WO2019102932A1 - ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法 - Google Patents

ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法 Download PDF

Info

Publication number
WO2019102932A1
WO2019102932A1 PCT/JP2018/042390 JP2018042390W WO2019102932A1 WO 2019102932 A1 WO2019102932 A1 WO 2019102932A1 JP 2018042390 W JP2018042390 W JP 2018042390W WO 2019102932 A1 WO2019102932 A1 WO 2019102932A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
less
flux
mass fraction
welding
Prior art date
Application number
PCT/JP2018/042390
Other languages
English (en)
French (fr)
Inventor
直樹 迎井
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201880072738.5A priority Critical patent/CN111417489B/zh
Priority to EP18880408.2A priority patent/EP3715042B1/en
Priority to US16/652,133 priority patent/US20200230733A1/en
Publication of WO2019102932A1 publication Critical patent/WO2019102932A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Definitions

  • the present invention relates to a flux cored wire for gas shielded arc welding, and also relates to a welding method using the flux cored wire for gas shielded arc welding.
  • Flux-cored wire is a widely used welding material because of its excellent efficiency in construction and good welding workability. The same applies to welding of materials such as stainless steels and Ni-based alloys which are required to have corrosion resistance and low temperature / high temperature performance.
  • Welding using stainless steel flux cored wire or flux cored wire for Ni base alloy has better bead shape and is less likely to generate defects such as blow holes and fusion defects than MIG (Metal Inert Gas) welding using solid wire
  • MIG Metal Inert Gas
  • welding that uses an active gas such as 2 to 5% of O 2 or CO 2 as the shielding gas and uses Ar gas as the balance is strictly called MAG (Metal Active Gas) welding, but for the sake of convenience It is collectively called MIG (Metal Inert Gas) welding as a specific name.
  • a slag forming agent is added to many stainless steel flux cored wires and flux cored wires for Ni-based alloys mainly for the purpose of protecting the weld beads from the atmosphere, and the weld beads are covered with the slag.
  • slag exfoliation is an important factor from the viewpoint of welding workability. Slag is an unnecessary substance after completion of the welding work and is also a cause of inducing internal defects when performing multi-layer welding or overlay welding, so it is removed using a scale hammer or a tongue. At this time, if the removability of the formed slag is poor, it takes time to remove the slag.
  • slag having poor removability may be finely broken or jump up due to the difference in the amount of thermal contraction with the metal as the weld is cooled. Since the slag at this time is still high temperature for the human body, there is a possibility of a burn and it is very dangerous.
  • Patent Document 1 discloses that a small amount of a low melting point metal element such as Bi or Pb is added for the purpose of improving the removability of slag, and generally, an oxide of Bi is used.
  • a Bi-containing flux cored wire is used for welding of a device operated at a high temperature for a long time, cracking (reheat cracking) often occurs in the weld. This is a crack due to Bi opening at grain boundaries and opening by locally forming a low melting point portion.
  • Patent Documents 2 and 3 disclose a Bi-free flux cored wire as a wire used for welding equipment for high temperature applications.
  • Bi additive-free can be regarded as substantially additive-free as 0.0010% or less by mass fraction according to the provisions of JIS Z 3323: 2007 Table 2 Note b). It is known that reheat cracking does not occur.
  • Patent Document 4 by using a metal-based flux cored wire of an appropriate composition, stable droplet migration and good weldability can be obtained even when a shield gas with a high Ar ratio is used. Is disclosed.
  • the slag-based flux cored wires described in Patent Documents 2 and 3 can slightly improve the slag removability by adjusting the composition of the slag forming agent and the slag content, etc., but As, Sb As compared with a flux cored wire to which a low melting point element such as Pb, Bi, etc. is added, the slag removability is inferior and improvement has been desired.
  • this invention is a slag system flux cored wire which does not contain a low melting metal, and it is highly efficient to perform welding excellent in slag removability and welding workability (sputter generation amount, bead shape, defect resistance). It is another object of the present invention to provide a flux cored wire which can provide a weld bead which is excellent in corrosion resistance. Another object of the present invention is to provide a welding method under high welding heat input conditions using the flux cored wire.
  • the inventor of the present invention has excellent slag removability even without containing a low melting point metal by setting the composition of the slag-based flux cored wire and the composition of the shielding gas used to a specific range, and good welding workability is obtained. It has been found that a weld bead having excellent corrosion resistance can be obtained, and furthermore, highly efficient construction can be achieved, and the present invention has been completed.
  • the present invention relates to the following [1] to [8].
  • [1] A flux-cored wire for gas shielded arc welding, wherein flux is filled in the outer shell, Assuming that the volume fraction of oxygen is [O 2 ] and the volume fraction of carbon dioxide is [CO 2 ] as the shielding gas, 0% [[O 2 ] 5 5%, 0% [[CO 2 ] ⁇ Used for gas shielded arc welding using a gas that satisfies the relationship of 15% and ⁇ [CO 2 ] + (3 ⁇ [O 2 ]) ⁇ ⁇ 15, and the balance is Ar, Substantially free of As, Sb, Pb and Bi, The composition of the slag component in the wire is, by mass fraction with respect to the total wire mass, TiO 2 : 4.00 to 9.00%, SiO 2 : 0.30 to 2.00%, ZrO 2 : 1.50 to 3.00%, Al 2 O 3 : 0.30% or less (including 0%), And MgO: 0.50% or
  • the content of the flux in the wire is 8.0 to 30.0% by mass fraction with respect to the total mass of the wire, and the content of the slag component in the flux with respect to the total mass of the wire 7.0 to 15.0% in mass fraction
  • the flux cored wire for gas shielded arc welding according to any one of the above [1] to [3].
  • the composition of the alloy component in the wire further has a mass fraction of C: 0.005 to 0.150% with respect to the total mass of the wire, Si: 0.05 to 1.50%, Mn: 0.20 to 3.00%, Cr: 15.00 to 35.00%, Ni: 5.00-25.00%, Mo: 5.00% or less (including 0%), Nb: 2.00% or less (including 0%), Ti: 1.00% or less (including 0%),
  • the flux cored wire for gas shielded arc welding according to any one of the above [1] to [4], wherein N: 1.00% or less (including 0%) and the balance: Fe and an unavoidable impurity are satisfied.
  • the composition of the alloy component in the wire further has a mass fraction of C: 0.005 to 0.150% with respect to the total mass of the wire, Si: 0.05 to 1.00%, Mn: 0.10 to 4.00%, Cr: 10.00-35.00%, Fe: 0.10 to 10.00%, W: 5.00% or less (including 0%), Mo: 20.00% or less (including 0%), Nb: 4.50% or less (including 0%), Co: 2.50% or less (including 0%), Ti: 1.00% or less (including 0%),
  • the flux cored wire for gas shielded arc welding according to any one of the above [1] to [4], wherein N: 0.50% or less (including 0%) and the remainder: Ni and an unavoidable impurity filled with the inevitable impurities.
  • the composition of the alloy component in the wire may further be S: 0.020 to 0.100% in mass fraction with respect to the total mass of the wire.
  • welding excellent in slag removability and welding workability can be performed with high efficiency, and furthermore, a weld bead excellent in corrosion resistance can be obtained. it can.
  • a flux-cored wire for gas shield arc welding (hereinafter, may be simply referred to as "flux-cored wire” or “wire”) according to the present embodiment is formed by filling a flux in an outer shell.
  • the volume fraction of oxygen is [O 2 ]
  • the volume fraction of carbon dioxide is [CO 2 ]
  • 0% ⁇ [O 2 ] ⁇ 5 in the shielding gas.
  • a gas is used which satisfies the relationships of%, 0% ⁇ [CO 2 ] ⁇ 15%, and ⁇ [CO 2 ] + (3 ⁇ [O 2 ]) ⁇ ⁇ 15, with the balance being Ar.
  • the wire of the present embodiment is a slag-based flux cored wire substantially free of As, Sb, Pb and Bi, and the composition of the slag component in the wire is TiO 2 : 4.00 to mass ratio with respect to the total mass of the wire. 9.00%, SiO 2 : 0.30 to 2.00%, ZrO 2 : 1.50 to 3.00%, Al 2 O 3 : 0.30% or less (including 0%) and MgO: 0.50% or less (including 0%) are satisfied.
  • the composition of the alloy component contained in the sheath of the wire and the flux is a mass fraction of Cr: 10.00 to 35.00% with respect to the total mass of the wire, and Nb: 4.50 Satisfy% or less (including 0%),
  • the mass fraction of Cr is [Cr]
  • the mass fraction of Nb is [Nb]
  • A ⁇ [Cr] + (4.3 ⁇ [Nb]) ⁇
  • a feature of the present invention is that the relationship of ⁇ (3 ⁇ [O 2 ]) + [CO 2 ] + (0.0085 ⁇ A 2 ) ⁇ (0.19 ⁇ A) ⁇ ⁇ 20.0 is satisfied.
  • substantially free of As, Sb, Pb and Bi means that any of As, Sb, Pb and Bi is not positively added, and contains As, Sb, Pb and Bi.
  • the sum of the amounts is regulated to less than 0.0010% by mass fraction with respect to the total mass of the wire.
  • the slag component in the wire according to the present embodiment is a component contained as a metal oxide or metal fluoride, and is contained in the flux.
  • the content of the slag component in the flux is directly linked to the amount of slag formation at the time of welding, and affects the slag encapsulation property and the slag inclusion defect property. Since the content of the slag component in the flux is 7.0% or more in mass fraction with respect to the total wire mass, the entire bead surface can be encapsulated without a shortage of the amount of slag generation relative to the weld bead surface area Preferably, it is more preferably 8.0% or more.
  • the content of the slag component in the flux is preferably 15.0% or less in mass fraction with respect to the total wire mass, because the slag generation amount is not excessive and the slag inclusion defect can be suppressed, and 13 More preferably, it is not more than .5%.
  • the content rate of a slag component means the sum total of the content of the metal oxide contained in a flux, and a metal fluoride.
  • TiO 2 is added as a main component of a slag forming agent having a good encapsulation property.
  • rutile, titanium oxide, potassium titanate, sodium titanate and the like can be mentioned. If the mass fraction of TiO 2 with respect to the total wire mass (hereinafter sometimes referred to as “content”) is less than 4.00%, the slag is poorly encapsulated and the bead shape is degraded. Furthermore, since the oxidation of the surface occurs in the portion where the weld metal is exposed, the corrosion resistance may be deteriorated. On the other hand, when the content of TiO 2 is more than 9.00%, the slag becomes hard and the removability deteriorates. Therefore, the content of TiO 2 is 4.00 to 9.00%, preferably 6.00% or more, and preferably 8.50% or less.
  • SiO 2 improves the conformability of the bead toe and has the effect of obtaining a smooth bead.
  • SiO 2 source silica sand, wollastonite, potassium feldspar, sodium feldspar and the like can be mentioned.
  • the content of SiO 2 is less than 0.30%, not the effect. If the content of SiO 2 is more than 2.00%, the melting point of the slag becomes too low, and the bead shape is degraded. Therefore, the content of SiO 2 is 0.30 to 2.00%, preferably 0.50% or more, and preferably 1.60% or less.
  • ZrO 2 is a component that adjusts the melting point of slag and improves the bead shape, and examples of the ZrO 2 source include zircon sand, zirconium oxide powder, and the like. If the content of ZrO 2 is less than 1.50% or more than 3.00%, the timing of the solidification of the molten metal and the solidification of the slag do not match, and the bead shape is degraded. Therefore, the content of ZrO 2 is 1.50 to 3.00%, preferably 1.80% or more, and preferably 2.50% or less.
  • Al 2 O 3 may be added as necessary for the purpose of adjustment to obtain a proper slag viscosity improving encapsulated slag.
  • the al 2 O 3 source include alumina powder or the like. If the content of Al 2 O 3 is more than 0.30%, the viscosity of the slag becomes too high, and slag inclusion defects are easily generated. Therefore, the content of Al 2 O 3 is 0.30% or less (including 0%), preferably 0.20% or less.
  • MgO may be added as necessary since it is effective for adjusting the melting point of the slag.
  • MgO source magnesite, magnesia clinker and the like can be mentioned. If the content of MgO is more than 0.50%, seizure of the slag is likely to occur. Therefore, the content of MgO is 0.50% or less (including 0%), preferably 0.30% or less.
  • the flux cored wire which concerns on this embodiment is used as a wire for gas shield arc welding which used shield gas with a high Ar ratio.
  • gas shield arc welding which used shield gas with a high Ar ratio.
  • transition to an unstable droplet transfer form such as streaming transfer or rotating transfer is facilitated as the welding current increases. It is generally known that sputtering tends to increase.
  • the flux column is formed in the arc by setting the content of each slag component in the flux cored wire to a composition balance within a specific range. It has been found that the drops can be transferred along the flux column, the drop transfer is very stable and the occurrence of spatter is extremely reduced.
  • the mass fraction of TiO 2 [TiO 2], the mass fraction of SiO 2 [SiO 2], the mass fraction of ZrO 2 [ZrO 2], the mass fraction of Al 2 O 3 Ratio is [Al 2 O 3 ] and the mass fraction of MgO is [MgO], [ ⁇ 3 ⁇ ([ZrO 2 ] + [MgO]) ⁇ + (1.2 ⁇ [Al 2 O 3 ]) + [TiO 2 ] + (0.3 ⁇ [SiO 2 ])] / ([TiO 2 ] ] + [SiO 2 ] + [ZrO 2 ] + [Al 2 O 3 ] + [MgO]) It is preferable because the above effect can be obtained without the melting point of the slag becoming too low when the value represented by is 1.15 or more.
  • the melting point of the slag does not become too high when the value represented by the above-mentioned formula is 1.75 or less, it is introduced into the molten pool in a molten state without a shortage of flux columns, It is preferable because the occurrence of The value represented by the above formula is more preferably 1.20 or more, further preferably 1.25 or more. Moreover, 1.60 or less is more preferable, and, as for the value represented by said Formula, 1.50 or less is more preferable.
  • the coefficient in the above equation is obtained by weighting each oxide from the difference between the melting point of each oxide and the melting point of the steel, and the effectiveness and favorable numerical range of the above equation are determined by experiment. is there.
  • the melting point of each oxide is as follows. TiO 2 : 1870 ° C SiO 2 : 1650 ° C. ZrO 2 : 2715 ° C Al 2 O 3 : 2072 ° C. MgO: 2852 ° C
  • the slag component may further contain an alkali metal compound such as Na compound, K compound and / or Li compound.
  • alkali metal compound source include potassium feldspar, sodium feldspar, lithium ferrite, sodium fluoride, potassium fluorosilicate and the like.
  • the content of the alkali metal component contained in the Na compound, the K compound and the Li compound with respect to the total wire mass is a value obtained by converting the alkali metal component into an oxide, that is, into Na 2 O, K 2 O and Li 2 O By setting the total mass fraction of the values to 0.25% or more, it is preferable because the arc is stabilized and the spatter generation amount decreases.
  • the content of the alkali metal component contained in the Na compound, the K compound and the Li compound relative to the total mass of the wire is 1.50% or less by mass fraction of the total value converted to Na 2 O, K 2 O and Li 2 O It is preferable from the viewpoint that the generation of pore defects such as pits and blow holes caused by an increase in the amount of water in the wire can be suppressed by setting to be 1.00% or less, which is attributed to the high hygroscopicity of the alkali metal compound. .
  • the slag component can further include metal fluorides.
  • the metal fluoride source include calcium fluoride, sodium fluoride and potassium silicofluoride.
  • the content of the metal fluoride with respect to the total wire mass is preferably 0.05% or more in terms of F, since good arc stability can be obtained, and 0.15% or more is more preferable.
  • the content of the metal fluoride with respect to the total wire mass is preferably 0.80% or less in terms of F, which is preferable because it can maintain good slag encapsulation without decreasing the viscosity of the slag, 0.60% or less is more preferable.
  • the slag component may further contain Fe 2 O 3 .
  • Fe 2 O 3 source include potassium feldspar and sodium feldspar, and those contained as impurities in other ores.
  • the mass fraction of Fe 2 O 3 based on the total mass of the wire is preferably 0.50% or less (including 0%) because the seizure of the slag can be suppressed, and 0.30% or less is more preferable.
  • the slag component may contain unavoidable metal oxides such as V 2 O 5 , Nb 2 O 5 , CaO, and oxides of rare earth metals. If the amount of the above-mentioned impurities inevitably contained in rutile or other ores is small, the properties of the wire are not greatly affected, but if it is contained excessively, the balance of the slag composition is lost and the slag removability is deteriorated. There is a risk of Therefore, the mass fraction of the unavoidable metal oxide to the total wire mass is preferably 0.20% or less (including 0%).
