WO2019102830A1 - バンドパスフィルタ - Google Patents

バンドパスフィルタ Download PDF

Info

Publication number
WO2019102830A1
WO2019102830A1 PCT/JP2018/041003 JP2018041003W WO2019102830A1 WO 2019102830 A1 WO2019102830 A1 WO 2019102830A1 JP 2018041003 W JP2018041003 W JP 2018041003W WO 2019102830 A1 WO2019102830 A1 WO 2019102830A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
pass filter
capacitor
band
frequency
Prior art date
Application number
PCT/JP2018/041003
Other languages
English (en)
French (fr)
Inventor
谷口 哲夫
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019102830A1 publication Critical patent/WO2019102830A1/ja
Priority to US16/866,590 priority Critical patent/US11088669B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1783Combined LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present invention relates to a band pass filter comprising a plurality of LC resonators.
  • a band pass filter comprising a plurality of LC resonators.
  • WO 2011/114851 discloses a band pass filter including a three-stage LC resonator and a ground impedance adjustment circuit. According to the band pass filter, an attenuation pole can be provided in the attenuation band near the low frequency side of the pass band.
  • Patent Document 1 does not specifically disclose a configuration for forming an attenuation pole in the vicinity of a desired frequency higher than the pass band of the band pass filter.
  • the present invention has been made to solve the problems as described above, and an object thereof is to form an attenuation pole near a desired frequency lower than the pass band of a band pass filter and to make the desired higher than the pass band. Form an attenuation pole near the frequency of.
  • the signal input to the first terminal is transmitted in order of the first LC resonator and the second LC resonator and output from the second terminal.
  • the first LC resonator includes a first inductor and a first capacitor. The first capacitor is connected in parallel with the first inductor.
  • the second LC resonator includes a second inductor and a second capacitor. The second capacitor is connected in parallel with the second inductor.
  • the band pass filter includes a third inductor and a third capacitor. One end of the third inductor is grounded. The third capacitor is connected between the other end of the third inductor and the connection point of the first and second LC resonators.
  • the third capacitor connected between the other end of the third inductor whose one end is grounded and the connection point of the first and second LC resonators
  • An attenuation pole can be formed near a desired frequency lower than the band, and an attenuation pole can be formed near a desired frequency higher than the passband.
  • FIG. 1 is an equivalent circuit diagram of a band pass filter according to a first embodiment.
  • FIG. 7 is an equivalent circuit diagram of a band pass filter according to a comparative example of the first embodiment.
  • FIG. 3 is a diagram showing the insertion loss of the band pass filter of FIG. 1 and the insertion loss of the band pass filter of FIG. 2 together.
  • 5 is another equivalent circuit diagram of the band pass filter according to Embodiment 1.
  • FIG. FIG. 7 is an equivalent circuit diagram of a band pass filter according to a second embodiment. It is a figure which shows the insertion loss of the band pass filter of FIG.
  • FIG. 10 is an equivalent circuit diagram of a band pass filter according to a third embodiment. It is a figure which shows the insertion loss of the band pass filter of FIG.
  • FIG. 16 is an equivalent circuit diagram of a band pass filter according to a first modification of the third embodiment.
  • FIG. 16 is an equivalent circuit diagram of a band pass filter according to a second modification of the third embodiment.
  • FIG. 1 is an equivalent circuit diagram of the band pass filter 100 according to the first embodiment.
  • the band pass filter 100 includes terminals P1 and P2, LC resonators 101 and 102, an inductor 13 and a capacitor 23.
  • the LC resonators 101 and 102 are connected at a connection point CP.
  • the LC resonator 101 includes an inductor 11 and a capacitor 21.
  • the inductor 11 and the capacitor 21 are connected in parallel between the terminal P1 and the connection point CP.
  • the LC resonator 102 includes an inductor 12 and a capacitor 22.
  • the inductor 12 and the capacitor 22 are connected in parallel between the terminal P2 and the connection point CP.
  • the inductor 11 is magnetically coupled to the inductor 12. Magnetic coupling is coupling via magnetic flux in which the magnetic flux between the inductors changes in accordance with a change in current flowing through one of the inductors, and an induced electromotive force is generated in the other inductor.
  • the capacitor 23 is connected between the other end of the inductor 13 and the connection point CP.
  • the signal input to the terminal P1 is transmitted in the order of the LC resonator 101 and the LC resonator 102 and output from the terminal P2.
  • the signal input to the terminal P2 is transmitted to the LC resonator 102 and the LC resonator 101 in this order and output from the terminal P1.
  • FIG. 2 is an equivalent circuit diagram of the band pass filter 900 according to the comparative example of the first embodiment.
  • the equivalent circuit diagram of the band pass filter 900 of FIG. 2 is an equivalent circuit diagram in which the capacitor 23 is removed from the equivalent circuit diagram of the band pass filter 100 of FIG.
