WO2019102719A1 - フィルム状半導体封止材 - Google Patents

フィルム状半導体封止材 Download PDF

Info

Publication number
WO2019102719A1
WO2019102719A1 PCT/JP2018/036828 JP2018036828W WO2019102719A1 WO 2019102719 A1 WO2019102719 A1 WO 2019102719A1 JP 2018036828 W JP2018036828 W JP 2018036828W WO 2019102719 A1 WO2019102719 A1 WO 2019102719A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
component
compound
semiconductor
sealing material
Prior art date
Application number
PCT/JP2018/036828
Other languages
English (en)
French (fr)
Inventor
佳英 福原
裕美 齊藤
豊和 発地
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020207014834A priority Critical patent/KR102558125B1/ko
Priority to JP2019556120A priority patent/JP7210031B2/ja
Priority to CN201880074755.2A priority patent/CN111372994B/zh
Publication of WO2019102719A1 publication Critical patent/WO2019102719A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a film-like semiconductor sealing material used as NCF (Non Conductive Film) at the time of semiconductor mounting.
  • NCF Non Conductive Film
  • the surface of the IC (Integrated Circuit) chip on which the electrode (bump) is formed and the surface of the substrate on which the electrode (electrode pad) is formed are opposed to each other.
  • a flip chip method of electrically connecting with the electrode pad of the in this flip chip method a liquid called an underfill agent is generally used after electrode connection in order to protect the connection between the electrodes from the outside and to relieve the stress caused by the difference in linear expansion coefficient between the IC chip and the substrate.
  • the thermosetting adhesive is poured between the semiconductor chip and the substrate and cured.
  • NCF As properties required for NCF, it is required to be void free and to be excellent in electrical connectivity and its reliability. In addition, it is necessary to convey the inside of the apparatus such as a laminator or between the apparatuses in the form of a tape, and in order to secure the handling property, resistance to bending is required. In addition, if the resistance to bending is insufficient, chips and burrs may be generated in the NCF in the dicing process performed after the TCB process, which may result in mounting failure. When positioning at the start of the mounting operation, it is required to be excellent in transparency because a recognition mark serving as a mark of a wafer or a chip is confirmed via the NCF stuck on the wafer.
  • solder material to be applied is often lead-free solder, and the melting point tends to be higher than that of conventional lead solder.
  • the temperature at the time of flip chip mounting using NCF tends to be high. With the increase in temperature, defects such as voids due to side reactions and volatilization of components tend to occur easily, and it is difficult to achieve both the prevention of defects such as voids and connectivity.
  • Patent Document 2 proposes an adhesive composition for a semiconductor device, which contains a compound having a benzoxazine structure.
  • a compound having a benzoxazine structure is fragile as a film property and fragile. Therefore, when used as a component of NCF, it was revealed that the resistance to bending was insufficient.
  • An object of the present invention is to provide a film-like semiconductor sealing material satisfying the above-mentioned required characteristics of NCF in order to solve the problems in the above-mentioned prior art.
  • the present invention is (A) a compound having a benzoxazine structure, (B) Liquid epoxy resin at room temperature, (C) a polymer compound having a mass average molecular weight (Mw) of 10000 or more, Provided is a film-like semiconductor sealing material containing (D) a filler having an average particle diameter of 1 ⁇ m or less and (E) an acid group, and a compound having a heating loss at 200 ° C. of 30% or less.
  • the compound having a benzoxazine structure of the component (A) is preferably a compound represented by the following formula (1) or (2).
  • the epoxy resin which is liquid at room temperature of the component (B) contains either a bisphenol A epoxy resin or a bisphenol F epoxy resin.
  • the compound of the component (E) is preferably a carboxylic acid.
  • the compound of the component (E) is preferably at least one selected from the group consisting of oleic acid, stearic acid, abietic acid, and maleic acid resin.
  • the film-like semiconductor encapsulant of the present invention preferably further comprises (F) a silane coupling agent.
  • the silane coupling agent of the said (F) component contains the compound in any one of following formula (3) or Formula (4) in the film-form semiconductor sealing material of this invention.
  • the film-like semiconductor encapsulant of the present invention preferably further comprises (G) an elastomer.
  • the elastomer of the component (G) preferably contains a polybutadiene skeleton.
  • the present invention also provides a semiconductor device using the film-like semiconductor sealing material of the present invention.
  • the film-like semiconductor sealing material of the present invention is excellent in bending resistance, it is excellent in handling property when transported in or between devices such as a laminator or attached to the device. Moreover, when using as NCF, there is no possibility that a chipping or a burr will occur in a dicing process performed after a TCB process. Since the film-like semiconductor sealing material of the present invention is excellent in visibility, when used as an NCF, a recognition mark serving as a mark of a wafer or a chip can be confirmed through the NCF stuck on the wafer. The film-like semiconductor sealing material of the present invention is excellent in the mountability in the TCB process when used as NCF. The film-like semiconductor sealing material of the present invention is excellent in moisture absorption resistance when it is used as NCF.
  • the film-like semiconductor sealing material of the present invention contains the following components (A) to (E) as essential components.
  • (A) Compound having a benzoxazine structure The compound having a benzoxazine structure of the component (A) is stable at high temperature handling because the curing reaction proceeds at high temperature, and the reaction is difficult to start up to the temperature at which the solder is melted. Can suppress the generation of outgassing due to secondary reactions, and because it utilizes the ring-opening polymerization reaction of the dihydrooxazine ring similar to epoxy resin, it has the characteristic that almost no generation of outgassing is involved as a curing mechanism. It is a component that contributes to the storage stability and the curing performance of the film when it is used as the NCF of the film-like semiconductor encapsulant of the present invention.
  • the compound having a benzoxazine structure of the component (A) is preferably a compound represented by the following formula (1) or (2). From the viewpoint of film properties, the compound having a benzoxazine structure of the component (A) is preferably a compound represented by the formula (2).
  • Epoxy resin which is liquid at room temperature (B) Epoxy resin which is liquid at room temperature (hereinafter referred to as "liquid epoxy resin") is used when the film-like semiconductor sealing material of the present invention is used as NCF In addition, it is a component that contributes to the handleability of the film.
  • the compound having the benzoxazine structure of the component (A) has preferable features for the above-mentioned NCF, but the film characteristics are fragile and fragile.
  • the liquid epoxy resin in the present invention preferably has a viscosity of 100,000 mPa ⁇ s or less at room temperature (25 ° C.).
  • liquid epoxy resin in the present invention those having an average molecular weight of about 400 or less of a bisphenol A epoxy resin; a branched polyfunctional bisphenol A epoxy resin such as p-glycidyloxyphenyldimethyltris-bisphenol A diglycidyl ether; bisphenol Type F epoxy resin; phenol novolac type epoxy resin having an average molecular weight of about 570 or less; vinyl (3,4-cyclohexene) dioxide, 3,4-epoxycyclohexyl carboxylic acid (3,4-epoxycyclohexyl) methyl, adipic acid Alicyclic epoxy resins such as bis (3,4-epoxy-6-methylcyclohexylmethyl), 2- (3,4-epoxycyclohexyl) 5,1-spiro (3,4-epoxycyclohexyl) -m-dioxane ; 3,3 ' Biphenyl type epoxy resins such as 5,5'-tetramethyl-4,4
  • epoxy resins having a silicone skeleton such as 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane can be used.
  • diepoxide compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexane dimethanol diglycidyl ether; trimethylolpropane triglycidyl
  • ethers, triepoxide compounds such as glycerin triglycidyl ether, and the like.
  • bisphenol-type epoxy resins preferred are bisphenol-type epoxy resins, aminophenol-type epoxy resins, and silicone-modified epoxy resins. More preferably, they are a bisphenol A epoxy resin and a bisphenol F epoxy resin.
  • the liquid epoxy resin as the component (B) may be used alone or in combination of two or more.
  • the content of the liquid epoxy resin of the component (B) is preferably 0.5 to 70 parts by mass, and more preferably 1 to 67 parts by mass with respect to 100 parts by mass of the compound of the component (A). .
  • a polymer compound having a mass average molecular weight (Mw) of 10000 or more (hereinafter referred to as "polymer compound") of a component (C) is a film. It is a component that imparts formability, and helps prevent film formation by preventing side-by-side or repelling during film formation.
  • the term “close” means that the film end shrinks toward the center during the film forming process, and the repelling causes crater-like unevenness on the film surface during the film forming process.
  • the upper limit of the mass average molecular weight (Mw) of the component (C) is not particularly limited, but using 500000 or less is preferable from the viewpoint of solubility in a varnish, and it is more preferable to use 200000 or less.
  • a phenoxy resin having a weight average molecular weight (Mw) of 10000 or more, or an acrylic copolymer having a weight average molecular weight (Mw) of 10000 or more can be used as the polymer compound of the component (C).
  • the phenoxy resin as the component (C) is not particularly limited as long as the mass average molecular weight (Mw) is 10000 or more, but a bisphenol A phenoxy resin, a bisphenol F phenoxy resin, a bisphenol A-bisphenol F copolymer phenoxy resin preferable.
  • the acrylic copolymer as the component (C) is not particularly limited as long as the weight average molecular weight (Mw) is 10000 or more, but a copolymer having a soft block segment and a hard block segment is preferable, and a polybutyl acrylate structure as a soft block segment is preferable. And, it is more preferable to have a polymethacrylate structure as a hard block segment.
  • the content of the polymer compound of the component (C) is preferably 15 to 450 parts by mass, and more preferably 20 to 400 parts by mass with respect to 100 parts by mass of the compound of the component (A).
  • the filler of component (D) is for the purpose of improving the reliability of the mounted semiconductor package when the film-like semiconductor sealing material of the present invention is used as NCF. Is added.
  • a filler of (D) component a thing with an average particle diameter of 1 micrometer or less is used. The reason is that the film is excellent in the visibility and the flowability into a narrow gap of about 5 to 80 ⁇ m.
  • the filler having an average particle diameter of more than 1 ⁇ m is used, the visibility of the film decreases, and when it is used as an NCF, it is recognized as a mark of a wafer or a chip through the NCF stuck on the wafer. It may not be possible to check the mark.
  • the filler of the component (D) it is more preferable to use one having an average particle diameter of 0.7 ⁇ m or less.
  • the filler of the component (D) is not particularly limited as long as the average particle diameter is 1 ⁇ m or less, and an inorganic filler can be used.
  • an inorganic filler can be used.
  • silica in particular, amorphous silica, crystalline silica, alumina, boron nitride, aluminum nitride, silicon carbide, silicon nitride and the like can be mentioned.
  • silica in particular, amorphous spherical silica is preferable because of chemical stability, easiness of particle size control, and dispersibility in a resin component.
  • the silica said here may have an organic group derived from a manufacturing raw material, for example, alkyl groups, such as a methyl group and an ethyl group.
  • Amorphous spherical silica can be obtained by a known manufacturing method such as a melting method, a combustion method, a sol-gel method, etc., but the manufacturing method is appropriately selected according to the desired particle size, impurity content, and characteristics such as surface condition. can do. Further, as the silica used as the filler, a silica-containing composition obtained by the production method described in JP-A-2007-197655 may be used.
  • the shape of the filler is not particularly limited, and may be any shape such as spherical, amorphous, scaly, and the like.
  • the average particle diameter of the filler means the average maximum diameter of the filler.
  • the content of the filler of the component (D) is preferably 5 to 75% by mass, and preferably 10 to 70% by mass in terms of mass% with respect to the total mass of each component of the film-like semiconductor sealing material of the present invention. More preferable.
  • a compound having an acid group of component (E) component is a flux when the film-like semiconductor sealing material of the present invention is used as NCF It is a component that constitutes an activator.
  • the film-like semiconductor encapsulant of the present invention has high electrical connectivity and its reliability when used as NCF by containing the component (E).
  • the loss on heating at 200 ° C. can be measured by the following procedure.
  • the temperature can be determined by measuring the heating loss at each temperature during heating at a constant speed (for example, 10 ° C./min) from low temperature to high temperature using a thermogravimetric analyzer.
  • An oleic acid or a stearic acid can be used as a compound which has an acid group and whose loss on heating at 200 ° C. is 30% or less.
  • the compound which has an acidic radical of (E) component is carboxylic acids.
  • the compound having an acid group of component (E) is more preferably at least one selected from the group consisting of oleic acid, stearic acid, abietic acid, and maleic acid resin.
  • a commercial item can be used as a maleic acid resin.
  • Marquide No. There are 32 (product name, manufactured by Arakawa Chemical Industries, Ltd.).
  • the content of the compound having an acid group of component (E) is preferably 0.5 to 35 parts by mass, and preferably 1 to 32 parts by mass with respect to 100 parts by mass of the compound of component (A). More preferable.
  • the film-like semiconductor sealing material of the present invention may further contain the following components as optional components.
  • silane coupling agent of component (F) is added for the purpose of improving the adhesion to an IC chip or a substrate when the film-like semiconductor sealing material of the present invention is used as NCF.
