WO2019103287A1 - 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법 - Google Patents

고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법 Download PDF

Info

Publication number
WO2019103287A1
WO2019103287A1 PCT/KR2018/009999 KR2018009999W WO2019103287A1 WO 2019103287 A1 WO2019103287 A1 WO 2019103287A1 KR 2018009999 W KR2018009999 W KR 2018009999W WO 2019103287 A1 WO2019103287 A1 WO 2019103287A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
thermal conductivity
blanket
silica airgel
airgel blanket
Prior art date
Application number
PCT/KR2018/009999
Other languages
English (en)
French (fr)
Inventor
강태경
이제균
오경실
전현우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180097399A external-priority patent/KR102190889B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/761,565 priority Critical patent/US11485892B2/en
Priority to EP18881479.2A priority patent/EP3715331B1/en
Priority to JP2020524350A priority patent/JP7105881B2/ja
Priority to CN201880070154.4A priority patent/CN111278773B/zh
Publication of WO2019103287A1 publication Critical patent/WO2019103287A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating

Definitions

  • the present invention relates to a method for producing high thermal and high strength silica airgel blanks.
  • Silica Aerogel Blanket is a product that enhances the structure and enhances usability by introducing inorganic fibers into aerogels and is utilized in various industrial fields based on very low thermal conductivity.
  • the thermal conductivity tends to rise sharply at a high temperature of about 400 ° C or more, and at a super-high temperature of 650 ° C or more, severe shrinkage occurs beyond the melting temperature of the main component silica.
  • the density of the aerogel blanket is increased by the above-mentioned method, the increase of the thermal conductivity after the heat treatment can be slowed down.
  • the thermal conductivity at room temperature before the heat treatment becomes remarkably high do.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-2012-0070948 (July 02, 2012)
  • a problem to be solved by the present invention is to produce a silica airgel blanket excellent in thermal insulation performance even after heat treatment.
  • Another object of the present invention is to produce a silica airgel blanket having high strength, high heat resistance and low dust characteristics.
  • the present invention provides a method for producing a silica airgel blanket, which comprises adding an acicular metal-silica composite to a silica precursor solution preparation step in a silica airgel blanket manufacturing process.
  • silica airgel blanket produced by the above process.
  • the method for producing a silica airgel blanket according to the present invention it is possible to manufacture a high-thermal-capacity silica airgel blanket having an excellent heat insulating performance by minimizing an increase in thermal conductivity even after heat treatment.
  • a silica airgel blanket of the present invention a silica airgel blanket of high strength, high heat resistance and low dust can be produced.
  • 1 is an optical microscope (x 100) of an acicular metal-silica composite used in the present invention.
  • Fig. 2 is a photograph of the silica aerogel blanket of the embodiment of the present invention, after the shape stability test.
  • Fig. 3 is a photograph of the silica aerogel blanket of the comparative example of the present invention after photographing its shape stability test.
  • silica aerogels are prepared by a silica precursor solution preparation-gelling reaction-aging-surface modification-drying step.
  • an airgel composite (silica airgel blanket) in which an airgel is impregnated with a fibrous blanket such as inorganic fiber or organic fiber, which is a conventional heat insulating fiber, .
  • the thermal conductivity tends to increase sharply at a high temperature of about 400 ° C or more.
  • the silica airgel blanket is heated at an ultra-high temperature of 650 ° C or more, the shrinkage of the silica airgel blanket occurs.
  • the method of manufacturing a silica airgel blanket according to an embodiment of the present invention is characterized in that needle-like metal-silica composite particles are added to the step of preparing a silica precursor solution in a silica airgel blanket manufacturing process.
  • the needle-like metal-silica composite of the present invention is a needle-shaped metal-silica airgel composite, which has a higher density than general aerogels but has a lower thermal conductivity than a general inorganic metal additive. As a result, Can be minimized.
  • an inorganic metal powder when used as an additive in the production of an aerogel blanket, it is possible to increase the density due to its high specific gravity, which can slow down the increase of the thermal conductivity after the heat treatment.
  • the thermal conductivity of the inorganic metal itself is very high, Is significantly increased.
  • the silica-airgel blanket has a relatively low thermal conductivity as compared with the inorganic metal powder. The increase in the room temperature thermal conductivity can be minimized.
  • the needle-shaped metal-silica composite which can be used in the present invention is prepared by adding a water glass solution to an acidic solution and then adding a solution containing a metal salt to form an acicular intermediate, followed by a gelling reaction by adding a basic catalyst To prepare a metal-silica composite wet gel, followed by washing and drying.
  • the metal of the needle-like metal-silica composite may be Ca, Mg, or a mixture thereof, and Ca is most preferable in view of reactivity with silica.
  • the acicular metal-silica composite used in the present invention has a density of 0.3 to 0.8 g / ml, more specifically 0.4 to 0.5 g / ml. This is because when the needle-shaped metal-silica composite has the density in the above range, the density of the final silica airgel blanket is easily adjusted.
  • the density of the silica airgel blanket of the present invention prepared using the needle-shaped metal-silica composite having the above-mentioned density ranges from 190 to 265 kg / m 3 , from 190 to 240 kg / m 3 , more specifically from 200 to 240 kg / m < 3 & gt ;.
  • the thermal conductivity may increase after the heat treatment of the silica airgel blanket. If the density is larger than the above range, the density of the silica airgel blanket is too high, There may be a problem of a large increase.
  • the aspect ratio of the acicular metal-silica composite of the present invention is 1:10 to 1:30, specifically 1:10 to 1:20.
  • the aspect ratio means a value of the diameter of the particles relative to the length, and the aspect ratio of the non-spherical additive corresponds to the most basic property value.
  • the needle-shaped metal-silica composite of the present invention has an excellent aspect ratio as described above.