  • the other configuration is the same, so the description will not be repeated.
  • FIG. 3 is a diagram showing the insertion loss IL10 of the band pass filter 100 of FIG. 1 and the insertion loss IL90 of the band pass filter 900 of FIG.
  • the pass bands of the band pass filters 100 and 900 are both in the frequency band f41 to f42 (> f41).
  • the attenuation (dB) on the vertical axis is a negative value.
  • the insertion loss is an index indicating the ratio of the signal transmitted to the other terminal of the electronic component out of the signals input to the certain terminal of the electronic component.
  • an attenuation pole may be required near a desired frequency other than the pass band.
  • a sufficient attenuation pole is not formed as shown by the insertion loss IL90.
  • attenuation poles are formed at the frequency f51 ( ⁇ f41), the frequency f52 (> f42), and the frequency f53 (> f52).
  • the curve showing the insertion loss IL10 is steeper than the curve showing IL90, with regard to the aspect of the change in attenuation in the frequency bands f51 to f41 and f42 to f52.
  • the band pass filter 100 can form an attenuation pole at the frequency of division of the pass frequency (for example, the center frequency of the pass band) and the frequency of multiplication.
  • summary of the mechanism in which an attenuation pole is formed in desired frequency vicinity is demonstrated.
  • the impedance (L ⁇ 2 ⁇ f) of the inductor of the inductance L increases.
  • the impedance (1 / (C ⁇ 2 ⁇ f)) of the capacitor of the capacitor C decreases as the frequency f of the signal to be passed increases.
  • the impedance of the inductor is relatively smaller than the frequency of the pass band as compared to the impedance of the capacitor.
  • the impedance of the inductor becomes relatively larger than the impedance of the capacitor than the frequency of the pass band.
  • the signal path passing through the inductor 11 is more dominant than the signal path passing through the capacitor 21, the capacitor 23 and the inductor 13.
  • the signal path passing through the inductor 12, the capacitor 23 and the inductor 13 is more dominant than the signal path passing through the capacitor 22, the capacitor 23 and the inductor 13.
  • the frequency f51 By setting the resonance frequency of the series resonator formed by the inductor 11, the capacitor 23, and the inductor 13 and the resonance frequency of the series resonator formed by the inductor 12, the capacitor 23, and the inductor 13 near the frequency f51, the frequency f51 An attenuation pole is formed in the vicinity.
  • the signal path via the capacitor 21, the capacitor 23 and the inductor 13 is more dominant than the signal path via the inductor 11, the capacitor 23 and the inductor 13. Similarly, the signal path passing through the capacitor 22, the capacitor 23 and the inductor 13 is more dominant than the signal path passing through the inductor 12, the capacitor 23 and the inductor 13.
  • the capacitor 23 and the inductor 13 By setting the resonance frequency of the series resonator formed by the capacitor 21, the capacitor 23 and the inductor 13 and the resonance frequency of the series resonator formed by the capacitor 22, the capacitor 23 and the inductor 13 near the frequency f53, the frequency f53 An attenuation pole is formed in the vicinity.
  • the inductors 11 and 12 magnetically coupled in FIG. 1 are replaced with the inductors 11A, 12A and 112 shown in FIG.
  • the inductor 112 is connected in series with the inductor 11A between the terminal P1 and the connection point CP.
  • the inductor 112 is connected in series with the inductor 12A between the terminal P2 and the connection point CP.
  • Capacitor 21 is connected in parallel with inductors 11A and 112.
  • Capacitor 22 is connected in parallel with inductors 12A and 112.
  • the LC resonators 101 and 102 share an inductor 112.
  • the frequency f51 is, for example, 1/2 frequency division of the center frequency of the pass bands f41 to f42 of the band pass filter 100.
  • the frequencies f52 and f53 are, for example, multiplications such as twice and three times the center frequency.
  • the attenuation pole can be formed in the vicinity of the desired frequency lower than the passband, and the attenuation pole is formed in the vicinity of the desired frequency higher than the passband. be able to.
  • FIG. 5 is an equivalent circuit diagram of the band pass filter 200 according to the second embodiment.
  • the equivalent circuit diagram of the band pass filter 200 of FIG. 5 has the inductor 14 added to the equivalent circuit diagram of the band pass filter 100 of FIG. 1, and the LC resonators 101 and 102 are replaced with LC resonators 201 and 202, respectively.
  • FIG. 6 is an equivalent circuit diagram of FIG. The other configuration is similar to that of the band pass filter 100, and therefore the description will not be repeated.
  • the inductor 14 is connected in series with the inductor 11 between the terminal P1 and the connection point CP.
  • the inductor 14 is connected in series with the inductor 12 between the terminal P2 and the connection point CP.
  • Capacitor 21 is connected in parallel with inductors 11 and 14.
  • Capacitor 22 is connected in parallel with inductors 12 and 14.
  • the inductors 11 and 12 do not have to be magnetically coupled.
