is the compressor 1, the four-way valve 2, the second heat exchanger 5, the pressure reducing device 4, the gate valve 84, the liquid extension piping 16, the first heat exchanger 3. , The gas extension pipe 15, the gate valve 81, and the four-way valve 2 in this order.
  • the refrigerant in the liquid phase or the gas-liquid two-phase state flowing in the liquid extension pipe 16 is evaporated by the first heat exchanger 3, and the refrigerant in the gas phase flows in the gas extension pipe 15.
  • Refrigerating machine oil which has been dissolved in the liquid phase or gas-liquid two phase refrigerant in the liquid extension pipe 16 is separated from the refrigerant in the first heat exchanger 3 and may stay in the gas extension pipe 15. Therefore, the operation mode of the refrigeration cycle apparatus 100a is switched between the cooling operation mode and the oil recovery operation mode.
  • FIG. 7 is a diagram showing the flow of the refrigerant when the cooling operation mode is switched to the oil recovery operation mode.
  • the refrigerant is received by the compressor 1, the four-way valve 2, the second heat exchanger 5, the pressure reducing device 4, the gate valve 83, the gas extension pipe 15, 1 Heat exchanger 3, liquid extension pipe 16, gate valve 82 and four-way valve 2 circulate in this order.
  • the flow direction of the refrigerant in the gas extension pipe 15 in the oil recovery operation mode is opposite to the flow direction of the refrigerant in the gas extension pipe 15 in the cooling operation mode. Furthermore, in the oil recovery operation mode, the refrigerant in the liquid phase or in the gas-liquid two-phase state flows through the gas extension pipe 15. Thus, the refrigeration oil accumulated in the gas extension pipe 15 in the cooling operation mode can be recovered to the compressor 1.
  • FIG. 8 is a flowchart showing the process flow of the control device 10a according to the second embodiment.
  • the control device 10a receives an instruction for normal operation (cooling operation or heating operation).
  • the control device 10a controls the four-way valve 2 according to the instruction and starts operation in the normal operation mode. That is, when the control device 10a receives the cooling operation instruction, it controls the four-way valve 2 to the cooling operation state to start the operation in the cooling operation mode, and receives the heating operation instruction.
  • the heating operation mode is controlled to start the operation in the heating operation mode.
  • the control device 10a controls the gate valves 81 and 84 in the open state and the gate valves 82 and 83 in the closed state.
  • the control device 10a controls the timer 50 to start counting operation time.
  • step S24 the control device 10a determines whether the integrated value A of the operating time is less than the first specified time B. If the integrated value A of the operating time is less than the first prescribed time B (YES in step S24), the process returns to step S24.
  • the controller 10a switches the operating mode of the refrigeration cycle apparatus 100a to the oil recovery operating mode in step S25. That is, the control device 10a controls the gate valves 81 and 84 in the closed state and the gate valves 82 and 83 in the open state. Further, in step S26, the control device 10a resets the integrated value A of the operating time to zero.
  • step S26 the control device 10a determines whether or not the integrated value A of the operating time is less than the second specified time C in step S27.
  • the integrated value A of the operation time indicates the elapsed time from step S26, that is, the continuation time of the oil recovery operation mode. If the integrated value A of the operating time is less than the second specified time C (YES in step S27), the process returns to step S26. That is, the flow direction of the refrigerant in the gas extension pipe 15 is opposite to the flow direction in the normal operation mode until the second specified time C elapses after the oil recovery operation mode is started. Furthermore, a refrigerant in a liquid phase or in a gas-liquid two-phase state flows through the gas extension pipe 15. As a result, the refrigeration oil accumulated in the gas extension pipe 15 in the normal operation mode is recovered by the compressor 1 in the oil recovery operation mode.
  • control device 10a When integrated value A of the operating time becomes equal to or greater than second prescribed time C (YES in step S27), control device 10a returns the operating mode of refrigeration cycle apparatus 100a to the normal operating mode in step S28, and in step S29 Reset integrated value A to 0. After step S29, the process returns to step S24.
  • the refrigerant circuit 20a of the refrigeration cycle apparatus 100a has the flow path switching circuit 8 configured to switch the connection state of the compressor 1, the pressure reducing device 4, the gas extension pipe 15, and the liquid extension pipe 16.
  • the liquid extension pipe 16 is a pipe connected to the port (second port) P2 of the first heat exchanger 3.
  • the flow path switching circuit 8 switches the connection state between the compressor 1, the pressure reducing device 4, the gas extension pipe 15, and the liquid extension pipe 16 to either the first connection state or the second connection state.
  • the first connection state is a state in which the compressor 1 and the gas extension pipe 15 are connected via the four-way valve 2 and the pressure reducing device 4 and the liquid extension pipe 16 are connected.
  • the second connection state is a state in which the compressor 1 and the liquid extension pipe 16 are connected via the four-way valve 2 and the pressure reducing device 4 and the gas extension pipe 15 are connected.
  • the control device 10a switches the operation mode of the refrigeration cycle apparatus 100a to the normal operation mode by switching the flow path switching circuit 8 to the first connection state.
  • the control device 10a switches the operation mode of the refrigeration cycle apparatus 100a to the oil recovery operation mode by switching the flow path switching circuit 8 to the second connection state.
  • the refrigerant is the compressor 1, the four-way valve 2, the gate valve 81, the gas extension pipe 15, the first heat exchange , The liquid extension pipe 16, the gate valve 84, the pressure reducing device 4, the second heat exchanger 5, and the four-way valve 2 in this order (heating operation mode).
  • the refrigerant is the compressor 1, the four-way valve 2, the gate valve 82, the liquid extension pipe 16, the first heat exchanger 3, the gas extension pipe 15, the gate valve 83, the pressure reducing device 4, the second heat exchanger 5, and the four-way valve 2 circulate in this order (oil recovery operation mode).
  • the refrigerant is the compressor 1, the four-way valve 2, the second heat exchanger 5, the pressure reducing device 4, the gate valve 84, the liquid extension piping 16, the first heat exchanger 3, the gas extension piping 15, the gate valve 81, and the four-way valve 2 are circulated in this order (cooling operation mode).
  • the refrigerant is the compressor 1, the four-way valve 2, the second heat exchanger 5, the pressure reducing device 4, the gate valve 83, the gas extension pipe 15, the first heat The exchanger 3, the liquid extension pipe 16, the gate valve 82, and the four-way valve 2 circulate in this order (oil recovery operation mode).
  • the control device 10a sets the operation mode of the refrigeration cycle apparatus 100 to the normal operation mode (heating operation mode or cooling operation mode) Switch between the recovery operation mode.
  • the refrigerant in the liquid phase or in the gas-liquid two-phase state flows to the gas extension pipe 15.
  • Refrigerant oil dissolves in a liquid phase or a gas-liquid two-phase refrigerant and becomes easy to move.
  • the flow direction of the refrigerant in the gas extension pipe 15 in the oil recovery operation mode is opposite to the flow direction of the refrigerant in the gas extension pipe 15 in the normal operation mode.
  • the refrigeration oil can be easily recovered to the compressor 1.
  • the refrigeration oil can be recovered to the compressor 1 without raising the operating frequency of the compressor 1 in a state where the refrigeration oil is small. That is, refrigeration oil can be recovered to the compressor without applying a large load to the compressor.
  • the order in which the refrigerant flows through the compressor, the first heat exchanger, the pressure reducing device and the second heat exchanger is the same in the normal operation mode and the oil recovery operation mode. Therefore, the first heat exchanger operating as the evaporator in the normal operation mode can operate as the evaporator even in the oil recovery operation mode. Similarly, the first heat exchanger operating as a condenser in the normal operation mode can operate as a condenser also in the oil recovery operation mode. Thereby, the fall of comfort in a room can be controlled in oil recovery operation mode. Further, as shown in FIG. 13, in the oil recovery operation of the prior art, the room temperature temporarily deviates from the target value to reduce the comfortability in order to increase the operation frequency of the compressor. However, in the refrigeration cycle apparatus 100a according to the second embodiment, since the operating frequency of the compressor 1 is not changed when switching from the normal operation mode to the oil recovery operation mode, it is possible to suppress the decrease in comfort.
  • FIG. 9 is a view showing the state of the refrigerating machine oil in the pipe when the flow velocity Ug of the refrigerant in the gas phase is equal to or higher than the oil rising limit velocity Ug *.
  • the refrigerator oil 30 rises along the wall of the pipe.
  • the inner diameter di of at least a part of the gas extension pipe 15 satisfy the following equation (2).
  • Uga represents the flow rate of the refrigerant in the gas phase when the compressor 1 is operated at the minimum operating frequency.
  • the right side of Formula (2) shows oil rising limit speed Ug *.