  • the silica airgel is formed, it is easily introduced into the silica airgel and adsorbed well to the fiber to form the structure of the silica airgel blanket And the dust can be reduced, thereby making it possible to produce a silica airgel blanket of high strength and low dust.
  • the needle-like metal-silica composite of the present invention has high heat resistance which is inherent property, and the shrinkage phenomenon at the time of exposure to an ultra-high temperature of 750 ° C or more is remarkably decreased compared with the case of using other additives, There is an advantage.
  • the aspect ratio is smaller than 1:10, the structure strengthening effect of the needle-shaped structure can be reduced.
  • the aspect ratio exceeds 1:30, the strength of the needle-shaped structure itself is greatly weakened, There may be a problem of being easily broken without maintaining the shape of the needle-like particles.
  • the acicular metal-silica complex is added in an appropriate amount, specifically 50 to 200% by weight, more specifically 50 to 170% by weight, based on the silica contained in the silica precursor solution.
  • the amount of the silica airgel blanket is less than the above range, there may be a problem that the excellent thermal conductivity can not be realized before and after the aimed heat treatment of the present invention.
  • the amount exceeds the above range the density of the silica airgel blanket increases excessively, There may be a problem that the thermal conductivity increases.
  • the present invention also provides a silica aerogel blanket prepared by the above-described method for producing a silica airgel blanket and comprising an acicular metal-silica composite.
  • the silica airgel blanket of the present invention has a room temperature thermal conductivity of 20 mw / mk or less, more specifically, 19 mw / mk or less, and the increase in thermal conductivity after the heat treatment is minimized.
  • the thermal conductivity increase rate is 9.5% or less, specifically 7.5% or less, more specifically 2.5% or less.
  • the rate of increase in the room temperature thermal conductivity (%) can be calculated as '(room temperature thermal conductivity after heat treatment - room temperature thermal conductivity before heat treatment) / (room temperature thermal conductivity before heat treatment)] X 100'.
  • the present invention also provides an insulating material comprising the silica airgel blanket, further comprising a layer impermeable to water and permeable to water vapor. If the additional layer formed on the surface of the silica airgel blanket is impermeable to water, it is possible to prevent water from penetrating into the equipment or equipment to which the insulating material is applied, thereby preventing corrosion due to water. In case of permeability to water vapor, It is possible to prevent water vapor from condensing in the inside of the apparatus or apparatus, thereby preventing corrosion due to water vapor.
  • the layer that is impermeable to water and permeable to water vapor may be a cellulosic material.
  • the silica airgel blanket produced by the method of the present invention can be used in various industrial fields with high heat resistance, high strength, high heat resistance and low dust characteristics.
  • a sulfuric acid solution having a concentration of 1.0 to 3.0 M was prepared, and 100 ml of a water glass solution having a sulfuric acid solution / water glass solution ⁇ 3 molar ratio was added thereto.
  • 100 ml of a calcium chloride (CaCl 2 .2H 2 O) solution having the same concentration as that of sulfuric acid was slowly added dropwise, stirred at a stirring speed of 100 to 300 rpm and then subjected to a precipitation reaction at a reaction temperature of 60 to 100 ° C for 1 to 3 hours Respectively.
  • a base catalyst (NH 4 OH) was added to adjust the pH range to 7 to 8, and the gelation reaction was carried out to prepare a metal-silica wet gel composite.
  • Tetraethylorthosilicate (TEOS), water and ethanol were mixed in a mass ratio of silica: water: ethanol of 1: 2: 16 to prepare 100 ml of silica precursor solution.
  • TEOS Tetraethylorthosilicate
  • the needle-like metal-silica airgel composite powder was added to the silica precursor solution so as to be 150 wt% (7.3 wt% relative to the silica precursor solution) based on the weight of silica contained in the silica precursor solution, and stirred for 30 minutes.
  • the hydrophobicized silica aerogels wet gel was placed in a 7.2 L supercritical water extractor and CO 2 was injected. Thereafter, the temperature in the extractor was raised to 60 DEG C over 1 hour and supercritical drying was performed at 60 DEG C and 100 bar to prepare a silica airgel blanket.
  • a silica airgel blanket was prepared in the same manner as in Example 1, except that the needle-shaped metal-silica airgel composite powder was added in the amounts shown in Table 1 below.
  • Example 1 a silica airgel blanket was prepared in the same manner as in Example 1, except that the needle-shaped metal-silica airgel composite powder was not added.
  • a silica airgel blanket was prepared in the same manner as in Example 1 except that an inorganic metal powder (Kaolinite) was added in the amount described in Table 1 instead of the acicular metal-silica airgel composite powder.
  • Kaolinite inorganic metal powder
  • Samples of 30 cm x 30 cm in size were prepared for each of the silica airgel blanks prepared in Examples and Comparative Examples, and the room temperature thermal conductivity before the heat treatment using the HFM 436 Lambda equipment of NETZSCH Co. was measured. After the heat treatment for 2 hours, the temperature was further cooled to room temperature, and the room temperature thermal conductivity after the heat treatment was measured.
  • Room Temperature Thermal Conductivity Growth Rate (%) (Room Temperature Thermal Conductivity after Heat Treatment - Room Temperature Thermal Conductivity Before Heat Treatment) / X 100 (Room Temperature Thermal Conductivity Before Heat Treatment)
  • silica airgel blanks prepared in Examples and Comparative Examples was heat-treated at 750 ° C for 1 hour to observe whether shrinkage of the silica airgel blanket occurred.
  • silica airgel blanket of the examples had high heat insulating performance.
  • Comparative Example 2 in which an inorganic metal powder (kaolinite) was added showed that the increase rate of the room temperature thermal conductivity after the heat treatment was not large, but the room temperature thermal conductivity itself was high even before the heat treatment.
  • Examples 1 and 4 in which the needle-like metal-silica airgel composite powder was added to the silica precursor solution, were relatively excellent in shape stability even after the ultra-high temperature heat treatment.
  • the silica airgel blanket of Comparative Example 1 in which the additive was not added showed that the blanket was severely contracted as a whole after the ultra-high temperature heat treatment at 750 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법에 관한 것으로서, 실리카 에어로겔 블랭킷 제조 공정 중 실리카 전구체 용액 제조 단계에 침상형 금속-실리카 복합체를 첨가함으로써, 고단열, 고강도, 고내열성 및 저분진의 특성을 갖는 실리카 에어로겔 블랭킷을 제조할 수 있다.