  • FIG. 6 is a diagram showing the respective insertion losses IL24 to IL26 when the inductance of the inductor 14 is changed in three steps in the band pass filter 200 of FIG.
  • the inductance of the inductor 14 in each of the insertion losses IL24 to IL26 increases in the order of the insertion losses IL24 to IL26.
  • the frequencies f60 to f66 at which the attenuation pole is formed are higher in the order of the frequencies f60 to f66.
  • the pass band of the band pass filter 200 is a frequency band f43 to f44 (> f43).
  • the insertion losses IL24 to IL26 all have an attenuation pole in the vicinity of the frequency f60 ( ⁇ f43).
  • the insertion loss IL24 has attenuation poles at frequencies f61 and f66.
  • the insertion loss IL25 attenuation poles are formed at frequencies f62 and f65.
  • the insertion loss IL26 attenuation poles are formed at frequencies f63 and f64.
  • Changing the inductance of the inductor 14 corresponds to changing the strength of the magnetic coupling between the inductors 11 and 12 in FIG. 1 of the first embodiment, as described with reference to FIG. Changing the inductance of the inductor 14 forming a physical connection is more stable and easier than changing the strength of the magnetic coupling not forming a physical connection. According to the band pass filter of the second embodiment, the frequency of the attenuation pole can be stably and easily changed.
  • the attenuation pole can be formed in the vicinity of the desired frequency lower than the passband, and the attenuation pole is formed in the vicinity of the desired frequency higher than the passband. be able to.
  • FIG. 7 is an equivalent circuit diagram of the band pass filter 300 according to the third embodiment.
  • the equivalent circuit diagram of the band pass filter 300 of FIG. 7 is an equivalent circuit diagram in which the inductors 15 and 16 are added to the equivalent circuit diagram of the band pass filter 200 of FIG.
  • the other configuration is similar to that of the band pass filter 200, so the description will not be repeated.
  • the inductor 15 is connected in series with the capacitor 21 between the terminal P1 and the connection point CP.
  • the capacitor 21 is connected between the inductor 15 and the connection point CP.
  • the inductor 16 is connected in series with the capacitor 22 between the terminal P2 and the connection point CP.
  • the capacitor 22 is connected between the inductor 16 and the connection point CP.
  • the inductance of the inductor 15 is equal to the inductance of the inductor 16.
  • the inductance of the inductor 15 may not be equal to the inductance of the inductor 16.
  • FIG. 8 is a diagram collectively showing the insertion losses IL31 and IL32 of the band pass filter 300 of FIG. 7 when the inductances of the inductors 15 and 16 are changed in two steps.
  • the inductances of the inductors 15 and 16 in each of the insertion losses IL31 and IL32 decrease in the order of the insertion losses IL31 and IL32.
  • the frequency at which the attenuation pole is formed is higher in the order of the frequencies f91 to f95.
  • the pass band of the insertion loss IL31 is a frequency band f71 to f72 (> f71).
  • the pass band of the insertion loss IL32 is a frequency band f81 to f82 (> f81).
  • the frequency f81 is higher than the frequency f71, and the frequency f82 is higher than the frequency f72.
  • the pass band of the insertion loss IL32 has moved to a frequency band higher than the pass band of the insertion loss IL31.
  • Attenuation poles are formed around the frequency f91 in both of the insertion losses IL31 and IL32.
  • attenuation poles are formed in the insertion loss IL31 at frequencies f92 (> f72) and f94.
  • attenuation poles are formed at frequencies f93 (> f83) and f95.
  • the attenuation poles formed at the frequencies f92 and f94 of the insertion loss IL31 are respectively moved to the attenuation poles formed at the higher frequencies f93 and f95 at the insertion loss IL32 There is.
  • inductor 15 and capacitor 21 are connected in series in this order between terminal P1 and connection point CP, and between terminal P2 and connection point CP.
  • the case where the inductor 16 and the capacitor 22 are connected in series in this order has been described.
  • the order in which the inductor 15 and the capacitor 21 and the inductor 16 and the capacitor 22 are connected in series is the same as the equivalent circuit diagram of the band pass filter 310 according to the first modification of the third embodiment shown in FIG. And may be reversed.
  • the design circuit can be obtained by adopting the equivalent circuit shown in FIG. 7 rather than the equivalent circuit shown in FIG.
  • the band pass filter can be miniaturized because it can be used efficiently.
  • an inductor for adjusting the frequency of the attenuation pole is added to the band pass filter according to the second embodiment.
  • An inductor for adjusting the frequency of the attenuation pole may be added to the band pass filter according to the first embodiment as in the band pass filter 320 according to the second modification of the third embodiment shown in FIG. it can.
  • the attenuation pole can be formed in the vicinity of a desired frequency lower than the passband, and the vicinity of the desired frequency higher than the passband Can form an attenuation pole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Filters And Equalizers (AREA)

