WO2019102718A1 - 操作装置 - Google Patents

操作装置 Download PDF

Info

Publication number
WO2019102718A1
WO2019102718A1 PCT/JP2018/036677 JP2018036677W WO2019102718A1 WO 2019102718 A1 WO2019102718 A1 WO 2019102718A1 JP 2018036677 W JP2018036677 W JP 2018036677W WO 2019102718 A1 WO2019102718 A1 WO 2019102718A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic body
movable member
magnet
tilting
magnetic
Prior art date
Application number
PCT/JP2018/036677
Other languages
English (en)
French (fr)
Inventor
茂 古木
上ノ町 孝志
小川 敏生
悠 五十嵐
俊介 中澤
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2019556119A priority Critical patent/JP6800349B2/ja
Priority to CN201880075651.3A priority patent/CN111373343B/zh
Priority to EP18880634.3A priority patent/EP3715999B1/en
Publication of WO2019102718A1 publication Critical patent/WO2019102718A1/ja
Priority to US16/870,021 priority patent/US10802528B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/24Providing feel, e.g. to enable selection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/0278Constructional features of the selector lever, e.g. grip parts, mounting or manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H2059/0295Selector apparatus with mechanisms to return lever to neutral or datum position, e.g. by return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/24Providing feel, e.g. to enable selection
    • F16H2061/241Actuators providing feel or simulating a shift gate, i.e. with active force generation for providing counter forces for feed back
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/04Controlling members for hand actuation by pivoting movement, e.g. levers