  • the alloy component in the wire according to the present embodiment is a component contained as a pure metal, alloy, carbide (carbonized alloy) or nitride (nitrided alloy), the majority of which is a component that forms a weld metal, It is a component contained in at least one of fluxes.
  • Cr and Nb are components which are particularly susceptible to oxidation among the alloy components. If the mass fraction (content) with respect to the total mass of these wires becomes too high, the balance of the slag component composition will be lost and the slag removability will deteriorate unless the Ar purity in the shield gas is increased. Also, Cr is a component that greatly affects the corrosion resistance of the weld metal. Therefore, the content of Cr is 10.00% or more and 35.00% or less, preferably 12.00% or more, and 30.00% or less. Nb is a component that further improves corrosion resistance by immobilizing C and preventing bonding of Cr and C (prevention of sensitization). Furthermore, in the case of a Ni-based alloy, the strength may be improved by precipitating Nb carbides.
  • the content of Nb is 4.50% or less (including 0%), preferably 4.00% or less.
  • the content of Nb is preferably 0.4% or more.
  • the alloy component in the present embodiment is not particularly limited other than the above Cr and Nb, but, for example, the same composition as the alloy component in a general stainless steel flux cored wire or a flux cored wire for nickel base alloy can be adopted.
  • S is a component that greatly lowers the surface tension of the molten metal and activates the convection of the molten metal, and the bead shape is flat and favorable. It is a component that can be By the bead shape becoming flat, slag removability can be further improved. Therefore, 0.020% or more is preferable and, as for content of S, 0.025% or more is more preferable.
  • S is also a component that segregates at grain boundaries, forms a low melting point compound, and degrades the high temperature cracking resistance. Therefore, 0.100% or less is preferable and, as for content of S, 0.080% or less is more preferable.
  • the composition of the alloy component of the stainless steel flux cored wire is, for example, C: 0.005 to 0.150%, Si: 0.05 to 1.50%, Mn: 0.20 to C in terms of mass fraction with respect to the total mass of the wire. 3.00%, Cr: 15.00 to 35.00%, Ni: 5.00 to 25.00%, Mo: 5.00% or less (including 0%), Nb: 2.00% or less (0 %, Ti: 1.00% or less (including 0%), N: 1.00% or less (including 0%), and the balance: Fe and unavoidable impurities are preferably filled.
  • the content of C is preferably 0.005 to 0.150%.
  • Si is a component that improves the strength of the weld metal, it is also a component that degrades toughness.
  • a low Si material having a low Si content is not economical. In view of the balance of these performances, the content of Si is preferably 0.05 to 1.50%.
  • Mn is a component that improves the strength of the weld metal, it is also a component that increases welding fumes if contained more than necessary.
  • the content of Mn is preferably 0.20 to 3.00%.
  • Cr is a component that improves the corrosion resistance of the weld metal, but if it is contained more than necessary, it reacts with the oxidizing shield gas to form an oxide, and is a component that affects the balance of the slag component composition. Therefore, the content of Cr is preferably 15.00 to 35.00%.
  • Ni is a component that stabilizes the austenite composition of the weld metal and improves toughness at low temperatures, and is a component added in a fixed amount for the purpose of adjusting the amount of crystallization of the ferrite composition. Further, the addition amount of Ni may be in the range generally added as stainless steel, and it is appropriate to be added at 25% or less. Therefore, the content of Ni is preferably 5.00 to 25.00%.
  • Mo is a component that improves high temperature strength and pitting resistance, but is also a component that promotes ⁇ embrittlement, and therefore, positive addition is not performed except when high temperature strength and pitting resistance are required. . The content of Mo is preferably 5.00% or less (including 0%).
  • Nb and Ti have the effect of binding and stabilizing C, respectively, and are components that improve the corrosion resistance, but if contained more than necessary, they form low melting point compounds at grain boundaries and cause solidification cracking resistance. Degrade. Furthermore, Nb and Ti easily react with the oxidizing shield gas to form an oxide. Since TiO 2 is positively added as a slag component, the effect is not clear, but the Nb oxide affects the balance of the slag component composition. Therefore, positive addition is not performed except when corrosion resistance is required.
  • the content of Nb is preferably 2.00% or less (including 0%), and the content of Ti is preferably 1.00% or less (including 0%).
  • N is a component that improves interstitial strength by interstitial solid solution in the crystal structure and further improves pitting resistance, but it also causes pore defects such as blow holes and pits in the weld metal, Especially in cases where strength and pitting resistance are required, positive addition is not performed.
  • the content of N is preferably 1.00% or less (including 0%).
  • the balance is Fe and unavoidable impurities.
  • Unavoidable impurities include V, P, Cu, Sn, Na, Co, Ca, Li, Sb, W and As, etc.
  • O is also contained in the balance. It becomes.
  • the outer shell of stainless steel flux cored wire is not particularly limited, but, for example, ordinary steel, SUH409L (JIS G 4312: 2001), SUS430, SUS304L, SUS316L, SUS310S (all are JIS G 4305: 2012), etc. Can be used.
  • the composition of the alloy component of the flux cored wire for a Ni-based alloy is, for example, C: 0.005 to 0.150%, Si: 0.05 to 1.00%, Mn: 0. 10 to 4.00%, Cr: 10.00 to 35.00%, Fe: 0.10 to 10.00%, W: 5.00% or less (including 0%), Mo: 20.00% or less (Including 0%), Nb: 4.50% or less (including 0%), Co: 2.50% or less (including 0%), Ti: 1.00% or less (including 0%), N It is preferable to satisfy: 0.50% or less (including 0%) and the balance: Ni and inevitable impurities.
  • C combines with an element such as Nb and is a component that improves the strength of the weld metal by fine precipitation, but is also a component that degrades corrosion resistance.
  • low C materials are not economical.
  • the content of C is preferably 0.005 to 0.150%.
  • Si is a component that improves the strength of the weld metal, but is also a component that degrades toughness.
  • low Si materials are not economical.
  • the content of Si is preferably 0.05 to 1.00%.
  • Mn is a component that improves the strength of the weld metal, but is also a component that increases welding fumes. In view of the balance of these performances, the content of Mn is preferably 0.10 to 4.00%. While Cr is a component that improves the corrosion resistance of the weld metal, it reacts with the oxidizing shield gas to form an oxide, and is a component that affects the balance of the slag component composition. Therefore, the content of Cr is preferably 10.00 to 35.00%.
  • Fe is a component that is added to an extent not adversely affecting mechanical properties, corrosion resistance and the like in order to improve the economics of the weld metal.
  • the procurement of an alloy material having a very low Fe content significantly reduces the economy, so the content of Fe is preferably 0.10% or more.
  • the upper limit of the content of Fe is preferably 10.00% or less.
  • W and Mo are components for improving high temperature strength and pitting resistance, respectively, since the melting point is very high, W particles and Mo particles which are not melted are scattered as defects when added in excess. There is a fear. Therefore, the content of W is preferably 5.00% or less (including 0%), and the content of Mo is preferably 20.00% or less (including 0%).
  • Nb is a component that combines with C to improve the strength of the molten metal, but is a component that forms a low melting point compound at the grain boundaries and degrades solidification cracking resistance. Furthermore, it is a component that reacts with the oxidizing shield gas to form an oxide and affects the balance of the slag component composition. Therefore, positive addition is not performed unless particularly required strength.
  • the content of Nb is preferably 4.50% or less (including 0%).
  • Co like Ni, is a component that stabilizes the austenitic structure. Further, Co is an unavoidably contained component because it is contained in a relatively large amount as an impurity in a general Ni material. On the other hand, Co is extremely uneconomical and aggressive addition is not preferable.
  • the content of Co is preferably 2.50% or less (including 0%).
  • Ti is a component that combines with Ni to precipitate a metal compound of Ni 3 Ti and improves high-temperature strength, but is a component that degrades ductility and toughness. Therefore, positive addition is not performed unless particularly high temperature strength is required.
  • the content of Ti is preferably 1.00% or less (including 0%).
  • N is a component which improves the strength by interstitial solid solution in the crystal structure and further improves the pitting resistance.
  • the weld metal causes pore defects such as blow holes and pits, positive addition is not performed except when strength and pitting resistance are particularly required.
  • the content of N is preferably 0.50% or less (including 0%).
  • the balance is Ni and unavoidable impurities.
  • As unavoidable impurities V, P, Cu, Sn, Na, Ca, Li, Sb, As and the like can be mentioned.
  • O When each element is contained as an oxide, O is also contained in the balance.
  • the outer shell of the flux cored wire for a Ni-based alloy is not particularly limited, and, for example, Alloy 600 (UNS N06600), Alloy 625 (UNS N06625), Alloy 22 (UNS N 06022), Alloy 276 (UNS N10276) and the like can be used.
  • the content of the flux in the wire is preferably 8.0% or more, and more preferably 13.0% or more in mass fraction with respect to the total mass of the wire.
  • the content of the flux in the wire is preferably 8.0% or more, and more preferably 13.0% or more in mass fraction with respect to the total mass of the wire.
  • the wire diameter of the flux cored wire is not particularly limited, but the diameter is preferably 1.2 to 2.0 mm, more preferably 1.6 mm or less, in consideration of combination with a general welding device and welding workability.
  • the flux cored wire according to the present embodiment is used together with a shield gas having a high ratio of Ar.
  • a shield gas having a high ratio of Ar On the other hand, when the content of the active gas component in the shielding gas is large, the alloy component contained in the wire is oxidized to be integrated with the slag, which may break the balance of the slag component composition.
  • the active gas components are oxygen and carbon dioxide, and oxygen has a stronger effect of oxidizing the alloy components than carbon dioxide.
  • the shield gas in the present embodiment is 0% ⁇ [O 2 ] ⁇ 5%, 0% ⁇ [ A gas is applied which satisfies the relationship of CO 2 ] ⁇ 15% and ⁇ [CO 2 ] + (3 ⁇ [O 2 ]) ⁇ ⁇ 15, with the balance being Ar.
  • the mass fraction of Cr is [Cr]
  • the mass fraction of Nb is [Nb]
  • A ⁇ [Cr] + (4.3 ⁇ [Nb]) ⁇ .
  • the value represented by the following relational expression is 20.0 or less.
  • the coefficient of [Nb] 4.3 is a value derived from a test result in which the addition amounts of Cr and Nb in the wire are independently changed, and the bead is scored in terms of slag removability, and regression is performed. As a result of calculation, this coefficient was obtained.
  • the coefficient of [O 2 ], 3 is a value derived from the test results of independently changing the volume fraction of CO 2 and O 2 in the shield gas, and the beads were compared in terms of slag removability As a result, it is a coefficient obtained with the conclusion that the degree of influence of O 2 is about three times that of CO 2 .
  • the value represented by the above relational expression is preferably 15.4 or less from the viewpoint of slag removability.
  • the wire in the present embodiment can suppress the oxidation of the bead surface without taking the above measures. Therefore, even when welding is performed under high heat input conditions, it is not necessary to take special measures for weld bead oxidation, so the shield nozzle diameter is generally that of (for example, those with an inner diameter of 13 to 19 mm) This makes it possible to simplify the welding apparatus.
  • the flux cored wire according to the present embodiment suppresses oxidation of the bead surface not only in low heat input conditions but also in welding with high heat input, and good welding workability can be obtained.
  • the flux cored wire according to the present embodiment is preferably used for welding under a high heat input condition of a certain level or more.
  • the condition of high heat input is selected needlessly, there are fears that spatter frequently occurs and that the amount of weld metal is excessive to penetration, causing an overlap defect and the like. Therefore, it is preferable to perform the welding construction using the flux cored wire according to the present embodiment and the welding heat input value F (kJ / cm) represented by the following formula within the range of 10.0 or more and 19.0 or less.
  • Welding heat input (F) (kJ / cm) current (A) ⁇ voltage (V) ⁇ welding speed (cm / s) ⁇ 1000
  • the flux cored wire according to the present embodiment can be manufactured by the same method as the conventional method, and the manufacturing method is not particularly limited.
  • the outer skin is filled with flux.
  • the composition of the shell, the composition of the flux, and the content thereof are appropriately adjusted to be in the above-mentioned ranges.
  • the wire in which the flux is filled in the outer shell is reduced by rolling or drawing to obtain a flux cored wire having a predetermined outer diameter.
  • A Sputtering amount of 1.0 mm or more: 0 g and 1.0 mm or less sputtering amount: 0.5 g or less.
  • B Sputtering amount of 1.0 mm or more: 0.2 g or less and 1.0 mm or less of sputtering amount: 0.7 g or less.
  • C Sputtering amount of 1.0 mm or more: 0.5 g or less and 1.0 mm or less of sputtering amount: 1.0 g or less.
  • D Sputtering amount of 1.0 mm or more: Sputtering amount of more than 0.5 g and / or 1.0 mm or less: more than 1.0 g.
  • the bead shape was evaluated visually with respect to the bead. Evaluation criteria are as shown below, and A and B pass, C fails.
  • the flank angle means the angle between the surface of the base material and the end of the bead. A: It can be said that it is good in the state without the possibility of the fusion failure defect of a bead overlap part, and a flank angle is 120 degrees or more in general. B: It can be evaluated together with the result of the X-ray transmission test, and the flank angle is generally 100 ° or more and less than 120 °. C: It can be said that it is a defect in a state in which there is a possibility of a fusion failure defect of the bead overlapping portion, and the flank angle is generally less than 100 °.
  • the welded base material was cut out to a size of 60 ⁇ 145 mm, coated with leaving a weld bead 40 ⁇ 125 mm, and subjected to a neutral salt spray test according to JIS Z2371: 2015. The spraying conditions were continuous for 168 hours and evaluated according to the following criteria.
  • AC pass and D fail A: A rating number of 10 determined by JIS Z2371: 2015 Annex JC rating number method. B: The rating number is 9 or more and 9.8 or less. C: The rating number is 3 or more and 8 or less. D: The rating number 2 or less (including 0).
  • Test Examples 1 to 67 The conditions of the welding test (Test Examples 1 to 67) are as shown in Table 5.
  • Test Examples 1-8, 13-16, 19-22, 25-29, 31-33, 36-47 and 50-67 are Examples, and Test Examples 9-12, 17, 18, 23, 24, 30 , 34 and 35 are comparative examples,
  • test example 48 is a reference example using wire W-38 containing a low melting point metal, and
  • test example 49 is a reference using wire W-39 which is a metal-based flux cored wire It is an example.
  • “Parameter ⁇ ” in Table 5 represents a relational expression represented by ⁇ (3 ⁇ [O 2 ]) + [CO 2 ] + (0.0085 ⁇ A 2 ) ⁇ (0.19 ⁇ A) ⁇ ,
  • the compositions of G-1 to G-11 in the “shield gas” are as shown in Table 6.
  • Test Examples 1 to 11 are test examples in which the composition of the shield gas is changed.
  • Test Examples 12 to 49 are test examples in which the composition is changed using a stainless steel flux cored wire.
  • the alloy component composition By making the alloy component composition appropriate, a weld metal having good slag removability, bead shape and defect resistance was obtained.
  • the test example 48 is excellent in any of sputter
  • Test examples 50 to 59 are test examples using a flux cored wire for a Ni-based alloy, and if the wire composition is in a range satisfying the range of the present invention, good slag removability and welding workability can be obtained.
  • Test Examples 60 to 67 are test examples in which the shield gas, the wire composition and the welding conditions are changed. As long as the range satisfies the range of the present invention, good slag removability, welding workability and corrosion resistance are obtained. In addition, welding using a wire satisfying the range of the present invention was able to form a good weld metal even under high heat input conditions of 12.0 kJ / cm or more, and it was confirmed that welding with high efficiency was possible. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