Abstract

バンドパスフィルタの通過帯域よりも低い所望の周波数付近に減衰極を形成するとともに、通過帯域よりも高い所望の周波数付近において減衰極を形成する。本発明の一実施形態によるバンドパスフィルタ(100)においては、第1端子(P1)に入力された信号が、第1LC共振器(101)、および第2LC共振器(102)の順に伝達されて、第2端子(P2)から出力される。バンドパスフィルタ(100)は、第3インダクタ(13)と、第3キャパシタ(23)とを備える。第3インダクタ(13)の一方端は接地されている。第3キャパシタ(23)は、第3インダクタ(13)の他方端と、第1LC共振器(101)および第2LC共振器(102)の接続点(CP)との間に接続されている。

Description

バンドパスフィルタ
 本発明は、複数のLC共振器を備えるバンドパスフィルタに関する。
 従来、複数のLC共振器を備えるバンドパスフィルタが知られている。たとえば、国際公開第2011/114851号(特許文献1)には、3段のLC共振器、およびグランドインピーダンス調整回路を備えるバンドパスフィルタが開示されている。当該バンドパスフィルタによれば、通過帯域の低周波数側近傍の減衰帯域に減衰極を設けることができる。
国際公開第2011/114851号
 バンドパスフィルタに求められる周波数特性によっては、通過帯域よりも高い所望の周波数付近において減衰極が必要になる場合がある。しかし、特許文献1には、バンドパスフィルタの通過帯域よりも高い所望の周波数付近において減衰極を形成するための構成については具体的に開示されていない。
 本発明は上記のような課題を解決するためになされたものであり、その目的は、バンドパスフィルタの通過帯域よりも低い所望の周波数付近に減衰極を形成するとともに、通過帯域よりも高い所望の周波数付近において減衰極を形成することである。
 本発明の一実施形態によるバンドパスフィルタにおいては、第1端子に入力された信号が、第1LC共振器、および第2LC共振器の順に伝達されて、第2端子から出力される。第1LC共振器は、第1インダクタと、第1キャパシタとを含む。第1キャパシタは、第1インダクタと並列に接続されている。第2LC共振器は、第2インダクタと、第2キャパシタとを含む。第2キャパシタは、第2インダクタと並列に接続されている。バンドパスフィルタは、第3インダクタと、第3キャパシタとを備える。第3インダクタの一方端は、接地されている。第3キャパシタは、第3インダクタの他方端と、第1および第2LC共振器の接続点との間に接続されている。
 本発明に係るバンドパスフィルタによれば、一方端が接地されている第3インダクタの他方端と、第1および第2LC共振器の接続点との間に接続されている第3キャパシタにより、通過帯域よりも低い所望の周波数付近に減衰極を形成することができるとともに、通過帯域よりも高い所望の周波数付近において減衰極を形成することができる。
実施の形態1に係るバンドパスフィルタの等価回路図である。 実施の形態1の比較例に係るバンドパスフィルタの等価回路図である。 図1のバンドパスフィルタの挿入損失、および図2のバンドパスフィルタの挿入損失を併せて示す図である。 実施の形態1に係るバンドパスフィルタの他の等価回路図である。 実施の形態2に係るバンドパスフィルタの等価回路図である。 図5のバンドパスフィルタの挿入損失を示す図である。 実施の形態3に係るバンドパスフィルタの等価回路図である。 図7のバンドパスフィルタの挿入損失を示す図である。 実施の形態3の変形例1に係るバンドパスフィルタの等価回路図である。 実施の形態3の変形例2に係るバンドパスフィルタの等価回路図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 [実施の形態1]
 図1は、実施の形態1に係るバンドパスフィルタ100の等価回路図である。図1に示されるように、バンドパスフィルタ100は、端子P1,P2と、LC共振器101,102と、インダクタ13と、キャパシタ23とを備える。
 LC共振器101および102は、接続点CPにおいて接続されている。LC共振器101は、インダクタ11と、キャパシタ21とを含む。インダクタ11とキャパシタ21とは、端子P1と接続点CPとの間で並列に接続されている。LC共振器102は、インダクタ12と、キャパシタ22とを含む。インダクタ12とキャパシタ22とは、端子P2と接続点CPとの間で並列に接続されている。インダクタ11は、インダクタ12と磁気結合している。なお、磁気結合とは、一方のインダクタに流れる電流の変化に伴ってインダクタ間の磁束が変化し、他方のインダクタに誘導起電力が生じるという、磁束を介した結合である。
 インダクタ13の一方端は、接地されている。キャパシタ23は、インダクタ13の他方端と接続点CPとの間に接続されている。
 端子P1に入力された信号は、LC共振器101、およびLC共振器102の順に伝達されて、端子P2から出力される。端子P2に入力された信号は、LC共振器102、およびLC共振器101の順に伝達されて、端子P1から出力される。
 図2は、実施の形態1の比較例に係るバンドパスフィルタ900の等価回路図である。図2のバンドパスフィルタ900の等価回路図は、図1のバンドパスフィルタ100の等価回路図からキャパシタ23が除かれた等価回路図である。それ以外の構成は同様であるため、説明を繰り返さない。
 図3は、図1のバンドパスフィルタ100の挿入損失IL10、および図2のバンドパスフィルタ900の挿入損失IL90を併せて示す図である。バンドパスフィルタ100および900の通過帯域は、いずれも周波数帯f41~f42(>f41)である。
 図3において縦軸の減衰量(dB)はマイナスの値である。減衰量の絶対値が大きいほど挿入損失は大きい。挿入損失とは、電子部品の或る端子に入力された信号のうち、電子部品の他の端子に伝達された信号の割合を示す指標である。挿入損失が大きい程、電子部品に入力された信号のうち当該電子部品の内部で失われた信号の割合が大きいことを意味する。実施の形態2の図6、および実施の形態3の図8においても同様である。