  • FIG. 10 is a view showing the state of the refrigerator oil in the gas extension pipe according to the first modification.
  • the inside of the gas extension pipe 15 is frozen when the inner diameter di of the portion 15a of the gas extension pipe 15 satisfies the above equation (2) and the inner diameter of the remaining portion 15b does not satisfy the above equation (2).
  • the machine oil is shown.
  • the compressor 1 is operated at the minimum operating frequency.
  • the flow velocity Uga of the refrigerant in the portion 15a is less than the oil rising limit velocity Ug *. Therefore, as shown in FIG. 10, the refrigerator oil 30 tends to stay in the portion 15a.
  • the flow velocity Ugb of the refrigerant in the portion 15b is equal to or higher than the oil rising limit velocity Ug *. Therefore, the refrigerator oil 30 hardly stagnates in the portion 15b. Furthermore, since most of the refrigeration oil 30 discharged from the compressor 1 stays in the portion 15a, the amount of refrigeration oil 30 flowing into the downstream portion 15b of the portion 15a is small.
  • the refrigeration oil 30 retained in the portion 15 a of the gas extension pipe 15 is dissolved in the liquid phase or gas-liquid two-phase refrigerant in the oil recovery operation mode, and is easily recovered by the compressor 1. Therefore, the reliability of the compressor 1 can be improved.
  • control device 10 may set the minimum operating frequency of compressor 1 as follows.
  • the controller 10 is configured such that the flow velocity Ugc of the refrigerant in the gas extension pipe 15 when operating the compressor 1 at the minimum operating frequency is less than the oil rising limit velocity Ug * represented by the above equation (1). , Set the minimum operating frequency of the compressor 1.
  • FIG. 11 is a view showing the state of the refrigerator oil in the gas extension pipe according to the second modification.
  • the flow velocity Ugc of the refrigerant is less than the oil rising limit velocity Ug *. Therefore, as shown in FIG. 11, when at least a part of the gas extension pipe 15 is vertically disposed from the outdoor unit toward the first heat exchanger 3, the refrigerator oil 30 is formed on the wall surface of the gas extension pipe 15. Stay. By retaining most of the refrigeration oil 30 discharged from the compressor 1 in the gas extension piping 15, pressure loss and heat transfer performance deterioration due to the residence of the refrigeration oil 30 in portions other than the gas extension piping 15 in the refrigerant circuit 20 It can be suppressed. As a result, the air conditioning performance of the refrigeration cycle apparatus 100 can be improved.
  • the refrigeration oil 30 retained in the gas extension pipe 15 is dissolved in the liquid phase or gas-liquid two-phase refrigerant in the oil recovery operation mode, and is easily recovered by the compressor 1. Therefore, the reliability of the compressor 1 can be improved.
  • control device 10a is configured such that the flow velocity Ugc of the refrigerant in gas extension piping 15 when compressor 1 is operated at the minimum operating frequency is less than the oil rising limit velocity Ug *.
  • the minimum operating frequency of the compressor 1 may be set.
  • control device 10a controls the flow path switching circuit 8 to control the flow direction of the refrigerant and the flow of air in the first heat exchanger 3 in any of the heating operation mode and the cooling operation mode.
  • the direction may be opposed.
  • the heat exchange capacity of the first heat exchanger 3 can be enhanced.
  • FIG. 12 is a diagram showing the flow of the refrigerant before and after switching from the heating operation to the cooling operation.
  • the flow direction AD of air by the blower 3c of the first heat exchanger 3 is a direction from the port P2 of the first heat exchanger 3 toward the port P1.
  • the control device 10 a places the four-way valve 2 in the heating operation state, and the flow path switching circuit 8 in the first connection state (separator valves 81 and 84 open; , 83 in the closed state).
  • the refrigerant is the compressor 1, the four-way valve 2, the gate valve 81, the gas extension pipe 15, the first heat exchanger 3, the liquid extension pipe 16, the gate valve 84, the pressure reducing device 4, the second heat exchanger 5 and It circulates in order of the four-way valve 2. Therefore, in the first heat exchanger 3, the flow direction of the refrigerant (the direction from the port P1 toward the port P2) faces the flow direction AD of the air.
  • the control device 10a places the four-way valve 2 in the cooling operation state and the flow path switching circuit 8 in the second connection state (the partition valves 81 and 84 are closed, the gate valve 82 , 83 in the open state).
  • the refrigerant is compressed into the compressor 1, the four-way valve 2, the second heat exchanger 5, the pressure reducing device 4, the gate valve 83, the gas extension pipe 15, the first heat exchanger 3, the liquid extension pipe 16, and the gate valve 82. And circulate in the order of the four-way valve 2.
  • the flow direction of the refrigerant (the direction from the port P1 to the port P2) in the first heat exchanger 3 opposes the flow direction AD of the air.
  • the heat exchange capacity of the first heat exchanger 3 can be improved in both the heating operation and the cooling operation.
  • the gate valves 81 to 84 are controlled reversely to the above. Be done. That is, in the cooling operation mode, the control device 10a sets the four-way valve 2 in the cooling operation state, the flow path switching circuit 8 in the first connection state (the partition valves 81 and 84 open, and the partition valves 82 and 83 close) Control).
  • the refrigerant is the compressor 1, the four-way valve 2, the second heat exchanger 5, the pressure reducing device 4, the gate valve 84, the liquid extension pipe 16, the first heat exchanger 3, the gas extension pipe 15, the gate valve 81 and It circulates in order of the four-way valve 2.
  • the control device 10a places the four-way valve 2 in the heating operation state and the flow path switching circuit 8 in the second connection state (the gate valve 81, 84 is closed, gate valve 82 , 83 in the open state).
  • the refrigerant is compressed into the compressor 1, the four-way valve, the gate valve 82, the liquid extension pipe 16, the first heat exchanger 3, the gas extension pipe 15, the gate valve 83, the pressure reducing device 4, the second heat exchanger 5, and It circulates in order of the valve 2.
  • the flow direction of the refrigerant in the first heat exchanger 3 and the flow direction of the air face each other.
  • the heat exchange capacity of the first heat exchanger 3 can be improved in both the heating operation and the cooling operation.
  • the control device 10 switches between the heating operation mode and the oil recovery operation mode based on the operation time of the compressor 1.
  • the refrigeration cycle apparatus 100 includes a measuring device for measuring the amount of refrigeration oil in the compressor 1, and the control device 10 performs the heating operation mode and the oil recovery operation based on the amount of refrigeration oil measured by the measuring device.
  • the mode may be switched. Specifically, the control device 10 switches from the heating operation mode to the oil recovery operation mode when the amount of refrigeration oil becomes less than the first threshold. Furthermore, the control device 10 switches from the oil recovery operation mode to the heating operation mode after operating the oil recovery operation mode for a specified time or when the amount of refrigeration oil exceeds the second threshold (> first threshold). return.
  • control device 10a may switch between the normal operation mode and the oil recovery operation mode based on the amount of refrigeration oil in the compressor 1.
  • the flow path switching circuit 8 is configured by four gate valves 81 to 84. However, if the flow path switching circuit 8 can switch the connection state between the compressor 1, the pressure reducing device 4, the gas extension pipe 15, and the liquid extension pipe 16 to either the first connection state or the second connection state, It may be composed of another member.
  • the flow path switching circuit 8 may be configured by a four-way valve.
  • an accumulator may be installed in the refrigerant suction pipe 13 in order to prevent the refrigerant in the liquid phase from being drawn into the compressor 1.
  • an oil recovery unit for recovering refrigeration oil may be installed in the gas extension pipe 15. In this case, refrigeration oil is recovered by the oil recovery unit in the normal operation mode, and refrigeration oil is returned from the oil recovery unit to the compressor in the oil recovery operation mode.