本発明は、スラグ剥離性、溶接作業性に優れ、高温・長時間操業される機器に適用した場合であっても再熱割れのおそれが無く、高能率施工ができ、耐食性に優れた溶接ビードが得られるフラックス入りワイヤを提供することを目的とする。本発明は高Ar比率である特定のシールドガスを用いる溶接に用いられ、As、Sb、Pb及びBiを実質的に含まず、スラグ成分及び合金成分の組成が所定の条件を満たし、かつ{(3×[O2])+[CO2]+(0.0085×A2)-(0.19×A)}≦20.0(ただし、A={[Cr]+(4.3×[Nb])})の関係を満たすガスシールドアーク溶接用フラックス入りワイヤに関する。

Description

ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
 本発明は、ガスシールドアーク溶接用フラックス入りワイヤに関し、また、前記ガスシールドアーク溶接用フラックス入りワイヤを用いた溶接方法にも関する。
 フラックス入りワイヤは施工面における優れた能率と良好な溶接作業性から広く普及している溶接材料である。これは、ステンレス鋼やNi基合金といった耐食性や低温・高温性能が求められる材料の溶接においても同様である。
 ステンレス鋼フラックス入りワイヤやNi基合金用フラックス入りワイヤを用いる溶接はソリッドワイヤを用いるMIG(Metal Inert Gas)溶接に比べて、ビード形状が良好で、ブローホール、融合不良などの欠陥が発生し難い特徴がある。なお、シールドガスとして2~5%程度のOやCOといった活性ガスが含まれ、残部がArのガスを使用する溶接は、厳密にはMAG(Metal Active Gas)溶接と呼ばれるが、便宜上一般的な呼称としてMIG(Metal Inert Gas)溶接とまとめて称する。
 ステンレス鋼フラックス入りワイヤやNi基合金用フラックス入りワイヤの多くには、溶接ビードを大気から保護することを主目的として、スラグ形成剤が添加されており、溶接ビードはスラグに覆われる。一方、溶接作業性の観点で重要な因子としてスラグの剥離性がある。
 スラグは溶接施工完了後には不要物となり、多層溶接や肉盛溶接を行う場合には内部欠陥を誘発する原因にもなる為、スケールハンマーやタガネを用いて除去される。この時、形成されたスラグの剥離性が悪いと、スラグ除去作業に時間が掛かる。さらに、剥離性の悪いスラグは、溶接部の冷却に伴って金属との熱収縮量の差により細かく割れ、跳ね上がることもある。この時のスラグは人体にとってはなお高温であることから、火傷の恐れがあり非常に危険である。
 そこで、特許文献1では、スラグの剥離性を向上させる目的でBiやPb等の低融点金属元素を少量添加することが開示されており、一般的にはBiの酸化物が用いられている。
 しかし、Biを含有したフラックス入りワイヤを高温で長時間操業される機器の溶接に使用した場合、しばしば溶接部に割れ(再熱割れ)が生じることがある。これは結晶粒界にBiが濃化し、局部的に低融点部を形成することで開口することによる割れである。
 そこで、特許文献2及び3では高温用途の機器の溶接に使用されるワイヤとしてBi無添加のフラックス入りワイヤが開示されている。なお、「Bi無添加」とはJIS Z 3323:2007年 表2注b)の規定により、質量分率で0.0010%以下であると実質的に無添加であると見なすことができ、上記再熱割れは発生しないことが知られている。
 一方、従来、COやAr-20%CO等の活性ガスを含むシールドガスを適用しなければ、溶滴移行が安定せず、ビード蛇行やスパッタの多量飛散が発生する為、高品質の溶接が不可能であるとされていた。これに対し特許文献4では、適切な組成のメタル系フラックス入りワイヤを用いることで、高Ar比率のシールドガスを用いた場合であっても、安定した溶滴移行と良好な溶接性が得られることが開示されている。
日本国特公平1-59079号公報 日本国特許第2667635号公報 日本国特許第6110800号公報 日本国特許第5411820号公報
 しかしながら、特許文献2及び3に記載のスラグ系フラックス入りワイヤは、スラグ形成剤の配合やスラグ含有量を調整すること等により、スラグ剥離性を多少向上させることは可能であるものの、As、Sb、Pb、Bi等の低融点元素を添加したフラックス入りワイヤと比較すると、スラグ剥離性が劣り、改善が望まれていた。
 また、特許文献4に記載のメタル系のフラックス入りワイヤではスラグの除去が不要であるものの、溶接ビードを大気から保護するスラグが形成されない為に、溶接ビード表面が酸化し、剥離しない酸化皮膜が形成する。特に溶接入熱12.0kJ/cm(例えば、電流:210A、電圧:28.5V、溶接速度:30cm/min)以上の高入熱条件では、冷却速度が遅くなり、溶接ビード表面が高温で長時間大気に晒されることになり、著しく酸化する。著しい酸化が発生した箇所は、高融点の酸化皮膜が厚く形成しているため、多層溶接において融合不良欠陥を発生させるおそれが大きい。また、肉盛溶接の場合には、耐食性が劣化する。そのため、高温で長時間操業される機器の溶接において多層盛り溶接をする場合は、溶接パスごとにグラインダなどによりビード表面の酸化皮膜を除去する必要があり、能率性に劣る。
 よって、高温で長時間操業される機器にステンレス鋼フラックス入りワイヤやNi基合金用フラックス入りワイヤを適用し、その優れた高能率性を活かすには、メタル系フラックス入りワイヤの選択は適切とは言えない。
 そこで本発明では、低融点金属を含まないスラグ系フラックス入りワイヤであって、スラグ剥離性、溶接作業性(スパッタ発生量、ビード形状、耐欠陥性)に優れた溶接を高能率で行うことができ、さらには、耐食性に優れる溶接ビードが得られる、フラックス入りワイヤを提供することを目的とする。
 また、前記フラックス入りワイヤを用いた高い溶接入熱条件での溶接方法を提供することも目的とする。
 本発明者は鋭意研究の結果、スラグ系フラックス入りワイヤの組成及び用いるシールドガスの組成を特定範囲にすることにより、低融点金属を含まずともスラグ剥離性に優れ、良好な溶接作業性が得られ、耐食性に優れる溶接ビードが得られ、さらには高能率施工が可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[8]に係るものである。
[1] 外皮内にフラックスが充填されてなるガスシールドアーク溶接用フラックス入りワイヤであって、
 シールドガスとして、酸素の体積分率を[O]、二酸化炭素の体積分率を[CO]とした場合に、0%≦[O]≦5%、0%≦[CO]≦15%、及び{[CO]+(3×[O])}≦15の関係を満たし、かつ残部がArからなるガスを用いるガスシールドアーク溶接に用いられ、
 As、Sb、Pb及びBiを実質的に含まず、
 前記ワイヤにおけるスラグ成分の組成がワイヤ全質量に対する質量分率で
TiO:4.00~9.00%、
SiO:0.30~2.00%、
ZrO:1.50~3.00%、
Al:0.30%以下(0%を含む)、
及びMgO:0.50%以下(0%を含む)を満たし、
 前記ワイヤの前記外皮及び前記フラックスに含まれる合金成分の組成がワイヤ全質量に対する質量分率で
Cr:10.00~35.00%、及び
Nb:4.50%以下(0%を含む)を満たし、かつ
 ワイヤ全質量に対する前記Crの質量分率を[Cr]、前記Nbの質量分率を[Nb]とし、A={[Cr]+(4.3×[Nb])}とした場合に、
{(3×[O])+[CO]+(0.0085×A)-(0.19×A)}≦20.0の関係を満たすガスシールドアーク溶接用フラックス入りワイヤ。
[2] 前記スラグ成分の組成が、ワイヤ全質量に対する前記TiOの質量分率を[TiO]、前記SiOの質量分率を[SiO]、前記ZrOの質量分率を[ZrO]、前記Alの質量分率を[Al]、前記MgOの質量分率を[MgO]とした場合に、
1.15≦〔{3×([ZrO]+[MgO])}+(1.2×[Al])+[TiO]+(0.3×[SiO])〕/([TiO]+[SiO]+[ZrO]+[Al]+[MgO])≦1.75
の関係を満たす前記[1]に記載のガスシールドアーク溶接用フラックス入りワイヤ。
[3] 前記スラグ成分の組成がさらに、ワイヤ全質量に対する質量分率で
Na化合物、K化合物及びLi化合物に含まれるアルカリ金属成分をNaO、KO及びLiOに換算した値の合計:0.25~1.50%、
金属フッ化物としてワイヤに含まれるFの量:0.05~0.80%、
Fe:0.50%以下(0%を含む)、及び
可避金属酸化物:0.20%以下(0%を含む)
を満たす前記[1]又は[2]に記載のガスシールドアーク溶接用フラックス入りワイヤ。
[4] 前記ワイヤ中の前記フラックスの含有率が、ワイヤ全質量に対する質量分率で8.0~30.0%であり、かつ
 前記フラックス中の前記スラグ成分の含有率が、ワイヤ全質量に対する質量分率で7.0~15.0%
である前記[1]~[3]のいずれか1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
[5] 前記ワイヤ中の前記合金成分の組成がさらに、ワイヤ全質量に対する質量分率で
C:0.005~0.150%、
Si:0.05~1.50%、
Mn:0.20~3.00%、
Cr:15.00~35.00%、
Ni:5.00~25.00%、
Mo:5.00%以下(0%を含む)、
Nb:2.00%以下(0%を含む)、
Ti:1.00%以下(0%を含む)、
N:1.00%以下(0%を含む)、及び
残部:Feおよび不可避不純物
を満たす前記[1]~[4]のいずれか1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
[6] 前記ワイヤ中の前記合金成分の組成がさらに、ワイヤ全質量に対する質量分率で
C:0.005~0.150%、
Si:0.05~1.00%、
Mn:0.10~4.00%、
Cr:10.00~35.00%、
Fe:0.10~10.00%、
W:5.00%以下(0%を含む)、
Mo:20.00%以下(0%を含む)、
Nb:4.50%以下(0%を含む)、
Co:2.50%以下(0%を含む)、
Ti:1.00%以下(0%を含む)、
N:0.50%以下(0%を含む)、及び
残部:Niおよび不可避不純物
を満たす前記[1]~[4]のいずれか1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
[7] 前記ワイヤ中の前記合金成分の組成がさらに、ワイヤ全質量に対する質量分率で
S:0.020~0.100%
を満たす前記[5]又は[6]に記載のガスシールドアーク溶接用フラックス入りワイヤ。
[8] 前記[1]~[7]のいずれか1に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、下記式で表される溶接入熱(F)を10.0≦F≦19.0の範囲で溶接を行う溶接方法。
 溶接入熱(F)(kJ/cm)=電流(A)×電圧(V)÷溶接速度(cm/s)÷1000