Description

고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법
관련출원과의 상호인용
본 출원은 2017년 11월 21일자 한국 특허 출원 제10-2017-0155223호 및 2018년 8월 21일자 한국 특허 출원 제10-2018-0097399호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법에 관한 것이다.
실리카 에어로겔 블랭킷은 에어로겔에 무기 섬유를 도입하여 구조를 강화하고 사용성을 크게 높인 제품으로, 매우 낮은 열전도도를 바탕으로 다양한 산업 분야에 활용되고 있다.
하지만 약 400 ℃ 이상의 고온에서는 열전도도가 급격히 상승하는 경향을 나타내며, 650 ℃ 이상의 초고온에서는 주성분인 실리카의 용융 온도를 초과하면서 심각한 수축이 발생하게 된다.
이러한 문제점들로 인해 사용 온도 범위가 600 ℃ 이하로 제한되는 단점이 있으며 이를 극복하기 위해서는 비중이 높은 무기 첨가제를 도입하거나, 사용하는 섬유 자체의 밀도를 높임으로써 에어로겔 블랭킷의 전체적인 밀도를 높이는 방법이 사용되고 있다. 에어로겔 블랭킷의 밀도가 높아지게 되면 초고온 하에서도 심각한 수축을 방지할 수 있어 열전도도의 급격한 증가를 막을 수 있기 때문이다.
하지만 위에 언급한 방법을 통해 에어로겔 블랭킷의 밀도를 높이는 경우 열처리 후 열전도도의 증가를 둔화시킬 수는 있지만, 무기 첨가제와 고밀도 섬유의 영향으로 열처리 전의 상온에서의 열전도도가 눈에 띄게 높아지는 문제가 발생한다.
따라서, 에어로겔 블랭킷의 활용도를 높이고 사용 범위를 넓히기 위해서는 단열 성능의 저하를 최소화하면서 에어로겔 블랭킷의 밀도를 높일 수 있는 방법의 개발이 필요하다.
[선행기술문헌]
(특허문헌 1) 특허공개공보 제10-2012-0070948호 (2012.07.02)
본 발명의 해결하고자 하는 과제는 열처리 이후에도 단열 성능이 우수한 실리카 에어로겔 블랭킷을 제조하는 것이다.
본 발명의 해결하고자 하는 다른 과제는 고강도, 고내열성 및 저분진의 특성을 갖는 실리카 에어로겔 블랭킷을 제조하는 것이다.
본 발명은 상기와 같은 과제를 해결하기 위한 것으로서, 본 발명은 실리카 에어로겔 블랭킷 제조 공정 중 실리카 전구체 용액 제조 단계에 침상형 금속-실리카 복합체를 첨가하는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법을 제공한다.
또한, 상기 제조방법에 의해 제조된 실리카 에어로겔 블랭킷을 제공한다.
본 발명에 따른 실리카 에어로겔 블랭킷 제조방법에 의하면, 열처리 이후에도 열전도도의 상승이 최소화되어 단열 성능이 우수한 고단열의 실리카 에어로겔 블랭킷을 제조할 수 있다.
또한, 본 발명의 실리카 에어로겔 블랭킷 제조방법에 의하면, 고강도, 고내열성 및 저분진의 실리카 에어로겔 블랭킷을 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명에서 사용한 침상형 금속-실리카 복합체의 광학 현미경 사진이다(x 100).
도 2는 본 발명의 실시예의 실리카 에어로겔 블랭킷에 대한 형태안정성 실험 이후의 모습을 촬영한 사진이다.
도 3은 본 발명의 비교예의 실리카 에어로겔 블랭킷에 대한 형태안정성 실험이후의 모습을 촬영한 사진이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
일반적으로 실리카 에어로겔은 실리카 전구체 용액 제조 - 겔화 반응 - 숙성 - 표면개질 - 건조의 단계를 거쳐 제조된다. 그러나 상기 실리카 에어로겔은 다공성 구조로 인해 매우 낮은 기계적 강도를 갖기 때문에 기존의 단열섬유인 무기섬유 또는 유기섬유 등의 섬유상 블랭킷에 에어로겔을 함침하여 결합시킨 에어로겔 복합체(실리카 에어로겔 블랭킷)를 제조하여 사용하고 있다.
그러나 상기 실리카 에어로겔 블랭킷은 약 400 ℃ 이상의 고온에서는 열전도도가 급격히 상승하는 경향을 나타내며, 650 ℃ 이상의 초고온에서는 주성분인 실리카의 용융 온도를 초과하면서 심각한 수축이 발생하는 문제점이 있다.
상기 문제점을 극복하기 위해 종래에는 무기 첨가제를 도입하거나, 사용하는 섬유 자체의 밀도를 높임으로써 에어로겔 블랭킷의 전체적인 밀도를 높여 전달되는 복사 에너지를 감소시켜 열처리 이후에도 열전도도의 상승을 둔화시키려는 시도가 있었으나, 상기 시도들은 무기 첨가제와 고밀도 섬유의 영향으로 열처리 전의 상온에서의 열전도도가 눈에 띄게 높아지는 또 다른 문제를 발생시켰다.