 バンドパスフィルタに求められる周波数特性によっては、通過帯域以外の所望の周波数付近において減衰極が必要になる場合がある。しかし、図3に示される周波数帯においては、挿入損失IL90に示されるように、十分な減衰極が形成されていない。一方、挿入損失IL10に示されるように、周波数f51(<f41)、周波数f52(>f42)、および周波数f53(>f52)において減衰極が形成されている。
 周波数帯f51~f41およびf42~f52における減衰量の変化の態様に関して、挿入損失IL10を示す曲線カーブの方がIL90を示す曲線カーブよりも急峻である。バンドパスフィルタ100によれば、通過周波数(たとえば通過帯域の中心周波数)の分周の周波数、および逓倍の周波数において減衰極を形成することができる。
 以下では、実施の形態に係るバンドパスフィルタにおいて、所望の周波数付近に減衰極が形成されるメカニズムの概要を説明する。通過する信号の周波数fが高くなるほど、インダクタンスLのインダクタのインピーダンス(L・2πf)は増加する。一方、通過する信号の周波数fが高くなるほど、容量Cのキャパシタのインピーダンス(1/(C・2πf))は減少する。バンドパスフィルタの通過帯域よりも周波数を低くすると、通過帯域の周波数よりもインダクタのインピーダンスはキャパシタのインピーダンスと比較して相対的に小さくなる。一方、バンドパスフィルタの通過帯域よりも周波数を高くすると、通過帯域の周波数よりもインダクタのインピーダンスはキャパシタのインピーダンスと比較して相対的に大きくなる。
 接地点GNDに至る周波数f51における信号経路に関して、キャパシタ21,キャパシタ23,インダクタ13を経由する信号経路よりもインダクタ11,キャパシタ23,インダクタ13を経由する信号経路の方が支配的な信号経路となる。同様に、キャパシタ22,キャパシタ23,インダクタ13を経由する信号経路よりもインダクタ12,キャパシタ23,インダクタ13を経由する信号経路の方が支配的な信号経路となる。
 インダクタ11,キャパシタ23、およびインダクタ13によって形成される直列共振器の共振周波数およびインダクタ12,キャパシタ23、およびインダクタ13によって形成される直列共振器の共振周波数を周波数f51付近とすることにより、周波数f51付近に減衰極が形成される。
 接地点GNDに至る周波数f53における信号経路に関して、インダクタ11,キャパシタ23,インダクタ13を経由する信号経路よりもキャパシタ21,キャパシタ23,インダクタ13を経由する信号経路の方が支配的な信号経路となる。同様に、インダクタ12,キャパシタ23,インダクタ13を経由する信号経路よりもキャパシタ22,キャパシタ23,インダクタ13を経由する信号経路の方が支配的な信号経路となる。
 キャパシタ21,キャパシタ23、およびインダクタ13によって形成される直列共振器の共振周波数およびキャパシタ22,キャパシタ23、およびインダクタ13によって形成される直列共振器の共振周波数を周波数f53付近とすることにより、周波数f53付近に減衰極が形成される。
 図1および図4を参照しながら、図1において磁気結合しているインダクタ11と12とは、図4に示されるインダクタ11A,12A,112に置き換えられる。インダクタ112は、端子P1と接続点CPとの間でインダクタ11Aと直列に接続されている。インダクタ112は、端子P2と接続点CPとの間でインダクタ12Aと直列に接続されている。キャパシタ21は、インダクタ11Aおよび112と並列に接続されている。キャパシタ22は、インダクタ12Aおよび112と並列に接続されている。LC共振器101および102は、インダクタ112を共有している。インダクタ11A,12A,キャパシタ21,22によってそれぞれ形成される並列共振器の共振周波数を周波数f52付近とすることにより、周波数f52付近に減衰極が形成される。
 周波数f51は、たとえばバンドパスフィルタ100の通過帯域f41~f42の中心周波数の1/2倍などの分周である。周波数f52,f53は、たとえば中心周波数の2倍、および3倍などの逓倍である。
 以上、実施の形態1に係るバンドパスフィルタによれば、通過帯域よりも低い所望の周波数付近に減衰極を形成することができるとともに、通過帯域よりも高い所望の周波数付近において減衰極を形成することができる。
 [実施の形態2]
 図5は、実施の形態2に係るバンドパスフィルタ200の等価回路図である。図5のバンドパスフィルタ200の等価回路図は、図1のバンドパスフィルタ100の等価回路図にインダクタ14が加えられているとともに、LC共振器101,102がLC共振器201,202にそれぞれ置き換えられた等価回路図である。それ以外の構成はバンドパスフィルタ100と同様であるため、説明を繰り返さない。
 図5に示されるように、インダクタ14は、端子P1と接続点CPとの間でインダクタ11と直列に接続されている。インダクタ14は、端子P2と接続点CPとの間でインダクタ12と直列に接続されている。キャパシタ21は、インダクタ11および14と並列に接続されている。キャパシタ22は、インダクタ12および14と並列に接続されている。
 実施の形態2においては、LC共振器201および202がインダクタ14を共有しているため、磁気結合よりも物理的な接続を介した信号伝達が支配的となる。そのため、インダクタ11とインダクタ12とが磁気結合していなくてもよい。
 図6は、図5のバンドパスフィルタ200において、インダクタ14のインダクタンスを3段階に変化させた場合の、それぞれの挿入損失IL24~IL26を併せて示す図である。挿入損失IL24~IL26の各場合のインダクタ14のインダクタンスは、挿入損失IL24~IL26の順に大きい。減衰極が形成されている周波数f60~f66は、周波数f60~f66の順に高い。バンドパスフィルタ200の通過帯域は、周波数帯f43~f44(>f43)である。