 本発明によれば、スラグ剥離性及び溶接作業性(スパッタ発生量、ビード形状、耐欠陥性)に優れた溶接を高能率で行うことができ、さらには耐食性に優れた溶接ビードを得ることができる。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、明細書中、「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 本実施形態に係るガスシールドアーク溶接用フラックス入りワイヤ(以下、単に「フラックス入りワイヤ」又は「ワイヤ」と称することがある。)は、外皮内にフラックスが充填されてなる。
 本実施形態のワイヤを用いた溶接において、シールドガスは酸素の体積分率を[O]、二酸化炭素の体積分率を[CO]とした場合に、0%≦[O]≦5%、0%≦[CO]≦15%、及び{[CO]+(3×[O])}≦15の関係を満たし、かつ残部がArからなるガスが用いられる。
 本実施形態のワイヤはAs、Sb、Pb及びBiを実質的に含まないスラグ系フラックス入りワイヤであり、前記ワイヤにおけるスラグ成分の組成がワイヤ全質量に対する質量分率で
TiO:4.00~9.00%、
SiO:0.30~2.00%、
ZrO:1.50~3.00%、
Al:0.30%以下(0%を含む)、及び
MgO:0.50%以下(0%を含む)を満たす。
 また、本実施形態のワイヤは、前記ワイヤの前記外皮及び前記フラックスに含まれる合金成分の組成がワイヤ全質量に対する質量分率で
Cr:10.00~35.00%、及び
Nb:4.50%以下(0%を含む)を満たし、
 前記Crの質量分率を[Cr]、前記Nbの質量分率を[Nb]とし、A={[Cr]+(4.3×[Nb])}とした場合に、
{(3×[O])+[CO]+(0.0085×A)-(0.19×A)}≦20.0の関係を満たすことを特徴とする。
 なお、As、Sb、Pb及びBiを実質的に含まないとは、As、Sb、Pb及びBiのいずれをも積極的な添加を行わないことを意味し、As、Sb、Pb及びBiの含有量の合計を、ワイヤ全質量に対する質量分率で0.0010%以下に規制する。
(スラグ成分)
 本実施形態に係るワイヤにおけるスラグ成分とは、金属酸化物又は金属フッ化物として含有されている成分であり、フラックス中に含まれる。
 フラックス中のスラグ成分の含有率は、溶接時のスラグ生成量に直結し、スラグ被包性及び耐スラグ巻込み欠陥性に影響する。フラックス中のスラグ成分の含有率は、ワイヤ全質量に対する質量分率で7.0%以上であると、溶接ビード表面積に対してスラグ発生量が不足することなく、ビード表面全体を被包できることから好ましく、8.0%以上であるとより好ましい。また、フラックス中のスラグ成分の含有率は、ワイヤ全質量に対する質量分率で15.0%以下であると、スラグ発生量が過剰となることなく、スラグ巻込み欠陥を抑制できることから好ましく、13.5%以下であるとより好ましい。
 なお、スラグ成分の含有率とは、フラックス中に含まれる金属酸化物及び金属フッ化物の含有量の合計を意味する。
 TiOは被包性が良好なスラグ形成剤の主成分として添加される。TiO源としては、ルチール、酸化チタン、チタン酸カリウム、チタン酸ナトリウム等が挙げられる。
 TiOのワイヤ全質量に対する質量分率(以下、「含有量」と称することがある。)が4.00%未満であると、スラグの被包性が悪くビード形状が劣化する。さらに、溶接金属が露出した部分は表面の酸化が起こることから、耐食性の劣化が懸念される。一方、TiOの含有量が9.00%超であると、スラグが硬くなり、剥離性が劣化する。そのため、TiOの含有量は4.00~9.00%であり、6.00%以上が好ましく、また、8.50%以下が好ましい。
 SiOはビード止端部のなじみ性を向上させ、なめらかなビードを得る効果がある。SiO源としては珪砂、珪灰石、カリウム長石、ナトリウム長石等が挙げられる。
 SiOの含有量が0.30%未満であると、上記効果が得られない。またSiOの含有量が2.00%超であると、スラグの融点が低くなり過ぎて、ビード形状が劣化する。そのため、SiOの含有量は0.30~2.00%であり、0.50%以上が好ましく、また、1.60%以下が好ましい。
 ZrOはスラグの融点を調整し、ビード形状を向上させる成分であり、ZrO源としてはジルコンサンド、酸化ジルコニウム粉等が挙げられる。
 ZrOの含有量が1.50%未満又は3.00%超であると、溶融金属の凝固とスラグの凝固とのタイミングが合わなくなり、ビード形状が劣化する。そのため、ZrOの含有量は1.50~3.00%であり、1.80%以上が好ましく、また、2.50%以下が好ましい。
 Alは適切なスラグ粘性を得てスラグの被包性を向上させるための調整を目的として必要に応じて添加してもよい。Al源としてはアルミナ粉等が挙げられる。
 Alの含有量が0.30%超であると、スラグの粘性が高くなり過ぎ、スラグ巻込み欠陥が発生しやすくなる。そのため、Alの含有量は0.30%以下(0%を含む)であり、0.20%以下が好ましい。
 MgOはZrOと同様に、スラグの融点を調整するために有効であることから必要に応じて添加してもよい。MgO源としてはマグネサイト、マグネシアクリンカー等が挙げられる。
 MgOの含有量が0.50%超であると、スラグの焼き付きが発生しやすくなる。そのため、MgOの含有量は0.50%以下(0%を含む)であり、0.30%以下が好ましい。
 また、本実施形態に係るフラックス入りワイヤは、Ar比率の高いシールドガスを用いたガスシールドアーク溶接用のワイヤとして用いられる。高Ar比率のシールドガスを用いて溶接を行った場合、従来のフラックス入りワイヤを用いると、溶接電流が高くなるにしたがってストリーミング移行やローテーティング移行といった不安定な溶滴移行形態に移行しやすくなる為、スパッタが増大する傾向にあることが一般的に知られている。
 これに対し、高Ar比率のシールドガスを用いて溶接を行う場合に、フラックス入りワイヤにおける各スラグ成分の含有量を特定範囲の組成バランスとすることで、アーク内にフラックス柱を形成させ、溶滴を当該フラックス柱に沿うように移行させることができ、溶滴移行が非常に安定し、スパッタの発生が極めて少なくなることが分かった。
 すなわち、ワイヤ全質量に対する、TiOの質量分率を[TiO]、SiOの質量分率を[SiO]、ZrOの質量分率を[ZrO]、Alの質量分率を[Al]、MgOの質量分率を[MgO]とした場合に、
〔{3×([ZrO]+[MgO])}+(1.2×[Al])+[TiO]+(0.3×[SiO])〕/([TiO]+[SiO]+[ZrO]+[Al]+[MgO])
で表される値が1.15以上であると、スラグの融点が低くなり過ぎることなく、上記効果が得られるため好ましい。また、上記式で表される値が1.75以下であると、スラグの融点が高くなり過ぎることなく、フラックス柱が不足なく溶融した状態で溶融池に投入されることから、スラグ巻込み欠陥の発生が抑制されるため好ましい。
 上記式で表される値は1.20以上がより好ましく、1.25以上がさらに好ましい。また、上記式で表される値は1.60以下がより好ましく、1.50以下がさらに好ましい。
 なお、上記式中の係数は各酸化物の融点と鋼の融点の差から、各酸化物に重み付けを行ったものであり、実験によって上記式の有効性と良好な数値範囲を求めたものである。
 各酸化物の融点は以下の通りである。
TiO:1870℃
SiO:1650℃
ZrO:2715℃
Al:2072℃
MgO:2852℃
 スラグ成分は、さらにNa化合物、K化合物及び/又はLi化合物といったアルカリ金属化合物を含むことができる。アルカリ金属化合物源としてはカリウム長石、ナトリウム長石、リチウムフェライト、フッ化ナトリウム、珪フッ化カリウム等が挙げられる。
 Na化合物、K化合物及びLi化合物に含まれるアルカリ金属成分のワイヤ全質量に対する含有量は、当該アルカリ金属成分を酸化物に換算した値、つまりNaO、KO及びLiOに換算した値の合計の質量分率で0.25%以上とすることでアークが安定し、スパッタ発生量が少なくなることから好ましい。またNa化合物、K化合物及びLi化合物に含まれるアルカリ金属成分のワイヤ全質量に対する含有量をNaO、KO及びLiOに換算した値の合計の質量分率で1.50%以下とすることで、アルカリ金属化合物の高い吸湿性に起因した、ワイヤ中の水分量増加に伴うピットやブローホールといった気孔欠陥の発生を抑制できることから好ましく、1.00%以下とすることがより好ましい。
 スラグ成分は、さらに金属フッ化物を含むことができる。金属フッ化物源としては、フッ化カルシウム、フッ化ナトリウム、珪フッ化カリウム等が挙げられる。
 金属フッ化物のワイヤ全質量に対する含有量は、F換算値で0.05%以上であることで、良好なアーク安定性が得られることから好ましく、0.15%以上がより好ましい。また、金属フッ化物のワイヤ全質量に対する含有量は、F換算値で0.80%以下であることで、スラグの粘性が低下することなく、良好なスラグの被包性を維持できることから好ましく、0.60%以下がより好ましい。
 スラグ成分は、さらにFeを含んでいてもよい。Fe源としてはカリウム長石やナトリウム長石、その他鉱石中に不純物として含有されるもの等が挙げられる。
 Feのワイヤ全質量に対する質量分率は、0.50%以下(0%を含む)がスラグの焼き付きを抑制できることから好ましく、0.30%以下がより好ましい。
 スラグ成分には上記の他に、V、Nb、CaO、希土類金属の酸化物等の不可避金属酸化物が含有され得る。ルチールやその他の鉱石中に不可避的に含有される上記不純物量が微少量であれば、ワイヤの性質に大きな影響はないが、過剰に含まれるとスラグ組成のバランスが崩れてスラグ剥離性が劣化するおそれがある。そのため、不可避金属酸化物のワイヤ全質量に対する質量分率は0.20%以下(0%を含む)が好ましい。
(合金成分)
 本実施形態に係るワイヤにおける合金成分とは、純金属、合金、炭化物(炭化合金)又は窒化物(窒化合金)として含有され、その大部分が溶接金属を形成する成分であり、ワイヤの外皮及びフラックスの少なくともいずれか一方に含まれる成分である。
 Cr及びNbは合金成分の中でも特に酸化されやすい成分である。これらのワイヤ全質量に対する質量分率(含有量)が高くなり過ぎると、シールドガス中のAr純度を高くしなければ、スラグ成分組成のバランスが崩れ、スラグ剥離性が劣化する。また、Crは溶接金属の耐食性に特に大きく影響を及ぼす成分である。そのため、Crの含有量は10.00%以上35.00%以下であり、12.00%以上が好ましく、30.00%以下が好ましい。
 また、NbはCを固定化しCrとCの結合を防止することで耐食性をより向上させる成分である(鋭敏化の防止)。さらに、Ni基合金ではNb炭化物を析出させることで強度向上を担う場合がある。そのためNbの含有量は4.50%以下(0%を含む)であり、4.00%以下が好ましい。特に耐食性向上(耐鋭敏化)効果や強度向上効果が求められる場合には、Nbの含有量は0.4%以上が好ましい。
 本実施形態における合金成分は、上記Cr及びNb以外特に限定されないが、例えば一般的なステンレス鋼フラックス入りワイヤ、又はニッケル基合金用フラックス入りワイヤにおける合金成分と同様の組成を採用することができる。