이에 본 발명은 상기 문제를 해결하기 위하여 열처리하여도 열전도도의 상승이 최소화되어 단열 성능이 우수한 고단열의 실리카 에어로겔 블랭킷을 제조하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 실리카 에어로겔 블랭킷 제조방법은 실리카 에어로겔 블랭킷 제조 공정 중 실리카 전구체 용액 제조 단계에 침상형 금속-실리카 복합체 입자를 첨가하는 것을 특징으로 한다.
본 발명의 상기 침상형 금속-실리카 복합체는 구체적으로 침상형 금속-실리카 에어로겔 복합체인 것으로서, 일반 에어로겔에 비해 높은 밀도를 가지면서도 일반 무기 금속 첨가제에 비해 열전도도가 낮은 바, 열처리 후에도 열전도도의 상승을 최소화할 수 있다.
구체적으로 에어로겔 블랭킷 제조 시 첨가제로 무기 금속 분말을 사용하는 경우 비중이 높아 밀도를 증가시키기 쉬워 열처리 후의 열전도도의 증가를 둔화시킬 수는 있으나, 무기 금속 자체의 열전도도가 매우 높기 때문에 열처리 전에도 열전도도가 눈에 띄게 증가한다.
반면, 본 발명에서 사용한 침상형 금속-실리카 복합체는 높은 밀도를 가져 실리카 에어로겔 블랭킷에 대한 열처리 이후에도 열전도도의 증가를 둔화시킬 있으면서도, 무기 금속 분말에 비해 상대적으로 낮은 열전도도를 갖기 때문에 실리카 에어로겔 블랭킷의 상온 열전도도 상승을 최소화 할 수 있다.
한편, 본 발명에서 사용할 수 있는 침상형 금속-실리카 복합체는 산성 용액에 물유리 용액을 첨가하고, 이후 금속염을 포함하는 용액을 첨가하여 침상형의 중간체를 형성한 뒤 염기성 촉매를 첨가하여 겔화 반응을 수행하여 금속-실리카 복합 습윤겔을 제조한 뒤 세척 및 건조하여 제조할 수 있다.
또한, 상기 침상형 금속-실리카 복합체의 금속은 Ca, Mg 또는 이들의 혼합일 수 있으며, 실리카와의 반응성을 고려하여 Ca이 가장 바람직하다.
구체적으로 본 발명에서 사용하는 침상형 금속-실리카 복합체는 밀도가 0.3 내지 0.8 g/ml, 보다 구체적으로 0.4 내지 0.5 g/ml 인 것을 특징으로 한다. 침상형 금속-실리카 복합체가 상기 범위의 밀도를 가지는 경우, 최종 실리카 에어로겔 블랭킷의 밀도 조절이 용이하기 때문이다.
상기 범위의 밀도를 갖는 침상형 금속-실리카 복합체를 사용하여 제조한 본 발명의 실리카 에어로겔 블랭킷의 밀도는 190 내지 265 kg/m3, 190 내지 240 kg/m3, 보다 구체적으로 200 내지 240 kg/m3 인 것을 특징으로 한다.
본 발명의 실리카 에어로겔 블랭킷의 밀도가 상기 범위보다 작은 경우, 실리카 에어로겔 블랭킷의 열처리 이후 열전도도가 증가하는 문제가 있을 수 있으며, 상기 범위보다 큰 경우, 실리카 에어로겔 블랭킷의 밀도가 지나치게 높아 상온 열전도도가 크게 증가하는 문제가 있을 수 있다.
또한, 본 발명의 침상형 금속-실리카 복합체의 종횡비(aspect ratio)는 1:10 내지 1:30, 구체적으로는 1:10 내지 1:20 인 것을 특징으로 한다.
본 발명에 있어서, 상기 종횡비(aspect ratio)란 입자의 길이 대비 직경의 값을 의미하는 것으로, 비구형 첨가제에 있어 종횡비는 가장 기본적인 물성값에 해당한다.
본 발명의 침상형 금속-실리카 복합체는 상기 우수한 종횡비를 갖는 바, 첨가 시 섬유와 유사한 형태를 갖기 때문에 실리카 에어로겔이 형성될 때 실리카 에어로겔 내부에 쉽게 도입되고, 섬유에 잘 흡착되어 실리카 에어로겔 블랭킷의 구조를 크게 강화시켜주며, dust를 감소시킬 수 있어, 고강도 및 저분진의 실리카 에어로겔 블랭킷을 제조할 수 있게 한다.
또한, 본 발명의 침상형 금속-실리카 복합체는 고유 특성인 높은 내열성까지 가지고 있어, 750 ℃ 이상의 초고온에 노출되었을 때의 수축 현상이 다른 첨가제를 사용했을 때에 비해 눈에 띄게 감소하여 내열성을 향상시킬 수 있는 이점이 있다.
한편, 상기 종횡비가 1:10 보다 작은 경우, 침상형이 갖는 구조 강화 효과가 감소될 수 있으며, 종횡비가 1:30 를 초과하는 경우, 침상형 입자 자체의 강도가 크게 약화되어 에어로겔 블랭킷 제조 과정 중 침상형 입자의 형태를 유지하지 못하고 쉽게 부서지는 문제가 있을 수 있다.
본 발명의 제조방법은 상기 침상형 금속-실리카 복합체를 적절한 양으로 첨가하며, 구체적으로 실리카 전구체 용액에 포함된 실리카 대비 50 내지 200 중량%, 보다 구체적으로 50 내지 170 중량% 로 첨가할 수 있다.
상기 범위 미만으로 첨가하는 경우, 본 발명이 목적하는 열처리 전후 모두에서의 우수한 열전도도를 구현할 수 없는 문제가 있을 수 있으며, 상기 범위를 초과하여 첨가하는 경우, 실리카 에어로겔 블랭킷의 밀도가 지나치게 상승하여 상온 열전도도가 증가하는 문제가 있을 수 있다.