Definitions

  • the present disclosure relates to an operating device.
  • the present invention aims to realize a small-sized and durable operating device.
  • an operation member capable of tilting operation from the operation reference position;
  • a permanent magnet supported by the support so as to face the first magnetic body and the second magnetic body in a first direction with the operation member positioned at the operation reference position;
  • the operation device may be provided in which the first magnetic body and the second magnetic body do not overlap when viewed in the first direction.
  • FIG. 1 is an external perspective view of a shift device according to Embodiment 1.
  • FIG. FIG. 8 is an explanatory diagram of an example of the shift operation of the shift device according to the first embodiment. It is a perspective view which shows the single item state of the control lever. It is a perspective view which shows the state which removed the cover and case main body of the shift apparatus of FIG. It is a perspective view showing the 1st movable member and the 2nd movable member which are upper than a permanent magnet. It is a perspective view showing the magnet holder with which the 1st magnet and the 2nd magnet were equipped.
  • FIG. 6 is an explanatory view of the principle of suction force generation by a suction force generation mechanism according to the first embodiment; FIG.
  • FIG. 6 is an explanatory view of the principle of suction force generation by a suction force generation mechanism according to the first embodiment
  • FIG. 6 is an explanatory view of the principle of suction force generation by a suction force generation mechanism according to the first embodiment
  • It is a perspective view which shows the state (1st step
  • FIG. 14 is an explanatory diagram of an example of the shift operation of the shift device according to the second embodiment.
  • FIG. 7 is an external perspective view of a suction force generation mechanism according to a second embodiment. It is an exploded perspective view of suction power generation mechanism.
  • FIG. 10 is an explanatory diagram of the principle of suction force generation by a suction force generation mechanism according to a second embodiment.
  • FIG. 10 is an explanatory diagram of the principle of suction force generation by a suction force generation mechanism according to a second embodiment.
  • FIG. 10 is an explanatory diagram of the principle of suction force generation by a suction force generation mechanism according to a second embodiment.
  • FIG. 14 is an explanatory view of the principle of suction force generation by a suction force generation mechanism according to a modification of the second embodiment;
  • FIG. 10 is an explanatory diagram of the principle of suction force generation by a suction force generation mechanism according to a modification of the second embodiment.
  • FIG. 14 is an explanatory view of the principle of suction force generation by a suction force generation mechanism according to a modification of the second embodiment
  • FIG. 14 is an explanatory view of the principle of suction force generation by a suction force generation mechanism according to a modification of the second embodiment
  • FIG. 1 is an external perspective view of a shift device 100 (an example of an operating device) according to a first embodiment.
  • FIG. 2 is an explanatory view of an example of the shift operation of the shift device 100.
  • FIG. 3 is a perspective view showing a single item state of the operation lever 2 (an example of the operation member).
  • the illustration of a part of the operation lever 2 (shift knob 112) is simplified.
  • Two tilting directions D1 to D2 of the operating lever 2 are shown in FIG.
  • the shift knob 112 is omitted for the sake of clarity.
  • the shift device 100 is preferably provided in a vehicle.
  • the shift device 100 may be provided in an aircraft, a railway, or the like, or may be applied to a game machine.
  • the shift device 100 includes an operation lever 2 capable of tilting operation from a home position H (see FIG. 2, an example of an operation reference position), a case body 110 (an example of a support) supporting the operation lever 2 in a tiltable manner, And a cover 111 covering an upper open portion of the main body 110.
  • a suction force generation mechanism 1 and the like described later are accommodated.
  • the case body 110 is formed by injection molding of a resin material such as polybutylene terephthalate (PBT).
  • the proximal end of the control lever 2 is integrally attached to the tilting shaft 16.
  • both ends of the tilting shaft 16 are rotatably supported by bearings (not shown) on the case main body 110 side.
  • the operation lever 2 is supported on the case body 110 so as to be able to be tilted in the first tilting direction (D1 direction) or the second tilting direction (D2 direction).
  • the cover 111 is formed of a resin such as polybutylene terephthalate (PBT) in the same manner as the case main body 110.
  • a through hole 111a is formed in a central portion of the cover 111, and the operation lever 2 is inserted through the through hole 111a, and the tip of the operation lever 2 is projected to the upper surface side of the cover.
  • a shift knob 112 which is gripped by the user when the control lever 2 is tilted.
  • the shift device 100 is not a mechanical control system in which the control lever 2 is directly connected to the transmission, but a shift-by-wire system. Since the shift device 100 of the shift by wire method does not require a mechanical configuration such as a link mechanism, downsizing can be achieved. Therefore, the layout of the shift device 100 in the vehicle can be made flexible. In addition, since the operation lever 2 can be operated with a relatively small force, the operation of the shift change becomes easy.
  • the position F1 is a first step position F1 on the first tilt direction (D1 direction) side.
  • the position F2 is the second step position F2 on the first tilting direction (D1 direction) side.
  • the position R1 is a first step position R1 on the second tilt direction (D2 direction) side.
  • the position R2 is a second stage position R2 on the second tilting direction (D2 direction) side.
  • FIG. 4 is a perspective view showing a state in which the cover 111 and the case main body 110 of the shift device 100 of FIG. 1 are removed.
  • FIG. 5 is a perspective view showing the first movable member 4 and the second movable member 8 above the permanent magnet 6.
  • FIG. 6 is a perspective view showing the magnet holder 60 on which the first magnet 61 and the second magnet 62 are mounted.
  • the shift knob 112 is omitted for the sake of clarity.
  • three orthogonal axes X, Y, Z are defined.
  • the Z direction corresponds to the direction perpendicular to the plane in which the magnet holder 60 extends, and the positive side corresponds to the “upper side”. In the installed state of the shift device 100, the Z direction does not necessarily have to be parallel to the gravity direction.
  • the shift device 100 includes a suction force generation mechanism 1.
  • the suction force generation mechanism 1 includes a first movable body 4, a permanent magnet 6, a second movable body 8, a first magnetic body 40 provided on the first movable body 4, and a second movable body 8. And 2 magnetic body 80.
  • the first movable member 4 and the second movable member 8 are provided on both sides of the magnet holder 60 (and the permanent magnet 6 held thereby) in the Z direction.
  • the first movable member 4 and the second movable member 8 on the upper side of the permanent magnet 6 cooperate with the permanent magnet 6 to provide two steps for the tilting operation of the control lever 2 in the first tilting direction (D1 direction).
  • the first movable member 4 and the second movable member 8 below the permanent magnet 6 cooperate with the permanent magnet 6 to perform a tilting operation 2 in the second tilting direction (direction D2) of the control lever 2.
  • first movable member 4 and the second movable member 8 are symmetrical with respect to the XY plane passing through the center of the permanent magnet 6 in the Z direction, the first movable member above the permanent magnet 6 will hereinafter be described unless otherwise stated.
  • the fourth and second movable members 8 (see FIG. 5) will be described.
  • the first movable member 4 includes a pair of mounting pieces 42 rotatably supported by the tilting shaft 16 and a first magnetic body 40.
  • the mounting piece 42 is formed of a resin material.
  • the mounting piece 42 and the first magnetic body 40 may be integrally formed by insert molding.
  • the mounting piece portion 42 may be formed of a magnetic material.
  • the first movable member 4 is supported by the case main body 110 so as to rotate in conjunction with the tilting operation of the operation lever 2.
  • the first movable member 4 is rotatably supported by the tilting shaft 16 of the control lever 2.
  • the interlocking manner with the tilting operation of the control lever 2 is optional.
  • the control lever 2 has an upward projecting portion 2 a that abuts on the lower surface of the first movable member 4 as shown in FIG. 3.
  • the projecting portion 2 a abuts on the first movable member 4.
  • the operation lever 2 is further tilted in the first tilting direction (D1 direction) with the protrusion 2a in contact with the first movable member 4, the first movable member 4 rotates around the tilting shaft 16.
  • the permanent magnet 6 is supported by the case main body 110 so as to face the first magnetic body 40 and the second magnetic body 80 in the Z direction (an example of the first direction) with the operation lever 2 positioned at the home position H. .
  • the permanent magnet 6 is provided in the magnet holder 60.
  • the magnet holder 60 is fixed to the case main body 110 by a screw 50 (see FIG. 1).
  • the magnet holder 60 is provided between the first movable member 4 and the second movable member 8 in the Z direction.
  • the permanent magnets 6 have different polarities adjacent to each other in the Y direction (an example of a second direction) intersecting the Z direction.
  • the 1st magnet 61 and the 2nd magnet 62 are included as an example.
  • the first magnet 61 and the second magnet 62 are arranged side by side in the Y direction so as to have different magnetism with respect to each other in the Z direction. That is, the magnetization directions of the first magnet 61 and the second magnet 62 are opposite in the Z direction, and arranged in the Y direction.
  • the upper side of the first magnet 61 is the N pole
  • the upper side of the second magnet 62 is the S pole, and as a result, they are oriented so as to be different from each other in the Z direction.
  • Each of the first magnet 61 and the second magnet 62 extends in the X direction with the X direction as the longitudinal direction, as shown in FIG.
  • the first magnet 61 and the second magnet 62 extend in the X direction so as to face the first magnetic body 40 and the second magnetic body 80.
  • the first magnet 61 and the second magnet 62 are adjacent to each other via the separation portion 601 of the magnet holder 60 in the Y direction. In this case, since the first magnet 61 and the second magnet 62 attract each other via the separation portion 601, it is possible to eliminate the need for fixing or the like to the magnet holder 60 with the fixing tool.
  • the second movable member 8 includes a pair of mounting pieces 82 rotatably supported by the tilting shaft 16 and a second magnetic body 80.
  • the mounting piece 82 is formed of a resin material.
  • the mounting piece 82 and the second magnetic body 80 may be integrally formed by insert molding.
  • the attachment piece 82 may be formed of a magnetic material.
  • the second movable member 8 is supported by the case main body 110 so as to rotate in conjunction with the tilting operation of the operation lever 2.