 前記ステンレス鋼フラックス入りワイヤ及び前記ニッケル基合金用フラックス入りワイヤにおいて、Sは溶融金属の表面張力を大きく低下させ、溶融金属の対流を活発にさせる成分であり、ビード形状を平坦で良好な形状とすることができる成分である。ビード形状が平坦となることにより、スラグ剥離性をさらに向上させることができる。そのため、Sの含有量は0.020%以上が好ましく、0.025%以上がより好ましい。一方、Sは結晶粒界に偏析し、低融点化合物を生成し、耐高温割れ性を劣化させる成分でもある。そのため、Sの含有量は0.100%以下が好ましく、0.080%以下がより好ましい。
 ステンレス鋼フラックス入りワイヤの合金成分の組成は、例えば、ワイヤ全質量に対する質量分率でC:0.005~0.150%、Si:0.05~1.50%、Mn:0.20~3.00%、Cr:15.00~35.00%、Ni:5.00~25.00%、Mo:5.00%以下(0%を含む)、Nb:2.00%以下(0%を含む)、Ti:1.00%以下(0%を含む)、N:1.00%以下(0%を含む)、及び残部:Feおよび不可避不純物を満たすことが好ましい。
 Cは溶接金属の耐食性に影響を及ぼす成分であることから、含有量は少ないほど好ましい。一方で、Cの含有量が少ない低C素材は経済性が低い。そのため、Cの含有量は0.005~0.150%が好ましい。
 Siは溶接金属の強度を向上させる成分である一方で、靱性を劣化させる成分でもある。また、Siの含有量が少ない低Si素材は経済性が低い。これら性能のバランスを鑑みて、Siの含有量は0.05~1.50%が好ましい。
 Mnは溶接金属の強度を向上させる成分である一方で、必要以上に含有されると溶接ヒュームを増加させる成分でもある。これら性能のバランスを鑑みて、Mnの含有量は0.20~3.00%が好ましい。
 Crは溶接金属の耐食性を向上させる成分である一方で、必要以上に含有されると酸化性シールドガスと反応して酸化物を生成し、スラグ成分組成のバランスに影響を及ぼす成分である。そのため、Crの含有量は15.00~35.00%が好ましい。
 Niは溶接金属のオーステナイト組成を安定化させ、低温での靱性を向上させる成分であり、また、フェライト組成の晶出量を調整する目的で一定量添加される成分である。また、Niの添加量はステンレス鋼として一般的に添加される範囲でよく、25%以下で添加されることが妥当である。そのため、Niの含有量は5.00~25.00%が好ましい。
 Moは高温強度及び耐孔食性を向上させる成分である一方で、σ脆化を助長する成分でもあることから、特に高温強度や耐孔食性を必要とする場合以外は積極的な添加は行わない。Moの含有量は5.00%以下(0%を含む)が好ましい。
 Nb及びTiはそれぞれCと結合して安定化させる効果があり、耐食性を向上させる成分である一方で、必要以上に含有されると結晶粒界に低融点化合物を生成させ、耐凝固割れ性を劣化させる。さらに、Nb及びTiは酸化性シールドガスと反応して酸化物を生成し易い。TiOはスラグ成分として積極添加している為、影響は明確でないが、Nb酸化物は、スラグ成分組成のバランスに影響を及ぼす。そのため、特に耐食性を必要とする場合以外は積極的な添加は行わない。Nbの含有量は2.00%以下(0%を含む)が好ましく、Tiの含有量は1.00%以下(0%を含む)が好ましい。
 Nは結晶構造内に侵入型固溶して強度を向上させ、さらには耐孔食性をも向上させる成分である一方、溶接金属にブローホールやピットといった気孔欠陥を発生させる原因ともなることから、特に強度や耐孔食性を必要とする場合以外は積極的な添加は行わない。Nの含有量は1.00%以下(0%を含む)が好ましい。
 残部はFeおよび不可避不純物である。不可避不純物としては、V、P、Cu、Sn、Na、Co、Ca、Li、Sb、W及びAs等が挙げられ、各元素が酸化物として含まれる場合には、Oも残部に含まれることとなる。
 ステンレス鋼フラックス入りワイヤの外皮も特に限定されるものではないが、例えば、普通鋼、SUH409L(JIS G 4312:2001年)、SUS430、SUS304L、SUS316L、SUS310S(いずれもJIS G 4305:2012年)等が使用できる。
 Ni基合金用フラックス入りワイヤの合金成分の組成は、例えば、ワイヤ全質量に対する質量分率でC:0.005~0.150%、Si:0.05~1.00%、Mn:0.10~4.00%、Cr:10.00~35.00%、Fe:0.10~10.00%、W:5.00%以下(0%を含む)、Mo:20.00%以下(0%を含む)、Nb:4.50%以下(0%を含む)、Co:2.50%以下(0%を含む)、Ti:1.00%以下(0%を含む)、N:0.50%以下(0%を含む)、及び残部:Niおよび不可避不純物を満たすことが好ましい。
 CはNb等の元素と結合し、微細析出することで溶接金属の強度を向上させる成分である一方で、耐食性を劣化させる成分でもある。また、低C素材は経済性が低い。これら性能のバランスを鑑みて、Cの含有量は0.005~0.150%が好ましい。
 Siはステンレス鋼フラックス入りワイヤと同様に、溶接金属の強度を向上させる成分である一方で、靱性を劣化させる成分でもある。また、低Si素材は経済性が低い。これら性能のバランスを鑑みて、Siの含有量は0.05~1.00%が好ましい。
 Mnは溶接金属の強度を向上させる成分である一方で、溶接ヒュームを増加させる成分でもある。これら性能のバランスを鑑みて、Mnの含有量は0.10~4.00%が好ましい。
 Crは溶接金属の耐食性を向上させる成分である一方で、酸化性シールドガスと反応して酸化物を生成し、スラグ成分組成のバランスに影響を及ぼす成分である。そのため、Crの含有量は、10.00~35.00%が好ましい。
 Feは溶接金属の経済性を向上させるために、機械的特性や耐食性等に悪影響を及ぼさない程度に添加される成分である。特に、Fe含有量が極めて少ない合金素材の調達は経済性を著しく低下させることから、Feの含有量は0.10%以上が好ましい。また、Feの含有量の上限は10.00%以下が好ましい。
 W及びMoはそれぞれ高温強度及び耐孔食性を向上させる成分である一方で、融点が非常に高いことから、過剰に添加されると、溶融しなかったW粒子、Mo粒子が欠陥として点在するおそれがある。そのため、Wの含有量は5.00%以下(0%を含む)が好ましく、Moの含有量は20.00%以下(0%を含む)が好ましい。
 NbはCと結合して溶融金属の強度を向上させる成分である一方で、結晶粒界に低融点化合物を生成させて耐凝固割れ性を劣化させる成分である。さらに、酸化性シールドガスと反応して酸化物を生成し、スラグ成分組成のバランスに影響を及ぼす成分である。そのため、特に強度を必要とする場合以外は積極的な添加は行わない。Nbの含有量は4.50%以下(0%を含む)が好ましい。
 CoはNiと同様にオーステナイト組織を安定化させる成分である。また、Coは一般的なNi素材に不純物として比較的多量に含有されるため、不可避的に含まれる成分である。一方、Coは極めて経済性が低く、積極的な添加は好ましくない。Coの含有量は2.50%以下(0%を含む)が好ましい。
 TiはNiと結合してNiTiの金属化合物を析出し、高温強度を向上させる成分である一方で、延性と靱性を劣化させる成分である。そのため、特に高温強度を必要とする場合以外は積極的な添加は行わない。Tiの含有量は1.00%以下(0%を含む)が好ましい。
 Nは結晶構造内に侵入型固溶して強度を向上させ、さらには耐孔食性をも向上させる成分である。一方、溶接金属にブローホールやピットといった気孔欠陥を発生させる原因ともなることから、特に強度や耐孔食性を必要とする場合以外は積極的な添加は行わない。Nの含有量は0.50%以下(0%を含む)が好ましい。
 残部はNiおよび不可避不純物である。不可避不純物としては、V、P、Cu、Sn、Na、Ca、Li、Sb及びAs等が挙げられ、各元素が酸化物として含まれる場合には、Oも残部に含まれることとなる。
 Ni基合金用フラックス入りワイヤの外皮も特に限定されるものではないが、例えば、Alloy600(UNS N06600)、Alloy625(UNS N06625)、Alloy22(UNS N06022)、Alloy276(UNS N10276)等が使用できる。
 本実施形態に係るフラックス入りワイヤは、外皮によって形成される内部空隙に対するフラックス量が少ないと、溶接時にフラックス柱の形成がし難くなる。また、ワイヤ内でフラックスが移動する。その場合、ワイヤの製造ラインの振動状況等によってワイヤの長手方向のフラックス含有率にバラつきが生じ、ワイヤの品質が不安定になることが懸念される。そのため、ワイヤ中のフラックスの含有率は、ワイヤ全質量に対する質量分率で8.0%以上が好ましく、13.0%以上がより好ましい。
 一方、多量のフラックスを少量の外皮で包み込むためには、薄い外皮材を使用すればよいものの、外皮材が極度に薄い場合には、ワイヤの伸線工程で外皮材が破れ、ワイヤが破断することが懸念される。そのため、ワイヤ中のフラックスの含有率は30.0%以下が好ましく、28.0%以下がより好ましい。
 フラックス入りワイヤのワイヤ径は特に限定されないが、一般的な溶接装置との組み合わせや溶接作業性を考慮すると、直径が1.2~2.0mmが好ましく、1.6mm以下がより好ましい。
(シールドガス)
 本実施形態に係るフラックス入りワイヤは、Arの比率が高いシールドガスと共に用いられる。
 一方シールドガス中の活性ガス成分の含有量が多いと、ワイヤに含まれる合金成分が酸化されてスラグと一体化してしまい、スラグ成分組成のバランスが崩れるおそれがある。なお、活性ガス成分とは酸素及び二酸化炭素であり、二酸化炭素と比較して酸素の方が合金成分を酸化させる効果が強い。
 本実施形態におけるシールドガスは、酸素の体積分率を[O]、二酸化炭素の体積分率を[CO]とした場合に、0%≦[O]≦5%、0%≦[CO]≦15%、及び{[CO]+(3×[O])}≦15の関係を満たし、かつ残部がArからなるガスを適用する。
 シールドガスは、0%≦[O]≦4%、0%≦[CO]≦12%、及び{[CO]+(3×[O])}≦12の関係を満たし、かつ残部がArからなるガスが好ましく、0%≦[O]≦3%、0%≦[CO]≦9%、及び{[CO]+(3×[O])}≦9の関係を満たし、かつ残部がArからなるガスがより好ましく、純Ar([O]=0%、[CO]=0%)のガスも好ましい。
 また、前述したように、合金成分のうち、Cr及びNbは特に酸化されやすい成分であることから、シールドガス中の[O]及び[CO]の値によって、スラグ成分組成のバランスに大きな影響を及ぼす。そのため、本実施形態においては、Crの質量分率を[Cr]、Nbの質量分率を[Nb]とし、A={[Cr]+(4.3×[Nb])}とした場合に、
{(3×[O])+[CO]+(0.0085×A)-(0.19×A)}
なる関係式で表される値を20.0以下とする。