또한, 본 발명은 상기 실리카 에어로겔 블랭킷 제조방법에 의해 제조되어 침상형 금속-실리카 복합체를 포함하는 실리카 에어로겔 블랭킷을 제공한다.
본 발명의 실리카 에어로겔 블랭킷은 상온 열전도도는 20 mw/mk 이하, 더 구체적으로는 19 mw/mk 이하이며, 열처리 이후 열전도도의 증가가 최소화되는 바, 2 시간 동안 600 ℃ 에서 열처리한 이후의 상온 열전도도 증가율이 9.5 % 이하, 구체적으로 7.5 % 이하, 보다 구체적으로 2.5 % 이하인 것으로서, 단열 성능이 우수한 것을 특징으로 한다.
한편, 상온 열전도도 증가율(%)은 '(열처리 후의 상온 열전도도 - 열처리하기 전의 상온 열전도도)/(열처리하기 전의 상온 열전도도)] X 100' 로 계산될 수 있다.
또한, 본 발명은 상기 실리카 에어로겔 블랭킷을 포함하고, 물에 대해 불투과성이고, 수증기에 대해 투과성인 층을 더 포함하는 절연재를 제공할 수 있다. 상기 실리카 에어로겔 블랭킷 표면에 형성된 상기 추가의 층이 물에 대해 불투과성인 경우 절연재가 적용된 설비 또는 기기에 물이 침투하는 것을 방지하여 물로 인한 부식을 방지할 수 있으며, 수증기에 대해 투과성인 경우, 절연재가 적용된 설비 또는 기기에서 수증기를 밖으로 투과시켜 내부에서 수증기가 응결되는 것을 방지하여 수증기로 인한 부식을 방지할 수 있다.
보다 구체적으로, 상기 물에 대해 불투과성이고, 수증기에 대해 투과성인 층은 셀룰로오스 물질일 수 있다.
이와 같이 본 발명의 실리카 에어로겔 블랭킷 제조방법에 의해 제조된 실리카 에어로겔 블랭킷은 고단열, 고강도, 고내열성 및 저분진의 특성을 가져 다양한 산업 분야에 더욱 높은 활용도를 가질 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 : 침상형 금속-실리카 에어로겔 복합체 제조
반응기에 1.0 내지 3.0 M 농도의 황산 용액 100 ml 을 준비하고, 여기에 황산 용액/물유리 용액 ≥ 3 molar ratio 인 농도의 물유리 용액 100 ml을 투입하였다. 0.5 시간 후에 황산과 동일한 농도의 염화칼슘(CaCl2·2H2O) 용액 100 ml 을 천천히 적가하고, 교반 속도 100 내지 300 rpm으로 교반한 뒤, 반응 온도 60 내지 100 ℃ 에서 1 내지 3 시간 동안 침전 반응을 수행하였다. 상기 침전 반응이 완료된 후 염기 촉매(NH4OH)를 넣어 pH 범위를 7 내지 8로 맞추어 겔화 반응을 진행하여 금속-실리카 습윤겔 복합체를 제조하였다.
이후, 불순물을 제거하기 위하여 증류수로 3 내지 5 회 세척하고, 에탄올을 통해 용매 치환 후, 150 ℃ 의 온도에서 2 시간 동안 상압 건조하여 수분 함유량을 2 중량% 이내로 맞추어 최종적으로 침상형 금속-실리카 에어로겔 복합체 분말을 제조하였다.
실시예 1: 실리카 에어로겔 블랭킷 제조
테트라에틸오르소실리케이트(TEOS), 물 및 에탄올을 실리카:물:에탄올의 질량비가 1:2:16 되도록 혼합하여 실리카 전구체 용액 100 ml을 제조하였다.
상기 실리카 전구체 용액에 침상형 금속-실리카 에어로겔 복합체 분말을 실리카 전구체 용액에 포함된 실리카 중량 대비 150 중량%(실리카 전구체 용액 대비 7.3 wt%)가 되도록 첨가하여 30 분간 교반하였다.
이후, 상기 실리카 전구체 혼합 용액에 상기 전구체 혼합 용액 대비 1 vol% 의 암모니아를 전구체 혼합 용액 대비 12 vol% 의 에탄올에 희석시킨 촉매 용액을 첨가한 후 유리섬유에 casting하여 겔화를 유도하였다.
겔화 완료 후, 1 내지 10 vol%의 암모니아 용액을 이용하여 25 내지 80 ℃에서 25 내지 100 분간 Aging을 실시하였으며, 상기 Aging이 완료된 샘플의 소수화를 위해 1 내지 10 vol%의 HMDS를 첨가하여 소수화 반응을 1 내지 24 시간 진행하였다.
상기 소수화 반응이 완료된 실리카 에어로겔 습윤겔을 7.2 L 초임계 추출기(extractor)에 넣고 CO2 를 주입하였다. 이후 추출기 내의 온도를 1 시간에 걸쳐 60 ℃로 승온하고, 60 ℃, 100 bar 에서 초임계 건조하여 실리카 에어로겔 블랭킷을 제조하였다.
실시예 2 내지 4
상기 실시예 1에서, 침상형 금속-실리카 에어로겔 복합체 분말을 하기 표 1에 기재된 양으로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
비교예 1