  • the second movable member 8 is rotatably supported by the tilting shaft 16 of the control lever 2.
  • the interlocking manner with the tilting operation of the control lever 2 is optional.
  • the control lever 2 has an upper surface 2c that abuts on the lower surface of the second movable member 8, as shown in FIG.
  • the upper surface 2c abuts on the second movable member 8. If the control lever 2 is further tilted in the first tilting direction (D1 direction) with the upper surface 2c in contact with the second movable member 8, the second movable member 8 rotates around the tilting shaft 16.
  • the second magnetic body 80 is provided adjacent to the first magnetic body 40 in the X direction. Specifically, the second magnetic body 80 is disposed on the positive side in the X direction (the side farther from the tilting shaft 16) than the first magnetic body 40.
  • the second magnetic body 80 is preferably the same as the first magnetic body 40 in a region facing the permanent magnet 6 from the viewpoint of achieving thinning of the attraction force generation mechanism 1 (and reduction in size of the shift device 100 accordingly). Extends in the plane of the (XY plane). In the same plane, it is not necessary to be exactly the same as long as it is an aspect that does not have an offset equal to or greater than the plate thickness in the Z direction between the first magnetic body 40 and the second magnetic body 80. However, in the modification, the first magnetic body 40 and the second magnetic body 80 may be offset in the Z direction by the thickness or more.
  • the permanent magnet 6 cooperates with the first magnetic body 40 of the first movable member 4 and the second magnetic body 80 of the second movable member 8 to create a click feeling due to the magnetic force.
  • FIG. 7A to 7C are explanatory views of the principle of suction force generation by the suction force generation mechanism 1
  • FIG. 7A is a plan view
  • FIGS. 7B and 7C are YZ planes passing through the first magnetic body 40. It is sectional drawing at the time of cut
  • disconnecting. 7A to 7C are explanatory views, and illustration of the magnet holder 60 and the like is omitted.
  • FIG. 7A an axis I related to the tilting axis 16 is schematically shown.
  • FIG. 7B the flow of the magnetic flux is schematically shown by an arrow R7
  • FIG. 7C the attraction force is schematically shown by an arrow R8.
  • FIG. 7A an axis I related to the tilting axis 16 is schematically shown.
  • FIG. 7B the flow of the magnetic flux is schematically shown by an arrow R7
  • FIG. 7C the attraction force is schematically shown by an arrow R8.
  • FIG. 7A an axis I related to the tilt
  • FIG. 8A is a perspective view showing a state in which the first magnetic body 40 is rotated in a direction away from the magnet holder 60 integrally with the first movable member 4.
  • FIG. 8B is a perspective view showing a state in which the first magnetic body 40 is rotated integrally with the first movable member 4 and the second magnetic body 80 is rotated away from the magnet holder 60 integrally with the second movable member 8. .
  • the upper side of the first magnet 61 is the N pole
  • the upper side of the second magnet 62 is the S pole.
  • a flow of magnetic flux is generated, and as indicated by an arrow R8 in FIG. 7C, Z is generated between the first magnetic body 40 and the first magnet 61 and the second magnet 62. Suction is generated in the direction.
  • the flow of magnetic flux and the attraction force are substantially independent of each other.
  • 7B and 7C show the flow of magnetic flux and the attraction force of the first magnetic body 40, but the same applies to the flow of magnetic flux and the attraction force of the second magnetic body 80.
  • the first magnet 61 and the second magnet 61 are moved after the projection 2a of the control lever 2 abuts the first movable member 4
  • the first magnetic body 40 is rotated in a direction away from the magnet holder 60 integrally with the first movable member 4 against the attraction force from the magnet 62 (see FIG. 8A)
  • the first magnetic body 40 becomes the first magnet.
  • a click feeling is generated.
  • the second magnetic member 80 resists the attraction force from the first magnet 61 and the second magnet 62 and the second movable member 8.
  • the second magnetic body 80 is pulled away from the first magnet 61 and the second magnet 62 when it is integrally rotated in a direction away from the magnet holder 60 (see FIG. 8B), a click feeling is generated.
  • the operating lever 2, the first movable member 4, and the second movable member 8 have the first protrusion 2 a in the process of tilting the operating lever 2 from the home position H in the first tilting direction (D1 direction).
  • the upper surface 2 c is formed to abut on the second movable member 8.
  • the first magnetic body 40 and the second magnetic body 80 do not overlap in the Z direction. Therefore, according to Example 1, compared with the comparative example (not shown) in which the first magnetic body and the second magnetic body face each other in the Z direction while overlapping each other, the first magnetic body 40 and the second magnetic body are not
  • the flow of magnetic flux generated in each of the magnetic members 80 and the opposing area (the opposing area in the Z direction) of the first magnetic member 40 and the second magnetic member 80 with the first magnet 61 and the second magnet 62 are clearly Become. As a result, design of suction force is easy, and variation among individuals can be reduced.
  • the click feeling is created through the suction force generation mechanism 1, the downsizing and the improvement of the durability can be achieved as compared with the configuration using the cam mechanism to create the click feeling. It is easy to Further, according to the first embodiment, since the first magnetic body 40 and the second magnetic body 80 are disposed so as not to overlap in the Z direction, the design of the suction force is easy and the variation among individuals is small. it can.
  • Example 1 although the 1st magnet 61 and the 2nd magnet 62 are prolonged in the direction of X in the mode which counters the 1st magnetic body 40 and the 2nd magnetic body 80, it is not restricted to this.
  • the first magnet 61 may be provided for each of the first magnetic body 40 and the second magnetic body 80, and the second magnet 62 is provided for each of the first magnetic body 40 and the second magnetic body 80. It may be done.
  • Example 1 although two magnets, the 1st magnet 61 and the 2nd magnet 62, are provided, one magnet (multipolarized magnet) which has the same polarity may be used. However, in the case where the first magnet 61 and the second magnet 62 are used, it is not necessary to increase the number of poles and cost can be reduced.
  • Example 1 although the 1st movable member 4 and the 2nd movable member 8 are provided in the both sides which pinched
  • the first movable member 4 and the second movable member 8 are provided on one side of the permanent magnet 6 in the Z direction, and are formed of a magnetic material on the other side of the permanent magnet 6 on the other side.
  • a non-movable member may be provided (see Example 2 below). Also in this case, since the non-moving member can realize the flow of magnetic flux as shown in FIG. 7B in the same manner as the first magnetic body and the second magnetic body, the click feeling can be created on the same principle.
  • Example 2 The shift device according to the second embodiment (the whole is not shown) has a point that the tilting direction of the control lever 2A is only one side (D1) with respect to the shift device 100 according to the first embodiment described above It differs from the point that 1 is replaced by the suction force generation mechanism 1A.
  • constituent elements that may be the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof will be omitted.
  • FIG. 9 is an explanatory diagram of an example of the shift operation of the shift device according to the second embodiment.
  • the shift device according to the second embodiment differs from the shift device 100 according to the first embodiment described above in that the tilting direction of the control lever 2A is only one side (D1).
  • the second embodiment is also applicable to a configuration in which the tilt direction of the control lever 2A is two tilt directions as in the first embodiment described above.
  • the tilting direction of the operation lever 2A may be two or more steps in at least one direction.
  • FIG. 10 is an external perspective view of the suction force generation mechanism 1A according to the second embodiment, and shows a state in which the cover 111 and the case main body 110 of the shift device according to the second embodiment are removed.
  • the illustration of a part (shift knob) of the control lever 2A is simplified.
  • FIG. 10 shows the tilting direction D1 of the control lever 2A.
  • FIG. 11 is an exploded perspective view of the suction force generation mechanism 1A.
  • the Z direction corresponds to the direction perpendicular to the plane in which the magnet holder 60A extends, and the positive side corresponds to the "upper side".
  • the Z direction does not necessarily have to be parallel to the gravity direction.
  • the proximal end of the control lever 2A is rotatably attached to the tilting shaft 16A.
  • the tilt shaft 16A is fixed to the frame 70 (an example of a support).
  • the operation lever 2A is supported so as to be able to tilt with respect to the frame 70 in the first tilting direction (D1 direction).
  • the base end of the control lever 2A may be integrally attached to the tilting shaft 16A.
  • the frame 70 may be fixed to the case main body 110 or may be rotatably supported, for example, around an axis parallel to the X direction.
  • the attraction force generation mechanism 1A is provided in the first movable body 4A, the permanent magnet 6A, the second movable member 8A, the first magnetic body 40A provided in the first movable member 4A, and the second movable member 8A.
  • 2 includes a magnetic body 80A and a non-movable member 90.
  • the first movable member 4A and the second movable member 8A are provided on one side (upper side than the permanent magnet 6A) across the permanent magnet 6A in the Z direction.
  • the first movable member 4A and the second movable member 8A on the upper side of the permanent magnet 6A cooperate with the permanent magnet 6A to provide two steps for the tilting operation of the operation lever 2A in the first tilting direction (D1 direction). Create a sense of click.
  • the first movable member 4A and the second movable member 8A may be provided on both sides of the permanent magnet 6A in the Z direction.
  • the first movable member 4A and the second movable member 8A below the permanent magnet 6A cooperate with the permanent magnet 6A to tilt the control lever 2A in the second tilting direction (D2 direction).
  • D2 direction the second tilting direction
  • the 4A and the second movable member 8A will be described.
  • the first movable member 4A includes a pair of mounting pieces 42A rotatably supported by the tilting shaft 16A, and a first magnetic body 40A.
  • the mounting piece 42A is formed of a resin material.
  • the attachment piece 42A and the first magnetic body 40A may be integrally formed by insert molding.
  • the attachment piece 42A may be formed of a magnetic material.
  • the first movable member 4A is supported by the frame 70 so as to rotate in conjunction with the tilting operation of the operation lever 2A.
  • the first movable member 4A is rotatably supported by the tilting shaft 16A of the operation lever 2A.
  • the interlocking manner with the tilting operation of the control lever 2A is optional.