 式中、[Nb]の係数である4.3はワイヤ中のCrとNbの添加量を独立に変化させた試験結果から導出された値でありスラグ剥離性の観点でビードを採点し、回帰計算をした結果、この係数を得た。[O]の係数である3は、シールドガス中のCOとOの体積分率を独立に変化させた試験結果から導出された値であり、スラグ剥離性の観点でビードを比較した結果、Oの影響度はCOの3倍程度であるという結論を得て、得られた係数である。Aの係数である0.0085およびAの係数である0.19は、Aを横軸、(3×[O])+[CO]を縦軸に置いて試験結果を整理したところ、これらの係数の式によって良否が分けられることがわかったのでこれらの値を採用した。
 上記関係式で表される値はスラグ剥離性の点から15.4以下が好ましい。
 従来のAs、Sb、Pb及びBiを含まないメタル系のステンレス鋼およびNi基合金用フラックス入りワイヤにおいて、高入熱条件での溶接を行う場合には、シールドノズル径が非常に大きい溶接トーチや、溶接トーチ後方をシールドするアフターシールド用治具を用いる等により、溶接ビードが酸化しないための対策を行うことが必要であった。しかしながら、本実施形態におけるワイヤは、上記対策を行うことなくビード表面の酸化を抑制できる。そのため、高入熱条件での溶接を行う場合であっても、特別な溶接ビード酸化対策を行う必要はないことから、シールドノズル径は一般的なもの(例えば、内径が13~19mmのもの)を適用でき、溶接装置の簡易化が可能となる。
(溶接入熱)
 従来のAs、Sb、Pb及びBiを含まないメタル系のステンレス鋼およびNi基合金用フラックス入りワイヤであっても、低入熱での溶接を行うことで、ビード表面の酸化を緩和することができるため、比較的良好な溶接が可能であるが、高入熱の範囲での溶接は、ビード表面の酸化が顕著になり、粗悪な溶接作業性となる。
 これに対し、本実施形態に係るフラックス入りワイヤは低入熱条件のみならず、高入熱での溶接においても、ビード表面の酸化を抑制し、良好な溶接作業性が得られる。
 本実施形態に係るフラックス入りワイヤの特長(効果)を享受する点からは、本実施形態に係るフラックス入りワイヤは一定以上の高入熱条件下での溶接に使用されることが好ましい。一方、いたずらに高入熱の条件を選定すると、スパッタが多発する、溶込みに対して溶接金属量が過剰となりオーバーラップの欠陥を誘発する等が懸念される。
 そのため、本実施形態に係るフラックス入りワイヤを用い、下記式で表される溶接入熱の値F(kJ/cm)が10.0以上19.0以下の範囲で溶接施工を行うことが好ましい。溶接入熱(F)(kJ/cm)=電流(A)×電圧(V)÷溶接速度(cm/s)÷1000
(製造方法)
 本実施形態に係るフラックス入りワイヤは、従来と同様の方法で製造することができ、製造方法は特に限定されない。例えば、まず外皮内にフラックスを充填する。その際、外皮の組成、フラックスの組成及び含有率が各々前述した範囲になるよう適宜調整する。次いで、外皮内にフラックスが充填されたワイヤを、圧延、もしくは伸線することにより縮径し、所定の外径を有するフラックス入りワイヤを得ることができる。
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。
[評価方法]
 下記に示す溶接条件C-1又はC-2により溶接を行い、スラグ剥離性、溶接作業性及び耐食性について、それぞれ下記に示す方法により評価を行った。溶接作業性については、スパッタ発生量、ビード形状及び耐欠陥性についての評価を行った。
(溶接条件C-1)
 母材として厚さ12mmのSUS304を母材とし、溶接電流:280A、溶接電圧:24~30V及び溶接速度0.6cm/sの条件で、ガスシールドアーク溶接による下向きのビードオンプレート溶接を実施した。溶接長は400mmとし、前パスの止端部を狙ってビードを3パス重ね、合計4パスの溶接を実施した。
(溶接条件C-2)
 母材として厚さ12mmのSUS304を母材とし、溶接電流:370A、溶接電圧:31~32V及び溶接速度0.6cm/sの条件で、ガスシールドアーク溶接による下向きのビードオンプレート溶接を実施した。溶接長は400mmとし、前パスの止端部を狙ってビードを3パス重ね、合計4パスの溶接を実施した。
(スラグ剥離性)
 溶接後のスラグに対し、スラグ剥離性を下記基準で評価した。A~Cが合格であり、Dが不合格である。
A:全面又はほぼ全面において自然剥離し、非常に良好。
B:一部が自然剥離し、他部分もスケールハンマーによる打撃によって容易に剥離でき、良好。
C:タガネとスケールハンマーを用いることで剥離でき、許容限界。
D:グラインダを用いたスラグ剥離作業が必要であり、劣悪。
(スパッタ発生量)
 溶接部の両側面に、銅板で作製した箱(高さ200mm×幅100mm×長さ500mmの直方体状。200mm×500mmの側面1面以外が銅板で出来ており、前記側面1面が空いた状態の箱2つを、溶接線に対して互いに30mm離して向かい合わせて配置)を設置して溶接を行った。1パス目の400mmの溶接中に箱内に捕集されたスパッタ全てを箱内から採取し、採取したスパッタを目開き1.0mmの篩いで1.0mm未満のものと1.0mm以上のものに分けた後、各質量を測定し、下記基準で評価した。A~Cが合格であり、Dが不合格である。
A:1.0mm以上のスパッタ量:0gかつ1.0mm以下のスパッタ量:0.5g以下のもの。
B:1.0mm以上のスパッタ量:0.2g以下かつ1.0mm以下のスパッタ量:0.7g以下のもの。
C:1.0mm以上のスパッタ量:0.5g以下かつ1.0mm以下のスパッタ量:1.0g以下のもの。
D:1.0mm以上のスパッタ量:0.5g超及び/又は1.0mm以下のスパッタ量:1.0g超のもの。
(ビード形状)
 ビードに対し、目視にてビード形状の評価を行った。評価基準は下記に示すとおりであり、A及びBが合格、Cが不合格である。なお、フランク角とは、母材表面とビード端部との成す角度を意味する。
A:ビード重ね部の融合不良欠陥のおそれのない状態で良好であると言え、概ねフランク角が120°以上のもの。
B:X線透過試験の結果と合わせて評価できる状態であり、概ねフランク角が100°以上120°未満のもの。
C:ビード重ね部の融合不良欠陥のおそれがある状態で不良であると言え、概ねフランク角が100°未満のもの。
(耐欠陥性)
 溶接後の初層溶接部(クレータ部を含む)についてJIS Z3106:2001年に準拠したX線透過試験により、欠陥の有無を確認し、下記基準で評価した。A及びBが合格であり、Cが不合格である。
A:無欠陥のもの
B:クレータ部のみ割れが発生しており、0.5mm以下の点状欠陥が見られるもの
C:割れ、融合不良及び/又はスラグ巻込みにより、クレータ部以外の溶接部に線状欠陥が見られるもの、または、丸い形状の欠陥が見られ、JIS Z3106:2001年附属書4表5第1種2~4類に分類されるもの
(耐食性)
 溶接した母材を60×145mmの大きさに切り出し、溶接ビード部40×125mmを残して被覆を施し、JIS Z2371:2015年に準じた中性塩水噴霧試験を行った。噴霧条件は連続168時間とし、下記基準で評価した。A~Cが合格であり、Dが不合格である。
A:JIS Z2371:2015年附属書JCレイティングナンバ方法により求められたレイティングナンバが10のもの。
B:前記レイティングナンバが9以上9.8以下のもの。
C:前記レイティングナンバが3以上8以下のもの。
D:前記レイティングナンバ2以下のもの(0を含む)。
[試験例]
 表1~4に示す組成を有するフラックス入りワイヤ(W-1~W-49)を用いて溶接試験を実施した。ワイヤW-1~W-39はステンレス鋼フラックス入りワイヤであり、ワイヤW-40~W-49はNi基合金用フラックス入りワイヤである。
 表1及び3における「パラメータα」とは、〔{3×([ZrO]+[MgO])}+(1.2×[Al])+[TiO]+(0.3×[SiO])〕/{[TiO]+[SiO]+[ZrO]+[Al]+[MgO]}で表される関係式を表し、「NaO+KO+LiO」とはNa化合物、K化合物及びLi化合物に含まれるアルカリ金属成分の酸化物(NaO、KO及びLiO)換算値の合計を意味し、「金属フッ化物」とは金属フッ化物としてワイヤに含まれるFの量を意味する。また、表1~4における成分組成、スラグ含有率及びフラックス含有率はいずれもワイヤ全質量に対する質量分率で表される値であり、「-」とは積極的に添加していないことを示す。
 溶接試験(試験例1~67)の条件は表5に示すとおりである。試験例1~8、13~16、19~22、25~29、31~33、36~47及び50~67は実施例であり、試験例9~12、17、18、23、24、30、34及び35は比較例であり、試験例48は低融点金属を含むワイヤW-38を用いた参考例であり、試験例49はメタル系フラックス入りワイヤであるワイヤW-39を用いた参考例である。
 表5における「パラメータβ」とは{(3×[O])+[CO]+(0.0085×A)-(0.19×A)}で表される関係式を表し、「シールドガス」におけるG-1~G-11の組成は表6に示すとおりである。
 溶接試験後のワイヤ剥離性、溶接作業性及び耐食性の結果を表7に示す。表7中、「耐食性」における「*」とは耐食性の評価を行っていないことを意味する。これは、ワイヤW-40~W-49がNi基合金用フラックス入りワイヤであり、Ni基合金はそもそも塩水噴霧による錆が生じないことから、耐食性試験を行っても有意差が見られないことが想定された為に評価を行わなかったものである。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 試験例1~11はシールドガスの組成を変化させた試験例である。シールドガス中に占めるArの比率が低くなるほど、また、{[CO]+(3×[O])}で表される値が大きくなるほど、スラグ剥離性が低下し、スパッタ発生量も増える結果となった。
 試験例12~49はステンレス鋼フラックス入りワイヤを用い、その組成を変化させた試験例である。合金成分組成を適切なものとすることにより、スラグ剥離性、ビード形状及び耐欠陥性が良好な溶接金属が得られた。また、試験例48はスパッタ剥離性、溶接作業性及び耐食性のいずれにも優れるが、As、Sb、Pb及びBiといった低融点元素を含有するフラックス入りワイヤを使用しており、耐再熱割れ性が低いという結果となった。
 試験例50~59はNi基合金用フラックス入りワイヤを用いた試験例であり、ワイヤ組成が本発明の範囲を満たす範囲であれば、良好なスラグ剥離性及び溶接作業性が得られる結果となった。
 試験例60~67はシールドガス、ワイヤ組成や溶接条件を変化させた試験例である。いずれも本発明の範囲を満たす範囲であれば、良好なスラグ剥離性、溶接作業性及び耐食性が得られる結果となった。
 また、本発明の範囲を満たすワイヤを用いた溶接はいずれも12.0kJ/cm以上の高入熱条件でも良好な溶接金属を形成でき、高能率での溶接が可能であることが確認された。
 本出願は、2017年11月24日出願の日本特許出願(特願2017-226089)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (9)