상기 실시예 1에서, 침상형 금속-실리카 에어로겔 복합체 분말을 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
비교예 2
상기 실시예 1에서, 침상형 금속-실리카 에어로겔 복합체 분말 대신 무기 금속 분말(Kaolinite)을 하기 표 1에 기재된 양으로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
실험예 : 실리카 에어로겔 블랭킷의 물성 측정
상기 실시예 및 비교예에서 제조한 실리카 에어로겔 블랭킷의 각 물성을 측정하여 그 결과를 하기 표 1, 도 1 및 도 2에 나타내었다.
1) Final density (kg/m3)
실시예 및 비교예에서 제조한 각각의 실리카 에어로겔 블랭킷에 대해 10 cm X 10 cm 크기의 에어로겔 블랭킷 샘플 5개를 준비한 뒤 각각의 무게를 측정하고, NETZSCH社의 HFM 436 Lambda장비(열전도도 측정 장비)로 샘플의 두께를 측정한다. 측정된 무게와 두께 및 크기로 밀도를 계산하여 샘플 5개의 평균 밀도를 Final density로 결정한다.
2) 상온 열전도도 (mW/mK, 25 ℃)
실시예 및 비교예에서 제조한 각각의 실리카 에어로겔 블랭킷에 대해 30 cm X 30 cm 크기의 샘플을 준비하고, NETZSCH社의 HFM 436 Lambda장비를 이용하여 열처리하기 전의 상온 열전도도를 측정하고, 600 ℃ 에서 2 시간 동안 열처리 이후 다시 상온으로 냉각시켜 열처리 후의 상온 열전도도를 측정하였다.
상온 열전도도 증가율(%)= (열처리 후의 상온 열전도도 - 열처리하기 전의 상온 열전도도)/(열처리하기 전의 상온 열전도도)] X 100
3) 형태안정성
실시예 및 비교예에서 제조한 각각의 실리카 에어로겔 블랭킷에 대해 1 시간 동안 750 ℃ 로 열처리하여 실리카 에어로겔 블랭킷의 수축 발생 여부를 관찰하였다.
◎: 육안으로 블랭킷의 수축이 관찰되지 않는 경우
○: 블랭킷 전체적으로 경미한 수축이 관찰되는 경우
△: 블랭킷 전체적으로 수축이 관찰되는 경우
X: 블랭킷 전체적으로 심각한 수축이 관찰되는 경우
첨가제 첨가량(wt%) Final density (kg/m3) 상온 열전도도 (mW/mK, 25 ℃) 형태안정성
열처리 전 열처리 후 증가율(%)
실시예 1 침상형 금속-실리카 복합체 150 239 18.71 19.21 2.6
실시예 2 100 220 18.50 19.23 3.9
실시예 3 50 197 18.03 19.39 7.5
실시예 4 170 238 18.92 19.38 2.4
비교예 1 - - 178 17.81 19.99 12.2 X
비교예 2 Kaolinite 150 243 20.68 21.30 2.9
(Final density 비교)
침상형 금속-실리카 복합체 분말을 첨가한 실시예의 실리카 에어로겔 블랭킷의 밀도가 첨가제를 첨가하지 아니한 비교예 1의 밀도보다 큰 것을 확인할 수 있었으며, 고온 열처리 이후의 열전도도 증가율을 살펴보면, 상기 밀도가 큰 실시예가 밀도가 작은 비교예 1에 비해 열전도도 증가가 둔화된 것을 알 수 있었다.
(상온 열전도도 비교)
첨가제를 첨가하지 아니한 비교예 1의 실리카 에어로겔 블랭킷은 고온 열처리 이후의 상온 열전도도가 현저하게 상승한 것을 확인할 수 있었다.
반면, 실리카 전구체 용액에 침상형 금속-실리카 복합체 분말을 첨가한 실시예의 실리카 에어로겔 블랭킷은 열처리 후 상온 열전도도의 상승이 비교예 1에 비해 둔화된 것을 확인할 수 있었다.
이를 통해 실시예의 실리카 에어로겔 블랭킷이 고단열 성능을 가진다는 것을 알 수 있었다.
한편, 무기 금속 분말(Kaolinite)을 첨가한 비교예 2는 열처리 이후 상온 열전도도의 증가율은 크지 않았으나, 열처리 전에도 상온 열전도도 자체가 높아 단열 성능이 실시예 대비 우수하지 못함을 알 수 있었다.
(형태안정성 비교)
도 2에서 보는 바와 같이, 실리카 전구체 용액에 침상형 금속-실리카 에어로겔 복합체 분말을 첨가한 실시예 1 및 4는, 초고온 열처리 후에도 비교적 형태안정성이 우수한 것을 확인할 수 있었다.
반면, 도 3에서 보는 바와 같이, 첨가제를 첨가하지 아니한 비교예 1의 실리카 에어로겔 블랭킷은 750 ℃ 의 초고온 열처리 후 블랭킷이 전체적으로 심각하게 수축된 것을 확인할 수 있었다.
또한, 실리카 전구체 용액에 무기 금속 분말을 첨가한 비교예 2의 실리카 에어로겔 블랭킷 역시 초고온 열처리 후 블랭킷이 전체적으로 수축된 것을 확인할 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (12)