  • silane coupling agent of the component (F) various silane coupling agents such as epoxy type, amino type, vinyl type, methacrylic type, acrylic type and mercapto type can be used. Among these, it is preferable to contain the compound in any one of following formula (3) or Formula (4) from the reasons, such as high adhesiveness.
  • the silane coupling agent is included as the component (F)
  • the content of the silane coupling agent is 0.1 to 3.5 mass% in mass% with respect to the total mass of each component of the film-like semiconductor sealing material of the present invention Is preferable, and 0.2 to 3.0% by mass is more preferable.
  • the elastomer of component (G) is added for the purpose of adjusting the elastic modulus and stress when the film-like semiconductor sealing material of the present invention is used as NCF.
  • the elastomer of the component (G) one containing a polybutadiene backbone is preferable for the reasons of flexibility, handleability and compatibility.
  • an elastomer containing a polybutadiene backbone epoxy-modified polybutadiene and carboxyl group-terminated acrylonitrile-butadiene can be used.
  • the content of the elastomer is preferably 0.1 to 25 parts by mass, and 0.2 to 20 parts by mass with respect to 100 parts by mass of the compound of the component (A). It is further preferred that
  • the film-like semiconductor sealing material of the present invention may further contain components other than the components (A) to (G) as required.
  • components include curing accelerators, rheology modifiers, dispersants, anti-settling agents, antifoaming agents, colorants, surface conditioners.
  • other solid resins may be contained.
  • a solid epoxy resin may be used as the above solid resin.
  • thermosetting resins other than the component (A) and the component (B) for example, phenol resin, bismaleimide resin, cyanate resin, amino resin, imide resin, unsaturated polyester resin, (meth) acrylate resin, urethane resin You may mix
  • the type and blending amount of each compounding agent are as usual.
  • the film-like semiconductor encapsulant of the present invention can be produced by a conventional method.
  • the components (A) to (E), and the components (F), (G), and other components to be blended as necessary are mixed by heating and vacuuming in the presence or absence of a solvent.
  • the resin composition is prepared by mixing with a kneader.
  • the components (A) to (E), and the components (F), (G) and other components to be compounded as required, are dissolved at a predetermined solvent concentration so as to achieve the desired content. And charge them into a reactor heated to 10 to 80 ° C, and perform atmospheric pressure mixing for 3 hours while rotating at 100 to 1000 rpm, and then 3 more under vacuum (maximum 1 Torr).
  • the resin composition prepared by the above procedure is diluted with a solvent to form a varnish, which is coated on at least one surface of a support and dried, and then a film-like semiconductor sealing material with a support or a support It can provide as a film-like semiconductor sealing material exfoliated from the above.
  • solvents usable as varnishes include ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic solvents such as toluene and xylene; high boiling solvents such as dioctyl phthalate and dibutyl phthalate;
  • the amount of the solvent used is not particularly limited, and may be a conventionally used amount, but is preferably 20 to 90% by mass with respect to each component of the film-like semiconductor sealing material.
  • the support is appropriately selected according to the desired form in the method for producing a film-like semiconductor sealing material, and is not particularly limited. Examples thereof include metal foils such as copper and aluminum, and carrier films of resins such as polyester and polyethylene. .
  • the support is preferably release-treated with a release agent such as a silicone compound.
  • coat a varnish is not specifically limited, For example, a slot-die system, a gravure system, a doctor coater system etc. are mentioned, According to the thickness etc. of a desired film, it selects suitably.
  • the application is performed such that the thickness of the film formed after drying is the desired thickness.
  • Such thickness can be derived from the solvent content by the person skilled in the art.
  • the drying conditions are appropriately designed according to the type and amount of the solvent used for the varnish, the amount of the varnish used, the thickness of the application, and the like, and are not particularly limited, but for example, 60 to 150 ° C. It can be carried out at atmospheric pressure.
  • the film-like semiconductor sealing material of the present invention is excellent in visibility, and in the examples described later, the evaluation results of the visibility in the initial mounting state are good. Therefore, when used as an NCF, it is possible to confirm a recognition mark serving as a mark of a wafer or a chip through the NCF stuck on the wafer.
  • the film-like semiconductor sealing material of the present invention is excellent in bending resistance, and in the examples described later, no cracking occurs in the film property evaluation. Therefore, it is excellent in the handling property at the time of conveyance in apparatus between devices, such as a laminator, or installation to an apparatus. Moreover, when using as NCF, there is no possibility that a chipping or a burr will occur in a dicing process performed after a TCB process.
  • the film-like semiconductor encapsulating material of the present invention is excellent in the mountability in the TCB process when used as NCF, and in the examples described later, the evaluation of the void in the initial mounting state and the connectivity evaluation are good. It is.
  • the film-like semiconductor sealing material of the present invention is excellent in moisture absorption-resistant reflow resistance when used as NCF, and in Examples to be described later, evaluation of void / delamination at the time of moisture absorption reflow is good.
  • the film-like semiconductor sealing material of the present invention can be mounted in a short time, and has high productivity.
  • the film-like semiconductor sealing material of the present invention has a flux effect and is excellent in solderability.
  • the film-like semiconductor sealing material of the present invention is suitable as NCF due to the above-mentioned characteristics.
  • the procedure for using the film-like semiconductor sealing material of the present invention is shown below.
  • the film-like semiconductor sealing material is attached in a desired shape to a position on the substrate where the semiconductor chip is mounted by a laminator or the like.
  • the lamination conditions are not particularly limited, but conditions such as heating, pressurization and depressurization can be appropriately combined.
  • the heating temperature is preferably 40 to 120 ° C.
  • the degree of pressure reduction is 1 hPa or less
  • the pressure is 0.1 MPa or more.
  • TCB heat pressure welding
  • the TCB conditions are not particularly limited, the TCB conditions can be appropriately selected according to the semiconductor chip size, the bump material, the number of bumps, and the like.
  • the heating temperature is preferably 50 to 300 ° C.
  • the time is preferably 1 to 20 seconds
  • the pressure is preferably 5 to 450 N.
  • the semiconductor device of the present invention is not particularly limited as long as the film-like semiconductor sealing material of the present invention is used at the time of production of the semiconductor device.
  • a specific example of the semiconductor device of the present invention is a semiconductor device having a flip chip structure.
  • the flip chip has a projecting electrode called a bump, and is connected to an electrode such as a substrate via the electrode.
  • the bump material include solder, gold, copper and the like, each of which is exemplified by itself or a structure in which a solder layer is formed on copper.
  • Substrates to be connected to the flip chip include single layers such as FR-4, or laminated organic substrates, inorganic substrates such as silicon, glass, ceramic, etc.
  • Semiconductor devices having a flip chip structure include memory devices such as dynamic random access memories (DRAMs), processor devices such as central processing units (CPUs) and graphics processing units (GPUs), light emitting elements such as light emitting diodes (LEDs), and LCDs. Examples include driver ICs used for (Liquid Crystal Display) and the like.
  • DRAMs dynamic random access memories
  • processor devices such as central processing units (CPUs) and graphics processing units (GPUs)
  • light emitting elements such as light emitting diodes (LEDs)
  • LCDs liquid crystal display
  • Examples 1 to 26, Comparative Examples 1 to 7 Each raw material was mixed so that it might become the compounding ratio shown to the following table, it was made to melt
  • the solvent used was methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.).
  • a coating varnish was applied onto a release agent-coated PET (polyethylene terephthalate) film (35 ⁇ m thick) to have a dry thickness of about 20 ⁇ m or about 35 ⁇ m.
  • the release agent-treated PET (polyethylene terephthalate) film coated with the coating varnish is dried in a drier at 80 ° C. for 10 minutes to remove the solvent, and the two types of 20 ⁇ m thickness and 35 ⁇ m thickness are removed. A film was made.
  • surface represents a mass part.
  • A) Compound having a benzoxazine structure (A1) Compound represented by the following formula (1) (product name: P-d, manufactured by Shikoku Kasei Kogyo Co., Ltd.) (A2) A compound represented by the following formula (2) (product name: Fa type, manufactured by Shikoku Kasei Kogyo Co., Ltd.) (B) Liquid epoxy resin (B1) Bisphenol F type liquid epoxy resin / bisphenol A type liquid epoxy resin mixture (product name EXA 835 LV, manufactured by DIC Corporation, viscosity: 2000 to 2500 mPa ⁇ s) (B2) Bisphenol A liquid epoxy resin (product name EXA850 CRP, manufactured by DIC Corporation, viscosity: 3500 to 5500 mPa ⁇ s) (B3) Bisphenol F type liquid epoxy resin (product name EXA 830 CRP, manufactured by DIC Corporation, viscosity: 1100 to 1500 mPa
  • the test chip was mounted on the substrate according to the following procedure using the 20 ⁇ m thick film produced by the above procedure as NCF.
  • the substrate used is a silicon substrate of 10 mm ⁇ 10 mm ⁇ 0.725 mm (t) in size, and plated with Ni and Au on Cu as an electrode material.
  • the test chip has a size of 7.3 mm ⁇ 7.3 mm ⁇ 0.125 mm (t), and 1048 bumps in which a solder layer (10 ⁇ m) is formed on a 42 ⁇ m ⁇ ⁇ 10 ⁇ m Cu pillar are provided.
  • a 20 ⁇ m thick NCF was laminated on a silicon wafer having a structure in which test chips of the above-mentioned size were connected using a vacuum pressure laminator (trade name MLP500 / 600, manufactured by Name Machine Co., Ltd.) under the following conditions. Degree of vacuum: 1 hPa or less Temperature: 70 ° C. Pressure: 0.4MPa Time: 180 seconds After lamination, using a dicer, the silicon wafer was separated into a predetermined size (7.3 mm ⁇ 7.3 mm) including the NCF to obtain a test chip.
  • a vacuum pressure laminator trade name MLP500 / 600, manufactured by Name Machine Co., Ltd.
  • SAT Ultrasonic flaw detector
  • Adhesive strength An FR-4 substrate dried at 150 ° C. for 20 minutes and a Si chip with a 2 mm square SiN film were prepared as a semiconductor chip. A 1 mm diameter film-like semiconductor encapsulant was placed on a substrate, and a semiconductor chip was mounted on the film-like semiconductor encapsulant. Thereafter, the film-like semiconductor encapsulant was cured at 175 ° C. for 2.5 hours.
  • Example 2 is an example which changed the compound which has the benzoxazine structure of (A) component with respect to Example 1.
  • FIG. Examples 3 and 4 are the examples which changed the high molecular compound of (C) component with respect to Example 2.
  • FIG. Examples 5 to 7 are examples in which silica fillers having different average particle sizes are used as the component (D).
  • Examples 8 and 9 are the examples which changed the liquid epoxy resin of (B) component with respect to Example 2.
  • FIG. Example 10 is an example where the silane coupling agent of the component (F) is changed to Example 2.
  • Example 11 is an example which does not mix
  • Example 12 does not mix
  • Example 13 is an example in which the blending ratio of the silica filler of the component (D) is changed with respect to Example 2.
  • Example 14 is an example in which the mixing ratio of the liquid epoxy resin of the component (B), the semisolid epoxy resin of the component (B '), and the silica filler of the component (D) is changed with respect to Example 2.
  • Example 15 does not mix
  • Example 16 is an example in which the mixing ratio of the liquid epoxy resin of the component (B) and the silane coupling agent of the component (F) with respect to the example 2 is changed.
  • Example 17 is an example where the compounding ratio of the silane coupling agent of the component (F) and the elastomer of the component (G) is changed with respect to the example 2.
  • Example 18 is an example where the compounding ratio of the compound of the component (E) and the elastomer of the component (G) is changed with respect to the example 2.
  • Example 19 is an example in which the compounding ratio of the semisolid epoxy resin of the component (B ') and the compound of the component (E) is changed with respect to the example 2.
  • Examples 20, 25 and 26 are examples in which the compound of the component (E) is changed with respect to Example 2.
  • Example 21 is an example in which the mixing ratio of the liquid epoxy resin of the component (B) and the compound of the component (E) with respect to the example 2 is changed.
  • Example 22 is an example in which the semisolid epoxy resin of the component (B ') is not blended with respect to the example 2, but two types of polymer compounds of the component (C) are used in combination and the blending ratio of each component is changed. It is.
  • Example 23 is an example in which the polymer compound of the component (C) and the elastomer of the component (G) are changed with respect to the example 2.
  • Example 24 is obtained by mixing the liquid epoxy resin of the component (B), the semisolid epoxy resin of the component (B '), the compound of the component (C), and the component (G) without blending the elastomer of the component (G). It is the Example which changed the mixture ratio of the silica filler of (D) component.
  • the comparative example 1 is an example using the silica filler with an average particle diameter of 1 micrometer or more as a (D ') component, and the visibility in the initial mounting state was x. Therefore, other evaluations in the initial mounting state and moisture absorption reflow evaluation were not performed.
  • the comparative example 2 is an example which did not mix
  • the comparative example 3 is an example which did not mix
  • Comparative Example 4 is an example using a compound having a heating loss at 200 ° C. of more than 30% as the component (E ′), and the void in the initial mounting state was x. Therefore, the moisture absorption reflow evaluation was not performed.
  • the comparative examples 5 and 6 are the examples which did not mix
  • the comparative example 7 is an example which did not mix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