 図6に示されるように、通過帯域f43~f44よりも低い周波数帯において、挿入損失IL24~IL26は、いずれも周波数f60(<f43)付近において減衰極が発生している。通過帯域f43~f44よりも高い周波数帯において、挿入損失IL24には、周波数f61およびf66に減衰極が形成されている。挿入損失IL25には、周波数f62およびf65に減衰極が形成されている。挿入損失IL26には、周波数f63およびf64に減衰極が形成されている。インダクタ14のインダクタンスを変化させることにより、バンドパスフィルタ200の通過帯域よりも高い周波数帯に形成される減衰極の周波数を変化させることができる。
 インダクタ14のインダクタンスを変化させることは、図4を用いて説明したように、実施の形態1の図1のインダクタ11と12との間の磁気結合の強さを変化させることに相当する。物理的な接続を形成しているインダクタ14のインダクタンスを変化させる方が、物理的な接続を形成していない磁気結合の強さを変化させるよりも、安定的かつ容易である。実施の形態2に係るバンドパスフィルタによれば、減衰極の周波数を安定的かつ容易に変化させることができる。
 以上、実施の形態2に係るバンドパスフィルタによれば、通過帯域よりも低い所望の周波数付近に減衰極を形成することができるとともに、通過帯域よりも高い所望の周波数付近において減衰極を形成することができる。
 [実施の形態3]
 図7は、実施の形態3に係るバンドパスフィルタ300の等価回路図である。図7のバンドパスフィルタ300の等価回路図は、図5のバンドパスフィルタ200の等価回路図にインダクタ15,16が追加された等価回路図である。それ以外の構成はバンドパスフィルタ200と同様であるため、説明を繰り返さない。
 インダクタ15は、端子P1と接続点CPとの間でキャパシタ21と直列に接続されている。キャパシタ21は、インダクタ15と接続点CPとの間に接続されている。インダクタ16は、端子P2と接続点CPとの間でキャパシタ22と直列に接続されている。キャパシタ22は、インダクタ16と接続点CPとの間に接続されている。インダクタ15のインダクタンスは、インダクタ16のインダクタンスに等しい。インダクタ15のインダクタンスは、インダクタ16のインダクタンスと等しくなくともよい。
 図8は、インダクタ15および16のインダクタンスを2段階に変化させた場合の、図7のバンドパスフィルタ300の挿入損失IL31およびIL32を併せて示す図である。挿入損失IL31,IL32の各場合のインダクタ15および16のインダクタンスは、挿入損失IL31,IL32の順に小さい。減衰極が形成されている周波数は、周波数f91~f95の順に高い。
 図8に示されるように、挿入損失IL31の通過帯域は、周波数帯f71~f72(>f71)である。挿入損失IL32の通過帯域は、周波数帯f81~f82(>f81)である。周波数f81は、周波数f71よりも高く、周波数f82は、周波数f72よりも高い。挿入損失IL32の通過帯域は、挿入損失IL31の通過帯域よりも高い周波帯へ移動している。
 通過帯域より低い周波数帯において、挿入損失IL31およびIL32においては、いずれも周波数f91付近で減衰極が形成されている。通過帯域より高い周波数帯において、挿入損失IL31には、周波数f92(>f72),f94において減衰極が形成されている。挿入損失IL32には、周波数f93(>f83),f95において減衰極が形成されている。通過帯域よりも高い周波数帯において、挿入損失IL31の周波数f92,f94に形成されている減衰極は、挿入損失IL32においては、より高い周波数f93,f95に形成されている減衰極にそれぞれ移動している。
 実施の形態3においては、図7に示されるように、端子P1と接続点CPとの間においてインダクタ15およびキャパシタ21がこの順に直列に接続されているとともに、端子P2と接続点CPとの間においてインダクタ16およびキャパシタ22がこの順に直列に接続されている場合について説明した。インダクタ15およびキャパシタ21、ならびにインダクタ16およびキャパシタ22が直列に接続される順序は、図9に示される実施の形態3の変形例1に係るバンドパスフィルタ310の等価回路図のように、図7とは逆であっても構わない。
 ただし、図7に示される等価回路図のように、キャパシタ21~23が接続点CPで接続される場合、接続点CPに接続されているキャパシタ21~23の各一方電極を、同一のキャパシタ導体パターンによって実現することができる。そのため、実施の形態に係るバンドパスフィルタを複数の誘電体層の積層体として構成する場合、図9に示される等価回路よりも、図7に示される等価回路を採用した方が、設計空間を効率的に活用することができるため、バンドパスフィルタを小型化することができる。
 実施の形態3においては、実施の形態2に係るバンドパスフィルタに減衰極の周波数を調整するためのインダクタが追加される場合について説明した。減衰極の周波数を調整するためのインダクタは、図10に示される実施の形態3の変形例2に係るバンドパスフィルタ320のように、実施の形態1に係るバンドパスフィルタに追加されることもできる。
 以上、実施の形態3および変形例1,2に係るバンドパスフィルタによれば、通過帯域よりも低い所望の周波数付近に減衰極を形成することができるとともに、通過帯域よりも高い所望の周波数付近において減衰極を形成することができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 11~16,11A,12A,112 インダクタ、21~23 キャパシタ、100,200,300,310,320,900 バンドパスフィルタ、101,102,201,202 LC共振器、P1,P2 端子。