  1.  外皮内にフラックスが充填されてなるガスシールドアーク溶接用フラックス入りワイヤであって、
     シールドガスとして、酸素の体積分率を[O]、二酸化炭素の体積分率を[CO]とした場合に、0%≦[O]≦5%、0%≦[CO]≦15%、及び{[CO]+(3×[O])}≦15の関係を満たし、かつ残部がArからなるガスを用いるガスシールドアーク溶接に用いられ、
     As、Sb、Pb及びBiを実質的に含まず、
     前記ワイヤにおけるスラグ成分の組成がワイヤ全質量に対する質量分率で
    TiO:4.00~9.00%、
    SiO:0.30~2.00%、
    ZrO:1.50~3.00%、
    Al:0.30%以下(0%を含む)、及び
    MgO:0.50%以下(0%を含む)を満たし、
     前記ワイヤの前記外皮及び前記フラックスに含まれる合金成分の組成がワイヤ全質量に対する質量分率で
    Cr:10.00~35.00%、及び
    Nb:4.50%以下(0%を含む)を満たし、かつ
     ワイヤ全質量に対する前記Crの質量分率を[Cr]、前記Nbの質量分率を[Nb]とし、A={[Cr]+(4.3×[Nb])}とした場合に、
    {(3×[O])+[CO]+(0.0085×A)-(0.19×A)}≦20.0
    の関係を満たすガスシールドアーク溶接用フラックス入りワイヤ。
  2.  前記スラグ成分の組成が、ワイヤ全質量に対する前記TiOの質量分率を[TiO]、前記SiOの質量分率を[SiO]、前記ZrOの質量分率を[ZrO]、前記Alの質量分率を[Al]、前記MgOの質量分率を[MgO]とした場合に、
    1.15≦〔{3×([ZrO]+[MgO])}+(1.2×[Al])+[TiO]+(0.3×[SiO])〕/([TiO]+[SiO]+[ZrO]+[Al]+[MgO])≦1.75
    の関係を満たす請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  3.  前記スラグ成分の組成がさらに、ワイヤ全質量に対する質量分率で
    Na化合物、K化合物及びLi化合物に含まれるアルカリ金属成分をNaO、KO及びLiOに換算した値の合計:0.25~1.50%、
     金属フッ化物としてワイヤに含まれるFの量:0.05~0.80%、
     Fe:0.50%以下(0%を含む)、及び
    不可避金属酸化物:0.20%以下(0%を含む)
    を満たす請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  4.  前記ワイヤ中の前記フラックスの含有率が、ワイヤ全質量に対する質量分率で8.0~30.0%であり、かつ
     前記フラックス中の前記スラグ成分の含有率が、ワイヤ全質量に対する質量分率で7.0~15.0%
    である請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  5.  前記ワイヤ中の前記合金成分の組成がさらに、ワイヤ全質量に対する質量分率で
    C:0.005~0.150%、
    Si:0.05~1.50%、
    Mn:0.20~3.00%、
    Cr:15.00~35.00%、
    Ni:5.00~25.00%、
    Mo:5.00%以下(0%を含む)、
    Nb:2.00%以下(0%を含む)、
    Ti:1.00%以下(0%を含む)、
    N:1.00%以下(0%を含む)、及び
    残部:Feおよび不可避不純物
    を満たす請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  6.  前記ワイヤ中の前記合金成分の組成がさらに、ワイヤ全質量に対する質量分率で
    C:0.005~0.150%、
    Si:0.05~1.00%、
    Mn:0.10~4.00%、
    Cr:10.00~35.00%、
    Fe:0.10~10.00%、
    W:5.00%以下(0%を含む)、
    Mo:20.00%以下(0%を含む)、
    Nb:4.50%以下(0%を含む)、
    Co:2.50%以下(0%を含む)、
    Ti:1.00%以下(0%を含む)、
    N:0.50%以下(0%を含む)、及び
    残部:Niおよび不可避不純物
    を満たす請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  7.  前記ワイヤ中の前記合金成分の組成がさらに、ワイヤ全質量に対する質量分率で
    S:0.020~0.100%
    を満たす請求項5に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  8.  前記ワイヤ中の前記合金成分の組成がさらに、ワイヤ全質量に対する質量分率で
    S:0.020~0.100%
    を満たす請求項6に記載のガスシールドアーク溶接用フラックス入りワイヤ。
  9.  請求項1~8いずれか1項に記載のガスシールドアーク溶接用フラックス入りワイヤを用いて、下記式で表される溶接入熱(F)を10.0≦F≦19.0の範囲で溶接を行う溶接方法。
     溶接入熱(F)(kJ/cm)=電流(A)×電圧(V)÷溶接速度(cm/s)÷1000
PCT/JP2018/042390 2017-11-24 2018-11-16 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法 WO2019102932A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880072738.5A CN111417489B (zh) 2017-11-24 2018-11-16 气体保护电弧焊用药芯焊丝和焊接方法
EP18880408.2A EP3715042B1 (en) 2017-11-24 2018-11-16 Use of flux-cored wire for gas-shielded arc welding and welding method
US16/652,133 US20200230733A1 (en) 2017-11-24 2018-11-16 Flux-cored wire for gas-shielded arc welding and welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017226089A JP7010675B2 (ja) 2017-11-24 2017-11-24 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
JP2017-226089 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019102932A1 true WO2019102932A1 (ja) 2019-05-31