  • Reference Signs List 1 compressor, 1a suction port, 1b discharge port, 2 four-way valve, 3 first heat exchanger, 3c fan, 4 pressure reducing device, 5 second heat exchanger, 8 flow path switching circuit, 10, 10a control device, 11 Gas pipes, 12 liquid pipes, 13 refrigerant suction pipes, 14 refrigerant discharge pipes, 15 gas extension pipes, 15a, 15b parts, 16 liquid extension pipes, 20, 20a refrigerant circuits, 50 timers, 51 sensors, 81 to 84 gate valves, 100, 100a Refrigeration cycle equipment, E to H, P1 to P4 ports.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

制御装置(10)は、暖房運転の指示を受けると、冷凍サイクル装置(100)の運転モードを暖房運転モードと油回収運転モードとの間で切り替える。暖房運転モードは、気相状態の冷媒がガス延長配管(15)に流れるように冷媒回路(20)内に冷媒を循環させるモードである。油回収運転モードは、気液二相状態の冷媒がガス延長配管(15)に流れるように冷媒回路(20)内に冷媒を循環させるモードである。油回収運転モードにおけるガス延長配管(15)内の冷媒の流れ方向は、暖房運転モードにおけるガス延長配管(15)内の冷媒の流れ方向と逆である。

Description

冷凍サイクル装置
 本開示は、冷凍サイクル装置に関し、特に、冷媒回路内の冷凍機油を圧縮機に回収する冷凍サイクル装置に関する。
 従来、圧縮機、第1熱交換器、減圧装置および第2熱交換器が冷媒配管によって接続された冷媒回路を備えた冷凍サイクル装置が知られている。このような冷凍サイクル装置では、圧縮機から冷媒とともに冷凍機油が吐出され、冷媒回路に冷凍機油が滞留することがある。冷凍機油が冷媒回路に滞留すると、圧縮機内の冷凍機油量が減少し、圧縮機内の軸に負荷がかかって圧縮機が故障しやすくなる。
 特開2008-180421号公報(特許文献1)には、冷媒回路に滞留した冷凍機油を圧縮機に回収するために、圧縮機の運転周波数を上げる技術が開示されている。
特開2008-180421号公報
 近年、高断熱、高気密化建物の増加により、冷凍サイクル装置を断続運転させる頻度が高い。断続運転とは、空調対象となる室内の温度と目標温度との差が小さく、圧縮機を断続的に動作させる運転である。図13は、従来技術における、圧縮機の周波数、室内温度および圧縮機内の冷凍機油量の時間変化を示す図である。図13には暖房運転のときの時間変化が示される。図13に示されるように、圧縮機を起動するときに圧縮機内から冷凍機油が冷媒回路内へと吐出される。しかしながら、圧縮機が低周波数で動作するために冷媒配管に冷凍機油が滞留し、圧縮機にほとんど返油されない。特に、気相状態の冷媒中の冷凍機油は、高い粘度を有し、気相状態の冷媒の流れだけでは移動しにくい。そのため、冷凍サイクル装置を断続運転させると、圧縮機が起動するたびに、圧縮機内の冷凍機油量が徐々に低下し、圧縮機内の冷凍機油量が下限値を下回る油枯渇状態が生じる。特開2008-180421号公報に記載の従来技術では、運転時間の積算値が規定時間となった場合に、圧縮機の運転周波数を上げる油回収運転が実施される。
 しかしながら、冷凍機油が少ない状態で圧縮機の運転周波数を上げるため、圧縮機に負荷がかかり、軸かじりなどの圧縮機故障が生じやすくなる。
 本開示の目的は、圧縮機の故障の発生を抑制するとともに、冷凍機油を圧縮機に回収できる冷凍サイクル装置を提供することである。
 本開示の冷凍サイクル装置は、冷媒回路と制御装置とを備える。冷媒回路では、圧縮機、第1熱交換器、減圧装置および第2熱交換器が冷媒配管によって接続される。制御装置は、冷凍サイクル装置の運転モードを第1運転モードと第2運転モードとの間で切り替える。冷媒配管は、第1熱交換器の一方のポートに接続される第1配管を含む。第1運転モードは、気相状態の冷媒が第1配管に流れるように冷媒回路内に冷媒を循環させるモードである。第2運転モードは、液相状態または気液二相状態の冷媒が第1配管に流れるように冷媒回路内に冷媒を循環させるモードである。第1配管は、第1運転モードにおいて、圧縮機と第1熱交換器との間の流路を構成する。第2運転モードにおける第1配管内の冷媒の流れ方向は、第1運転モードにおける第1配管内の冷媒の流れ方向と逆である。
 本開示によれば、圧縮機の故障の発生を抑制するとともに、冷凍機油を圧縮機に回収できる。
実施の形態1に係る冷凍サイクル装置の概略構成図である。 実施の形態1における油回収運転モード時の冷媒の流れ方向を示す図である。 実施の形態1に係る制御装置10の処理の流れを示すフローチャートである。 実施の形態2に係る冷凍サイクル装置の概略構成図である。 暖房運転モードから油回収運転モードに切り替えられたときの冷媒の流れを示す図である。 実施の形態2における冷房運転モード時の冷媒の流れを示す図である。 冷房運転モードから油回収運転モードに切り替えられたときの冷媒の流れを示す図である。 実施の形態2に係る制御装置の処理の流れを示すフローチャートである。 気相状態の冷媒の流速が油上昇限界速度以上であるときの配管内の冷凍機油の様子を示す図である。 変形例1に係るガス延長配管内の冷凍機油の様子を示す図である。 変形例2に係るガス延長配管内の冷凍機油の様子を示す図である。 暖房運転から冷房運転への切り替え前後の冷媒の流れを示す図である。 従来技術における、圧縮機の周波数、室内温度および圧縮機内の冷凍機油量の時間変化を示す図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
 実施の形態1.
 (冷凍サイクル装置の構成)
 図1は、実施の形態1に係る冷凍サイクル装置の概略構成図である。図1を参照して、冷凍サイクル装置100は、圧縮機1、四方弁2、第1熱交換器3、減圧装置4および第2熱交換器5が冷媒配管によって接続された冷媒回路20を備え、冷媒回路20内に冷媒を循環させる。第1熱交換器3は、空調の対象となる室内に設置される。圧縮機1、四方弁2、減圧装置4および第2熱交換器5は、室外ユニットとして一体化され、室外に設置される。冷媒配管は、ガス管11と、液管12と、冷媒吸入管13と、冷媒吐出管14と、ガス延長配管15と、液延長配管16とを備える。
 圧縮機1には吸入口1aと吐出口1bとが形成される。四方弁2には4つのポートE~Hが形成される。第1熱交換器3には2つのポートP1,P2が形成される。第2熱交換器5には2つのポートP3,P4が形成される。
 ガス管11は、第2熱交換器5の一方のポートP3と四方弁2のポートEとを接続する。液管12は、第2熱交換器5の他方のポートP4と減圧装置4とを接続する。冷媒吸入管13は、四方弁2のポートFと圧縮機1の吸入口1aとを接続する。冷媒吐出管14は、四方弁2のポートHと圧縮機1の吐出口1bとを接続する。ガス延長配管15は、四方弁2のポートGと第1熱交換器3のポートP1とを接続する。液延長配管16は、第1熱交換器3のポートP2と減圧装置4とを接続する。
 圧縮機1は、吸入口1aから吸入した冷媒を圧縮し、高温かつ高圧の気相状態の冷媒を吐出口1bから吐出する。圧縮機1には、内部部品の潤滑のための冷凍機油が充填される。圧縮機1内部の冷凍機油の一部は、圧縮機1の運転時に冷媒とともに吐出口1bから吐出される。
 四方弁2は、後述する制御装置10によって暖房運転状態および冷房運転状態のいずれかになるように制御される。暖房運転状態は、ポートEとポートFとが連通し、ポートGとポートHとが連通する状態である。冷房運転状態は、ポートEとポートHとが連通し、ポートFとポートGとが連通する状態である。
 第1熱交換器3は、冷媒と室内空気とを熱交換させる。第1熱交換器3は、冷房運転の場合に蒸発器として動作し、暖房運転の場合に凝縮器として動作する。第1熱交換器3は、たとえば、冷媒を通過させる伝熱管と、伝熱管を流れる冷媒と室内空気との間の伝熱面積を大きくするためのフィンと、フィンに向けて室内空気を送風する送風機とを含む。
 減圧装置4は、内部を通過する冷媒を膨張させ、減圧させる。減圧装置4は、たとえば開度を変化させることができる電子式膨張弁で構成される。
 第2熱交換器5は、冷媒と室外空気とを熱交換させる。第2熱交換器5は、冷房運転の場合に凝縮器として動作し、暖房運転の場合に蒸発器として動作する。第2熱交換器5は、たとえば、冷媒を通過させる伝熱管と、伝熱管を流れる冷媒と室内空気との間の伝熱面積を大きくするためのフィンと、フィンに向けて室内空気を送風する送風機とを含む。
 冷凍サイクル装置100は、さらに、タイマー50と、センサ51と、制御装置10とを備える。
 タイマー50は、圧縮機1の運転時間を計時する。センサ51は、ガス延長配管15と第1熱交換器3との間の冷媒の過熱度を検知する。センサ51は、冷媒の温度および圧力を測定し、測定した温度および圧力から過熱度を算出する。
 制御装置10は、冷媒回路20を制御して、冷凍サイクル装置100の運転モードを切り替える。制御装置10は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含む(いずれも図示せず)。記憶装置に格納されたプログラムをCPUが実行することにより、冷凍サイクル装置100の運転モードが切り替えられる。