Claims (5)

  1.  第1端子に入力された信号が、第1LC共振器、および第2LC共振器の順に伝達されて、第2端子から出力されるバンドパスフィルタであって、
     前記第1LC共振器は、第1インダクタと、前記第1インダクタと並列に接続された第1キャパシタとを含み、
     前記第2LC共振器は、第2インダクタと、前記第2インダクタと並列に接続された第2キャパシタとを含み、
     前記バンドパスフィルタは、
     一方端が接地された第3インダクタと、
     前記第3インダクタの他方端と、前記第1および第2LC共振器の接続点との間に接続された第3キャパシタとを備える、バンドパスフィルタ。
  2.  前記第1インダクタと前記第1キャパシタは、前記第1端子と前記接続点との間で並列に接続され、
     前記第2インダクタと前記第2キャパシタは、前記第2端子と前記接続点との間で並列に接続され、
     前記第1インダクタは、前記第2インダクタと磁気結合している、請求項1に記載のバンドパスフィルタ。
  3.  前記第1および第2LC共振器は、第4インダクタを共有し、
     前記第4インダクタは、前記第1端子と前記接続点との間で前記第1インダクタと直列に接続されているとともに、前記第2端子と前記接続点との間で前記第2インダクタと直列に接続され、
     前記第1キャパシタは、前記第1および第4インダクタと並列に接続され、
     前記第2キャパシタは、前記第2および第4インダクタと並列に接続されている、請求項1に記載のバンドパスフィルタ。
  4.  前記第1LC共振器は、前記第1端子と前記接続点との間で前記第1キャパシタと直列に接続された第5インダクタをさらに含み、
     前記第2LC共振器は、前記第2端子と前記接続点との間で前記第2キャパシタと直列に接続された第6インダクタをさらに含む、請求項1~3のいずれか1項に記載のバンドパスフィルタ。
  5.  前記第1キャパシタは、前記第5インダクタと前記接続点との間に接続され、
     前記第2キャパシタは、前記第6インダクタと前記接続点との間に接続されている、請求項4に記載のバンドパスフィルタ。
PCT/JP2018/041003 2017-11-22 2018-11-05 バンドパスフィルタ WO2019102830A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/866,590 US11088669B2 (en) 2017-11-22 2020-05-05 Band pass filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017224772 2017-11-22
JP2017-224772 2017-11-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/866,590 Continuation US11088669B2 (en) 2017-11-22 2020-05-05 Band pass filter

Publications (1)

Publication Number Publication Date
WO2019102830A1 true WO2019102830A1 (ja) 2019-05-31

Family

ID=66630802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041003 WO2019102830A1 (ja) 2017-11-22 2018-11-05 バンドパスフィルタ

Country Status (2)