  1. 실리카 에어로겔 블랭킷 제조 공정 중 실리카 전구체 용액 제조 단계에 침상형 금속-실리카 복합체를 첨가하는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  2. 제1항에 있어서,
    상기 침상형 금속-실리카 복합체는 침상형 금속-실리카 에어로겔 복합체인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  3. 제1항에 있어서,
    상기 침상형 금속-실리카 복합체는 밀도가 0.3 내지 0.8 g/ml 인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  4. 제1항에 있어서,
    상기 침상형 금속-실리카 복합체의 종횡비(aspect ratio)는 1:10 내지 1:30 인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  5. 제1항에 있어서,
    상기 침상형 금속-실리카 복합체는 실리카 전구체 용액에 포함된 실리카 중량 대비 50 내지 200 중량% 로 첨가하는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  6. 제1항에 있어서,
    상기 침상형 금속-실리카 복합체의 금속은 Ca, Mg 또는 이들의 혼합인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  7. 제1항에 있어서,
    상기 실리카 에어로겔 블랭킷의 밀도는 190 내지 265 kg/m3 인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  8. 제1항에 있어서,
    상기 실리카 에어로겔 블랭킷은 상온 열전도도가 20 mw/mk 이하인 것을 실리카 에어로겔 블랭킷 제조방법.
  9. 제1항에 있어서,
    상기 실리카 에어로겔 블랭킷은 2 시간 동안 600 ℃ 에서 열처리 이후 상온 열전도도 증가율이 9.5 % 이하인 것을 실리카 에어로겔 블랭킷 제조방법.
  10. 침상형 금속-실리카 복합체를 포함하는 실리카 에어로겔 블랭킷.
  11. 제10항에 있어서,
    상기 실리카 에어로겔 블랭킷은 상온 열전도도가 20 mw/mk 이하이고, 2 시간 동안 600 ℃ 에서 열처리 이후 상온 열전도도 증가율이 9.5 % 이하인 것을 특징으로 하는 실리카 에어로겔 블랭킷.
  12. 제10항의 실리카 에어로겔 블랭킷; 및
    물에 대해 불투과성이고, 수증기에 대해 투과성인 층을 더 포함하는 절연재.
PCT/KR2018/009999 2017-11-21 2018-08-29 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법 WO2019103287A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/761,565 US11485892B2 (en) 2017-11-21 2018-08-29 Method for producing silica aerogel blanket having high thermal insulation and high strength
EP18881479.2A EP3715331B1 (en) 2017-11-21 2018-08-29 Method for producing silica aerogel blanket having high thermal insulation and high strength
JP2020524350A JP7105881B2 (ja) 2017-11-21 2018-08-29 高断熱及び高強度シリカエアロゲルブランケットの製造方法
CN201880070154.4A CN111278773B (zh) 2017-11-21 2018-08-29 具有高隔热性和高强度的二氧化硅气凝胶毡的制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0155223 2017-11-21
KR20170155223 2017-11-21
KR10-2018-0097399 2018-08-21
KR1020180097399A KR102190889B1 (ko) 2017-11-21 2018-08-21 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법