 制御装置10は、冷房運転の指示を受けると、四方弁2を冷房運転状態に制御し、冷凍サイクル装置100を冷房運転モードで動作させる。冷房運転モードでは、冷媒は、圧縮機1、冷媒吐出管14、四方弁2、ガス管11、第2熱交換器5、液管12、減圧装置4、液延長配管16、第1熱交換器3、ガス延長配管15、四方弁2および冷媒吸入管13の順に循環する。制御装置10は、暖房運転の指示を受けると、四方弁2を暖房運転状態に制御して、冷凍サイクル装置100を暖房運転モードで動作させる。暖房運転モードでは、冷媒は、圧縮機1、冷媒吐出管14、四方弁2、ガス延長配管15、第1熱交換器3、液延長配管16、減圧装置4、液管12、第2熱交換器5、ガス管11、四方弁2および冷媒吸入管13の順に循環する。図1には、暖房運転モードにおける冷媒の流れ方向が矢印で示されている。
 上述したように、第1熱交換器3は室内に設置され、圧縮機1、四方弁2、減圧装置4および第2熱交換器5は室外に設置される。そのため、ガス延長配管15および液延長配管16は、ガス管11、液管12、冷媒吸入管13および冷媒吐出管14よりも長い。さらに、第1熱交換器3が室外ユニットよりも高い位置に設置される場合、ガス延長配管15および液延長配管16の少なくとも一部は、鉛直方向に沿って配置される。そのため、冷凍サイクル装置100が暖房運転モードで動作しているとき、圧縮機1から気相状態の冷媒とともに吐出された冷凍機油は、長くかつ上方向に延びるガス延長配管15を通過することができず、ガス延長配管15に滞留しやすくなる。そこで、制御装置10は、ガス延長配管15に滞留した冷凍機油を圧縮機1に回収するために、冷凍サイクル装置100の運転モードを暖房運転モードと油回収運転モードとの間で切り替える。
 図2は、実施の形態1における油回収運転モードにおける冷媒の流れ方向を示す図である。図2に示されるように、油回収運転モードにおいて、制御装置10は、四方弁2を冷房運転状態に制御する。そのため、冷媒は、冷房運転モードと同様に冷媒回路20を循環する。すなわち、冷媒は、暖房運転モードとは逆向きに流れる。これにより、ガス延長配管15が第1熱交換器3に向かって上向きに配置されている場合、ガス延長配管15内の冷媒の流れ方向は、暖房運転モードでは上向きであるのに対し、油回収運転モードでは下向きとなる。その結果、ガス延長配管15内に滞留した冷凍機油を圧縮機1に戻しやすくなる。
 さらに、制御装置10は、センサ51から出力される過熱度が0K以下となるように冷媒回路20を制御する。たとえば、制御装置10は、減圧装置4の減圧度を制御したり、第1熱交換器3の熱交換能力を制御したりする。減圧装置4の減圧度は、膨張弁である減圧装置4の開度によって制御される。これにより、ガス延長配管15には気液二相状態の冷媒が流れる。その結果、ガス延長配管15に滞留していた冷凍機油は、気液二相状態の冷媒に溶けて移動しやすくなり、容易に圧縮機1に回収される。
 制御装置10は、タイマー50により計時された運転時間の積算値に基づいて、規定時間ごとに運転モードを切り替える。具体的には、制御装置10は、暖房運転モードが第1規定時間継続したときに、冷凍サイクル装置の運転モードを油回収運転モードに切り替える。制御装置10は、油回収運転モードが第2規定時間継続したときに、冷凍サイクル装置の運転モードを暖房運転モードに切り替える。
 (制御装置の処理の流れ)
 図3は、実施の形態1に係る制御装置10の処理の流れを示すフローチャートである。図3には暖房運転指示を受けたときの処理が示される。まずステップS1において、制御装置10は暖房運転の指示を受ける。ステップS2において、制御装置10は、四方弁2を暖房運転状態に制御し、暖房運転モードでの運転を開始する。ステップS3において、制御装置10は、運転時間の計時(カウント)を開始するようにタイマー50を制御する。
 次にステップS4において、制御装置10は、運転時間の積算値Aが第1規定時間B未満であるか否かを判断する。運転時間の積算値Aが第1規定時間B未満である場合(ステップS4でYES)、処理はステップS4に戻される。運転時間の積算値Aが第1規定時間B以上である場合(ステップS4でNO)、制御装置10は、ステップS5において、冷凍サイクル装置100の運転モードを油回収運転モードに切り替える。すなわち、制御装置10は、四方弁2を冷房運転状態に切り替える。さらに制御装置10は、ステップS6において運転時間の積算値Aを0にリセットし、ステップS7においてセンサ51からガス延長配管15と第1熱交換器3との間の冷媒状態を示す過熱度を取得する。制御装置10は、ステップS8において、センサ51から取得した過熱度が0K以下であるか否かを判断する。過熱度が0Kより大きい場合(ステップS8でNO)、制御装置10は、ステップS9において、過熱度が低下するように冷媒回路20を制御する。たとえば、制御装置10は、減圧装置4の開度を大きくする。もしくは、制御装置10は、第1熱交換器3の送風機の送風量を弱くする。
 ステップS9の後、制御装置10は、ステップS10において、運転時間の積算値Aが第2規定時間C未満であるか否かを判断する。ここで、運転時間の積算値Aは、ステップS6からの経過時間を示す。過熱度が0K以下である場合(ステップS8でYES)も処理はステップS10に移る。運転時間の積算値Aが第2規定時間C未満である場合(ステップS10でYES)、処理はステップS7に戻される。すなわち、油回収運転モードを開始してから第2規定時間Cが経過するまでの間、ガス延長配管15と第1熱交換器3との間の冷媒が気液二相状態になるように制御される。気液二相状態の冷媒は、暖房運転モードとは逆の方向にガス延長配管15を流れ続ける。これにより、暖房運転モードにおいてガス延長配管15に滞留していた冷凍機油は、油回収運転モードにおいて気液二相状態の冷媒とともに移動し、圧縮機1に回収される。
 運転時間の積算値Aが第2規定時間C以上になると(ステップS10でNO)、制御装置10は、ステップS11において冷凍サイクル装置100の運転モードを暖房運転モードに戻し、ステップS12において運転時間の積算値Aを0にリセットする。ステップS12の後、処理はステップS4に戻される。
 (利点)
 以上のように、実施の形態1に係る冷凍サイクル装置100は、冷媒回路20と制御装置10とを備える。冷媒回路20は、圧縮機1、第1熱交換器3、減圧装置4および第2熱交換器5が冷媒配管によって接続された回路である。制御装置10は、暖房運転の指示を受けると、冷凍サイクル装置100の運転モードを暖房運転モード(第1運転モード)と油回収運転モード(第2運転モード)との間で切り替える。冷媒配管は、第1熱交換器3のポート(第1ポート)P1に接続されるガス延長配管(第1配管)15を含む。暖房運転モードは、気相状態の冷媒がガス延長配管15に流れるように冷媒回路20内に冷媒を循環させるモードである。油回収運転モードは、気液二相状態の冷媒がガス延長配管15に流れるように冷媒回路20内に冷媒を循環させるモードである。ガス延長配管15は、暖房運転モードにおいて、圧縮機1と第1熱交換器3との間の流路を構成する。油回収運転モードにおけるガス延長配管15内の冷媒の流れ方向は、暖房運転モードにおけるガス延長配管15内の冷媒の流れ方向と逆である。
 上記の構成によれば、ガス延長配管15は、暖房運転モードにおいて、圧縮機1と第1熱交換器3との間の流路を構成する。圧縮機1から吐出された冷凍機油は、気相状態の冷媒とともにガス延長配管15内を流れる。しかしながら、冷凍機油は、高い粘度を有するため、移動しにくい。ガス延長配管15が鉛直方向に配置され、冷媒の流れが上向きである場合には、冷凍機油はさらに移動しにくくなる。その結果、冷凍機油はガス延長配管15に滞留する。
 ガス延長配管15に滞留した冷凍機油を圧縮機1に回収するために、制御装置10は、冷凍サイクル装置100の運転モードを暖房運転モードと油回収運転モードとの間で切り替える。油回収運転モードでは、気液二相状態の冷媒がガス延長配管15に流れる。冷凍機油は、気液二相状態の冷媒に溶け、移動しやすくなる。そのため、滞留していた冷凍機油を圧縮機1に回収しやすくなる。さらに、油回収運転モードにおけるガス延長配管15内の冷媒の流れ方向は、暖房運転モードにおけるガス延長配管15内の冷媒の流れ方向と逆である。そのため、ガス延長配管15が第1熱交換器3に向かって鉛直方向上向きに配置された場合であっても、冷凍機油を圧縮機1に回収しやすくなる。
 このように、冷凍機油が少ない状態で圧縮機1の運転周波数を上げることなく、冷凍機油を圧縮機1に回収することができる。すなわち、圧縮機1の故障の発生を抑制するとともに、冷凍機油を圧縮機に回収できる。
 冷凍サイクル装置100は、ガス延長配管15と第1熱交換器3との間の冷媒の状態を検知するためのセンサ51をさらに備える。冷媒回路20は、冷媒回路20内の冷媒の流れ方向を切り替えるための四方弁2を含む。制御装置10は、四方弁2を制御して、暖房運転モードと油回収運転モードとを切り替える。暖房運転モードでは、冷媒は、圧縮機1、四方弁2、ガス延長配管15、第1熱交換器3、減圧装置4、第2熱交換器5および四方弁2の順に循環する(ガス管11、液管12、冷媒吸入管13および冷媒吐出管14の記載を省略している。以下、同様に省略する)。油回収運転モードでは、冷媒は、圧縮機1、四方弁2、第2熱交換器5、減圧装置4、第1熱交換器3、ガス延長配管15および四方弁2の順に循環する。制御装置10は、油回収運転モードにおいて、センサ51によって検知される状態が気液二相状態を示すように冷媒回路20を制御する。たとえば、制御装置10は、減圧装置4の減圧度、または、第1熱交換器3の熱交換能力を制御すればよい。
 これにより、制御装置10は、四方弁2を制御することにより、油回収運転モードにおけるガス延長配管15内の冷媒の流れ方向を、暖房運転モードにおけるガス延長配管15内の冷媒の流れ方向と逆にすることができる。さらに、制御装置10は、センサ51の検知結果に基づいて、ガス延長配管15に気液二相状態の冷媒を確実に流すことができる。
 制御装置10は、暖房運転モードが第1規定時間Bだけ継続したときに冷凍サイクル装置100の運転モードを油回収運転モードに切り替え、油回収運転モードが第2規定時間Cだけ継続したときに冷凍サイクル装置100の運転モードを暖房運転モードに切り替える。
 これにより、規定時間ごとに運転モードが切り替えられるため、ガス延長配管15に滞留した冷凍機油が定期的に圧縮機1に回収される。
 実施の形態2.