  • the control lever 2A has the upper surface 2e that abuts on the lower surface of the first movable member 4A, as in the first embodiment described above.
  • the control lever 2A When the control lever 2A is tilted in the first tilt direction (D1 direction), the control lever 2A abuts on the first movable member 4A.
  • the control lever 2A is further tilted in the first tilt direction (direction D1) with the control lever 2A in contact with the first movable member 4A, the first movable member 4A rotates around the tilt shaft 16A.
  • the permanent magnet 6A is supported by the frame 70 so as to face the first magnetic body 40A and the second magnetic body 80A in the Z direction (an example of the first direction) with the operation lever 2A positioned at the home position H. .
  • the permanent magnet 6A is provided in the magnet holder 60A.
  • the magnet holder 60A is fixed to, for example, the frame 70 together with the non-movable member 90.
  • the permanent magnets 6A have different polarities adjacent to each other in the Y direction (an example of a second direction).
  • the first magnet 61A and the second magnet 62A are included as an example.
  • the first magnet 61A and the second magnet 62A like the first magnet 61 and the second magnet 62 in the first embodiment described above, are arranged side by side in the Y direction with orientations different from each other in the Z direction. .
  • the first magnet 61A faces the first magnetic body 40A and the second magnetic body 80A in the Z direction with the operation lever 2A positioned at the home position H, and the second magnet 62A has the home position H at the operation lever 2A. It faces the first magnetic body 40A and the second magnetic body 80A in the Z direction in the positioned state (see FIG. 12A).
  • the second movable member 8A includes a pair of mounting pieces 82A rotatably supported by the tilting shaft 16A, a second magnetic body 80A, and an engaged portion 84A.
  • the mounting piece 82A and the engaged portion 84A are formed of a resin material.
  • the attachment piece 82A and the second magnetic body 80A may be integrally formed by insert molding.
  • one or both of the attachment piece 82A and the engaged portion 84A may be formed of a magnetic material.
  • the second movable member 8A is supported by the frame 70 so as to rotate in conjunction with the tilting operation of the control lever 2A.
  • the second movable member 8A is rotatably supported by the tilting shaft 16A of the operation lever 2A.
  • the interlocking manner with the tilting operation of the control lever 2A is optional.
  • the operation lever 2A is operated in a state in which the first movable member 4A (the first movable member 4A rotated around the tilting shaft 16A) abuts on the engaged portion 84A of the second movable member 8A.
  • the second movable member 8A rotates around the tilting axis 16A.
  • the same interlocking may be realized by abutting on the operation lever 2A.
  • the second magnetic body 80A is provided adjacent to the first magnetic body 40A in the Y direction. Specifically, the second magnetic body 80A is disposed on both sides of the first magnetic body 40A in the Y direction and on the positive side in the X direction (the side far from the tilting shaft 16A). That is, the second magnetic body 80A is disposed so as to surround three sides of the first magnetic body 40A. Preferably, the second magnetic body 80A is a first magnetic body 40A from the viewpoint of achieving thinning of the attraction force generation mechanism 1A (and downsizing of the shift device associated therewith) and from the viewpoint of making the flow of magnetic flux efficient (described later). Extends in the same plane (in the XY plane).
  • first magnetic body 40A and the second magnetic body 80A may be offset in the Z direction by the thickness or more.
  • the engaged portion 84A is provided so as to abut (engage) with the first movable member 4A in the Z direction when the first movable member 4A rotates around the tilt shaft 16A. Therefore, the engaged portion 84A overlaps the first movable member 4A as viewed in the Z direction. That is, the engaged portion 84A protrudes upward from the X-direction end (the end remote from the tilting shaft 16A) of the first movable member 4A and extends in the X direction toward the tilting shaft 16A. Do.
  • the end in the Y direction of the second magnetic body 80A may be curved downward.
  • the curved portion of the second magnetic body 80A faces the upper side of the side portion of the magnet holder 60A in the Y direction in the Y direction.
  • a curved portion 801 is referred to as a “curved portion 801”.
  • the non-movable member 90 is formed of a magnetic material.
  • the non-movable member 90 is provided on the opposite side of the first movable member 4A and the second movable member 8A across the permanent magnet 6A in the Z direction, that is, on the lower side than the permanent magnet 6A.
  • the non-movable member 90 faces the first movable member 4A and the second movable member 8A in the Z direction.
  • the non-movable member 90 may have a side portion 91 opposed in the Y direction below the side portion in the Y direction of the magnet holder 60A.
  • the side portion 91 faces the curved portion 801 of the second magnetic body 80A in the Z direction.
  • the permanent magnet 6A cooperates with the first magnetic body 40A of the first movable member 4A, the second magnetic body 80A of the second movable member 8A, and the non-movable member 90 to generate magnetic force. Create a click feeling.
  • FIGS. 12A to 12C are explanatory views of the principle of suction force generation by the suction force generation mechanism 1A
  • FIG. 12A is a plan view
  • FIGS. 12B and 12C are YZ planes passing through the first magnetic body 40A. It is sectional drawing at the time of cut
  • disconnecting. 12A to 12C are explanatory views, and illustration of the magnet holder 60A and the like is omitted.
  • FIG. 12A an axis I related to the tilting axis 16A is schematically shown.
  • FIG. 12B the flow of magnetic flux is schematically shown by arrow R9
  • FIG. 12C the attraction force is schematically shown by arrow R10.
  • the upper side of the first magnet 61A is the N pole
  • the upper side of the second magnet 62A is the S pole.
  • a flow of magnetic flux is generated as shown by an arrow R9 in FIG. 12B, and as shown by an arrow R10 in FIG. 12C, the first magnetic body 40A and the second magnetic body 80A and the first magnet 61A and the second magnet 62A.
  • the non-movable member 90 forms a flow of magnetic flux under the first magnet 61A and the second magnet 62A, and a suction force is generated in the Z direction with the second magnetic body 80A. It occurs.
  • the gap (gap in the Z direction) between the side portion 91 of the non-movable member 90 and the curved portion 801 of the second magnetic body 80A is relatively small, and the flow of magnetic flux can be efficiently formed as shown by arrow R9 in FIG. 12B.
  • the first magnetic body 40A and the second magnetic body 80A are located in the same plane, there is substantially no gap (offset) in the Z direction between the first magnetic body 40A and the second magnetic body 80A.
  • the flow of the magnetic flux shown by arrow R9 in FIG. 12B can be efficiently formed.
  • the first lever 61A and the second magnet 62A When the first magnetic body 40A is rotated in a direction away from the magnet holder 60A integrally with the first movable member 4A against the suction force, the first magnetic body 40A is pulled away from the first magnet 61A and the second magnet 62A. This produces a click feeling.
  • the second magnetic member resists the attraction force from the first magnet 61A, the second magnet 62A, and the non-movable member 90.
  • the body 80A is rotated integrally with the second movable member 8A in a direction away from the magnet holder 60A, the second magnetic body 80A is pulled away from the first magnet 61A and the second magnet 62A, thereby generating a click feeling.
  • the operating lever 2A, the first movable member 4A, and the second movable member 8A are operated in the process of tilting the operating lever 2A from the home position H in the first tilting direction (direction D1).
  • the first movable member 4A is formed to be in contact with the engaged portion 84A of the second movable member 8A.
  • a click feeling two-step click feeling on the D1 direction side
  • the first magnetic body 40A and the second magnetic body 80A do not overlap in the Z direction as shown in FIG. 12A. Therefore, according to the second embodiment, the first magnetic body 40A and the second magnetic body are compared with the comparative example (not shown) in which the first magnetic body and the second magnetic body are viewed in the Z direction and overlap each other while facing the magnet.
  • the flow of magnetic flux generated in each of the magnetic bodies 80A, and the facing area (the facing area in the Z direction) of the first magnet 61A and the second magnet 62A in each of the first magnetic body 40A and the second magnetic body 80A are clearly Become. As a result, design of suction force is easy, and variation among individuals can be reduced.
  • first magnet 61A and the second magnet 62A are provided in the second embodiment, one magnet (multipolarized magnet) having the same polarity may be used.
  • first magnet 61A and the second magnet 62A it is not necessary to increase the number of poles, and the cost can be reduced.
  • the engaged portion 84A is formed of resin, but the engaged portion 84A may be formed of a magnetic material as described above.
  • the engaged portion 84A can be part of the second magnetic body 80A and overlaps the first magnetic body 40A in the Z direction. That is, only the portion of the second magnetic body 80A corresponding to the engaged portion 84A overlaps the first magnetic body 40A in the Z direction.
  • the second magnetic body 80A does not substantially overlap the first magnetic body 40A in the Z direction, and the first magnet 61A and the second magnet 61A in each of the first magnetic body 40A and the second magnetic body 80A. Since the area directly facing the two magnets 62A does not substantially change, it is possible to obtain the same effect as when the engaged portion 84A is formed of resin.
  • FIG. 13A to 13C are explanatory diagrams of the principle of suction force generation according to the present modification
  • FIG. 13A is a plan view
  • FIGS. 13B and 13C are cut along the YZ plane passing through the first magnetic body 40A.
  • FIG. 13A to 13C are explanatory views, and illustration of a magnet holder and the like is omitted.
  • FIG. 13A an axis I related to the tilting axis 16A is schematically shown.
  • FIG. 13B the flow of magnetic flux is schematically shown by arrow R11
  • FIG. 13C the attraction force is schematically shown by arrow R12.
  • the magnet 63 faces the first magnetic body 40A and the second magnetic body 80A in the Z direction when the operation lever 2A is positioned at the home position H in the Z direction.
  • the magnet 63 is N pole on the upper side.
  • a flow of magnetic flux occurs.
  • an attractive force is generated in the Z direction between the first magnetic body 40A and the second magnetic body 80A and the magnet 63, and the second magnetic body 80A and the non-movable state A suction force is generated between the member 90 and the Z direction. Therefore, according to this modification as well, a click feeling is generated on the same principle as the second embodiment described above.
  • the tilting shaft 16 is rotatably supported by the case main body 110, it is not restricted to this.
  • the tilting shaft 16 may be rotatably supported by the frame (another example of the support).
  • the frame may be rotatably supported around an axis parallel to the X direction with respect to the case body 110.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Control Devices (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)