Publications (1)

Publication Number Publication Date
WO2019103287A1 true WO2019103287A1 (ko) 2019-05-31

Family

ID=66630608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009999 WO2019103287A1 (ko) 2017-11-21 2018-08-29 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법

Country Status (1)

Country Link
WO (1) WO2019103287A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710887B1 (ko) * 2006-04-21 2007-04-27 요업기술원 에어로젤 블랑켓트의 제조 방법
KR20070052269A (ko) * 2004-06-29 2007-05-21 아스펜 에어로겔, 인코포레이티드 에너지 효율적이고 절연된 건물 외피들
KR20100053350A (ko) * 2008-11-12 2010-05-20 한국세라믹기술원 에어로젤 블랑켓의 제조방법
KR20120070948A (ko) 2010-12-22 2012-07-02 주식회사 화인텍 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법
CN106431168A (zh) * 2016-09-29 2017-02-22 成都新柯力化工科技有限公司 一种常压干燥制备大块状柔性气凝胶的方法
KR20170104914A (ko) * 2016-03-08 2017-09-18 주식회사 엘지화학 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070052269A (ko) * 2004-06-29 2007-05-21 아스펜 에어로겔, 인코포레이티드 에너지 효율적이고 절연된 건물 외피들
KR100710887B1 (ko) * 2006-04-21 2007-04-27 요업기술원 에어로젤 블랑켓트의 제조 방법
KR20100053350A (ko) * 2008-11-12 2010-05-20 한국세라믹기술원 에어로젤 블랑켓의 제조방법
KR20120070948A (ko) 2010-12-22 2012-07-02 주식회사 화인텍 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법
KR20170104914A (ko) * 2016-03-08 2017-09-18 주식회사 엘지화학 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓
CN106431168A (zh) * 2016-09-29 2017-02-22 成都新柯力化工科技有限公司 一种常压干燥制备大块状柔性气凝胶的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715331A4 *

Similar Documents

Publication Publication Date Title
WO2017078293A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2017105065A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2016129874A1 (ko) 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
WO2020111763A1 (ko) 에어로겔 블랭킷의 제조방법
WO2017090912A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2016117856A1 (ko) 기공을 갖는 입자를 이용한 폴리이미드 필름의 제조방법 및 저유전율의 폴리이미드 필름
WO2017090911A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2019098504A1 (ko) 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
WO2018147618A1 (ko) 폴리아마이드-이미드 필름의 제조방법
WO2018048289A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2021096165A1 (ko) 고강도 불연성 단열재 및 이의 제조 방법
WO2018048197A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2020122683A1 (ko) 에어로겔 블랭킷의 제조방법
WO2016114503A1 (ko) 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법
WO2016208795A1 (ko) 사형 주조용 주형 및 이의 건식 제조방법
WO2019103287A1 (ko) 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2019098519A1 (ko) 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법
WO2017171217A1 (ko) 저분진 고단열 에어로겔 블랭킷의 제조방법
WO2018186546A1 (ko) 침상형 금속-실리카 복합 에어로겔 입자 제조방법 및 이에 의해 제조된 침상형 금속-실리카 복합 에어로겔 입자
WO2020122684A1 (ko) 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스
WO2013055016A1 (ko) 탄화규소 분말의 제조방법 및 이에 의해서 제조된 탄화규소 분말
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2022035111A1 (ko) 내플라즈마 유리 및 그 제조 방법
WO2019112393A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018881479

Country of ref document: EP

Effective date: 20200622