 (冷凍サイクル装置の構成)
 図4は、実施の形態2に係る冷凍サイクル装置の概略構成図である。図4に示されるように、実施の形態2に係る冷凍サイクル装置100aは、実施の形態1に係る冷凍サイクル装置100と比較して、冷媒回路20の代わりに冷媒回路20aを備え、制御装置10の代わりに制御装置10aを備える点で相違する。冷媒回路20aは、図1に示す冷媒回路20と比較して、流路切替回路8を備える点で相違する。
 流路切替回路8は、4つの仕切弁81~84を含む。仕切弁81は、四方弁2のポートGとガス延長配管15との間に配置され、両者間の流路の開閉を行なう。仕切弁82は、四方弁2のポートGと液延長配管16との間に配置され、両者間の流路の開閉を行なう。仕切弁83は、減圧装置4とガス延長配管15との間に配置され、両者間の流路の開閉を行なう。仕切弁84は、減圧装置4と液延長配管16との間に配置され、両者間の流路の開閉を行なう。
 制御装置10aは、四方弁2および流路切替回路8を制御して、冷凍サイクル装置100aの運転モードを、暖房運転モード、冷房運転モードおよび油回収運転モードのいずれかに切り替える。以下では、暖房運転モードおよび冷房運転モードをまとめて通常運転モードという。
 制御装置10aは、実施の形態1の制御装置10と同様に、四方弁2を制御して、冷房運転モードから暖房運転モードに、または、暖房運転モードから冷房運転モードに切り替える。
 さらに、制御装置10aは、流路切替回路8を制御して、冷凍サイクル装置100aの運転モードを通常運転モード(冷房運転モードまたは暖房運転モード)と油回収運転モードとの間で切り替える。制御装置10aは、通常運転モードのときには、仕切弁81,84を開状態に、仕切弁82,83を閉状態に制御する。仕切弁81,84が開状態に、仕切弁82,83が閉状態に制御されることにより、圧縮機1とガス延長配管15とが接続されるとともに、減圧装置4と液延長配管16とが接続される(第1接続状態)。制御装置10aは、油回収運転モードのときには、仕切弁81,84を閉状態に、仕切弁82,83を開状態に制御する。仕切弁81,84が閉状態に、仕切弁82,83が開状態に制御されることにより、圧縮機1と液延長配管16とが接続されるとともに、減圧装置4とガス延長配管15とが接続される(第2接続状態)。
 図4には、暖房運転モードにおける冷媒の流れが矢印で示されている。図4に示されるように、暖房運転モードでは、冷媒は、圧縮機1、四方弁2、仕切弁81、ガス延長配管15、第1熱交換器3、液延長配管16、仕切弁84、減圧装置4、第2熱交換器5および四方弁2の順に循環する。
 図5は、暖房運転モードから油回収運転モードに切り替えられたときの冷媒の流れを示す図である。図5に示されるように、暖房運転時の油回収運転モードでは、冷媒は、圧縮機1、四方弁2、仕切弁82、液延長配管16、第1熱交換器3、ガス延長配管15、仕切弁83、減圧装置4、第2熱交換器5および四方弁2の順に循環する。
 図4および図5に示されるように、油回収運転モードにおけるガス延長配管15の冷媒の流れ方向は、暖房運転モードにおけるガス延長配管15の冷媒の流れ方向と逆向きである。これにより、ガス延長配管15が第1熱交換器3に向かって上向きに配置されている場合、ガス延長配管15内の冷媒の流れ方向は、暖房運転モードでは上向きであるのに対し、油回収運転モードでは下向きとなる。その結果、油回収運転モードでは、暖房運転モードにおいてガス延長配管15内に滞留した冷凍機油を圧縮機1に戻しやすくなる。
 さらに、油回収運転モードでは、第1熱交換器3において凝縮された液相状態または気液二相状態の冷媒がガス延長配管15を流れる。これにより、ガス延長配管15に滞留していた冷凍機油は、液相状態または気液二相状態の冷媒に溶けて移動しやすくなり、減圧装置4、第2熱交換器5および四方弁2を通過して、容易に圧縮機1に回収される。
 図6は、実施の形態2における冷房運転モードにおける冷媒の流れを示す図である。図6に示されるように、冷房運転モードでは、冷媒は、圧縮機1、四方弁2、第2熱交換器5、減圧装置4、仕切弁84、液延長配管16、第1熱交換器3、ガス延長配管15、仕切弁81および四方弁2の順に循環する。冷房運転モードでは、液延長配管16を流れる液相状態または気液二相状態の冷媒が第1熱交換器3により蒸発し、気相状態の冷媒がガス延長配管15を流れる。液延長配管16内において液相状態または気液二相状態の冷媒に溶けていた冷凍機油は、第1熱交換器3において冷媒から分離され、ガス延長配管15に滞留する可能性がある。そのため、冷凍サイクル装置100aの運転モードは冷房運転モードと油回収運転モードとの間で切り替えられる。
 図7は、冷房運転モードから油回収運転モードに切り替えられたときの冷媒の流れを示す図である。図7に示されるように、冷房運転時の油回収運転モードでは、冷媒は、圧縮機1、四方弁2、第2熱交換器5、減圧装置4、仕切弁83、ガス延長配管15、第1熱交換器3、液延長配管16、仕切弁82および四方弁2の順に循環する。
 図6および図7に示されるように、油回収運転モードにおけるガス延長配管15の冷媒の流れ方向は、冷房運転モードにおけるガス延長配管15の冷媒の流れ方向と逆向きである。さらに、油回収運転モードでは、ガス延長配管15に液相状態または気液二相状態の冷媒が流れる。これにより、冷房運転モードにおいてガス延長配管15に滞留した冷凍機油を圧縮機1に回収することができる。
 (制御装置の処理の流れ)
 図8は、実施の形態2に係る制御装置10aの処理の流れを示すフローチャートである。まずステップS21において、制御装置10aは、通常運転(冷房運転または暖房運転)の指示を受ける。ステップS22において、制御装置10aは、指示に従って四方弁2を制御し、通常運転モードでの運転を開始する。すなわち、制御装置10aは、冷房運転の指示を受けた場合、四方弁2を冷房運転状態に制御して冷房運転モードでの運転を開始し、暖房運転の指示を受けた場合、四方弁2を暖房運転状態に制御して暖房運転モードでの運転を開始する。このとき、制御装置10aは、仕切弁81,84を開状態に、仕切弁82,83を閉状態に制御する。ステップS23において、制御装置10aは、運転時間の計時(カウント)を開始するようにタイマー50を制御する。
 次にステップS24において、制御装置10aは、運転時間の積算値Aが第1規定時間B未満であるか否かを判断する。運転時間の積算値Aが第1規定時間B未満である場合(ステップS24でYES)、処理はステップS24に戻される。運転時間の積算値Aが第1規定時間B以上になると(ステップS24でNO)、制御装置10aは、ステップS25において、冷凍サイクル装置100aの運転モードを油回収運転モードに切り替える。すなわち、制御装置10aは、仕切弁81,84を閉状態に、仕切弁82,83を開状態に制御する。さらに制御装置10aは、ステップS26において運転時間の積算値Aを0にリセットする。
 ステップS26の後、制御装置10aは、ステップS27において、運転時間の積算値Aが第2規定時間C未満であるか否かを判断する。ここで、運転時間の積算値Aは、ステップS26からの経過時間、つまり、油回収運転モードの継続時間を示す。運転時間の積算値Aが第2規定時間C未満である場合(ステップS27でYES)、処理はステップS26に戻される。すなわち、油回収運転モードを開始してから第2規定時間Cが経過するまでの間、ガス延長配管15内の冷媒の流れ方向は、通常運転モードのときの流れ方向と逆向きとなる。さらに、ガス延長配管15には液相状態または気液二相状態の冷媒が流れる。これにより、通常運転モードにおいてガス延長配管15に滞留していた冷凍機油は、油回収運転モードにおいて圧縮機1に回収される。