Family

ID=66630705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042390 WO2019102932A1 (ja) 2017-11-24 2018-11-16 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法

Country Status (5)

Country Link
US (1) US20200230733A1 (ja)
EP (1) EP3715042B1 (ja)
JP (1) JP7010675B2 (ja)
CN (1) CN111417489B (ja)
WO (1) WO2019102932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050400A1 (ja) * 2020-09-07 2022-03-10 株式会社神戸製鋼所 フラックス入りワイヤ
US20220281037A1 (en) * 2019-11-26 2022-09-08 Esab Seah Corp. Stainless steel flux cored wire for manufacturing lng tank

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197134B1 (ko) * 2019-11-29 2020-12-31 주식회사 세아에삽 Ni기 합금 플럭스 코어드 와이어
JP7401345B2 (ja) * 2020-02-28 2023-12-19 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP2022097294A (ja) * 2020-12-18 2022-06-30 株式会社神戸製鋼所 フラックス入りワイヤ
JP2022121317A (ja) * 2021-02-08 2022-08-19 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ
JP2022124267A (ja) * 2021-02-15 2022-08-25 株式会社神戸製鋼所 フラックス入りワイヤ
CN115070169B (zh) * 2022-07-07 2023-08-15 南京钢铁股份有限公司 一种7%Ni储罐钢的钢板焊接方法
CN115121990B (zh) * 2022-07-20 2024-03-19 陕西化建工程有限责任公司 一种Incoloy825用节镍焊丝及其制备方法与焊接方法
CN115255718B (zh) * 2022-09-06 2023-08-18 兰州理工大学 一种镍基合金焊丝及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411820B2 (ja) 1975-01-30 1979-05-17
JPS6110800B2 (ja) 1977-12-02 1986-03-31 Hitachi Ltd
JPH0159079B2 (ja) 1985-09-20 1989-12-14 Nippon Steel Corp
JP2667635B2 (ja) 1994-03-31 1997-10-27 株式会社神戸製鋼所 ステンレス鋼フラックス入りワイヤ
JP2017030018A (ja) * 2015-07-31 2017-02-09 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP2017148821A (ja) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 2相ステンレス鋼向けアーク溶接用フラックス入りワイヤおよび溶接金属
JP2017226089A (ja) 2016-06-20 2017-12-28 住友ゴム工業株式会社 押圧ローラ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233093A (ja) * 1985-07-31 1987-02-13 Daido Steel Co Ltd 溶接用フラツクス入りワイヤ
JPH0825063B2 (ja) * 1991-09-20 1996-03-13 株式会社神戸製鋼所 0.5Mo鋼用、Mn−Mo鋼用及びMn−Mo−Ni鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JPH06691A (ja) * 1992-06-15 1994-01-11 Sumitomo Metal Ind Ltd マグ溶接用フラックス入りワイヤ
JP3017063B2 (ja) * 1995-11-07 2000-03-06 株式会社神戸製鋼所 Cr−Ni系ステンレス鋼の全姿勢溶接用高窒素フラックス入りワイヤ
JP4970802B2 (ja) * 2006-02-02 2012-07-11 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP4256879B2 (ja) * 2006-02-17 2009-04-22 株式会社神戸製鋼所 鉄系材料とアルミニウム系材料との接合方法および接合継手
JP5194586B2 (ja) * 2006-07-05 2013-05-08 新日鐵住金株式会社 亜鉛めっき鋼板溶接用ステンレス鋼フラックス入り溶接ワイヤ
JP5289760B2 (ja) * 2007-12-26 2013-09-11 日鐵住金溶接工業株式会社 ステンレス鋼溶接用フラックス入りワイヤおよびその製造方法
JP4995888B2 (ja) * 2009-12-15 2012-08-08 株式会社神戸製鋼所 ステンレス鋼アーク溶接フラックス入りワイヤ
JP5764083B2 (ja) * 2012-03-13 2015-08-12 株式会社神戸製鋼所 フラックス入りワイヤおよびこれを用いたガスシールドアーク溶接方法
CN106956094B (zh) * 2017-05-31 2019-05-31 河北工业大学 一种硬面堆焊合金材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411820B2 (ja) 1975-01-30 1979-05-17
JPS6110800B2 (ja) 1977-12-02 1986-03-31 Hitachi Ltd
JPH0159079B2 (ja) 1985-09-20 1989-12-14 Nippon Steel Corp
JP2667635B2 (ja) 1994-03-31 1997-10-27 株式会社神戸製鋼所 ステンレス鋼フラックス入りワイヤ
JP2017030018A (ja) * 2015-07-31 2017-02-09 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP2017148821A (ja) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 2相ステンレス鋼向けアーク溶接用フラックス入りワイヤおよび溶接金属
JP2017226089A (ja) 2016-06-20 2017-12-28 住友ゴム工業株式会社 押圧ローラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715042A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220281037A1 (en) * 2019-11-26 2022-09-08 Esab Seah Corp. Stainless steel flux cored wire for manufacturing lng tank
WO2022050400A1 (ja) * 2020-09-07 2022-03-10 株式会社神戸製鋼所 フラックス入りワイヤ
JP2022044430A (ja) * 2020-09-07 2022-03-17 株式会社神戸製鋼所 フラックス入りワイヤ
JP7323497B2 (ja) 2020-09-07 2023-08-08 株式会社神戸製鋼所 フラックス入りワイヤ

Also Published As

Publication number Publication date
CN111417489B (zh) 2022-09-02
JP2019093428A (ja) 2019-06-20
US20200230733A1 (en) 2020-07-23
EP3715042A1 (en) 2020-09-30
EP3715042B1 (en) 2024-01-31
JP7010675B2 (ja) 2022-01-26
EP3715042A4 (en) 2021-07-07
CN111417489A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2019102932A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
JP4531118B2 (ja) 凝固結晶粒を微細にする二相ステンレス鋼溶接用フラックス入りワイヤ
JP4834191B2 (ja) 全姿勢溶接が可能なガスシールドアーク溶接用フラックス入りワイヤ
CN110023030B (zh) 药芯焊丝、焊接接头的制造方法以及焊接接头
US5120931A (en) Electrode and flux for arc welding stainless steel
JP3476125B2 (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ
EP3208030B1 (en) Flux-cored wire for arc welding of duplex stainless steel
JP6671157B2 (ja) ステンレス鋼溶接用フラックス入りワイヤ、ステンレス鋼溶接継手、及び、その製造方法
WO2015005002A1 (ja) 肉盛溶接用フラックス入りワイヤ
WO2018051823A1 (ja) エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
JP5345770B2 (ja) チタニヤ系フラックス入りワイヤ
JP5097499B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP6901868B2 (ja) エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
JP2019025524A (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP3934399B2 (ja) 凝固結晶粒を微細にするオーステナイト系ステンレス鋼溶接用フラックス入りワイヤ
JP7276597B2 (ja) サブマージアーク溶接用ワイヤおよびそれを用いた溶接継手部の製造方法
JP7231499B2 (ja) フラックス入りワイヤ及び溶接方法
CN113613829A (zh) Ni基合金药芯焊丝
WO2016060208A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2021177106A1 (ja) エレクトロスラグ溶接用フラックス及びエレクトロスラグ溶接方法
JP2007118069A (ja) ガスシールドアーク溶接方法
JP2021049583A5 (ja)
JP7401345B2 (ja) Ni基合金フラックス入りワイヤ
JP5794125B2 (ja) ガスシールドアーク溶接に用いる溶接用鋼ワイヤおよびそれを用いたガスシールドアーク溶接方法
WO2019221284A1 (ja) エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880408

Country of ref document: EP

Effective date: 20200624