Abstract

操作基準位置から傾倒操作可能な操作部材と、前記操作部材を傾倒可能に支持する支持体と、前記操作部材の傾倒動作に連動して回転するように前記支持体に支持される第1可動部材と、前記操作部材の傾倒動作に連動して回転するように前記支持体に支持される第2可動部材と、磁性材料により形成され、前記第1可動部材に備えられる第1磁性体と、磁性材料により形成され、前記第2可動部材に備えられる第2磁性体と、前記操作部材が前記操作基準位置に位置する状態で前記第1磁性体及び前記第2磁性体に第1方向で対向するように前記支持体に支持される永久磁石とを含み、前記第1磁性体と前記第2磁性体とは、前記第1方向に視て重ならない、操作装置が開示される。

Description

操作装置
 本開示は、操作装置に関する。
 操作するユーザの手に伝えるクリック感を創出するためにカム機構を利用する操作装置が知られている。
特開2002-144905号公報
 しかしながら、上述のような従来技術では、小型でかつ耐久性の良い操作装置を実現することが難しい。クリック感を創出するためにカム機構を用いる構成は、機械的な摺動を伴うため、耐久性の観点から不利である。また、クリック感を創出するためにカム機構を用いる構成は、摺動部にアクチュエータをバネで付勢する必要があり、小型化の観点から不利である。
 そこで、1つの側面では、本発明は、小型でかつ耐久性の良い操作装置を実現することを目的とする。
 1つの側面では、操作基準位置から傾倒操作可能な操作部材と、
 前記操作部材を傾倒可能に支持する支持体と、
 前記操作部材の傾倒動作に連動して回転するように前記支持体に支持される第1可動部材と、
 前記操作部材の傾倒動作に連動して回転するように前記支持体に支持される第2可動部材と、
 磁性材料により形成され、前記第1可動部材に備えられる第1磁性体と、
 磁性材料により形成され、前記第2可動部材に備えられる第2磁性体と、
 前記操作部材が前記操作基準位置に位置する状態で前記第1磁性体及び前記第2磁性体に第1方向で対向するように前記支持体に支持される永久磁石とを含み、
 前記第1磁性体と前記第2磁性体とは、前記第1方向に視て重ならない、操作装置が提供される。
 1つの側面では、本発明によれば、小型でかつ耐久性の良い操作装置を実現することが可能となる。
実施例1によるシフト装置の外観斜視図である。 実施例1によるシフト装置のシフト操作の一例の説明図である。 操作レバーの単品状態を示す斜視図である。 図1のシフト装置のカバー及びケース本体を外した状態を示す斜視図である。 永久磁石よりも上側の第1可動部材及び第2可動部材を示す斜視図である。 第1磁石及び第2磁石が装着された磁石ホルダを示す斜視図である。 実施例1による吸引力発生機構による吸引力発生の原理の説明図である。 実施例1による吸引力発生機構による吸引力発生の原理の説明図である。 実施例1による吸引力発生機構による吸引力発生の原理の説明図である。 第1磁性体が第1可動部材と一体に磁石ホルダから遠ざかる方向に回転された状態(1段目)を示す斜視図である。 第2磁性体が第2可動部材と一体に磁石ホルダから遠ざかる方向に回転された状態(2段目)を示す斜視図である。 実施例2によるシフト装置のシフト操作の一例の説明図である。 実施例2による吸引力発生機構の外観斜視図である。 吸引力発生機構の分解斜視図である。 実施例2による吸引力発生機構による吸引力発生の原理の説明図である。 実施例2による吸引力発生機構による吸引力発生の原理の説明図である。 実施例2による吸引力発生機構による吸引力発生の原理の説明図である。 実施例2の変形例による吸引力発生機構による吸引力発生の原理の説明図である。 実施例2の変形例による吸引力発生機構による吸引力発生の原理の説明図である。 実施例2の変形例による吸引力発生機構による吸引力発生の原理の説明図である。
 以下、添付図面を参照しながら各実施例について詳細に説明する。
 [実施例1]
 図1は、実施例1によるシフト装置100(操作装置の一例)の外観斜視図である。図2は、シフト装置100のシフト操作の一例の説明図である。図3は、操作レバー2(操作部材の一例)の単品状態を示す斜視図である。図1では、操作レバー2の一部(シフトノブ112)の図示が簡略化されている。図1には、操作レバー2の2つの傾倒方向D1~D2が示される。図3では、見やすくするためにシフトノブ112の図示が省略されている。
 シフト装置100は、車両に設けられるのが好適である。但し、シフト装置100は、航空機や鉄道等に設けられてもよいし、ゲーム機に適用されてもよい。
 シフト装置100は、ホームポジションH(図2参照、操作基準位置の一例)から傾倒操作可能な操作レバー2と、操作レバー2を傾倒可能に支持するケース本体110(支持体の一例)と、ケース本体110の上側の開放部分を覆うカバー111とを有する。ケース本体110内には、後述の吸引力発生機構1等が収容されている。尚、ケース本体110は、ポリブチレンテレフタレート(PBT、polybutylene terephthalate)等の樹脂材を射出成形することによって形成されている。
 操作レバー2の基端は、傾倒軸16に一体的に取付けられている。実施例1では、一例として、傾倒軸16の両端は、ケース本体110側の軸受け部(図示せず)に回転可能に支持される。これにより、操作レバー2は、ケース本体110に対して、第1傾倒方向(D1方向)又は第2傾倒方向(D2方向)へ傾倒操作が可能に支持される。
 カバー111はケース本体110と同じように、ポリブチレンテレフタレート(PBT)等の樹脂により成形されている。カバー111の中央部分には貫通穴111aが形成されており、この貫通穴111aには操作レバー2が挿通され、操作レバー2の先端はカバーの上面側に突出される。操作レバー2の先端には、操作レバー2を傾倒操作する際にユーザに把持されるシフトノブ112が取付けられている。
 シフト装置100は、操作レバー2が変速機に直接接続されている機械制御方式ではなく、シフトバイワイヤ方式である。シフトバイワイヤ方式のシフト装置100は、リンク機構等の機械的な構成が不要になるため、小型化が図れる。したがって、車両内におけるシフト装置100のレイアウトに自由度を持たせることができる。また、操作レバー2を比較的小さな力で操作できるので、シフトチェンジの操作が簡単になる。
 操作レバー2がホームポジションHから第1傾倒方向(D1方向)に傾倒操作されると、操作レバー2はポジションF1に移動される。ポジションF1は第1傾倒方向(D1方向)側の第1段ポジションF1となる。操作レバー2が第1段ポジションF1から第1傾倒方向(D1方向)へさらに傾倒操作されると、操作レバー2はポジションF2に移動される。ポジションF2は第1傾倒方向(D1方向)側の第2段ポジションF2となる。
 第1傾倒方向(D1方向)側の第1段ポジションF1または第2段ポジションF2に位置する操作レバー2の傾倒操作が解除されると、操作レバー2は第2傾倒方向(D2方向)に自動的に傾倒操作され、操作レバー2はポジションHに戻される。その際に車両のシフト状態は、F1またはF2の状態のまま維持される。
 操作レバー2がホームポジションHから第2傾倒方向(D2方向)へ傾倒操作されると、操作レバー2はポジションR1に移動される。ポジションR1は第2傾倒方向(D2方向)側の第1段ポジションR1となる。操作レバー2が第1段ポジションR1から第2傾倒方向(D2方向)へさらに傾倒操作されると、操作レバー2はポジションR2に移動される。ポジションR2は第2傾倒方向(D2方向)側の第2段ポジションR2となる。
 第2傾倒方向(D2方向)側の第1段ポジションR1または第2段ポジションR2に位置する操作レバー2の傾倒操作が解除されると、操作レバー2は第1傾倒方向(D1方向)へ自動的に傾倒され、操作レバー2はポジションHに戻される。その際に車両のシフト状態は、R1またはR2の状態のまま維持される。
 図4は、図1のシフト装置100のカバー111及びケース本体110を外した状態を示す斜視図である。図5は、永久磁石6よりも上側の第1可動部材4及び第2可動部材8を示す斜視図である。図6は、第1磁石61及び第2磁石62が装着された磁石ホルダ60を示す斜視図である。図4では、見やすくするためにシフトノブ112の図示が省略されている。図4には、直交する3軸X,Y,Zが定義されている。Z方向は、磁石ホルダ60の延在する平面に対して垂直な方向に対応し、正側が"上側"に対応する。尚、シフト装置100の設置状態において、Z方向は、必ずしも重力方向に平行である必要はない。
 シフト装置100は、吸引力発生機構1を含む。
 吸引力発生機構1は、第1可動部材4と、永久磁石6と、第2可動部材8と、第1可動部材4に備えられる第1磁性体40と、第2可動部材8に備えられる第2磁性体80とを含む。
 第1可動部材4及び第2可動部材8は、Z方向で磁石ホルダ60(及びそれに保持される永久磁石6)を挟んだ両側に、設けられる。永久磁石6よりも上側の第1可動部材4及び第2可動部材8は、永久磁石6と協動して、操作レバー2の第1傾倒方向(D1方向)への傾倒操作に対して2段のクリック感を創出する。永久磁石6よりも下側の第1可動部材4及び第2可動部材8は、永久磁石6と協動して、操作レバー2の第2傾倒方向(D2方向)への傾倒操作に対して2段のクリック感を創出する。第1可動部材4及び第2可動部材8は、永久磁石6のZ方向の中心を通るXY平面に関して対称であるため、以下では、特に言及しない限り、永久磁石6よりも上側の第1可動部材4及び第2可動部材8(図5参照)について説明する。
 第1可動部材4は、傾倒軸16に回転可能に支持される一対の取り付け片部42と、第1磁性体40とを含む。例えば、取り付け片部42は、樹脂材料により形成される。この場合、取り付け片部42と第1磁性体40とがインサート成形により一体的に形成されてよい。但し、変形例では、取り付け片部42は磁性材料により形成されてもよい。
 第1可動部材4は、操作レバー2の傾倒動作に連動して回転するようにケース本体110に支持される。例えば、第1可動部材4は、操作レバー2の傾倒軸16に回転可能に支持される。操作レバー2の傾倒動作との連動態様は任意である。実施例1では、一例として、操作レバー2は、図3に示すように、第1可動部材4の下面に当接する上方向の突出部2aを有する。操作レバー2が第1傾倒方向(D1方向)に傾倒操作されると、突出部2aが第1可動部材4に当接する。突出部2aが第1可動部材4に当接した状態で操作レバー2が第1傾倒方向(D1方向)に更に傾倒操作されると、第1可動部材4が傾倒軸16まわりに回転する。
 永久磁石6は、操作レバー2がホームポジションHに位置する状態で第1磁性体40及び第2磁性体80にZ方向(第1方向の一例)で対向するようにケース本体110に支持される。
 実施例1では、一例として、永久磁石6は、磁石ホルダ60内に設けられる。磁石ホルダ60は、螺子50(図1参照)によりケース本体110に固定される。磁石ホルダ60は、Z方向で第1可動部材4及び第2可動部材8の間に設けられる。
 永久磁石6は、Z方向に交差するY方向(第2方向の一例)で隣り合う極性が異なる。実施例1では、一例として、第1磁石61及び第2磁石62とを含む。第1磁石61及び第2磁石62は、Z方向で互いに対して異なる磁性となる向きで、Y方向で並んで配置される。即ち、第1磁石61及び第2磁石62は、Z方向で磁化方向が逆向きで、Y方向で並んで配置される。例えば、第1磁石61は、上側がN極であり、第2磁石62は、上側がS極であり、この結果、Z方向で互いに対して異なる磁性となる向きである。第1磁石61及び第2磁石62は、それぞれ、図6に示すように、X方向を長手方向としてX方向に延在する。第1磁石61及び第2磁石62は、第1磁性体40及び第2磁性体80に対向する態様でX方向に延在する。第1磁石61及び第2磁石62は、Y方向で磁石ホルダ60の離隔部601を介して隣合う。この場合、第1磁石61及び第2磁石62は、離隔部601を介して吸引し合うので、磁石ホルダ60への固定具による固定等を不要にすることができる。
 第2可動部材8は、傾倒軸16に回転可能に支持される一対の取り付け片部82と、第2磁性体80とを含む。例えば、取り付け片部82は、樹脂材料により形成される。この場合、取り付け片部82と第2磁性体80とがインサート成形により一体的に形成されてよい。但し、変形例では、取り付け片部82は磁性材料により形成されてもよい。
 第2可動部材8は、操作レバー2の傾倒動作に連動して回転するようにケース本体110に支持される。例えば、第2可動部材8は、操作レバー2の傾倒軸16に回転可能に支持される。操作レバー2の傾倒動作との連動態様は任意である。実施例1では、一例として、操作レバー2は、図3に示すように、第2可動部材8の下面に当接する上側表面2cを有する。操作レバー2が第1傾倒方向(D1方向)に傾倒操作されると、上側表面2cが第2可動部材8に当接する。上側表面2cが第2可動部材8に当接した状態で操作レバー2が第1傾倒方向(D1方向)に更に傾倒操作されると、第2可動部材8が傾倒軸16まわりに回転する。
 第2磁性体80は、第1磁性体40とX方向で隣り合う態様で設けられる。具体的には、第2磁性体80は、第1磁性体40よりもX方向で正側(傾倒軸16から遠い側)に配置される。第2磁性体80は、好ましくは、吸引力発生機構1の薄型化(及びそれに伴うシフト装置100の小型化)を図る観点から、永久磁石6に対向する領域において、第1磁性体40と同一の平面内(XY平面内)に延在する。同一の平面内とは、第1磁性体40及び第2磁性体80との間にZ方向で板厚分以上のオフセットを有しない態様であればよく、厳密に同一である必要はない。但し、変形例では、第1磁性体40及び第2磁性体80はZ方向に板厚分以上オフセットされてもよい。
 次に、吸引力発生機構1による吸引力発生(クリック感創出)の原理について概説する。吸引力発生機構1においては、永久磁石6は、第1可動部材4の第1磁性体40及び第2可動部材8の第2磁性体80と協動して、磁力によるクリック感を創出する。
 図7A乃至図7Cは、吸引力発生機構1による吸引力発生の原理の説明図であり、図7Aは、平面図であり、図7B及び図7Cは、第1磁性体40を通るYZ平面で切断した際の断面図である。図7A乃至図7Cは、説明図であり、磁石ホルダ60等の図示は省略されている。図7Aには、傾倒軸16に係る軸Iが模式的に示されている。また、図7Bでは、磁束の流れが矢印R7で模式的に示され、図7Cでは、吸引力が矢印R8で模式的に示されている。図8Aは、第1磁性体40が第1可動部材4と一体に磁石ホルダ60から遠ざかる方向に回転された状態を示す斜視図である。図8Bは、第1磁性体40が第1可動部材4と一体にかつ第2磁性体80が第2可動部材8と一体に磁石ホルダ60から遠ざかる方向に回転された状態を示す斜視図である。
 図7Bでは、一例として、第1磁石61は、上側がN極であり、第2磁石62は、上側がS極である。このとき、図7Bに矢印R7で示すように、磁束の流れが生じ、図7Cに矢印R8で示すように、第1磁性体40と第1磁石61及び第2磁石62との間にはZ方向に吸引力が生じる。
 尚、第1磁性体40と第1磁石61及び第2磁石62との間に生じる磁束の流れ及び吸引力と、第2磁性体80と第1磁石61及び第2磁石62との間に生じる磁束の流れ及び吸引力とは、実質的に互いに独立した関係となる。尚、図7B及び図7Cでは、第1磁性体40に係る磁束の流れ及び吸引力が示されるが、第2磁性体80に係る磁束の流れ及び吸引力についても同様である。
 操作レバー2がホームポジションHから第1傾倒方向(D1方向)に傾倒操作される過程において、操作レバー2の突出部2aが第1可動部材4に当接した後に、第1磁石61及び第2磁石62からの吸引力に抗して第1磁性体40が第1可動部材4と一体に磁石ホルダ60から遠ざかる方向に回転されると(図8A参照)、第1磁性体40が第1磁石61及び第2磁石62から引き離されることで、クリック感が生じる。また、操作レバー2の上側表面2cが第2可動部材8に当接した後に、第1磁石61及び第2磁石62からの吸引力に抗して第2磁性体80が第2可動部材8と一体に磁石ホルダ60から遠ざかる方向に回転されると(図8B参照)、第2磁性体80が第1磁石61及び第2磁石62から引き離されることで、クリック感が生じる。
 尚、操作レバー2、第1可動部材4、及び第2可動部材8は、操作レバー2がホームポジションHから第1傾倒方向(D1方向)に傾倒操作される過程において、突出部2aが第1可動部材4に当接した後に、上側表面2cが第2可動部材8に当接するように形成される。これにより、異なる傾倒操作位置でクリック感(D1方向側で、第1段ポジションF1及び第2段ポジションF2の各段に応じた2段のクリック感)が創出される。
 ここで、実施例1では、図7Aに示すように、第1磁性体40と第2磁性体80とは、Z方向に視て重ならない。従って、実施例1によれば、第1磁性体及び第2磁性体がZ方向に視て互いに重なりつつ磁石に対向する比較例(図示せず)に比べて、第1磁性体40及び第2磁性体80のそれぞれに生じる磁束の流れ、及び、第1磁性体40及び第2磁性体80のそれぞれにおける第1磁石61及び第2磁石62との対向面積(Z方向の対向面積)が明確になる。この結果、吸引力の設計が容易であるとともに、個体ごとのばらつきを小さくできる。
 以上のように、実施例1によれば、吸引力発生機構1を介してクリック感を創出するので、クリック感を創出するためにカム機構を用いる構成に比べて、小型化かつ耐久性の向上を図ることが容易である。また、実施例1によれば、第1磁性体40と第2磁性体80とがZ方向に視て重ならない配置であるので、吸引力の設計が容易であるとともに、個体ごとのばらつきを小さくできる。
 尚、実施例1では、第1磁石61及び第2磁石62は、第1磁性体40及び第2磁性体80に対向する態様でX方向に延在するが、これに限られない。第1磁石61は、第1磁性体40及び第2磁性体80のそれぞれごとに設けられてもよいし、第2磁石62は、第1磁性体40及び第2磁性体80のそれぞれごとに設けられてもよい。
 また、実施例1では、第1磁石61及び第2磁石62の2つの磁石が設けられるが、同様の極性を有する一の磁石(多極化された磁石)が用いられてもよい。但し、第1磁石61及び第2磁石62を用いる場合は、多極化が不要であり、コストを低減できる。
 また、実施例1では、第1可動部材4及び第2可動部材8は、Z方向で永久磁石6を挟んだ両側に、設けられるが、これに限られない。例えば、図2において、ポジションR1及びポジションR2が設定されない構成では、第1段ポジションF1及び第2段ポジションF2用に片側だけに設けられてもよい。この場合、Z方向で永久磁石6を挟んだ一方側に、第1可動部材4及び第2可動部材8が設けられ、他方側の永久磁石6を挟んで反対側に、磁性材料により形成される非可動部材が設けられてよい(後述の実施例2参照)。この場合も、非可動部材は、第1磁性体及び第2磁性体と同様の態様で図7Bに示すような磁束の流れを実現できるので、同様の原理でクリック感を創出できる。
 [実施例2]
 実施例2に係るシフト装置(全体は図示せず)は、上述した実施例1によるシフト装置100に対して、操作レバー2Aの傾倒方向が片側(D1)だけである点と、吸引力発生機構1が吸引力発生機構1Aで置換された点とが異なる。実施例2において、上述した実施例1と同一であってよい構成要素については、同一の参照符号を付して説明を省略する。
 図9は、実施例2に係るシフト装置のシフト操作の一例の説明図である。実施例2に係るシフト装置は、上述した実施例1に係るシフト装置100に対して、操作レバー2Aの傾倒方向が片側(D1)だけである点が異なる。但し、実施例2は、操作レバー2Aの傾倒方向が、上述した実施例1と同様に2つの傾倒方向である構成にも適用可能である。換言すると、上述した実施例1でも同様であるが、操作レバー2Aの傾倒方向は、少なくとも1方向で2段以上であればよい。
 図10は、実施例2による吸引力発生機構1Aの外観斜視図であり、実施例2に係るシフト装置のカバー111及びケース本体110を外した状態を示す。図10では、操作レバー2Aの一部(シフトノブ)の図示が簡略化されている。図10には、操作レバー2Aの傾倒方向D1が示される。図11は、吸引力発生機構1Aの分解斜視図である。
 図10には、直交する3軸X,Y,Zが定義されている。Z方向は、磁石ホルダ60Aの延在する平面に対して垂直な方向に対応し、正側が"上側"に対応する。尚、実施例2に係るシフト装置の設置状態において、Z方向は、必ずしも重力方向に平行である必要はない。
 実施例2では、一例として、操作レバー2Aの基端は、傾倒軸16Aに回転可能に取付けられている。傾倒軸16Aは、枠体70(支持体の一例)に固定される。これにより、操作レバー2Aは、枠体70に対して、第1傾倒方向(D1方向)へ傾倒操作が可能に支持される。但し、実施例2においても、上述した実施例1と同様、操作レバー2Aの基端は、傾倒軸16Aに一体的に取付けられてもよい。尚、枠体70は、ケース本体110に対して固定されてもよいし、例えばX方向に平行な軸まわりに回転可能に支持されてもよい。
 吸引力発生機構1Aは、第1可動部材4Aと、永久磁石6Aと、第2可動部材8Aと、第1可動部材4Aに備えられる第1磁性体40Aと、第2可動部材8Aに備えられる第2磁性体80Aと、非可動部材90とを含む。
 実施例2では、一例として、第1可動部材4A及び第2可動部材8Aは、Z方向で永久磁石6Aを挟んだ片側(永久磁石6Aよりも上側)に、設けられる。永久磁石6Aよりも上側の第1可動部材4A及び第2可動部材8Aは、永久磁石6Aと協動して、操作レバー2Aの第1傾倒方向(D1方向)への傾倒操作に対して2段のクリック感を創出する。
 但し、変形例では、第1可動部材4A及び第2可動部材8Aは、Z方向で永久磁石6Aを挟んだ両側に、設けられてもよい。この場合、永久磁石6Aよりも下側の第1可動部材4A及び第2可動部材8Aは、永久磁石6Aと協動して、操作レバー2Aの第2傾倒方向(D2方向)への傾倒操作に対して2段のクリック感を創出する。第1可動部材4A及び第2可動部材8Aは、永久磁石6AのZ方向の中心を通るXY平面に関して対称であるため、以下では、特に言及しない限り、永久磁石6Aよりも上側の第1可動部材4A及び第2可動部材8Aについて説明する。
 第1可動部材4Aは、傾倒軸16Aに回転可能に支持される一対の取り付け片部42Aと、第1磁性体40Aとを含む。例えば、取り付け片部42Aは、樹脂材料により形成される。この場合、取り付け片部42Aと第1磁性体40Aとがインサート成形により一体的に形成されてよい。但し、変形例では、取り付け片部42Aは磁性材料により形成されてもよい。
 第1可動部材4Aは、操作レバー2Aの傾倒動作に連動して回転するように枠体70に支持される。例えば、第1可動部材4Aは、操作レバー2Aの傾倒軸16Aに回転可能に支持される。操作レバー2Aの傾倒動作との連動態様は任意である。実施例2では、一例として、操作レバー2Aは、上述した実施例1と同様、第1可動部材4Aの下面に当接する上側表面2eを有する。操作レバー2Aが第1傾倒方向(D1方向)に傾倒操作されると、操作レバー2Aが第1可動部材4Aに当接する。操作レバー2Aが第1可動部材4Aに当接した状態で操作レバー2Aが第1傾倒方向(D1方向)に更に傾倒操作されると、第1可動部材4Aが傾倒軸16Aまわりに回転する。
 永久磁石6Aは、操作レバー2AがホームポジションHに位置する状態で第1磁性体40A及び第2磁性体80AにZ方向(第1方向の一例)で対向するように枠体70に支持される。
 実施例2では、一例として、永久磁石6Aは、磁石ホルダ60A内に設けられる。磁石ホルダ60Aは、非可動部材90とともに例えば枠体70に固定される。
 永久磁石6Aは、Y方向(第2方向の一例)で隣り合う極性が異なる。実施例2では、一例として、第1磁石61A及び第2磁石62Aとを含む。第1磁石61A及び第2磁石62Aは、上述した実施例1の第1磁石61及び第2磁石62と同様、Z方向で互いに対して異なる磁性となる向きで、Y方向で並んで配置される。第1磁石61Aは、操作レバー2AがホームポジションHに位置する状態で第1磁性体40A及び第2磁性体80AにZ方向で対向し、第2磁石62Aは、操作レバー2AがホームポジションHに位置する状態で第1磁性体40A及び第2磁性体80AにZ方向で対向する(図12A参照)。
 第2可動部材8Aは、傾倒軸16Aに回転可能に支持される一対の取り付け片部82Aと、第2磁性体80Aと、被係合部84Aとを含む。実施例2では、一例として、取り付け片部82A及び被係合部84Aは、樹脂材料により形成される。この場合、取り付け片部82Aと第2磁性体80Aとがインサート成形により一体的に形成されてよい。但し、変形例では、取り付け片部82A及び被係合部84Aの一方又は双方が磁性材料により形成されてもよい。
 第2可動部材8Aは、操作レバー2Aの傾倒動作に連動して回転するように枠体70に支持される。例えば、第2可動部材8Aは、操作レバー2Aの傾倒軸16Aに回転可能に支持される。操作レバー2Aの傾倒動作との連動態様は任意である。実施例2では、一例として、第2可動部材8Aの被係合部84Aに第1可動部材4A(傾倒軸16Aまわりに回転した第1可動部材4A)が当接した状態で操作レバー2Aが第1傾倒方向(D1方向)に更に傾倒操作されると、第2可動部材8Aが傾倒軸16Aまわりに回転する。但し、変形例では、上述した実施例1と同様、操作レバー2Aと当接することで同様の連動が実現されてもよい。
 第2磁性体80Aは、第1磁性体40AとY方向で隣り合う態様で設けられる。具体的には、第2磁性体80Aは、Y方向で第1磁性体40Aの両側及びX方向の正側(傾倒軸16Aから遠い側)に配置される。即ち、第2磁性体80Aは、第1磁性体40Aの3方を取り囲むように配置される。第2磁性体80Aは、好ましくは、吸引力発生機構1Aの薄型化(及びそれに伴うシフト装置の小型化)を図る観点及び磁束の流れを効率化させる観点(後述)から、第1磁性体40Aと同一の平面内(XY平面内)に延在する。同一の平面内とは、第1磁性体40A及び第2磁性体80Aとの間にZ方向で板厚分以上のオフセットを有しない態様であればよく、厳密に同一である必要はない。但し、変形例では、第1磁性体40A及び第2磁性体80AはZ方向に板厚分以上オフセットされてもよい。
 被係合部84Aは、第1可動部材4Aが傾倒軸16Aまわりに回転したときに第1可動部材4AとZ方向で当接(係合)するように設けられる。従って、被係合部84Aは、Z方向に視て、第1可動部材4Aと重なる。即ち、被係合部84Aは、第1可動部材4AのX方向の端部(傾倒軸16Aから遠い側の端部)側から上方に突出しかつX方向で傾倒軸16Aに向かう側へと延在する。
 第2磁性体80Aは、Y方向の端部が下側に向けて湾曲されてよい。第2磁性体80Aは、湾曲された部位が、磁石ホルダ60AのY方向の側部の上側に、Y方向で対向する。以下、このような湾曲された部位を、「湾曲部位801」と称する。
 非可動部材90は、磁性材料により形成される。非可動部材90は、第1可動部材4A及び第2可動部材8Aに対してZ方向で永久磁石6Aを挟んだ逆側、即ち永久磁石6Aよりも下側に設けられる。非可動部材90は、Z方向で第1可動部材4A及び第2可動部材8Aに対向する。また、非可動部材90は、磁石ホルダ60AのY方向の側部の下側に、Y方向で対向する側部91を有してよい。側部91は、第2磁性体80Aの湾曲部位801とZ方向で対向する。
 次に、吸引力発生機構1Aによる吸引力発生(クリック感創出)の原理について概説する。吸引力発生機構1Aにおいては、永久磁石6Aは、第1可動部材4Aの第1磁性体40A、第2可動部材8Aの第2磁性体80A、及び非可動部材90と協動して、磁力によるクリック感を創出する。
 図12A乃至図12Cは、吸引力発生機構1Aによる吸引力発生の原理の説明図であり、図12Aは、平面図であり、図12B及び図12Cは、第1磁性体40Aを通るYZ平面で切断した際の断面図である。図12A乃至図12Cは、説明図であり、磁石ホルダ60A等の図示は省略されている。図12Aには、傾倒軸16Aに係る軸Iが模式的に示されている。また、図12Bでは、磁束の流れが矢印R9で模式的に示され、図12Cでは、吸引力が矢印R10で模式的に示されている。
 図12Bでは、一例として、第1磁石61Aは、上側がN極であり、第2磁石62Aは、上側がS極である。このとき、図12Bに矢印R9で示すように、磁束の流れが生じ、図12Cに矢印R10で示すように、第1磁性体40A及び第2磁性体80Aと第1磁石61A及び第2磁石62Aとの間にはZ方向に吸引力が生じる。また、非可動部材90は、図12Bに示すように、第1磁石61A及び第2磁石62Aの下側で磁束の流れを形成し、第2磁性体80Aとの間にZ方向に吸引力が生じる。非可動部材90の側部91と第2磁性体80Aの湾曲部位801との間のギャップ(Z方向のギャップ)が比較的小さく、図12Bに矢印R9で示す磁束の流れを効率的に形成できる。また、第1磁性体40Aと第2磁性体80Aとが同一の平面内に位置するので、第1磁性体40Aと第2磁性体80Aとの間のZ方向のギャップ(オフセット)が略無く、図12Bに矢印R9で示す磁束の流れを効率的に形成できる。
 操作レバー2AがホームポジションHから第1傾倒方向(D1方向)に傾倒操作される過程において、上側表面2eが第1可動部材4Aに当接した後に、第1磁石61A及び第2磁石62Aからの吸引力に抗して第1磁性体40Aが第1可動部材4Aと一体に磁石ホルダ60Aから遠ざかる方向に回転されると、第1磁性体40Aが第1磁石61A及び第2磁石62Aから引き離されることで、クリック感が生じる。また、第1可動部材4Aが第2可動部材8Aの被係合部84Aに当接した後に、第1磁石61A及び第2磁石62A並びに非可動部材90からの吸引力に抗して第2磁性体80Aが第2可動部材8Aと一体に磁石ホルダ60Aから遠ざかる方向に回転されると、第2磁性体80Aが第1磁石61A及び第2磁石62Aから引き離されることで、クリック感が生じる。
 尚、操作レバー2A、第1可動部材4A、及び第2可動部材8Aは、操作レバー2AがホームポジションHから第1傾倒方向(D1方向)に傾倒操作される過程において、操作レバー2Aが第1可動部材4Aに当接した後に、第1可動部材4Aが第2可動部材8Aの被係合部84Aに当接するように形成される。これにより、異なる傾倒操作位置でクリック感(D1方向側で2段のクリック感)が創出される。
 ここで、実施例2においても、上述した実施例1と同様、図12Aに示すように、第1磁性体40Aと第2磁性体80Aとは、Z方向に視て重ならない。従って、実施例2によれば、第1磁性体及び第2磁性体がZ方向に視て互いに重なりつつ磁石に対向する比較例(図示せず)に比べて、第1磁性体40A及び第2磁性体80Aのそれぞれに生じる磁束の流れ、及び、第1磁性体40A及び第2磁性体80Aのそれぞれにおける第1磁石61A及び第2磁石62Aとの対向面積(Z方向の対向面積)が明確になる。この結果、吸引力の設計が容易であるとともに、個体ごとのばらつきを小さくできる。
 尚、実施例2では、第1磁石61A及び第2磁石62Aの2つの磁石が設けられるが、同様の極性を有する一の磁石(多極化された磁石)が用いられてもよい。但し、第1磁石61A及び第2磁石62Aを用いる場合は、多極化が不要であり、コストを低減できる。
 また、実施例2では、被係合部84Aは樹脂により形成されるが、被係合部84Aは、上述のように、磁性材料により形成されてもよい。この場合、被係合部84Aは、第2磁性体80Aの一部となりえ、Z方向視で第1磁性体40Aと重なる。即ち、第2磁性体80Aは、被係合部84Aに対応する部分だけが、Z方向視で第1磁性体40Aと重なる。しかしながら、この場合も、第2磁性体80Aは、Z方向視で第1磁性体40Aに実質的に重ならず、第1磁性体40A及び第2磁性体80Aのそれぞれにおける第1磁石61A及び第2磁石62Aと直接対向している面積が実質上変らないので、被係合部84Aが樹脂により形成される場合と同様の効果を得ることができる。
 次に、図13A乃至図13Cを参照して、上述した実施例2に対する一の変形例について説明する。以下の変形例において、上述した実施例1と同一であってよい構成要素については、同一の参照符号を付して説明を省略する。
 図13A乃至図13Cは、本変形例による吸引力発生の原理の説明図であり、図13Aは、平面図であり、図13B及び図13Cは、第1磁性体40Aを通るYZ平面で切断した際の断面図である。図13A乃至図13Cは、説明図であり、磁石ホルダ等の図示は省略されている。図13Aには、傾倒軸16Aに係る軸Iが模式的に示されている。また、図13Bでは、磁束の流れが矢印R11で模式的に示され、図13Cでは、吸引力が矢印R12で模式的に示されている。
 上述した実施例2では、第1磁石61A及び第2磁石62Aの2つの磁石が設けられるが、本変形例では、第1磁石61A及び第2磁石62Aに代えて、一の磁石63が設けられる。磁石63は、図13Aに示すように、Z方向視で、操作レバー2AがホームポジションHに位置する状態で第1磁性体40A及び第2磁性体80AにZ方向で対向する。
 図13Bでは、一例として、磁石63は、上側がN極である。このとき、図13Bに矢印R11で示すように、磁束の流れが生じる。この結果、図13Cに矢印R12で示すように、第1磁性体40A及び第2磁性体80Aと磁石63との間にはZ方向に吸引力が生じ、かつ、第2磁性体80Aと非可動部材90との間にはZ方向に吸引力が生じる。従って、本変形例によっても、上述した実施例2と同様の原理で、クリック感が生じる。
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
 例えば、上述した実施例1において、傾倒軸16は、ケース本体110に回転可能に支持されているが、これに限られない。例えば、上述した実施例2のように、傾倒軸16は、枠体(支持体の他の一例)に回転可能に支持されてもよい。この場合、枠体は、ケース本体110に対してX方向に平行な軸まわりに回転可能に支持されてもよい。
 本願は、日本特許庁に2017年11月24日に出願された特願2017-226214号の優先権を主張するものであり、その全内容を参照によりここに援用する。
1 吸引力発生機構
1A 吸引力発生機構
2 操作レバー
2a 突出部
2A 操作レバー
2c 上側表面
4 第1可動部材
4A 第1可動部材
6 永久磁石
6A 永久磁石
8 第2可動部材
8A 第2可動部材
16 傾倒軸
16A 傾倒軸
40 第1磁性体
40A 第1磁性体
42 取り付け片部
42A 取り付け片部
50 螺子
60 磁石ホルダ
60A 磁石ホルダ
61 第1磁石
61A 第1磁石
62 第2磁石
62A 第2磁石
63 磁石
70 枠体
80 第2磁性体
80A 第2磁性体
82 取り付け片部
82A 取り付け片部
84A 被係合部
90 非可動部材
91 側部
100 シフト装置
110 ケース本体
111 カバー
111a 貫通穴
112 シフトノブ
601 離隔部
801 湾曲部位

Claims (6)

  1.  操作基準位置から傾倒操作可能な操作部材と、
     前記操作部材を傾倒可能に支持する支持体と、
     前記操作部材の傾倒動作に連動して回転するように前記支持体に支持される第1可動部材と、
     前記操作部材の傾倒動作に連動して回転するように前記支持体に支持される第2可動部材と、
     磁性材料により形成され、前記第1可動部材に備えられる第1磁性体と、
     磁性材料により形成され、前記第2可動部材に備えられる第2磁性体と、
     前記操作部材が前記操作基準位置に位置する状態で前記第1磁性体及び前記第2磁性体に第1方向で対向するように前記支持体に支持される永久磁石とを含み、
     前記第1磁性体と前記第2磁性体とは、前記第1方向に視て重ならない、操作装置。
  2.  前記第1磁性体と前記第2磁性体とは、前記第1方向で前記永久磁石に対向する領域において、同一の平面内に延在する、請求項1に記載の操作装置。
  3.  前記永久磁石は、前記第1方向に交差する第2方向で隣り合う極性が異なる、請求項1又は2に記載の操作装置。
  4.  前記永久磁石は、第1磁石及び第2磁石とを含み、
     前記第1磁石及び前記第2磁石は、前記第1方向で互いに対して異なる磁性となる向きで、前記第2方向で並んで配置される、請求項3に記載の操作装置。
  5.  磁性材料により形成され、前記第1方向で前記第1磁性体及び前記第2磁性体に対して前記永久磁石を挟んで反対側に設けられ、前記支持体に支持される非可動部材を更に含む、請求項1~4のうちのいずれか1項に記載の操作装置。
  6.  前記第1可動部材、前記第2可動部材、前記第1磁性体、及び前記第2磁性体は、前記第1方向で前記永久磁石を挟んだ両側に、設けられる、請求項1~4のうちのいずれか1項に記載の操作装置。
PCT/JP2018/036677 2017-11-24 2018-10-01 操作装置 WO2019102718A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019556119A JP6800349B2 (ja) 2017-11-24 2018-10-01 操作装置
CN201880075651.3A CN111373343B (zh) 2017-11-24 2018-10-01 操作装置
EP18880634.3A EP3715999B1 (en) 2017-11-24 2018-10-01 Operating device
US16/870,021 US10802528B2 (en) 2017-11-24 2020-05-08 Operating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-226214 2017-11-24
JP2017226214 2017-11-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/870,021 Continuation US10802528B2 (en) 2017-11-24 2020-05-08 Operating device

Publications (1)

Publication Number Publication Date
WO2019102718A1 true WO2019102718A1 (ja) 2019-05-31

Family

ID=66630668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036677 WO2019102718A1 (ja) 2017-11-24 2018-10-01 操作装置

Country Status (5)

Country Link
US (1) US10802528B2 (ja)
EP (1) EP3715999B1 (ja)
JP (1) JP6800349B2 (ja)
CN (1) CN111373343B (ja)
WO (1) WO2019102718A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550397B1 (en) * 2016-11-29 2021-05-19 Alps Alpine Co., Ltd. Operation device and vehicular shifting apparatus using operation device
DE102018129239A1 (de) * 2018-11-20 2020-05-20 Inventus Engineering Gmbh Bedieneinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144905A (ja) 2000-11-16 2002-05-22 Niles Parts Co Ltd 自動変速機用シフト操作装置
JP2015149058A (ja) * 2014-01-07 2015-08-20 アルプス電気株式会社 操作装置及び該操作装置を用いた車両用シフト装置
WO2017138429A1 (ja) * 2016-02-10 2017-08-17 アルプス電気株式会社 操作装置、該操作装置を用いた車両用シフト装置
WO2017195432A1 (ja) * 2016-05-12 2017-11-16 アルプス電気株式会社 操作装置、該操作装置を用いた車両用シフト装置
JP2017226214A (ja) 2010-10-27 2017-12-28 ライズ インコーポレイテッド 三次元物体の造形プロセスおよび造形装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068393B2 (ja) * 2002-05-15 2008-03-26 株式会社東海理化電機製作所 シフト装置
JP5237748B2 (ja) * 2008-10-14 2013-07-17 アルプス電気株式会社 位置検知用磁石及び位置検知装置
KR101242910B1 (ko) * 2008-11-21 2013-03-12 가부시키가이샤 고마쓰 세이사쿠쇼 전기 레버 장치
GB2484452B (en) * 2010-07-27 2014-12-31 Penny & Giles Controls Ltd A control device
JP5885914B2 (ja) * 2010-09-28 2016-03-16 株式会社東海理化電機製作所 シフト装置
JP5976797B2 (ja) * 2012-05-30 2016-08-24 アルプス電気株式会社 シフト位置検知装置
DE102013206518A1 (de) * 2013-04-12 2014-10-16 Zf Friedrichshafen Ag Magnetfeldsensorvorrichtung, Betätigungsvorrichtung und Verfahren zur Bestimmung einer Relativposition
JP5871340B2 (ja) * 2014-01-27 2016-03-01 アルプス電気株式会社 多方向入力操作装置及び該多方向入力操作装置を用いた車両用シフト装置
JP6226425B2 (ja) * 2014-01-31 2017-11-08 アルプス電気株式会社 回転入力装置
JP5930226B2 (ja) * 2014-01-31 2016-06-08 アルプス電気株式会社 多方向入力操作装置及び該多方向入力操作装置を用いた車両用シフト装置
JP6440145B2 (ja) * 2015-04-17 2018-12-19 アルプス電気株式会社 操作装置、該操作装置を用いた車両用シフト装置
JP6501304B2 (ja) * 2015-06-18 2019-04-17 アルプスアルパイン株式会社 操作装置
JP6452155B2 (ja) * 2015-07-06 2019-01-16 アルプス電気株式会社 多方向操作装置及び該多方向操作装置を用いた車両用シフト装置
EP3550397B1 (en) * 2016-11-29 2021-05-19 Alps Alpine Co., Ltd. Operation device and vehicular shifting apparatus using operation device
WO2018110313A1 (ja) * 2016-12-15 2018-06-21 アルプス電気株式会社 操作装置及びその操作装置を用いた車両用シフト装置
CN110832429B (zh) * 2017-07-06 2021-02-09 阿尔卑斯阿尔派株式会社 换档装置
CN110869231B (zh) * 2017-07-11 2023-01-13 阿尔卑斯阿尔派株式会社 换档装置
JP6889097B2 (ja) * 2017-12-13 2021-06-18 アルプスアルパイン株式会社 操作装置
EP3736656B1 (en) * 2018-01-05 2022-12-28 Alps Alpine Co., Ltd. Operation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144905A (ja) 2000-11-16 2002-05-22 Niles Parts Co Ltd 自動変速機用シフト操作装置
JP2017226214A (ja) 2010-10-27 2017-12-28 ライズ インコーポレイテッド 三次元物体の造形プロセスおよび造形装置
JP2015149058A (ja) * 2014-01-07 2015-08-20 アルプス電気株式会社 操作装置及び該操作装置を用いた車両用シフト装置
WO2017138429A1 (ja) * 2016-02-10 2017-08-17 アルプス電気株式会社 操作装置、該操作装置を用いた車両用シフト装置
WO2017195432A1 (ja) * 2016-05-12 2017-11-16 アルプス電気株式会社 操作装置、該操作装置を用いた車両用シフト装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715999A4

Also Published As

Publication number Publication date
EP3715999A1 (en) 2020-09-30
JPWO2019102718A1 (ja) 2020-10-22
CN111373343B (zh) 2022-03-22
US20200264649A1 (en) 2020-08-20
US10802528B2 (en) 2020-10-13
CN111373343A (zh) 2020-07-03
JP6800349B2 (ja) 2020-12-16
EP3715999A4 (en) 2021-08-25
EP3715999B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
CN106067719B (zh) 发电开关
WO2019102718A1 (ja) 操作装置
JPWO2015068377A1 (ja) 発電装置
JP2007041948A (ja) 触覚情報提示用アクチュエータ
JP2015522239A (ja) 触覚アクチュエータ
WO2018110313A1 (ja) 操作装置及びその操作装置を用いた車両用シフト装置
US20220103053A1 (en) Tactile feedback mechanism
JP6501304B2 (ja) 操作装置
JP6800337B2 (ja) シフト装置
WO2018100924A1 (ja) 操作装置及びその操作装置を用いた車両用シフト装置
JP6369983B2 (ja) 操作感触可変式操作装置
WO2016021456A1 (ja) 発電入力装置
JP2019104423A (ja) 操作装置
WO2019138645A1 (ja) 操作装置
US11876425B2 (en) Vibrator support structure, vibration motor, and electronic device
WO2019009102A1 (ja) シフト装置
JP6876960B2 (ja) 発電装置及びそれを備えた入力装置
WO2018110339A1 (ja) 操作装置
US10608516B2 (en) Power generation device
WO2019135307A1 (ja) 操作装置
JP6899757B2 (ja) 操作装置
JP2006126485A (ja) 電磁アクチュエータおよびそれを用いた光デバイス
JP2023016238A (ja) 振動発生装置
JP5669446B2 (ja) 移動体の駆動機構
JP2006181082A (ja) 遊技機用ソレノイド及びそれを用いた遊技機用入賞装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880634

Country of ref document: EP

Effective date: 20200624