NCFの要求特性を満たすフィルム状半導体封止材の提供を課題とする。(A)ベンゾオキサジン構造を有する化合物、(B)室温にて液状のエポキシ樹脂、(C)質量平均分子量(Mw)が10000以上の高分子化合物、(D)平均粒径1μm以下の充填剤、および(E)酸基を有する、200℃での加熱減量が30%以下の化合物を含有するフィルム状半導体封止材により課題を解決する。

Description

フィルム状半導体封止材
 本発明は、半導体実装時にNCF(Non Conductive Film)として使用されるフィルム状半導体封止材に関する。
 従来より、半導体実装においては、IC(Integrated Circuit)チップの電極(バンプ)が形成されている面と、基板の電極(電極パット)が形成された面とを対峙させ、ICチップのバンプと基板の電極パッドとを電気的に接続するフリップチップ法が行われている。
 このフリップチップ法では、電極同士の接続部分を外部から保護し、ICチップと基板との線膨張係数の違いに起因する応力を緩和するために、通常、電極接続後に、アンダーフィル剤と呼ばれる液状の熱硬化性接着剤を半導体チップと基板との間に流し込み硬化させるようにする。
 近年、ICチップの微細化が急速に進んでいる。これに伴い、隣接する電極間のピッチや、半導体チップと基板との間のギャップが益々狭くなる傾向にある。このため、毛細管現象を利用してアンダーフィル剤をICチップと基板との間に流し込むと、ボイドが発生したり、アンダーフィル剤の流し込みに長時間を要する等の問題が発生してしまう。
 このため、NCP(Non Conductive Paste)と呼ばれる液状の接着剤、もしくは、NCF(Non Conductive Film)と呼ばれるフィルム状の接着剤を予め基板に塗布、もしくは、貼付し、その後、フィリップチップボンダー等による、加熱圧接(Thermal Compression Bonding:TCB)で樹脂を硬化させ、ICチップのバンプと基板の電極パッドとを接続する、いわゆる先入れ法が試みられている(特許文献1参照)。
 NCFに要求される特性として、ボイドフリーであり、電気的接続性およびその信頼性に優れることが求められる。また、ラミネーター等の装置内または装置間をテープ状で搬送させる必要があり、ハンドリング性の確保のために、折り曲げに対する耐性が要求される。また、折り曲げに対する耐性が不十分だと、TCB工程後に実施されるダイシング工程でNCFに欠けやバリが発生して実装不良となるおそれがある。
 実装作業開始時の位置決めを行う際、ウエハ上に貼付したNCFを介して、ウエハやチップの目印となる認識マークを確認するため、透明性に優れることが求められる。
 フリップチップ法では電気的接続がはんだを用いて実施される場合が多い。適用されるはんだ材質は鉛フリーはんだを使用する場合が多く、従来の鉛はんだに比べて融点が高くなる傾向がある。これに伴い、NCFを用いたフリップチップ実装時の温度も高くなる傾向がある。
 高温化に伴い、副反応や成分の揮発によるボイドなどの欠陥が発生しやすくなる傾向があり、ボイドなどの欠陥防止と接続性の両立は困難であった。
 ベンゾオキサジン構造を有する化合物は、硬化反応が高温で進行するため、常温取扱時は安定であり、はんだ融点になる温度まで反応が開始しづらく、副次的な反応によるアウトガスの発生を抑制でき、また、エポキシ樹脂類似のジヒドロオキサジン環の開環重合反応を利用するものであるため、硬化メカニズムとしてもアウトガスの発生をほとんど伴わないといった特徴がある。特許文献2は、ベンゾオキサジン構造を有する化合物を含有する半導体装置用接着剤組成物を提案している。
 しかしながら、ベンゾオキサジン構造を有する化合物は、フィルム特性としては脆く壊れやすい。そのため、NCFの成分として使用した場合、折り曲げに対する耐性が不十分であることが明らかになった。
特許第4752107号明細書 特開2008-231287号公報
 本発明は、上記した従来技術における問題点を解決するため、上述したNCFの要求特性を満たすフィルム状半導体封止材を提供することを目的とする。
 上記の目的を達成するため、本発明は、
(A)ベンゾオキサジン構造を有する化合物、
(B)室温にて液状のエポキシ樹脂、
(C)質量平均分子量(Mw)が10000以上の高分子化合物、
(D)平均粒径1μm以下の充填剤、および
(E)酸基を有する、200℃での加熱減量が30%以下の化合物
を含有する、フィルム状半導体封止材を提供する。
 本発明のフィルム状半導体封止材において、前記(A)成分のベンゾオキサジン構造を有する化合物が、下記式(1)または式(2)に示す化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明のフィルム状半導体封止材において、前記(B)成分の室温にて液状のエポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂のいずれかを含むことが好ましい。
 本発明のフィルム状半導体封止材において、前記(E)成分の化合物はカルボン酸類であることが好ましい。
 本発明のフィルム状半導体封止材において、前記(E)成分の化合物は、オレイン酸、ステアリン酸、アビエチン酸、およびマレイン酸樹脂からなる群から選択される少なくとも1つであることが好ましい。
 本発明のフィルム状半導体封止材は、さらに(F)シランカップリング剤を含むことが好ましい。
 本発明のフィルム状半導体封止材において、前記(F)成分のシランカップリング剤が、下記式(3)、または式(4)のいずれかの化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 本発明のフィルム状半導体封止材は、さらに(G)エラストマーを含むことが好ましい。
 本発明のフィルム状半導体封止材は、前記(G)成分のエラストマーがポリブタジエン骨格を含むことが好ましい。
 また、本発明は、本発明のフィルム状半導体封止材を用いた半導体装置を提供する。
 本発明のフィルム状半導体封止材は、折り曲げ耐性に優れるため、ラミネーター等の装置内または装置間での搬送や、装置への取り付けの際にハンドリング性に優れる。また、NCFとして使用する際に、TCB工程後に実施されるダイシング工程で欠けやバリが発生するおそれがない。
 本発明のフィルム状半導体封止材は、視認性に優れているため、NCFとして使用した際に、ウエハ上に貼付したNCFを介して、ウエハやチップの目印となる認識マークを確認できる。
 本発明のフィルム状半導体封止材は、NCFとして使用する際に、TCB工程での実装性に優れる。
 本発明のフィルム状半導体封止材は、NCFとして使用した際に、耐吸湿リフロー性が良好である。
 以下、本発明について詳細に説明する。
 本発明のフィルム状半導体封止材は、以下に示す(A)~(E)成分を必須成分として含有する。
(A)ベンゾオキサジン構造を有する化合物
 (A)成分のベンゾオキサジン構造を有する化合物は、硬化反応が高温で進行するため、常温取扱時は安定であり、はんだ融点になる温度まで反応が開始しづらく、副次的な反応によるアウトガスの発生を抑制でき、また、エポキシ樹脂類似のジヒドロオキサジン環の開環重合反応を利用するものであるため、硬化メカニズムとしてもアウトガスの発生をほとんど伴わないといった特徴を有しており、本発明のフィルム状半導体封止材をNCFとして使用する際に、フィルムの保存安定性と硬化性能に寄与する成分である。
 本発明のフィルム状半導体封止材は、(A)成分のベンゾオキサジン構造を有する化合物が、下記式(1)または式(2)に示す化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 フィルム特性の観点からは、(A)成分のベンゾオキサジン構造を有する化合物は、式(2)に示す化合物が好ましい。
(B)室温にて液状のエポキシ樹脂
(B)室温にて液状のエポキシ樹脂(以下、「液状エポキシ樹脂」と記載する。)は、本発明のフィルム状半導体封止材をNCFとして使用する際に、フィルムの取扱性に寄与する成分である。
 (A)成分のベンゾオキサジン構造を有する化合物は、上述したNCFにとって好ましい特徴を有しているが、フィルム特性としては脆く壊れやすい。(B)成分として、液状エポキシ樹脂を併用し、適度な柔軟性を付与することにより、フィルムとしての取扱いが可能になる。
 本発明における液状エポキシ樹脂は、室温(25℃)における粘度が100000mPa・s以下であることが好ましい。
 本発明における液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの;p-グリシジルオキシフェニルジメチルトリスビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;フェノールノボラック型エポキシ樹脂の平均分子量が約570以下のもの;ビニル(3,4-シクロヘキセン)ジオキシド、3,4-エポキシシクロヘキシルカルボン酸(3,4-エポキシシクロヘキシル)メチル、アジピン酸ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)、2-(3,4-エポキシシクロヘキシル)5,1-スピロ(3,4-エポキシシクロヘキシル)-m-ジオキサンのような脂環式エポキシ樹脂;3,3´,5,5´-テトラメチル-4,4´-ジグリシジルオキシビフェニルのようなビフェニル型エポキシ樹脂;ヘキサヒドロフタル酸ジグリシジル、3-メチルヘキサヒドロフタル酸ジグリシジル、ヘキサヒドロテレフタル酸ジグリシジルのようなグリシジルエステル型エポキシ樹脂;ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル-p-アミノフェノール、テトラグリシジル-m-キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂;ならびに1,3-ジグリシジル-5-メチル-5-エチルヒダントインのようなヒダントイン型エポキシ樹脂;ナフタレン環含有エポキシ樹脂が例示される。また、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサンのようなシリコーン骨格をもつエポキシ樹脂も使用することができる。さらに、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグルシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテルのようなジエポキシド化合物;トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリエポキシド化合物等も例示される。
 中でも好ましくは、ビスフェノール型エポキシ樹脂、アミノフェノール型エポキシ樹脂、シリコーン変性エポキシ樹脂である。さらに好ましくはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂である。
 (B)成分としての液状エポキシ樹脂は、単独でも、2種以上併用してもよい。
 (B)成分の液状エポキシ樹脂の含有量は、(A)成分の化合物100質量部に対して、0.5~70質量部であることが好ましく、1~67質量部であることがさらに好ましい。
(C)質量平均分子量(Mw)が10000以上の高分子化合物
 (C)成分の質量平均分子量(Mw)が10000以上の高分子化合物(以下、「高分子化合物」と記載する。)は、フィルム形成能を付与する成分であり、フィルム形成時の寄り、ハジキなどを防止してフィルム形成を助ける。ここで、寄りとは、フィルム形成工程中に、フィルム端部が中央部へ向かって縮んでしまうことを指し、ハジキとは、フィルム形成工程中にフィルム表面にクレータ様の凹凸が発生してしまうことを指す。
 (C)成分の質量平均分子量(Mw)が10000未満だと十分なフィルム形成能が得られず、フィルム形成時の寄り、ハジキなどを防止できない。
 (C)成分の質量平均分子量(Mw)の上限は特に限定されないが、500000以下のものを用いることがワニスへの溶解性という点で好ましく、200000以下のものを用いることがより好ましい。
 (C)成分の高分子化合物としては、質量平均分子量(Mw)が10000以上のフェノキシ樹脂、または、質量平均分子量(Mw)が10000以上のアクリルコポリマーを用いることができる。
 (C)成分としてのフェノキシ樹脂は、質量平均分子量(Mw)が10000以上である限り特に限定されないが、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA-ビスフェノールF共重合型フェノキシ樹脂が好ましい。
 (C)成分としてのアクリルコポリマーは、質量平均分子量(Mw)が10000以上である限り特に限定されないが、ソフトブロックセグメントとハードブロックセグメントを有する共重合体が好ましく、ソフトブロックセグメントとしてポリブチルアクリレート構造と、ハードブロックセグメントとしてポリメタクリレート構造を有することがより好ましい。
(C)成分の高分子化合物の含有量は、(A)成分の化合物100質量部に対して、15~450質量部であることが好ましく、20~400質量部であることがさらに好ましい。
(D)平均粒径1μm以下の充填剤
 (D)成分の充填剤は、本発明のフィルム状半導体封止材をNCFとして使用する際に、実装された半導体パッケージの信頼性を向上させる目的で添加される。
 (D)成分の充填剤としては、平均粒径が1μm以下のものを用いる。その理由は、フィルムの視認性、5~80μm程度の狭ギャップへの流れ込み性に優れているからである。充填剤として、平均粒径が1μm超のものを用いた場合、フィルムの視認性が低下し、NCFとして使用した際に、ウエハ上に貼付したNCFを介して、ウエハやチップの目印となる認識マークを確認できない場合がある。
 (D)成分の充填剤としては、平均粒径が0.7μm以下のものを用いることがより好ましい。
 (D)成分の充填剤は、平均粒径が1μm以下である限り特に限定されず、無機充填剤を使用することができる。具体的には非晶質シリカ、結晶性シリカ、アルミナ、チッ化ホウ素、チッ化アルミニウム、炭化ケイ素、チッ化珪素等が挙げられる。
 これらの中でも、シリカ、特に、非晶質の球状シリカが、化学的安定性、粒度調整の容易性、樹脂成分への分散性の理由から好ましい。
 なお、ここで言うシリカは、製造原料に由来する有機基、例えば、メチル基、エチル基等のアルキル基を有するものであってもよい。非晶質の球状シリカは、溶融法、燃焼法、ゾルゲル法など、公知の製造方法によって得られるが、所望の粒度や不純物含有量、表面状態などの特性に応じて、その製造方法を適宜選択することができる。
 また、充填剤として用いるシリカとしては、特開2007-197655号公報に記載の製造方法によって得られたシリカ含有組成物を用いてもよい。
 なお、充填剤の形状は特に限定されず、球状、不定形、りん片状等のいずれの形態であってもよい。なお、充填剤の形状が球状以外の場合、充填剤の平均粒径とは該充填剤の平均最大径を意味する。
 また、充填剤として、シランカップリング剤等で表面処理が施されたものを使用してもよい。表面処理が施された充填剤を使用した場合、充填剤の凝集を防止する効果が期待される。
 (D)成分の充填剤の含有量は本発明のフィルム状半導体封止材の各成分の合計質量に対する質量%で5~75質量%であることが好ましく、10~70質量%であることがより好ましい。
(E)酸基を有する、200℃での加熱減量が30%以下の化合物
 (E)成分の酸基を有する化合物は、本発明のフィルム状半導体封止材をNCFとして使用する際に、フラックス活性剤をなす成分である。
 本発明のフィルム状半導体封止材は、(E)成分を含有することにより、NCFとして使用した際に、電気的接続性およびその信頼性が高い。
 (E)成分の酸基を有する化合物として、200℃での加熱減量が30%以下の化合物を用いることにより、NCFとして使用する際に、TCB工程におけるボイドの発生が抑制される。
 200℃での加熱減量は以下の手順で測定できる。
 熱重量分析装置を用い、低温から高温へ定速昇温(例えば10℃/分)させ、昇温中の温度毎における加熱減量を測定することにより求めることができる。
 酸基を有する、200℃での加熱減量が30%以下の化合物としては、オレイン酸、またはステアリン酸を用いることができる。
 (E)成分の酸基を有する化合物は、カルボン酸類であることが好ましい。
 (E)成分の酸基を有する化合物は、オレイン酸、ステアリン酸、アビエチン酸、およびマレイン酸樹脂からなる群から選択される少なくとも1つであることがより好ましい。マレイン酸樹脂としては、市販品を用いることができる。一例をあげると、マルキードNo.32(製品名、荒川化学工業株式会社製)がある。
 (E)成分の酸基を有する化合物の含有量は、(A)成分の化合物100質量部に対して、0.5~35質量部であることが好ましく、1~32質量部であることがさらに好ましい。
 本発明のフィルム状半導体封止材は、さらに以下の成分を任意成分として含有してもよい。
(F)シランカップリング剤
 (F)成分のシランカップリング剤は、本発明のフィルム状半導体封止材をNCFとして使用した際に、ICチップや基板に対する密着性を向上させる目的で添加される。
 (F)成分のシランカップリング剤としては、エポキシ系、アミノ系、ビニル系、メタクリル系、アクリル系、メルカプト系等の各種シランカップリング剤を用いることができる。これらの中でも、下記式(3)、または式(4)のいずれかの化合物を含むことが、密着性が高い等の理由から好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 (F)成分としてシランカップリング剤を含有させる場合、シランカップリング剤の含有量は本発明のフィルム状半導体封止材の各成分の合計質量に対する質量%で0.1~3.5質量%であることが好ましく、0.2~3.0質量%であることがより好ましい。
(G)エラストマー
 (G)成分のエラストマーは、本発明のフィルム状半導体封止材をNCFとして使用した際に、弾性率や応力を調整する目的で添加される。
 (G)成分のエラストマーとしては、ポリブタジエン骨格を含むものが柔軟性、取扱性、相溶性の理由から好ましい。ポリブタジエン骨格を含むエラストマーとしては、エポキシ変性ポリブタジエン、カルボキシル基末端アクリロニトリル-ブタジエンを用いることができる。
 (G)成分としてエラストマーを含有させる場合、エラストマーの含有量は(A)成分の化合物100質量部に対して、0.1~25質量部であることが好ましく、0.2~20質量部であることがさらに好ましい。
(その他の配合剤)
 本発明のフィルム状半導体封止材は、上記(A)~(G)成分以外の成分を必要に応じてさらに含有してもよい。このような成分の具体例としては、硬化促進剤、レオロジー調整剤、分散剤、沈降防止剤、消泡剤、着色剤、表面調整剤が挙げられる。また、本発明のフィルム状半導体封止材の粘度、靭性等を調整する目的でその他固形樹脂を含有させてもよい。上記の固形樹脂としては、固形のエポキシ樹脂を用いてもよい。また、(A)成分、(B)成分以外の熱硬化性樹脂、たとえば、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂、アミノ樹脂、イミド樹脂、不飽和ポリエステル樹脂、(メタ)アクリレート樹脂、ウレタン樹脂を配合してもよい。各配合剤の種類、配合量は常法通りである。
(フィルム状半導体封止材の製造)
 本発明のフィルム状半導体封止材は、慣用の方法により製造することができる。例えば、溶剤の存在下または非存在下で、上記(A)成分~(E)成分、さらに必要に応じて配合する上記(F)成分、(G)成分、およびその他の配合剤を加熱真空混合ニーダーにより混合して樹脂組成物を調製する。
 上記(A)成分~(E)成分、さらに必要に応じて配合する上記(F)成分、(G)成分、およびその他の配合剤が所望の含有割合となるように、所定の溶剤濃度に溶解し、それらを10~80℃に加温された反応釜に所定量投入し、回転数100~1000rpmで回転させながら、常圧混合を3時間行った後、真空下(最大1Torr)でさらに3~60分混合攪拌することができる。
 上記の手順で調製された樹脂組成物を溶剤で希釈してワニスとし、これを支持体の少なくとも片面に塗布し、乾燥させた後、支持体付のフィルム状半導体封止材、または、支持体から剥離したフィルム状半導体封止材として提供することができる。
 ワニスとして使用可能な溶剤としては、メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族溶剤;ジオクチルフタレート、ジブチルフタレート等の高沸点溶剤等が挙げられる。溶剤の使用量は特に限定されず、従来から使用されている量とすることができるが、好ましくは、フィルム状半導体封止材の各成分に対して20~90質量%である。
 支持体は、フィルム状半導体封止材の製造方法における所望の形態により適宜選択され、特に限定されないが、例えば、銅、アルミニウム等の金属箔、ポリエステル、ポリエチレン等の樹脂のキャリアフィルム等が挙げられる。本発明のフィルム状半導体封止材を、支持体から剥離したフィルムの形態として提供する場合、支持体は、シリコーン化合物等の離型剤で離型処理されていることが好ましい。
 ワニスを塗布する方法は、特に限定されないが、例えば、スロットダイ方式、グラビア方式、ドクターコーター方式等が挙げられ、所望のフィルムの厚みなどに応じて適宜選択される。塗布は、乾燥後に形成されるフィルムの厚みが、所望の厚みになるように行われる。このような厚みは、当業者であれば、溶剤含有量から導くことができる。
 乾燥の条件は、ワニスに使用される溶剤の種類や量、ワニスの使用量や塗布の厚みなどに応じて適宜設計され、特に限定されるものではないが、例えば、60~150℃であり、大気圧下で行うことができる。
 次に本発明のフィルム状半導体封止剤の特性について述べる。
 本発明のフィルム状半導体封止材は、視認性に優れており、後述する実施例において、初期実装状態での視認性の評価結果が良好である。そのため、NCFとして使用した際に、ウエハ上に貼付したNCFを介して、ウエハやチップの目印となる認識マークを確認できる。
 本発明のフィルム状半導体封止材は、折り曲げ耐性に優れており、後述する実施例において、フィルム性評価で割れが生じない。そのため、ラミネーター等の装置内または装置間での搬送や、装置への取り付けの際にハンドリング性に優れる。また、NCFとして使用する際に、TCB工程後に実施されるダイシング工程で欠けやバリが発生するおそれがない。
 本発明のフィルム状半導体封止材は、NCFとして使用する際に、TCB工程での実装性に優れており、後述する実施例において、初期実装状態でのボイドの評価、および接続性評価が良好である。
 本発明のフィルム状半導体封止材は、NCFとして使用した際に、耐吸湿リフロー性が良好であり、後述する実施例において、吸湿リフロー時のボイド/デラミネーション評価が良好である。
 本発明のフィルム状半導体封止材は、短時間での実装が可能であり、生産性が高い。
 本発明のフィルム状半導体封止材は、フラックス効果を併せ持っており、はんだ接続性に優れる。
 本発明のフィルム状半導体封止材は、上記の特性により、NCFとして好適である。
 次に本発明のフィルム状半導体封止材の使用手順を以下に示す。
 本発明のフィルム状半導体封止材を用いて半導体パッケージを実装する場合、基板上の半導体チップを実装する位置へフィルム状半導体封止材を所望の形状にてラミネーター等で貼り付ける。
 また、半導体回路が形成されたウエハ上へラミネーター等にて貼り付けた後、ダイサー等により個々のチップへ切り出すこともできる。ラミネーション条件は特に限定されないが、加熱、加圧、減圧などの条件を適宜組み合わせることができる。特に微細な凹凸へボイド等の欠陥なく貼り付けるためには、加熱温度は40~120℃、減圧度は1hPa以下、圧力は0.1MPa以上が好ましい。
 フィルム状半導体封止材をラミネーション等により貼り付けた後、フリップチップボンダー等により基板上のチップ搭載位置へ加熱圧接(TCB)によって半導体チップを実装する。TCB条件は特に限定されないが、半導体チップサイズ、バンプ材質、バンプ数等によりTCB条件を適宜選択することができる。
 加熱温度は50~300℃、時間は1~20秒、圧力は5~450Nであることが好ましい。
 本発明の半導体装置は、半導体装置の製造時に、本発明のフィルム状半導体封止材を使用したものである限り特に限定されない。本発明の半導体装置の具体例としては、フリップチップ構造を有する半導体装置が挙げられる。フリップチップは、バンプと呼ばれる突起状の電極を有しており、この電極を介して基板等の電極と接続される。バンプ材質としては、はんだ、金、銅等が上げられ、それぞれ単独、もしくは銅上へはんだ層を形成させた構造が例示される。フリップチップと接続される基板としてはFR-4等の単層、または積層された有機基板、シリコン、ガラス、セラミックなどの無機基板があり、銅および銅上への金メッキまたはスズメッキ、銅上へのOSP(Organic Solderability Preservative)処理、はんだ層等を形成した電極が用いられる。フリップチップ構造の半導体装置としては、DRAM(Dynamic Random Access Memory)等のメモリーデバイス、CPU(Central Processing Unit)GPU(Graphics Processing Unit)等のプロセッサーデバイス、LED(Light Emitting Diode)等の発光素子、LCD(Liquid Crystal Display)等に使用されるドライバーIC等が挙げられる。
 以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1~26、比較例1~7)
 下記表に示す配合割合となるように各原料を混合し、混合物が50wt%の濃度となるように溶剤中に溶解・分散させて塗工用ワニスを調製した。溶剤はメチルエチルケトン(和光純薬工業株式会社製)を使用した。
 離型剤を塗布したPET(ポリエチレンテレフタレート)フィルム(35μm厚)上へ塗工用ワニスを約20μmまたは約35μmの乾燥厚みとなるよう塗工した。その後、塗工用ワニスを塗工した離型剤処理されたPET(ポリエチレンテレフタレート)フィルムを乾燥機中で80℃にて10分間乾燥して溶剤を除去し、20μm厚と35μm厚の2種のフィルムを作製した。なお、表中の各組成に関する数値は質量部を表している。
 フィルム状樹脂組成物の作成時に使用した成分は以下の通り。
(A)ベンゾオキサジン構造を有する化合物
 (A1)下記式(1)に示す化合物(製品名P-d型、四国化成工業株式会社製)
Figure JPOXMLDOC01-appb-C000013
 (A2)下記式(2)に示す化合物(製品名F-a型、四国化成工業株式会社製)
Figure JPOXMLDOC01-appb-C000014
(B)液状エポキシ樹脂
 (B1)ビスフェノールF型液状エポキシ樹脂・ビスフェノールA型液状エポキシ樹脂混合物(製品名EXA835LV、DIC株式会社製、粘度:2000~2500mPa・s)
 (B2)ビスフェノールA型液状エポキシ樹脂(製品名EXA850CRP、DIC株式会社製、粘度:3500~5500mPa・s)
 (B3)ビスフェノールF型液状エポキシ樹脂(製品名EXA830CRP、DIC株式会社製、粘度:1100~1500mPa・s)
 (B´)ビスフェノールA型半固形エポキシ樹脂(製品名EPICRON860、DIC株式会社製、粘度:1180Pa・s)
(C)高分子化合物
 (C1)アクリルコポリマー(製品名M52N、アルケマ株式会社製、Mw:約80000)
 (C2)アクリルコポリマー(製品名LA4258、株式会社クラレ製、Mw:約80000)
 (C3)ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂、製品名jER4250、三菱化学株式会社製、Mw:60000)
(D)シリカフィラー
 (D1)製品名Sciqas、平均粒径0.05μm(堺化学工業株式会社製)
 (D2)製品名Sciqas、平均粒径0.1μm(堺化学工業株式会社製)
 (D3)製品名Sciqas、平均粒径0.4μm(堺化学工業株式会社製)
 (D4)製品名Sciqas、平均粒径0.7μm(堺化学工業株式会社製)
 (D´)製品名SOE-5、平均粒径1.5μm(株式会社アドマテックス製)
(E)酸基を有する化合物
 (E1)オレイン酸(和光純薬工業株式会社製)、200℃での加熱減量:1.7%
 (E2)ステアリン酸(和光純薬工業株式会社製)、200℃での加熱減量:0.8%
 (E3)アビエチン酸(東京化成工業株式会社製)、200℃での加熱減量:0.9%
 (E4)マレイン酸樹脂(製品名マルキードNo32、荒川化学工業株式会社製)、200℃での加熱減量:0.8%
 (E´)p-トルイル酸(和光純薬工業株式会社製)、200℃での加熱減量:32.5%
(F)シランカップリング剤
 (F1)3-グリシドキシプロピルトリメトキシシラン(式(3))(製品名:KBM403、信越化学株式会社製)
Figure JPOXMLDOC01-appb-C000015
 (F2)N-フェニル-3-アミノプロピルトリメトキシシラン(式(4))(製品名:KBM573、信越化学株式会社製)
Figure JPOXMLDOC01-appb-C000016
(G)エラストマー
 (G1)エポキシ変性ポリブタジエン(製品名PB3600、東亜合成株式会社製)
 (G2)カルボキシル基末端アクリロニトリル-ブタジエン(製品名CTBN、CVC Thermoset Specialties製)
 上記の手順で作製したフィルムを用いて、以下の評価を実施した。
(フィルム性)
 上記の手順でPET上に形成されたフィルムを10mm×100mmに切断して試験片を作製した。この試験片を180度折り曲げて、クラックが発生するかどうかを確認した。上記の手順を20μmと35μmの各膜厚にてN=5で実施した。各膜厚N=5の全てで両膜厚クラックが発生しなかった場合は○とし、1試験片でもクラックが発生した場合は×とした。
(初期実装状態)
 上記の手順で作製した20μm厚フィルムをNCFとして使用し、下記手順により、基板上にテスト用チップを実装した。
 使用した基板は、サイズが10mm×10mm×0.725mm(t)のシリコン基板であり、電極材料としてCu上へNiとAuでメッキ処理したものである。
 テスト用チップは、サイズが7.3mm×7.3mm×0.125mm(t)であり、42μmφ×10μmのCuピラー上へはんだ層(10μm)を形成したバンプが1048個設けられている。上記サイズのテスト用チップが連なった構造のシリコンウエハ上へ20μm厚NCFを真空加圧ラミネーター(株式会社名機製作所社製、商品名MLP500/600)を用いて下記条件でラミネートした。
 真空度:1hPa以下
 温度:70℃
 加圧:0.4MPa
 時間:180sec
 ラミネート後、ダイサーを用い、シリコンウエハをNCFを含め所定のサイズ(7.3mm×7.3mm)へ個片化しテスト用チップとした。その後、フリップチップボンダー(パナソニックファクトリーソリューションズ株式会社製、商品名FCB3)を用いて、テスト用チップとシリコン基板とをNCFへ260℃の温度がかかるように加熱圧接(TCB)した。上記の手順をN=5で実施した。
視認性:フリップチップボンダーにて位置合わせ工程中、N=5の全てで認識エラーが発生しなかった場合は○とし、1試験片でも認識エラーが発生した場合を×とした。
ボイド: 作製した試験片を超音波探傷装置(Scanning  Acoustic  Tomography、SAT)を用いて反射法にて観察した。N=5の全てで画像上、ボイドの陰影が観察されなかった場合を○とし、1試験片でも陰影が観察された場合を×とした。
接続:作製した試験片のうち、1試験片を抜き出し、研磨にて接続断面を削りだした断面にてペリフェラル部を1列断面観察した。テスト用チップのはんだと、BottomチップのPadとの界面のはんだ濡れがあるか走査型電子顕微鏡にて確認し、はんだ濡れが確認された場合を○とし、はんだ濡れが確認されなかった場合を×とした。
(吸湿リフロー)
 上記の手順で作製した試験片を85℃/60%RHの条件下で168時間放置した(JEDEC level2吸湿条件)。その後、最高到達温度260℃のリフロー炉を3回通過させた。上記の手順をN=4で実施した。吸湿リフローの実施後、試験片を超音波探傷装置(Scanning  Acoustic  Tomography、SAT)を用いて反射法にて観察した。N=4の全てで画像上、ボイド/デラミネーションの陰影が観察されなかった場合を○とし、1試験片でも陰影が観察された場合を×とした。
(密着強度)
 150℃で20分乾燥したFR-4基板と、半導体チップとして、2mm角のSiN膜付きSiチップを準備した。1mmφのフィルム状半導体封止剤を、基板上に載置して、フィルム状半導体封止剤上に、半導体チップをマウントした。この後、175℃で2.5時間、フィルム状半導体封止剤を硬化させた。アイコ-エンジニアリング製卓上強度試験器(型番:1605HTP)を使用して、せん断モードで密着強度(単位:N/mm2)を測定した。N=10で実施し、密着強度の平均値を求めた。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 実施例1~26は、いずれもフィルム性(割れ)、初期実装状態(ボイド、接続、視認性)、吸湿リフロー(ボイド/デラミネーション)が良好であった。なお、実施例2は、実施例1に対し、(A)成分のベンゾオキサジン構造を有する化合物を変えた実施例である。実施例3,4は、実施例2に対し、(C)成分の高分子化合物を変えた実施例である。実施例5~7は、実施例2に対し、(D)成分として、平均粒径が異なるシリカフィラーを使用した実施例である。実施例8,9は、実施例2に対し、(B)成分の液状エポキシ樹脂を変えた実施例である。実施例10は、実施例2に対し、(F)成分のシランカップリング剤を変えた実施例である。実施例11は、実施例2に対し、(F)成分のシランカップリング剤を配合せず、(B)成分の液状エポキシ樹脂の配合割合を変えた実施例である。実施例12は、実施例2に対し、(B´)成分の半固形エポキシ樹脂を配合せず、(B)成分の液状エポキシ樹脂、および(C)成分の高分子化合物の配合割合を変えた実施例である。実施例13は、実施例2に対し、(D)成分のシリカフィラーの配合割合を変えた実施例である。実施例14は、実施例2に対し、(B)成分の液状エポキシ樹脂、(B´)成分の半固形エポキシ樹脂、および(D)成分のシリカフィラーの配合割合を変えた実施例である。実施例15は、実施例2に対し、(G)成分のエラストマーを配合せず、(C)成分の高分子化合物を2種類併用し、(B)成分の液状エポキシ樹脂の配合割合を変えた実施例である。実施例16は、実施例2に対し、(B)成分の液状エポキシ樹脂、および(F)成分のシランカップリング剤の配合割合を変えた実施例である。実施例17は、実施例2に対し、(F)成分のシランカップリング剤、および(G)成分のエラストマーの配合割合を変えた実施例である。実施例18は、実施例2に対し、(E)成分の化合物、および(G)成分のエラストマーの配合割合を変えた実施例である。実施例19は、実施例2に対し、(B´)成分の半固形エポキシ樹脂、および(E)成分の化合物の配合割合を変えた実施例である。実施例20、25、26は、実施例2に対し、(E)成分の化合物を変えた実施例である。実施例21は、実施例2に対し、(B)成分の液状エポキシ樹脂、および(E)成分の化合物の配合割合を変えた実施例である。実施例22は、実施例2に対し、(B´)成分の半固形エポキシ樹脂を配合せず、(C)成分の高分子化合物を2種類併用し、各成分の配合割合を変えた実施例である。実施例23は、実施例2に対し、(C)成分の高分子化合物、および(G)成分のエラストマーを変えた実施例である。実施例24は、実施例2に対し、(G)成分のエラストマーを配合せず、(B)成分の液状エポキシ樹脂、(B´)成分の半固形エポキシ樹脂、(C)成分の化合物、および(D)成分のシリカフィラーの配合割合を変えた実施例である。
 比較例1は、(D´)成分として、平均粒径1μm超のシリカフィラーを使用した例であり、初期実装状態における視認性が×であった。そのため、初期実装状態における他の評価、および、吸湿リフロー評価は実施しなかった。比較例2は、(E)成分の化合物を配合しなかった例であり、初期実装状態における接続性が×であった。そのため、吸湿リフロー評価は実施しなかった。比較例3は、(D)成分のシリカフィラーを配合しなかった例であり、吸湿リフロー評価が×であった。比較例4は、(E´)成分として、200℃での加熱減量が30%超の化合物を使用した例であり、初期実装状態におけるボイドが×であった。そのため、吸湿リフロー評価は実施しなかった。比較例5,6は、(B)成分の液状エポキシ樹脂を配合しなかった例であり、フィルム性の評価が×であった。そのため、初期実装状態における評価、および吸湿リフロー評価は実施しなかった。比較例5,6の結果から、(G)成分のエラストマーを含有する場合でも、(B)成分の液状エポキシ樹脂を含まない場合はフィルム特性が劣ることが確認できる。比較例7は、(A)成分の化合物を配合しなかった例であり、初期実装状態におけるボイドが×であった。そのため、吸湿リフロー評価は実施しなかった。

Claims (10)

  1. (A)ベンゾオキサジン構造を有する化合物、
    (B)室温にて液状のエポキシ樹脂、
    (C)質量平均分子量(Mw)が10000以上の高分子化合物、
    (D)平均粒径1μm以下の充填剤、および
    (E)酸基を有する、200℃での加熱減量が30%以下の化合物を含有するフィルム状半導体封止材。
  2.  前記(A)成分のベンゾオキサジン構造を有する化合物が、下記式(1)または式(2)に示す化合物である、請求項1に記載のフィルム状半導体封止材。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  3.  前記(B)成分の室温にて液状のエポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂のいずれかを含む、請求項1または2に記載のフィルム状半導体封止材。
  4.  前記(E)成分の化合物がカルボン酸類である、請求項1~3のいずれかに記載のフィルム状半導体封止材。
  5.  前記(E)成分の化合物は、オレイン酸、ステアリン酸、アビエチン酸、およびマレイン酸樹脂からなる群から選択される少なくとも1つである、請求項1~4のいずれかに記載のフィルム状半導体封止材。
  6.  さらに(F)シランカップリング剤を含む、請求項1~5のいずれかに記載のフィルム状半導体封止材。
  7.  前記(F)成分のシランカップリング剤が、下記式(3)、または式(4)のいずれかの化合物を含む、請求項6に記載のフィルム状半導体封止剤。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  8.  さらに(G)エラストマーを含む、請求項1~7のいずれかに記載のフィルム状半導体封止材。
  9.  前記(G)成分のエラストマーがポリブタジエン骨格を含む、請求項8に記載のフィルム状半導体封止材。
  10.  請求項1~9のいずれかに記載のフィルム状半導体封止材を用いた半導体装置。
PCT/JP2018/036828 2017-11-27 2018-10-02 フィルム状半導体封止材 WO2019102719A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207014834A KR102558125B1 (ko) 2017-11-27 2018-10-02 필름상 반도체 봉지재
JP2019556120A JP7210031B2 (ja) 2017-11-27 2018-10-02 フィルム状半導体封止材
CN201880074755.2A CN111372994B (zh) 2017-11-27 2018-10-02 膜状半导体密封材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017226724 2017-11-27
JP2017-226724 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019102719A1 true WO2019102719A1 (ja) 2019-05-31

Family

ID=66631546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036828 WO2019102719A1 (ja) 2017-11-27 2018-10-02 フィルム状半導体封止材

Country Status (5)

Country Link
JP (1) JP7210031B2 (ja)
KR (1) KR102558125B1 (ja)
CN (1) CN111372994B (ja)
TW (1) TWI761614B (ja)
WO (1) WO2019102719A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527046A (zh) * 2019-08-19 2019-12-03 湖北三选科技有限公司 改质双胺型苯并恶嗪树脂及制备方法、及其在液态晶圆级封装材料中作为应力释放剂的应用
CN112824452A (zh) * 2019-11-20 2021-05-21 味之素株式会社 树脂组合物、树脂组合物的固化物、树脂片材、印刷布线板、柔性基板及半导体装置
JP2021084968A (ja) * 2019-11-28 2021-06-03 住友ベークライト株式会社 基材付き樹脂膜、プリント配線基板および電子装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102691391B1 (ko) * 2021-12-29 2024-08-05 주식회사 케이씨씨 과립형 에폭시 수지 조성물
KR102696698B1 (ko) * 2021-12-30 2024-08-21 주식회사 케이씨씨 과립형 에폭시 수지 조성물
KR102696699B1 (ko) * 2021-12-30 2024-08-21 주식회사 케이씨씨 과립형 에폭시 수지 조성물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223227A (ja) * 2000-02-08 2001-08-17 Nitto Denko Corp 半導体封止用樹脂組成物および半導体装置
JP2009262227A (ja) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd フラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、半導体装置の製造方法、及び半導体装置
WO2014103637A1 (ja) * 2012-12-27 2014-07-03 東レ株式会社 接着剤、接着フィルム、半導体装置およびその製造方法
JP2015137299A (ja) * 2014-01-21 2015-07-30 住友ベークライト株式会社 樹脂組成物、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、バックグラインドテープ兼ダイシングテープ一体型接着シート、および電子装置
WO2016158828A1 (ja) * 2015-03-31 2016-10-06 ナミックス株式会社 樹脂組成物、導電性樹脂組成物、接着剤、導電性接着剤、電極形成用ペースト、半導体装置
JP2017041499A (ja) * 2015-08-18 2017-02-23 日立化成株式会社 半導体用接着剤、並びに、半導体装置及びその製造方法
JP2017039934A (ja) * 2015-03-31 2017-02-23 パナソニックIpマネジメント株式会社 封止用樹脂組成物と、この封止用樹脂組成物を用いた半導体装置、この封止用樹脂組成物を用いる半導体装置の製造方法
WO2017209044A1 (ja) * 2016-05-31 2017-12-07 三菱瓦斯化学株式会社 樹脂組成物、積層体、樹脂組成物層付き半導体ウェハ、樹脂組成物層付き半導体搭載用基板及び半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959333A (ja) * 1995-08-21 1997-03-04 Hitachi Chem Co Ltd フェノール化合物及びその製造方法並びに熱硬化性樹脂組成物
JP4752107B2 (ja) 2000-11-29 2011-08-17 日立化成工業株式会社 回路接続用フィルム状接着剤、回路端子の接続構造および回路端子の接続方法
MY139328A (en) * 2002-05-20 2009-09-30 Nitto Denko Corp Thermosetting resin composition and semiconductor device obtained with the same
JP2008231287A (ja) 2007-03-22 2008-10-02 Toray Ind Inc 半導体装置用接着剤組成物、それを用いた接着剤シート、半導体用接着剤付きテープおよび銅張り積層板
JP2009097014A (ja) * 2007-09-27 2009-05-07 Hitachi Chem Co Ltd 封止用液状樹脂組成物、電子部品装置及びウエハーレベルチップサイズパッケージ
JP5088146B2 (ja) * 2008-01-11 2012-12-05 横浜ゴム株式会社 封止剤用液状エポキシ樹脂組成物
JP5195454B2 (ja) * 2009-01-22 2013-05-08 味の素株式会社 樹脂組成物
JP5584047B2 (ja) * 2010-08-11 2014-09-03 Jx日鉱日石エネルギー株式会社 ベンゾオキサジン樹脂組成物及び繊維強化複合材料
CN103222040B (zh) * 2010-09-30 2015-12-02 日立化成株式会社 粘接剂组合物、半导体装置的制造方法以及半导体装置
WO2013048473A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Fluxing-encapsulant material for microelectronic packages assembled via thermal compression bonding process
JP2013256584A (ja) * 2012-06-12 2013-12-26 Panasonic Corp 熱硬化性樹脂組成物およびフラックス組成物とそれを用いた半導体装置
EP2980136B1 (en) * 2013-03-29 2018-01-31 JXTG Nippon Oil & Energy Corporation Prepreg, fiber-reinforced composite material, and resin composition containing particles
TWI674972B (zh) * 2013-08-23 2019-10-21 日商味之素股份有限公司 零件封裝用薄膜之製造方法
CN105683238B (zh) * 2013-10-29 2019-01-25 株式会社钟化 储藏稳定性得到改善的含有聚合物微粒的固化性树脂组合物
CN106459558B (zh) * 2014-06-13 2019-03-08 Dic株式会社 固化性树脂组合物、其固化物、半导体密封材料、半导体装置、预浸料、电路基板、积层膜
CN106700548B (zh) * 2016-12-30 2019-04-30 广东生益科技股份有限公司 一种含有苯并噁嗪树脂组合物的制备方法及由其制成的预浸料和层压板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223227A (ja) * 2000-02-08 2001-08-17 Nitto Denko Corp 半導体封止用樹脂組成物および半導体装置
JP2009262227A (ja) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd フラックス活性剤、接着剤樹脂組成物、接着ペースト、接着フィルム、半導体装置の製造方法、及び半導体装置
WO2014103637A1 (ja) * 2012-12-27 2014-07-03 東レ株式会社 接着剤、接着フィルム、半導体装置およびその製造方法
JP2015137299A (ja) * 2014-01-21 2015-07-30 住友ベークライト株式会社 樹脂組成物、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、バックグラインドテープ兼ダイシングテープ一体型接着シート、および電子装置
WO2016158828A1 (ja) * 2015-03-31 2016-10-06 ナミックス株式会社 樹脂組成物、導電性樹脂組成物、接着剤、導電性接着剤、電極形成用ペースト、半導体装置
JP2017039934A (ja) * 2015-03-31 2017-02-23 パナソニックIpマネジメント株式会社 封止用樹脂組成物と、この封止用樹脂組成物を用いた半導体装置、この封止用樹脂組成物を用いる半導体装置の製造方法
JP2017041499A (ja) * 2015-08-18 2017-02-23 日立化成株式会社 半導体用接着剤、並びに、半導体装置及びその製造方法
WO2017209044A1 (ja) * 2016-05-31 2017-12-07 三菱瓦斯化学株式会社 樹脂組成物、積層体、樹脂組成物層付き半導体ウェハ、樹脂組成物層付き半導体搭載用基板及び半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527046A (zh) * 2019-08-19 2019-12-03 湖北三选科技有限公司 改质双胺型苯并恶嗪树脂及制备方法、及其在液态晶圆级封装材料中作为应力释放剂的应用
CN112824452A (zh) * 2019-11-20 2021-05-21 味之素株式会社 树脂组合物、树脂组合物的固化物、树脂片材、印刷布线板、柔性基板及半导体装置
JP2021080392A (ja) * 2019-11-20 2021-05-27 味の素株式会社 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板、フレキシブル基板及び半導体装置
JP7298450B2 (ja) 2019-11-20 2023-06-27 味の素株式会社 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板、フレキシブル基板及び半導体装置
JP2021084968A (ja) * 2019-11-28 2021-06-03 住友ベークライト株式会社 基材付き樹脂膜、プリント配線基板および電子装置

Also Published As

Publication number Publication date
CN111372994A (zh) 2020-07-03
KR102558125B1 (ko) 2023-07-20
JPWO2019102719A1 (ja) 2020-12-17
CN111372994B (zh) 2023-03-14
TW201925338A (zh) 2019-07-01
JP7210031B2 (ja) 2023-01-23
KR20200085784A (ko) 2020-07-15
TWI761614B (zh) 2022-04-21

Similar Documents

Publication Publication Date Title
KR102558125B1 (ko) 필름상 반도체 봉지재
JP4922474B2 (ja) 半導体装置
JP6476517B2 (ja) フィルム状接着剤、それを用いた半導体装置
KR20120130705A (ko) 실페닐렌 구조 및 실록산 구조를 갖는 중합체 및 이의 제조 방법, 접착제 조성물, 접착 시트 및 반도체 장치 보호용 재료, 및 반도체 장치
WO2010079831A1 (ja) 半導体パッケージの製造方法、半導体封止方法及び溶剤型半導体封止エポキシ樹脂組成物
JP5828881B2 (ja) 接着フィルム、ダイシング・ダイボンドフィルム、半導体装置の製造方法及び半導体装置
JP5547685B2 (ja) 接着剤組成物、接着シート及び半導体装置保護用材料、並びに半導体装置
JP7079964B2 (ja) フィルム状半導体封止材
JP2016157916A (ja) 半導体装置の製造方法
JP2011192818A (ja) 半導体チップ接合用接着フィルム
JP2010239106A (ja) 半導体チップ接合用接着剤
JP6660771B2 (ja) フィルム状樹脂組成物
JP2021097091A (ja) アンダーフィル材、及びこれを用いた半導体装置の製造方法
TW202028391A (zh) 半導體用膜狀接著劑、半導體裝置及其製造方法
KR102545377B1 (ko) 가압 실장용 ncf, 그 경화물 및 이를 사용한 반도체 장치
JP6656050B2 (ja) フィルム状半導体封止剤
JP2023030494A (ja) エポキシ樹脂組成物、フィルム、半導体装置及び半導体装置の製造方法
JP2009185132A (ja) 電子部品用接着剤及び電子部品用接着剤の製造方法
JP2009155405A (ja) アンダーフィル用エポキシ樹脂組成物とそれを用いた半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556120

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880386

Country of ref document: EP

Kind code of ref document: A1