 運転時間の積算値Aが第2規定時間C以上になると(ステップS27でYES)、制御装置10aは、ステップS28において冷凍サイクル装置100aの運転モードを通常運転モードに戻し、ステップS29において運転時間の積算値Aを0にリセットする。ステップS29の後、処理はステップS24に戻される。
 (利点)
 実施の形態2に係る冷凍サイクル装置100aの冷媒回路20aは、圧縮機1と減圧装置4とガス延長配管15と液延長配管16との接続状態を切り替えるように構成された流路切替回路8を含む。液延長配管16は、第1熱交換器3のポート(第2ポート)P2に接続される配管である。流路切替回路8は、圧縮機1と減圧装置4とガス延長配管15と液延長配管16との接続状態を、第1接続状態と第2接続状態とのいずれかに切り替える。第1接続状態は、圧縮機1とガス延長配管15とが四方弁2を介して接続されるとともに、減圧装置4と液延長配管16とが接続される状態である。第2接続状態は、圧縮機1と液延長配管16とが四方弁2を介して接続されるとともに、減圧装置4とガス延長配管15とが接続される状態である。制御装置10aは、流路切替回路8を第1接続状態に切り替えることにより冷凍サイクル装置100aの運転モードを通常運転モードに切り替える。制御装置10aは、流路切替回路8を第2接続状態に切り替えることにより冷凍サイクル装置100aの運転モードを油回収運転モードに切り替える。
 四方弁2が暖房運転状態である場合において、流路切替回路8が第1接続状態であるとき、冷媒は、圧縮機1、四方弁2、仕切弁81、ガス延長配管15、第1熱交換器3、液延長配管16、仕切弁84、減圧装置4、第2熱交換器5および四方弁2の順に循環する(暖房運転モード)。一方、流路切替回路8が第2接続状態であるとき、冷媒は、圧縮機1、四方弁2、仕切弁82、液延長配管16、第1熱交換器3、ガス延長配管15、仕切弁83、減圧装置4、第2熱交換器5および四方弁2の順に循環する(油回収運転モード)。
 四方弁2が冷房運転状態である場合において、流路切替回路8が第1接続状態であるとき、冷媒は、圧縮機1、四方弁2、第2熱交換器5、減圧装置4、仕切弁84、液延長配管16、第1熱交換器3、ガス延長配管15、仕切弁81および四方弁2の順に循環する(冷房運転モード)。一方、流路切替回路8が第2接続状態であるとき、冷媒は、圧縮機1、四方弁2、第2熱交換器5、減圧装置4、仕切弁83、ガス延長配管15、第1熱交換器3、液延長配管16、仕切弁82および四方弁2の順に循環する(油回収運転モード)。
 このように、ガス延長配管15に滞留した冷凍機油を圧縮機1に回収するために、制御装置10aは、冷凍サイクル装置100の運転モードを通常運転モード(暖房運転モードまたは冷房運転モード)と油回収運転モードとの間で切り替える。油回収運転モードでは、液相状態または気液二相状態の冷媒がガス延長配管15に流れる。冷凍機油は、液相状態または気液二相状態の冷媒に溶け、移動しやすくなる。さらに、油回収運転モードにおけるガス延長配管15内の冷媒の流れ方向は、通常運転モードにおけるガス延長配管15内の冷媒の流れ方向と逆である。そのため、ガス延長配管15が鉛直方向に配置された場合であっても、冷凍機油を圧縮機1に回収しやすくなる。このように、冷凍機油が少ない状態で圧縮機1の運転周波数を上げることなく、冷凍機油を圧縮機1に回収することができる。すなわち、圧縮機に大きな負荷をかけることなく、冷凍機油を圧縮機に回収できる。
 さらに、冷媒が圧縮機、第1熱交換器、減圧装置および第2熱交換器を流れる順序は、通常運転モードと油回収運転モードとで同じである。そのため、通常運転モードにおいて蒸発器として動作していた第1熱交換器は、油回収運転モードでも蒸発器として動作できる。同様に、通常運転モードにおいて凝縮器として動作していた第1熱交換器は、油回収運転モードでも凝縮器として動作できる。これにより、油回収運転モードにおいて室内の快適性の低下を抑制することができる。また、図13に示されるように、従来技術の油回収運転では、圧縮機の運転周波数を上げるため、一時的に室内温度が目標値から外れ快適性が低下する。しかしながら、実施の形態2の冷凍サイクル装置100aでは、通常運転モードから油回収運転モードへの切り替えの際に圧縮機1の運転周波数を変更しないため、快適性の低下を抑制できる。
 変形例1.
 内径diの配管が鉛直方向に沿って配置され、密度ρgの気相状態の冷媒と密度ρlの冷凍機油とを当該配管内に上向きに流す場合、気相状態の冷媒の流速Ugが以下の式(1)に示す油上昇限界速度Ug*以上であるときに、冷凍機油が配管に沿って上昇する。gは重力加速度である。
Figure JPOXMLDOC01-appb-M000003
 図9は、気相状態の冷媒の流速Ugが油上昇限界速度Ug*以上であるときの配管内の冷凍機油の様子を示す図である。図9に示されるように、気相状態の冷媒の流速Ugが油上昇限界速度Ug*以上であるため、冷凍機油30が配管の壁面に沿って上昇する。
 上記の実施の形態1,2において、当該ガス延長配管15の少なくとも一部分の内径diは、以下の式(2)を満たすことが好ましい。以下の式(2)においてUgaは、圧縮機1を最小の運転周波数で動作させたときの気相状態の冷媒の流速を示す。式(2)の右辺は、油上昇限界速度Ug*を示す。
Figure JPOXMLDOC01-appb-M000004
 図10は、変形例1に係るガス延長配管内の冷凍機油の様子を示す図である。図10には、ガス延長配管15の部分15aの内径diが上記の式(2)を満たし、残りの部分15bの内径が上記の式(2)を満たさないときのガス延長配管15内の冷凍機油の様子が示される。室内温度が目標温度に近くなり、冷凍サイクル装置100を断続運転させるとき、圧縮機1は最小の運転周波数で運転される。圧縮機1を最小の運転周波数で動作させたとき、部分15aにおける冷媒の流速Ugaは、油上昇限界速度Ug*未満となる。そのため、図10に示されるように、冷凍機油30は、部分15aに滞留しやすくなる。
 一方、部分15bにおける冷媒の流速Ugbは、油上昇限界速度Ug*以上である。そのため、冷凍機油30は、部分15bにほとんど滞留しない。さらに、圧縮機1から吐出された冷凍機油30のほとんどが部分15aに滞留するため、部分15aの下流側の部分15bに流れ込む冷凍機油30の量は少ない。
 このように、ガス延長配管15の部分15aが室外ユニットから第1熱交換器3に向けて鉛直方向に配置された場合、圧縮機1から吐出された冷凍機油30のほとんどは、ガス延長配管15の部分15aに滞留する。これにより、冷媒回路20におけるガス延長配管15以外の部分において、冷凍機油30の滞留による圧力損失や伝熱性能低下を抑制することができる。その結果、冷凍サイクル装置100,100aの空調性能を向上させることができる。
 さらに、ガス延長配管15の部分15aに滞留した冷凍機油30は、油回収運転モードにおいて、液相状態または気液二相状態の冷媒に溶けて圧縮機1に容易に回収される。そのため、圧縮機1の信頼性を向上させることができる。
 変形例2.
 上記の実施の形態1において、制御装置10は、圧縮機1の最小の運転周波数を以下のように設定してもよい。制御装置10は、最小の運転周波数で圧縮機1を運転させたときのガス延長配管15内の冷媒の流速Ugcが上記の式(1)で示される油上昇限界速度Ug*未満となるように、圧縮機1の最小の運転周波数を設定する。
 図11は、変形例2に係るガス延長配管内の冷凍機油の様子を示す図である。最小の運転周波数で圧縮機1を運転させるとき、冷媒の流速Ugcは油上昇限界速度Ug*未満となる。そのため、図11に示されるように、ガス延長配管15の少なくとも一部分が室外ユニットから第1熱交換器3に向けて鉛直方向に配置された場合、冷凍機油30は、ガス延長配管15の壁面に滞留する。圧縮機1から吐出された冷凍機油30のほとんどがガス延長配管15に滞留することにより、冷媒回路20におけるガス延長配管15以外の部分において、冷凍機油30の滞留による圧力損失や伝熱性能低下を抑制することができる。その結果、冷凍サイクル装置100の空調性能を向上させることができる。
 さらに、ガス延長配管15に滞留した冷凍機油30は、油回収運転モードにおいて、液相状態または気液二相状態の冷媒に溶けて圧縮機1に容易に回収される。そのため、圧縮機1の信頼性を向上させることができる。
 実施の形態2においても同様に、制御装置10aは、最小の運転周波数で圧縮機1を運転させたときのガス延長配管15内の冷媒の流速Ugcが油上昇限界速度Ug*未満となるように、圧縮機1の最小の運転周波数を設定してもよい。
 変形例3.
 上記の実施の形態2において、制御装置10aは、流路切替回路8を制御して、暖房運転モードおよび冷房運転モードのいずれにおいても、第1熱交換器3における冷媒の流れ方向と空気の流れ方向とを対向させてもよい。これにより、第1熱交換器3の熱交換能力を高めることができる。
 図12は、暖房運転から冷房運転への切り替え前後における冷媒の流れを示す図である。ここでは、第1熱交換器3の送風機3cによる空気の流れ方向ADを、第1熱交換器3のポートP2からポートP1に向かう方向とする。
 図12に示されるように、制御装置10aは、暖房運転モードにおいて、四方弁2を暖房運転状態に、流路切替回路8を第1接続状態(仕切弁81,84が開状態、仕切弁82,83が閉状態)に制御する。これにより、冷媒は、圧縮機1、四方弁2、仕切弁81、ガス延長配管15、第1熱交換器3、液延長配管16、仕切弁84、減圧装置4、第2熱交換器5および四方弁2の順に循環する。そのため、第1熱交換器3において、冷媒の流れ方向(ポートP1からポートP2に向かう方向)は、空気の流れ方向ADに対向する。
 暖房運転から冷房運転への切り替え指示を受けると、制御装置10aは、四方弁2を冷房運転状態に、流路切替回路8を第2接続状態(仕切弁81,84が閉状態、仕切弁82,83が開状態)に制御する。これにより、冷媒は、圧縮機1、四方弁2、第2熱交換器5、減圧装置4、仕切弁83、ガス延長配管15、第1熱交換器3、液延長配管16、および仕切弁82および四方弁2の順に循環する。そのため、冷房運転モードにおいても、第1熱交換器3における冷媒の流れ方向(ポートP1からポートP2に向かう方向)は、空気の流れ方向ADに対向する。これにより、暖房運転および冷房運転の両方において、第1熱交換器3の熱交換能力を向上させることができる。
 第1熱交換器3の送風機3cによる空気の流れ方向ADが第1熱交換器3のポートP1からポートP2の方向に向かう方向である場合には、仕切弁81~84は上記と逆に制御される。すなわち、冷房運転モードのときには、制御装置10aは、四方弁2を冷房運転状態に、流路切替回路8を第1接続状態(仕切弁81,84が開状態、仕切弁82,83が閉状態)に制御する。これにより、冷媒は、圧縮機1、四方弁2、第2熱交換器5、減圧装置4、仕切弁84、液延長配管16、第1熱交換器3、ガス延長配管15、仕切弁81および四方弁2の順に循環する。冷房運転から暖房運転への切り替え指示を受けると、制御装置10aは、四方弁2を暖房運転状態に、流路切替回路8を第2接続状態(仕切弁81,84が閉状態、仕切弁82,83が開状態)に制御する。これにより、冷媒は、圧縮機1、四方弁、仕切弁82、液延長配管16、第1熱交換器3、ガス延長配管15、仕切弁83、減圧装置4、第2熱交換器5および四方弁2の順に循環する。このように、暖房運転モードおよび冷房運転モードのいずれにおいても、第1熱交換器3における冷媒の流れ方向と空気の流れ方向とが対向する。その結果、暖房運転および冷房運転の両方において、第1熱交換器3の熱交換能力を向上させることができる。
 変形例4.
 上記の実施の形態1では、制御装置10は、圧縮機1の運転時間に基づいて、暖房運転モードと油回収運転モードとの切り替えを行なう。これに対し、冷凍サイクル装置100が圧縮機1内の冷凍機油量を計測する計測器を備え、制御装置10は、計測器によって計測された冷凍機油量に基づいて、暖房運転モードと油回収運転モードとの切り替えを行なってもよい。具体的には、制御装置10は、冷凍機油量が第1閾値未満になったときに、暖房運転モードから油回収運転モードに切り替える。さらに、制御装置10は、油回収運転モードで規定時間だけ運転させた後に、もしくは、冷凍機油量が第2閾値(>第1閾値)を超えたときに、油回収運転モードから暖房運転モードに戻す。
 実施の形態2でも同様に、制御装置10aは、圧縮機1内の冷凍機油量に基づいて、通常運転モードと油回収運転モードとの切り替えを行なってもよい。
 変形例5.
 実施の形態2では、流路切替回路8を4つの仕切弁81~84によって構成した。しかしながら、流路切替回路8は、圧縮機1と減圧装置4とガス延長配管15と液延長配管16との接続状態を第1接続状態と第2接続状態とのいずれかに切り替えることができれば、別の部材で構成されてもよい。たとえば、流路切替回路8は四方弁で構成されてもよい。
 変形例6.
 実施の形態1,2において、圧縮機1に液相状態の冷媒が吸入されることを抑制するために、冷媒吸入管13にアキュームレータを設置してもよい。さらに、冷凍機油を回収する油回収器をガス延長配管15に設置してもよい。この場合、通常運転モードにおいて油回収器により冷凍機油が回収され、油回収運転モードにおいて油回収器から圧縮機へ冷凍機油が戻される。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、1a 吸入口、1b 吐出口、2 四方弁、3 第1熱交換器、3c 送風機、4 減圧装置、5 第2熱交換器、8 流路切替回路、10,10a 制御装置、11 ガス管、12 液管、13 冷媒吸入管、14 冷媒吐出管、15 ガス延長配管、15a,15b 部分、16 液延長配管、20,20a 冷媒回路、50 タイマー、51 センサ、81~84 仕切弁、100,100a 冷凍サイクル装置、E~H,P1~P4 ポート。

Claims (7)

  1.  圧縮機、第1熱交換器、減圧装置および第2熱交換器が冷媒配管によって接続された冷媒回路を備えた冷凍サイクル装置であって、
     前記冷凍サイクル装置の運転モードを第1運転モードと第2運転モードとの間で切り替える制御装置を備え、
     前記冷媒配管は、前記第1熱交換器の第1ポートに接続される第1配管を備え、
     前記第1運転モードは、気相状態の冷媒が前記第1配管に流れるように前記冷媒回路内に前記冷媒を循環させるモードであり、
     前記第2運転モードは、液相状態または気液二相状態の前記冷媒が前記第1配管に流れるように前記冷媒回路内に前記冷媒を循環させるモードであり、
     前記第1配管は、前記第1運転モードにおいて、前記圧縮機と前記第1熱交換器との間の流路を構成し、
     前記第2運転モードにおける前記第1配管内の前記冷媒の流れ方向は、前記第1運転モードにおける前記第1配管内の前記冷媒の流れ方向と逆である、冷凍サイクル装置。
  2.  前記第1配管と前記第1熱交換器との間の前記冷媒の状態を検知するためのセンサをさらに備え、
     前記冷媒回路は、前記冷媒回路内の前記冷媒の流れ方向を切り替えるための四方弁を含み、
     前記制御装置は、前記四方弁の切り替えによって、前記第1運転モードと前記第2運転モードとを切り替え、
     前記第1運転モードでは、前記冷媒は、前記圧縮機、前記第1配管、前記第1熱交換器、前記減圧装置および前記第2熱交換器の順に循環し、
     前記第2運転モードでは、前記冷媒は、前記圧縮機、前記第2熱交換器、前記減圧装置、前記第1熱交換器および前記第1配管の順に循環し、
     前記制御装置は、前記第2運転モードにおいて、前記センサによって検知される状態が気液二相状態を示すように前記冷媒回路を制御する、請求項1に記載の冷凍サイクル装置。
  3.  前記冷媒配管は、前記第1熱交換器の第2ポートに接続される第2配管をさらに含み、
     前記冷媒回路は、前記圧縮機と前記減圧装置と前記第1配管と前記第2配管との接続状態を切り替えるように構成された流路切替回路をさらに含み、
     前記流路切替回路は、前記接続状態を、前記圧縮機と前記第1配管とが接続されるとともに、前記減圧装置と前記第2配管とが接続される第1接続状態と、前記圧縮機と前記第2配管とが接続されるとともに、前記減圧装置と前記第1配管とが接続される第2接続状態とのいずれかに切り替え、
     前記制御装置は、前記流路切替回路を前記第1接続状態に切り替えることにより前記冷凍サイクル装置の運転モードを前記第1運転モードに切り替え、前記流路切替回路を前記第2接続状態に切り替えることにより前記冷凍サイクル装置の運転モードを前記第2運転モードに切り替える、請求項1に記載の冷凍サイクル装置。
  4.  前記冷媒回路は、前記冷媒回路内の前記冷媒の流れ方向を切り替えるための四方弁をさらに含み、
     前記制御装置は、前記四方弁を制御して冷房運転と暖房運転とを切り替えるときに、前記流路切替回路を制御して前記接続状態を切り替える、請求項3に記載の冷凍サイクル装置。
  5.  前記制御装置は、前記第1運転モードが第1規定時間継続したときに前記冷凍サイクル装置の運転モードを前記第2運転モードに切り替え、前記第2運転モードが第2規定時間継続したときに前記冷凍サイクル装置の運転モードを前記第1運転モードに切り替える、請求項1から4のいずれか1項に記載の冷凍サイクル装置。
  6.  前記第1配管の少なくとも一部分の内径diは、重力加速度をg、前記第1運転モードにおける前記第1配管内の気相状態の前記冷媒の密度をρg、前記第1運転モードにおける前記第1配管内の冷凍機油の密度をρl、前記圧縮機を最小の運転周波数で動作させたときの前記少なくとも一部分内の前記冷媒の流速をUgaとするとき、
    Figure JPOXMLDOC01-appb-M000001

    を満たす、請求項1から5のいずれか1項に記載の冷凍サイクル装置。
  7.  前記制御装置は、前記第1配管の内径をdi、重力加速度をg、前記第1運転モードにおける前記第1配管内の気相状態の前記冷媒の密度をρg、前記第1運転モードにおける前記第1配管内の冷凍機油の密度をρlとするとき、前記圧縮機を最小の運転周波数で運転させたときの前記第1配管内の前記冷媒の流速が
    Figure JPOXMLDOC01-appb-M000002

    で示されるUg*よりも小さくなるように、前記圧縮機の最小の運転周波数を設定する、請求項1から5のいずれか1項に記載の冷凍サイクル装置。
PCT/JP2017/043118 2017-11-30 2017-11-30 冷凍サイクル装置 WO2019106795A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/763,801 US11635234B2 (en) 2017-11-30 2017-11-30 Refrigeration cycle apparatus recovering refrigerator oil in refrigerant circuit
JP2019556487A JP7107964B2 (ja) 2017-11-30 2017-11-30 冷凍サイクル装置
EP17933630.0A EP3719413A4 (en) 2017-11-30 2017-11-30 REFRIGERATION CIRCUIT DEVICE
PCT/JP2017/043118 WO2019106795A1 (ja) 2017-11-30 2017-11-30 冷凍サイクル装置
CN201780097178.4A CN111386434A (zh) 2017-11-30 2017-11-30 制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043118 WO2019106795A1 (ja) 2017-11-30 2017-11-30 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019106795A1 true WO2019106795A1 (ja) 2019-06-06

Family

ID=66664794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043118 WO2019106795A1 (ja) 2017-11-30 2017-11-30 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US11635234B2 (ja)
EP (1) EP3719413A4 (ja)
JP (1) JP7107964B2 (ja)
CN (1) CN111386434A (ja)
WO (1) WO2019106795A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024168A (ja) * 2003-07-02 2005-01-27 Sanyo Electric Co Ltd 空気調和装置及びその冷凍機油回収方法
JP2007248001A (ja) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp 冷凍空調装置
JP2008180421A (ja) 2007-01-23 2008-08-07 Daikin Ind Ltd 空気調和装置
JP2008180420A (ja) 2007-01-23 2008-08-07 Mitsubishi Electric Corp 空気調和システムの運転制御方法及び空気調和システム
JP2008209036A (ja) * 2007-02-23 2008-09-11 Daikin Ind Ltd 冷凍装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60132189D1 (de) * 2000-04-28 2008-02-14 Daikin Ind Ltd Verfahren zum sammeln von kältemittel und öl und regler für die sammlung von kältemittel und öl
JP3671850B2 (ja) * 2001-03-16 2005-07-13 三菱電機株式会社 冷凍サイクル
JP4096544B2 (ja) 2001-10-30 2008-06-04 ダイキン工業株式会社 冷凍装置
JP4289901B2 (ja) 2003-02-21 2009-07-01 三洋電機株式会社 空気調和装置の油回収方法及び空気調和装置
JP3956997B1 (ja) * 2006-02-23 2007-08-08 ダイキン工業株式会社 冷凍機油の回収方法
JP5645413B2 (ja) * 2010-01-15 2014-12-24 三菱電機株式会社 空気調和装置
JP2012202624A (ja) * 2011-03-25 2012-10-22 Toshiba Carrier Corp 冷凍サイクル装置
JP2013155964A (ja) 2012-01-31 2013-08-15 Fujitsu General Ltd 空気調和装置
JP6033297B2 (ja) 2012-05-30 2016-11-30 三菱電機株式会社 空気調和装置
US9316421B2 (en) * 2012-08-02 2016-04-19 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity
WO2014128971A1 (ja) 2013-02-25 2014-08-28 三菱電機株式会社 空気調和装置
WO2015029160A1 (ja) * 2013-08-28 2015-03-05 三菱電機株式会社 空気調和装置
CN107208937A (zh) * 2015-01-23 2017-09-26 三菱电机株式会社 空气调节装置
WO2017022076A1 (ja) * 2015-08-04 2017-02-09 三菱電機株式会社 冷凍装置および冷凍装置の運転方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024168A (ja) * 2003-07-02 2005-01-27 Sanyo Electric Co Ltd 空気調和装置及びその冷凍機油回収方法
JP2007248001A (ja) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp 冷凍空調装置
JP2008180421A (ja) 2007-01-23 2008-08-07 Daikin Ind Ltd 空気調和装置
JP2008180420A (ja) 2007-01-23 2008-08-07 Mitsubishi Electric Corp 空気調和システムの運転制御方法及び空気調和システム
JP2008209036A (ja) * 2007-02-23 2008-09-11 Daikin Ind Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719413A4

Also Published As

Publication number Publication date
EP3719413A1 (en) 2020-10-07
US11635234B2 (en) 2023-04-25
CN111386434A (zh) 2020-07-07
JPWO2019106795A1 (ja) 2020-11-19
EP3719413A4 (en) 2020-10-07
JP7107964B2 (ja) 2022-07-27
US20200309435A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
EP2128542B1 (en) Air conditioner
JP5484930B2 (ja) 空気調和機
KR101096933B1 (ko) 냉동장치
JP6091399B2 (ja) 空気調和装置
WO2013099047A1 (ja) 空気調和装置
JP6685415B2 (ja) 空調システム、空調方法、及び制御装置
JP7190682B2 (ja) 冷凍サイクルシステム
JP6071648B2 (ja) 空気調和装置
JP6028816B2 (ja) 空気調和装置
JP6028817B2 (ja) 空気調和装置
JP2009243719A (ja) マルチ形空気調和機の油戻し運転方法およびマルチ形空気調和機
JP6277005B2 (ja) 冷凍装置
JPWO2016125239A1 (ja) 冷凍空調装置
JP2008209105A (ja) 空気調和装置
JP6171468B2 (ja) 冷凍サイクル装置
JP5716102B2 (ja) 空気調和機
JP6524670B2 (ja) 空気調和装置
JP2015048988A (ja) アキュムレータ及び冷凍装置
WO2019106795A1 (ja) 冷凍サイクル装置
JP2011149611A (ja) 空気調和機
JP6552721B2 (ja) 空気調和機
JP2011242097A (ja) 冷凍装置
JP2005037052A (ja) 空気調和機
JP7375490B2 (ja) 空気調和装置
JPWO2020110301A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017933630

Country of ref document: EP

Effective date: 20200630