Country Link
US (1) US11088669B2 (ja)
WO (1) WO2019102830A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125715A (ja) * 2020-01-31 2021-08-30 太陽誘電株式会社 フィルタ、マルチプレクサおよび通信用モジュール

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113706A (ja) * 1984-06-28 1986-01-22 Matsushita Electric Ind Co Ltd バンドパスフイルタ−
JPH10200357A (ja) * 1996-12-31 1998-07-31 Taiyo Yuden Co Ltd 積層型lc複合部品及びその特性調整方法
JP2002094349A (ja) * 2000-09-12 2002-03-29 Murata Mfg Co Ltd Lcフィルタ回路および積層型lcフィルタ
JP2011147090A (ja) * 2010-01-18 2011-07-28 Ngk Spark Plug Co Ltd 積層型マルチプレクサ、積層型トリプレクサ及びフィルタ回路
JP2016092525A (ja) * 2014-10-31 2016-05-23 日本電信電話株式会社 帯域通過フィルタ及び合分波器
WO2016125515A1 (ja) * 2015-02-02 2016-08-11 株式会社村田製作所 可変フィルタ回路、高周波モジュール回路、および、通信装置
WO2016167171A1 (ja) * 2015-04-17 2016-10-20 株式会社村田製作所 共振回路、帯域阻止フィルタおよび帯域通過フィルタ
WO2017014058A1 (ja) * 2015-07-22 2017-01-26 株式会社村田製作所 Lcフィルタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549690B (zh) 2010-03-18 2014-10-29 株式会社村田制作所 高频层叠元器件及层叠型高频滤波器
WO2018168603A1 (ja) * 2017-03-17 2018-09-20 株式会社村田製作所 高周波モジュール及び通信装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113706A (ja) * 1984-06-28 1986-01-22 Matsushita Electric Ind Co Ltd バンドパスフイルタ−
JPH10200357A (ja) * 1996-12-31 1998-07-31 Taiyo Yuden Co Ltd 積層型lc複合部品及びその特性調整方法
JP2002094349A (ja) * 2000-09-12 2002-03-29 Murata Mfg Co Ltd Lcフィルタ回路および積層型lcフィルタ
JP2011147090A (ja) * 2010-01-18 2011-07-28 Ngk Spark Plug Co Ltd 積層型マルチプレクサ、積層型トリプレクサ及びフィルタ回路
JP2016092525A (ja) * 2014-10-31 2016-05-23 日本電信電話株式会社 帯域通過フィルタ及び合分波器
WO2016125515A1 (ja) * 2015-02-02 2016-08-11 株式会社村田製作所 可変フィルタ回路、高周波モジュール回路、および、通信装置
WO2016167171A1 (ja) * 2015-04-17 2016-10-20 株式会社村田製作所 共振回路、帯域阻止フィルタおよび帯域通過フィルタ
WO2017014058A1 (ja) * 2015-07-22 2017-01-26 株式会社村田製作所 Lcフィルタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125715A (ja) * 2020-01-31 2021-08-30 太陽誘電株式会社 フィルタ、マルチプレクサおよび通信用モジュール
JP7424849B2 (ja) 2020-01-31 2024-01-30 太陽誘電株式会社 フィルタ、マルチプレクサおよび通信用モジュール

Also Published As

Publication number Publication date
US20200266793A1 (en) 2020-08-20
US11088669B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
CN110048686B (zh) 层叠带通滤波器
US9882542B2 (en) Filter component
WO2012124374A1 (ja) 方向性結合器
CN108432128B (zh) 多尔蒂放大器
JP2015111783A (ja) 周波数可変共振回路および周波数可変フィルタ
CN110492861B (zh) 新型GHz超宽带共模噪声抑制电路拓扑结构
JP2005192189A (ja) バラン
WO2019102830A1 (ja) バンドパスフィルタ
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
TWI608699B (zh) 電子零件
TWI479731B (zh) 交錯耦合帶通濾波器
JP4839925B2 (ja) 集中定数型バンドパスフィルタ
WO2011086822A1 (ja) コモンモードフィルタおよびコモンモードフィルタ用インダクタ
JP5725158B2 (ja) 電子部品
WO2018209066A1 (en) Band pass filter based on coupled transmission lines
US9088064B2 (en) Non-reciprocal circuit element
WO2015098240A1 (ja) フィルタ装置およびデュプレクサ
JP3207413U (ja) 阻止帯域ノイズ抑制付き低域通過フィルタ
JP4432059B2 (ja) バンドパスフィルタ
JP2008166945A (ja) バンドパスフィルタ
WO2022085427A1 (ja) フィルタ装置、ならびに、それを搭載した高周波フロントエンド回路およびダイプレクサ
EP3154194A1 (en) Electric filter comprising a transformer
CN116743109A (zh) 一种包含匹配结构的滤波器电路
JP2006186621A (ja) フィルタ回路
JP2017017402A (ja) トランス装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP