WO2019101174A1 - 锂离子电池隔板及其制造方法和含有此隔板的锂离子电池 - Google Patents

锂离子电池隔板及其制造方法和含有此隔板的锂离子电池 Download PDF

Info

Publication number
WO2019101174A1
WO2019101174A1 PCT/CN2018/117265 CN2018117265W WO2019101174A1 WO 2019101174 A1 WO2019101174 A1 WO 2019101174A1 CN 2018117265 W CN2018117265 W CN 2018117265W WO 2019101174 A1 WO2019101174 A1 WO 2019101174A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
lithium ion
ion battery
electrode material
electrode
Prior art date
Application number
PCT/CN2018/117265
Other languages
English (en)
French (fr)
Inventor
杜木挺
王晕
李强
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019101174A1 publication Critical patent/WO2019101174A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a lithium ion battery separator, a method of manufacturing the same, and a lithium ion battery including the separator.
  • Lithium-ion batteries are widely used in 3C digital, electric vehicles, energy storage and other fields due to their high energy density and no memory effect. At the same time, the safety performance of lithium-ion batteries has been a concern.
  • the positive active materials used in lithium ion batteries mainly include LiCoO 2 , NCM, NCA, LiMn 2 O 4 , etc. Due to the properties of the materials themselves, they are applied to the positive electrode of a lithium ion battery during the normal charging and discharging process of the battery.
  • the material can only deintercalate part of the lithium ion, and when the battery is overcharged, part of the lithium in the material that is not deintercalated will be removed from the positive electrode, forming lithium dendrites in the negative electrode, puncture the separator, causing positive and negative electrodes.
  • Short circuit see Figure 1 for a schematic diagram).
  • the main methods for preventing overcharging of the battery are as follows: 1. Adding a gas-producing additive to the battery, the additive only produces gas at a specific voltage (higher than the normal charging cut-off voltage), for example, a gas generating gas at 4.5V. Hexylbenzene, biphenyl, etc., when the battery is overcharged, the material can generate a gas (such as hydrogen) to increase the internal pressure of the battery, and the current interrupting device structure on the structural member is interrupted, so that the electrical connection of the battery is broken. Prevent the battery from further thermal runaway; 2.
  • the former has very high requirements for the gas generating sensitivity at a specific potential of the gas generating additive, and also has a very high requirement for the reliability of the current interrupting device structure, and when the battery is used for a long time, the gas generating additive Failure will occur, or the gas-producing additive will not produce a current interrupt device at a certain voltage after a certain amount of consumption, and the current interrupt device structure may also be opened due to non-abnormal reasons during use of the battery. Causes battery failure. The latter can only delay the occurrence of thermal runaway, and when the overcharge continues, there will still be thermal runaway.
  • an inorganic coating such as Al 2 O 3 coating
  • the present application is directed to a lithium-ion battery piercing separator, causing a short circuit between the positive and negative electrodes, resulting in a technical problem of thermal runaway, and a lithium ion battery separator, a method for manufacturing the same, and a lithium ion battery including the separator.
  • the present application provides a lithium ion battery separator comprising at least two layers of porous polymer membranes stacked, wherein an electrode material layer is disposed between two layers of stacked porous polymer membranes;
  • the electrode material layer contains an electrode active material that can be intercalated with lithium.
  • the present application provides a method of preparing a lithium ion battery separator, the method comprising: attaching an electrode material layer on at least one surface of at least one layer of a porous polymer film,
  • the electrode material layer contains an electrode active material capable of intercalating lithium, and then the porous polymer film to which the battery material layer is attached is laminated with at least one layer of the porous polymer film to encapsulate the electrode material layer, wherein adjacent The electrode material layer is attached to at least one of two surfaces of the two porous polymer films opposed to each other.
  • the present application provides a lithium ion battery comprising a positive electrode sheet, a negative electrode sheet, and a separator between the positive electrode sheet and the negative electrode sheet, wherein the separator is the lithium ion battery separator.
  • the separator provided by the present application is a separator encapsulating a layer of an electrode material, wherein the electrode material layer contains an electrode active material capable of intercalating lithium, and when the battery forms lithium dendrite in the negative electrode due to overcharging or other conditions, the lithium branch Crystallizing the porous polymer film adjacent to the negative electrode side, and the electrode material layer in the separator is electrically connected to the negative electrode through the lithium dendrite; when charging, the electrode material layer in the separator can obtain electrons from the negative electrode through the lithium dendrites, thereby Being "activated", excess lithium in the positive electrode can be embedded in the electrode material layer in the separator at this time, which can inhibit the further formation of lithium dendrites and prevent the lithium dendrite from piercing the separator, thereby solving the problem that the conventional lithium battery separator is
  • the lithium dendrite puncture causes a short circuit between the positive and negative electrodes, which in turn causes a technical problem of thermal runaway of the battery.
  • the present application provides a new method for preventing thermal runaway, which is different from the method in the background art in that the method of the present application can prevent the positive and negative electrodes from causing a short circuit due to lithium dendrite, which is essentially guaranteed. Abuse of batteries such as overcharge does not cause thermal runaway, thus ensuring absolute safety of the battery in the event of battery abuse such as overcharging.
  • FIG. 1 is a schematic view showing a failure mode of lithium dendrites overcharge in a conventional separator in the prior art.
  • FIG. 2 is a schematic diagram of a lithium dendrite overcharge protection mode of a separator according to an embodiment of the present application.
  • the lithium ion battery separator provided by the present application and a preparation method thereof are described in detail below with reference to specific embodiments.
  • the present application provides a lithium ion battery separator comprising at least two layers of porous polymer membranes stacked, wherein an electrode material layer is disposed between two layers of stacked porous polymer membranes.
  • the electrode material layer contains an electrode active material capable of intercalating lithium. It can also be said that an electrode material layer is sandwiched between two adjacent porous polymer films.
  • the separator provided in the present application is provided with an electrode material layer.
  • the electrode material layer in the separator can be "activated” by obtaining lithium from the negative electrode through lithium dendrites, and the excess lithium in the positive electrode can be
  • the electrode material layer embedded in the separator can inhibit the further formation of lithium dendrites and prevent the lithium dendrites from piercing the separator.
  • the porous polymer membrane on the positive side of the unpunctured can ensure the normal operation of the lithium ion battery.
  • the utility model does not affect the charging and discharging performance of the battery, thereby solving the technical problem that the traditional lithium ion battery separator is short-circuited by the lithium dendritic puncture and causing the battery to be out of control.
  • the electrode material layer is encapsulated between two layers of porous polymer films, or the two layers of the porous polymer film are packaged together to form the porous layer in two layers.
  • a closed receiving space is defined between the polymer films, and the electrode material layer is disposed in the receiving space; or, an electrode material layer is sandwiched between the adjacent two porous polymer films, and the electrode material layer is sandwiched Two-layer porous polymer film package. Therefore, the electrode material layer in the present application is encapsulated by two adjacent porous polymer films, thereby avoiding the electrode material layer falling out due to factors such as gas blowing or vibration during production and testing, thereby making the internal short circuit of the battery safe. problem.
  • the separator may be composed of only two porous polymer membranes, and an electrode material layer is disposed between the two porous polymer membranes. Further, the two porous polymer membranes may be packaged together. To encapsulate the electrode material layer; the separator may also be a multilayer porous polymer film, for example, a three-layer porous polymer film, and any two adjacent porous polymer films in the three-layer porous polymer film are disposed between The electrode material layer is then packaged together with two adjacent porous polymer films sandwiching the electrode material layer to encapsulate the electrode material layer.
  • the electrode material layer has a thickness of 1 ⁇ m to 50 ⁇ m, for example, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 21 ⁇ m, 22 ⁇ m, 23 ⁇ m, 24 ⁇ m, 25 ⁇ m, 26 ⁇ m, 27 ⁇ m, 28 ⁇ m, 29 ⁇ m, 30 ⁇ m, 31 ⁇ m, 32 ⁇ m, 33 ⁇ m, 34 ⁇ m, 35 ⁇ m, 36 ⁇ m, 37 ⁇ m, 38 ⁇ m, 39 ⁇ m, 40 ⁇ m, 41 ⁇ m, 42 ⁇ m, 43 ⁇ m, 44 ⁇ m, 45 ⁇ m,
  • the thickness of the porous polymer film per layer is from 5 ⁇ m to 50 ⁇ m, for example, 6 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 16 ⁇ m, 18 ⁇ m, 20 ⁇ m, 22 ⁇ m, 24 ⁇ m, 26 ⁇ m, 28 ⁇ m, or 30 ⁇ m. .
  • the thickness of the electrode material layer and the porous polymer film are synergistic, the thickness of the porous polymer film is too thin, and the particles in the lithium-incorporating electrode active material are easy to pierce the porous polymer film, affecting battery performance; The thickness of the polymer film is too thick, and the distance between the positive and negative electrodes is large, resulting in a low energy density of the lithium battery.
  • the electrode material layer has a porosity of 5% to 60%, for example, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, 32%, 34%, 36%, 38%, 40%, 42%, 44%, 46%, 48% 50%, 52%, 54%, 56%, 58%, 60%. It allows lithium ions to pass through while blocking electrons.
  • an inorganic material layer is further disposed between the electrode material layer and the porous polymer film; or, the surface of the electrode material layer or the side of the porous polymer film facing the electrode material layer
  • the surface is also attached with an inorganic material layer, that is, the inorganic material layer is located between the porous polymer film and the electrode material layer. Therefore, when the battery is out of control, the separator can be prevented from directly contacting the positive and negative electrodes, and the thermal runaway of the battery is delayed.
  • the inorganic material layer has a thickness of 10 nm to 10 ⁇ m, such as 10 nm, 50 nm, 100 nm, 500 nm, 800 nm, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, and the like.
  • the inorganic material layer includes inorganic particles, and in some embodiments of the present application, the inorganic particles in the inorganic material layer have a particle diameter of 100 nm to 1000 nm, such as 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, and the like. In some embodiments of the present application, the inorganic material layer has a porosity of 5% to 60%, such as 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%. , 50%, 55%, 60%, etc.
  • the inorganic particles in the inorganic material layer are inorganic particles commonly used in the art, including but not limited to boehmite particles, magnesium hydroxide particles, zirconium dioxide particles, aluminum oxide particles, and titanium dioxide particles.
  • the electrode material layer contains a lithium-intercalable electrode active material
  • the content of the lithium-intercalable electrode active material is 10% by weight to 60% by weight based on the total mass of the electrode material layer; For example, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, 32% by weight, 34% by weight, 36% by weight, 38% by weight, 40% by weight, 42% by weight, 44% by weight, 46% by weight, 48% by weight, 50% by weight, 52% by weight, 54% by weight, 56% by weight, and 58% by weight %, 60% by weight.
  • the higher the content of the lithium-ionable electrode active material the higher the acceptance capacity for excess lithium and the higher the safety of the battery. Conversely, the lower the acceptance capacity for excess lithium, the lower the safety of the battery.
  • the lithium-ionable electrode active material has a particle diameter of 10 nm to 100 ⁇ m, such as 10 nm, 50 nm, 100 nm, 500 nm, 800 nm, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, etc.
  • the lithium-ionable electrode active material has a particle diameter of 10 nm to 500 nm, such as 10 nm, 30 nm, 50 nm, 80 nm, 100 nm, 120 nm, 150 nm, 170 nm, 190 nm, 200 nm, 230 nm.
  • the lithium-ionable electrode active material is selected from one or more of a silicon-based material, a tin-based material, an aluminum-based material, a ruthenium-based material, a titanium-based material, and a transition metal nitride; In some embodiments of the application, the lithium-intercalable electrode active material is selected from one or more of a silicon-based material, a tin-based material.
  • the silicon-based material is selected from one or more of silicon, silicon oxide, silicon carbon composite material, and silicon alloy (such as AgSi);
  • the tin-based material is selected from tin oxide, tin-based composite oxide, One or more of tin salt, stannate and tin alloy (such as SnSb, SnAg, Sn 2 Co, Sn 2 Mn, CuSn, etc.);
  • aluminum-based material is selected from aluminum metal and aluminum alloy (such as AlSb, Al 2 One or more of Cu);
  • the cerium-based material is selected from the group consisting of base metals and cerium alloys (such as GaSb, InSb, Sb 2 Ti, Sb 2 V, Ge 2 Fe, Cu 2 Sb, Cr 2 Sb) Or several;
  • the titanium-based material is an oxide of titanium selected from one or more of TiO 2 , a spinel structure of LiTi 2 O 4 and Li 4/3 Ti 5/3 O 4 Kind.
  • a silicon-based material is used as an electrodepositable material capable of intercalating lithium, because such a material has a high specific capacity (3000 mAh/g), and has a large volume expansion after lithium insertion, which can not only increase the positive and negative electrodes. Distance can also increase the charging impedance.
  • the electrode material layer further contains a binder in an amount of from 1% by weight to 30% by weight based on the total mass of the electrode material layer; for example, 1% by weight, 2% by weight 3 wt%, 5 wt%, 7 wt%, 9 wt%, 11 wt%, 13 wt%, 15 wt%, 17 wt%, 19 wt%, 21 wt%, 23 wt%, 25 wt%, 27 % by weight or 30% by weight.
  • a binder in an amount of from 1% by weight to 30% by weight based on the total mass of the electrode material layer; for example, 1% by weight, 2% by weight 3 wt%, 5 wt%, 7 wt%, 9 wt%, 11 wt%, 13 wt%, 15 wt%, 17 wt%, 19 wt%, 21 wt%, 23 wt%, 25 wt%, 27 % by weight or 30% by weight.
  • the binder is selected from the group consisting of polyacrylonitrile, styrene butadiene rubber, polyvinylidene fluoride, polytetrafluoroethylene, sodium carboxymethyl cellulose, polyacrylate, polyurethane, epoxy resin, polymethyl One or more of a base cellulose, a sodium polymethyl cellulose, a hydroxypropyl methyl cellulose, and a polypropylene alcohol; in other embodiments of the present application, the binder is selected from the group consisting of polyacrylonitrile and butylbenzene. One or more of rubber, polyvinylidene fluoride and sodium carboxymethylcellulose; in other embodiments of the present application, the binder is styrene butadiene rubber, polyacrylonitrile, and sodium carboxymethylcellulose.
  • the electrode material layer further contains a conductive agent in an amount of from 1% by weight to 80% by weight based on the total mass of the electrode material layer; for example, 1% by weight, 3% by weight 5 wt%, 7 wt%, 9 wt%, 11 wt%, 13 wt%, 15 wt%, 17 wt%, 19 wt%, 20 wt%, 21 wt%, 23 wt%, 25 wt%, 27% by weight, 29% by weight, 31% by weight, 33% by weight, 35% by weight, 37% by weight, 39% by weight, 40% by weight, 41% by weight, 43% by weight, 45% by weight, 47% by weight, 49% by weight %, 51% by weight, 53% by weight, 55% by weight, 57% by weight, 59% by weight, 60% by weight, 61% by weight, 63% by weight, 65% by weight, 67% by weight, 69% by weight, 71% by weight,
  • the conductive agent is selected from one or more of graphene, conductive carbon black, carbon nanotubes, and metal powder.
  • the electrode material layer contains both an electrode active material capable of intercalating lithium, a binder, and a conductive agent.
  • the electrode active material, the binder and the conductive agent capable of intercalating lithium are simultaneously within the above content range, thereby ensuring that the electrode material layer has good conductivity and bonding at the same time. Strength and excess lithium acceptance capacity. If the content of the electrodepositable material capable of intercalating lithium is higher, the higher the content of the conductive agent, the better the conductivity of the electrode material layer, and the more sensitive the reaction when the lithium dendrite is punctured, or the higher the binder content, the entire electrode layer.
  • the content of the conductive agent is lowered at the same time, the sensitivity to the safety reaction is lowered, and if the binder content is simultaneously lowered, the electrode layer is liable to be poorly bonded, and there is a risk of material short-circuiting.
  • the content of the binder is lower, the content of the electrode active material or the conductive agent can be higher, the lithium layer can be inserted into the electrode layer or the reaction sensitivity can be increased; the higher the binder content, the higher the bonding strength to the electrode layer. High, it can prevent short-circuit accidents caused by poor bonding and material layer loss.
  • the higher the content of conductive agent the better the conductivity of the electrode material layer, and the higher the sensitivity to the safety accident.
  • the content of the conductive agent is too high, it will occupy the specific gravity of the electrode active material and/or the specific gravity of the binder. When the specific gravity of the electrode material of lithium is lowered, the ability of the electrode material layer to accommodate excess lithium is lowered. When the specific gravity of the binder is lowered, the adhesion of the electrode material layer is lowered, and the short-circuit is easily caused by the material.
  • the material of the porous polymer film is a base film commonly used in the art.
  • the material of the porous polymer film is selected from the group consisting of a polypropylene resin and a polyethylene copolymer, and a polypropylene resin.
  • a polypropylene resin and a polyethylene copolymer
  • a polypropylene resin One or more of polyethylene, polyvinylidene fluoride, PET nonwoven fabric and polyethylene nonwoven fabric.
  • two adjacent porous polymer films may be the same or different, or two porous polymer films encapsulated in a bag-shaped separator using two porous polymer films may be the same or different.
  • each of the porous polymer films is divided into an electrode material layer attachment region and a package region, the package region being located on at least one side of the electrode material layer attachment region, adjacent to two layers of porous
  • the polymer film is packaged together by the encapsulation region; or two adjacent porous polymer films are encapsulated by the encapsulation side (ie, the encapsulation region) of the porous polymer film, the package side having a width of 0.5 mm to 20 mm, for example , 0.5 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, mm, mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 14 mm, 15 mm, 16 mm, 17 mm, 18 mm, 19 mm, 20 mm.
  • the package side is too narrow to facilitate the package to form a bag-shaped separator; the package side is too wide, the surface area of the electrode material layer is reduced, the probability
  • the encapsulation zone may be disposed on one side, two sides, three sides of the porous polymer film, or around the periphery of the porous polymer film.
  • the separator may be folded back by the same porous polymer film, and the aligned three-side package is formed into a bag separator, that is, the edge of the three sides is a package area;
  • the two porous polymer membranes are aligned on four sides, and the package is formed into a bag type separator, that is, the outer peripheral edge of each layer of the porous polymer outer film is a package area; wherein the materials of the adjacent two porous polymer films may be the same or different.
  • the material of the porous polymer film near the negative electrode side is polyethylene.
  • the porous polymer film near the negative electrode side will preferentially rupture or melt so that the electrode in the negative electrode and the separator.
  • the material layer is in contact, the lithium in the negative electrode is embedded in the electrode material layer after the contact between the two, and the surface of the electrode material layer reacts with the electrolyte to form a SEI film, and a large amount of gas is generated in the process, and the gas can break through the explosion-proof valve. Or start the current interrupt device in the battery to prevent the battery from being out of control one step at a time, thus protecting the battery.
  • the present application also provides a method of preparing a lithium ion battery separator, the method comprising: attaching an electrode material layer on at least one side surface of at least one layer of a porous polymer film, the electrode material The layer contains an electrode active material capable of intercalating lithium, and then the porous polymer film to which the battery material layer is attached is laminated with at least one layer of the porous polymer film to encapsulate the electrode material layer, wherein two adjacent layers The electrode material layer is attached to at least one of the two surfaces of the porous polymer film opposed to each other.
  • each of the porous polymer film is divided into an electrode material layer attachment region and a package region, and the package region is located on at least one side of the electrode material layer attachment region.
  • the method further includes: The electrode material layer is attached only to the electrode material layer adhesion region, and then the adjacent two layers of the porous polymer film are packaged together through the package region.
  • the method may further include the following steps: Step 1. Two adjacent porous polymer films have opposite surfaces, and at least one of the opposite two surfaces is attached to the electrode material. In the layer, two porous polymer films sandwiching the electrode material layer are obtained; in step 2, two adjacent porous polymer films sandwiching the electrode material layer are encapsulated to obtain a lithium ion battery separator.
  • the electrode material layer is formed by mixing a binder, a conductive agent, a lithium-intercalable electrode active material, stirring, vacuum defoaming to obtain an electrode material slurry, and the electrode material slurry.
  • the material is attached to the surface of the porous polymer film and dried to obtain a layer of the electrode material; or the binder, the conductive agent, the lithium-ionable electrode active material are mixed, stirred, and vacuum defoamed to obtain an electrode material slurry, and the electrode is
  • the material slurry is adhered to the surface of at least one layer of the porous polymer film of the adjacent two porous polymer films, and dried to obtain two porous polymer films sandwiching the electrode material layer;
  • the binder and the solvent may be uniformly mixed, and then the conductive agent is uniformly mixed. Finally, the lithium-active electrode active material is added, stirred, and vacuum defoamed to obtain an electrode material slurry.
  • the content of the lithium intercalable electrode active material is 10% by weight to 60% by weight, such as 10% by weight, based on the total amount of the electrode material slurry. 15% by weight, 20% by weight, 25% by weight, 30% by weight, 35% by weight, 40% by weight, 45% by weight, 50% by weight, 55% by weight, 60% by weight;
  • the content of the binder is 1 % by weight to 30% by weight, such as 1% by weight, 5% by weight, 10% by weight, 15% by weight, 20% by weight, 25% by weight, 30% by weight;
  • the content of the conductive agent is from 1% by weight to 20% by weight , such as 1% by weight, 5% by weight, 10% by weight, 15% by weight, 20% by weight;
  • the content of the solvent is 38% by weight to 80% by weight, such as 40% by weight, 45% by weight, 50% by weight, 55 Weight%, 60% by weight, 65% by weight, 70% by weight, 75% by weight, and 80% by weight.
  • the drying temperature is 40 ° C - 80 ° C (such as 40 ° C, 45 ° C, 50 ° C, 55 ° C, 60 ° C, 65 ° C, 70 ° C, 75 ° C, 80 ° C), dried
  • the time is 4min-60min (such as 5min, 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min, 60min), and the drying rate is 1m/min-10m/min (such as 1m/min, 2m).
  • the drying is a section drying, wherein the temperature is 40 ° C - 60 ° C in the first temperature stage (eg, 42 ° C, 44 ° C, 46 ° C, 48 ° C, 50 ° C, 52 ° C, 54 ° C, 56 ° C, 58) °C, 60 ° C), the time is 1min-15min (such as 1min, 2min, 3min, 4min, 5min, 6min, 7min, 8min, 9min, 10min, 11min, 12min, 13min, 14min, 15min); the second temperature stage, temperature 60 ° C -80 ° C (such as 62 ° C, 64 ° C, 66 ° C, 68 ° C, 70 ° C, 72 ° C, 74 ° C, 76
  • the electrode material layer when the electrode material layer is formed, the electrode material layer is formed only on the electrode material adhesion region of the porous polymer film, that is, the edge of the porous polymer film is the package side of the electrode material layer not attached (ie, the package) Area). Specifically, an edge of the porous polymer film to which the electrode material layer is attached is not attached with an electrode material layer, an edge of the unattached electrode material layer is an encapsulation side, and/or the electrode material layer is not attached The edge of the porous polymer film is the encapsulating side.
  • the width of the package side is 0.5 mm to 20 mm, for example, 0.5 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, mm, mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 14 mm, 15mm, 16mm, 17mm, 18mm, 19mm, 20mm. If the width is too narrow, it is not convenient for the package to form a bag-shaped separator; if the width is too wide, the surface area of the electrode material layer is reduced, and the probability of the lithium dendrite being needled to the blank edge region is increased, and the safety is poor.
  • the attachments described herein include conventional techniques in the field of separators such as coating, coating, spray coating, screen printing, electrospinning, coaxial spinning, etc., that is, electrode material slurry can be utilized.
  • An electrode material layer is formed on the surface of the porous polymer film by coating, coating, spraying, screen printing, electrospinning, coaxial spinning, or the like.
  • the method of encapsulating two adjacent porous polymer films may be hot pressing, cold pressing or bonding.
  • the slurry of the electrode material may be attached to the slurry adhesion region of the porous polymer film (ie, the electrode material layer adhesion region), and after drying, the porous polymerization layer having the electrode material layer adhered on the surface may be obtained.
  • the electrode material layer is bonded to another porous polymer film, and the two porous polymer films are pressed by hot pressing, cold pressing or bonding to obtain a bag type separator in which the electrode material layer is sealed.
  • the electrode material slurry may further contain a solvent, and the solvent used may be various solvents conventionally used in the art for preparing an electrode slurry for a lithium ion battery.
  • the solvent is water, N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), One or more of methyl sulfoxide (DMSO), 1,2-propylene glycol carbonate, alcohol, tetrahydrofuran, and acetone.
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • DMAc N,N-dimethylacetamide
  • DMSO methyl sulfoxide
  • 1,2-propylene glycol carbonate 1,2-propylene glycol carbonate
  • alcohol tetrahydrofuran
  • acetone 1,2-propylene glycol carbonate
  • the solvent is water and/or acetone.
  • the solvent is water.
  • the present application further provides a lithium ion battery including a positive electrode sheet, a negative electrode sheet, and a separator between the positive electrode sheet and the negative electrode sheet, wherein the separator is the lithium ion battery described above. Partition.
  • the battery may be used in conjunction with a CID structure.
  • the electrode material layer in the separator is electrically connected to the negative electrode through the lithium dendrite, the excess lithium in the positive electrode is first embedded in the electrode material layer, and the electrode material is in the electrode material.
  • the SEI film is formed on the surface of the layer to generate a large amount of gas (mainly CH 4 , C 2 H 6 , C 2 H 4 , CO 2 , CO, etc.), and the CID structure is opened due to an increase in gas pressure, thereby causing the battery to open and close. , terminated the occurrence of thermal runaway.
  • the silicon-based material is used as the lithium-ionable electrode active material in the electrode material layer. As the silicon-based material expands, the material is pulverized, the specific surface area is increased, and the gas production is larger, and the CID structure is opened and the explosion-proof valve is opened. advantageous.
  • PVDF Polyvinylidene fluoride binder
  • SBR styrene-butadiene rubber binder with a solid content of 40%
  • CMC sodium carboxymethyl cellulose
  • the binder was mixed with the solvent, stirred at 1000 rpm for 70 min to make the dispersion uniform, and then the conductive agent was added in parts by weight in Table 1, and stirred at 1200 rpm for 30 min (this step can be skipped without the conductive agent formulation)
  • the lithium-ionable electrode active material was added in parts by weight in Table 1, and the mixture was uniformly dispersed by stirring at 1500 rpm for 120 minutes at 60 ° C or less.
  • the uniformly dispersed mixture was vacuum-deaerated and sieved through a 100-mesh sieve to remove large particles, thereby obtaining an electrode material slurry SA1-electrode material slurry SA9.
  • the electrode material slurry SA1-electrode material slurry SA9 was coated on one side of the porous polymer film by a transfer coater (substrate size: 500 cm (length) ⁇ 47 cm (width)), porous polymer film
  • the edge left 0.5cm blank is not coated with the electrode material slurry, and enters the drying process.
  • the drying temperature is divided into four sections, which are 40°C-60°C, 60°C-70°C, 70°C-80°C and 60°C-40°C, respectively.
  • a lithium ion battery SB1-battery SB9 was fabricated using the above separator SP1-separator SP9.
  • the three-layer composite separator DA1 (the two sides of the polyethylene film are respectively combined with the conductive layer) in CN201310119689.5 is used.
  • a lithium ion battery DB1 was fabricated using the separator DA1.
  • the existing conventional lithium ion battery separator three-layer composite separator DA2 (two-layer PE non-woven fabric and ceramic coating composited between two PE nonwoven fabrics) is used.
  • a lithium ion battery DB2 was fabricated using the separator DA2.
  • the lithium ion battery to be tested is charged to 4.2V with a current of 0.1C, and after being left for 2h, the battery to be tested is charged to 6.5V with a constant current of 1C or the time is 1h, and the maximum temperature of the surface of the battery and the battery are recorded. After the charge is turned off.
  • the test results are shown in Table 2.
  • the comparative battery DB1-battery DB2 which does not use the separator of the present application has a high temperature when overcharged, and the battery has a thermal runaway state such as a fire or an explosion; wherein the conductive agent is directly used as the separator DB1 Battery safety is worse than DB2 battery using ceramic coating as separator.
  • the reason is that when the separator layer shrinks under thermal runaway condition, the conductive layer directly connects the positive and negative electrodes, which accelerates the occurrence of safety accidents; The layer can block the positive and negative electrodes for a certain period of time, but the further formed lithium dendrites will pierce the ceramic insulating layer and connect the positive and negative electrodes, resulting in a safety accident.
  • the battery SB1-battery SB9 prepared by using the embodiment of the present application does not have a thermal runaway state such as fire or explosion, and only the inside of the battery generates more gas, so that the battery is blown and the explosion-proof valve is opened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了锂离子电池隔板及其制造方法和含有此隔板的锂离子电池,所述电池隔板包括至少两层层叠设置的多孔聚合物膜,其中,两层层叠设置的多孔聚合物膜之间设置有电极材料层;所述电极材料层含有可嵌锂的电极活性材料。

Description

锂离子电池隔板及其制造方法和含有此隔板的锂离子电池
相关申请的交叉引用
本申请要求于2017年11月24日提交中国专利局、申请号为201711186886.3、申请名称为“一种锂离子电池隔板及其制造方法和含有此隔板的锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池隔板及其制造方法和含有此隔板的锂离子电池。
背景技术
锂离子电池因其能量密度高,无记忆效应等优势,被大量应用于3C数码、电动汽车、储能等领域。与此同时,锂离子电池的安全性能一直为人所关注。目前锂离子电池使用的正极活性材料主要有LiCoO 2、NCM、NCA、LiMn 2O 4等,由于该种类材料本身的性能,将其应用于锂离子电池正极中,在电池正常充放电过程中该种材料只能脱嵌部分锂离子,而当电池出现过充时,这类材料中未脱嵌的部分锂会从正极中脱出来,在负极形成锂枝晶,穿刺隔板,造成正负极短路(示意图参见图1)。
目前防止电池过充的方法主要有:1、在电池中加入可产气的添加剂,该类添加剂只在特定电压(高于正常充电截止电压)下产气,例如在4.5V下产气的环己基苯、联苯等,当电池发生过充时,该类材料能够产生气体(例如氢气),以增大电池内部压力,启动结构件上的电流中断装置结构,使得电池的电连接断开,阻止电池进一步热失控;2、在负极上涂布无机涂层(例如Al 2O 3涂层),当电池发生热失控时,以避免当隔板收缩时正负极之间直接接触造成短路。但是,上述方法中,前者对产气添加剂特定电位下的产气灵敏度有非常高的要求,同时对于电流中断装置结构的可靠性也有非常高的要求,且当电池长时间使用后,产气添加剂会发生失效,或者产气添加剂在消耗一定量后,在特定电压下产气不足,无法启动电流中断装置,同时,电流中断装置结构也可能因为电池在使用过程中因为非异常的原因而开启,导致电池失效。后者则只能延缓热失控的发生,当过充持续进行时,仍然会出现热失控。
发明内容
本申请针对锂枝晶刺穿隔板,造成正负极短路,导致热失控的技术问题,特提供了锂 离子电池隔板及其制造方法和含有此隔板的锂离子电池。
在本申请的一个方面,本申请提供了一种锂离子电池隔板,包括至少两层层叠设置的多孔聚合物膜,其中,两层层叠设置的多孔聚合物膜之间设置有电极材料层;所述电极材料层含有可嵌锂的电极活性材料。
在本申请的另一个方面,本申请提供了一种锂离子电池隔板的制备方法,所述制备方法包括:在至少一层多孔聚合物膜的至少一侧表面上附着电极材料层,所述电极材料层含有可嵌锂的电极活性材料,然后将该附着有电池材料层的多孔聚合物膜与至少一层所述多孔聚合物膜层叠设置,以封装所述电极材料层,其中,相邻两层所述多孔聚合物膜彼此相对的两个表面中的至少一个上附着有所述电极材料层。
在本申请的又一个方面,本申请提供了一种锂离子电池,包括正极片、负极片及位于正极片和负极片之间的隔板,所述隔板为上述锂离子电池隔板。
本申请提供的隔板为封装有电极材料层的隔板,所述电极材料层中含有可嵌锂的电极活性材料,当电池因为过充或其他情况下在负极形成锂枝晶时,锂枝晶穿刺临近负极一侧的多孔聚合物膜,隔板中的电极材料层通过锂枝晶与负极导通;在充电时,隔板中的电极材料层可以通过锂枝晶从负极获得电子,从而被“激活”,此时正极中的过剩锂可以嵌入到隔板中的电极材料层中,可以抑制锂枝晶的进一步生成,防止锂枝晶刺穿隔膜,从而解决了传统锂电池隔板被锂枝晶穿刺造成正负极短路、进而引发电池热失控的技术问题。
本申请提供了一种新的防热失控的方法,与本文背景技术中的方法的区别在于,本申请的方法可以从根源上阻止正负极因为锂枝晶而造成短路,从本质上保证了过充等电池滥用不会导致热失控,从而保证了电池在过充等电池滥用状态下的绝对安全。
附图说明
图1为现有技术中普通隔板锂枝晶过充失效模式示意图。
图2为本申请一实施例中隔板锂枝晶过充保护模式示意图。
具体实施方式
以下结合具体实施例详细说明本申请提供的锂离子电池隔板及其制备方法。
在本申请的一个方面,本申请提供一种锂离子电池隔板,包括至少两层层叠设置的多孔聚合物膜,其中,两层层叠设置的多孔聚合物膜之间设置有电极材料层,所述电极材料层含有可嵌锂的电极活性材料。也可以说,相邻两层多孔聚合物膜间夹持有电极材料层。 本申请提供的隔板设置有电极材料层,当电池因为过充或其他情况下在负极形成锂枝晶时,锂枝晶穿刺邻近负极一侧的多孔聚合物膜,隔板中的电极材料层通过锂枝晶与负极导通(示意图参见图2);在充电时,隔板中的电极材料层可以通过锂枝晶从负极获得电子,从而被“激活”,此时正极中的过剩锂可以嵌入到隔板中的电极材料层中,可以抑制锂枝晶的进一步生成,防止锂枝晶刺穿隔膜,同时,未被刺破的正极一侧的多孔聚合物膜可以保证锂离子电池正常工作,不影响电池的充放电性能,从而解决了传统锂离子电池隔板被锂枝晶穿刺造成正负极短路、进而引发电池热失控的技术问题。
根据申请的一些实施例,所述电极材料层封装在两层层叠设置的多孔聚合物膜之间,或者说两层层叠设置的所述多孔聚合物膜封装在一起,以在两层所述多孔聚合物膜之间限定出封闭的容纳空间,所述电极材料层设置在所述容纳空间中;或者说,相邻两层多孔聚合物膜间夹持有电极材料层,夹持有电极材料层的两层多孔聚合物膜封装。由此,本申请中电极材料层被相邻的两层多孔聚合物膜封装起来,避免了生产和测试过程中由气体鼓吹或震动等因素导致的电极材料层掉料,致使电池内部短路的安全问题。
本申请的一些实施例中,隔板可以是只含有两层多孔聚合物膜,这两层多孔聚合物膜间设置有电极材料层,进一步的,可以将这两层多孔聚合物膜封装在一起,以封装所述电极材料层;隔板也可以是含有多层多孔聚合物膜,例如,三层多孔聚合物膜,三层多孔聚合物膜中任意相邻两层多孔聚合物膜间设置有电极材料层,再将夹持有电极材料层的相邻两层多孔聚合物膜封装在一起,以封装所述电极材料层。
本申请的一些实施例中,电极材料层的厚度为1μm-50μm,例如,1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm、15μm、16μm、17μm、18μm、19μm、20μm、21μm、22μm、23μm、24μm、25μm、26μm、27μm、28μm、29μm、30μm、31μm、32μm、33μm、34μm、35μm、36μm、37μm、38μm、39μm、40μm、41μm、42μm、43μm、44μm、45μm、46μm、47μm、48μm、49μm、50μm;电极材料层的厚度越小,对电解液中的离子传输阻力越小,使用该种隔板的电池具有较低的阻抗,较好的功率性能;电极材料层的厚度越大,电极层的储锂能力越强,对于失控状态下的过剩锂容纳度越高,安全性更好。
本申请的一些实施例中,每层所述多孔聚合物膜的厚度为5μm-50μm,例如,6μm、8μm、10μm、12μm、14μm、16μm、18μm、20μm、22μm、24μm、26μm、28μm或30μm。本申请中,电极材料层和多孔聚合物膜的厚度存在协同作用,多孔聚合物膜的厚度过薄,可嵌锂的电极活性材料中的颗粒易刺破多孔聚合物膜,影响电池性能;多孔聚合物膜的厚度过厚,正负极间距大,致使锂电池的能量密度低。
本申请的一些实施例中,电极材料层的孔隙率为5%-60%,例如,5%、6%、7%、8%、9%、10%、11%、12%、14%、16%、18%、20%、22%、24%、26%、28%、30%、32%、34%、36%、38%、40%、42%、44%、46%、48%、50%、52%、54%、56%、58%、60%。可以使锂离子正常穿过的同时阻隔电子。电极材料层的孔隙率越大,对电解液的离子传输阻力越小,电池的功率性能越好;孔隙率越小,对电解液的离子传输阻力越大,电池的功率性能越差。
本申请的一些实施例中,所述电极材料层和所述多孔聚合物膜之间还设置有无机材料层;或者可以说,电极材料层的表面或者多孔聚合物膜朝向电极材料层的一侧表面还附着有无机材料层,即无机材料层位于多孔聚合物膜与电极材料层之间。由此,当电池发生热失控,隔板收缩时可以避免正负极直接接触,延缓电池热失控的发生。本申请的一些实施例中,无机材料层的厚度为10nm-10μm,如10nm、50nm、100nm、500nm、800nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm等。
本申请的一些实施例中,所述无机材料层包括无机颗粒,在本申请的一些实施例中,无机材料层中的无机颗粒的粒径为100nm-1000nm,如100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm等。本申请的一些实施例中,所述无机材料层的孔隙率为5%-60%,如5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%等。
本申请的一些实施例中,无机材料层中的无机颗粒为本领域常用的无机颗粒,包括并不限于勃母石颗粒、氢氧化镁颗粒、二氧化锆颗粒、三氧化二铝颗粒、二氧化钛颗粒、二氧化硅颗粒、硫酸钡颗粒、钛酸钡颗粒、碳酸钙颗粒、氧化镁颗粒、氧化锌颗粒、碳化硅颗粒和氮化硼颗粒中的一种或几种。
本申请的一些实施例中,电极材料层含有可嵌锂的电极活性材料,以电极材料层的总质量为基准,所述可嵌锂的电极活性材料的含量为10重量%-60重量%;例如,10重量%、12重量%、14重量%、16重量%、18重量%、20重量%、22重量%、24重量%、26重量%、28重量%、30重量%、32重量%、34重量%、36重量%、38重量%、40重量%、42重量%、44重量%、46重量%、48重量%、50重量%、52重量%、54重量%、56重量%、58重量%、60重量%。可嵌锂的电极活性材料含量越高,则对于过剩锂的接纳容量越高,电池的安全性也越高,反之则对于过剩锂的接纳容量越低,电池的安全性也越低。
本申请的一些实施例中,可嵌锂的电极活性材料的粒径为10nm-100μm,如10nm、50nm、100nm、500nm、800nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm等,本申请的一些实施例中,可嵌锂的电极活性材料的粒径为10nm-500nm,如10nm、30nm、50nm、80nm、100nm、120nm、150nm、170nm、190nm、200nm、230nm、250nm、280nm、300nm、320nm、340nm、360nm、380nm、400nm、420nm、44 0nm、460nm、480nm、500nm等。可嵌锂的电极活性材料的粒径越小,离子电导率越高,有锂枝晶穿刺时,嵌锂速度越快,对于安全事故的反应灵敏度越高;可嵌锂的电极活性材料的粒径越大,离子电导率越低,反应灵敏度越低。
本申请的一些实施例中,可嵌锂的电极活性材料选自硅基材料、锡基材料、铝基材料、锑基材料、钛基材料、过渡金属氮化物中的一种或几种;本申请的一些实施例中,可嵌锂的电极活性材料选自硅基材料、锡基材料中的一种或几种。具体的,硅基材料选自硅、硅的氧化物、硅碳复合材料和硅合金(如AgSi)中的一种或几种;锡基材料选自锡的氧化物、锡基复合氧化物、锡盐、锡酸盐和锡合金(如SnSb、SnAg、Sn 2Co、Sn 2Mn、CuSn等)中的一种或几种;铝基材料选自铝金属和铝合金(如AlSb、Al 2Cu)中的一种或几种;锑基材料选自锑金属和锑合金(如GaSb、InSb、Sb 2Ti、Sb 2V、Ge 2Fe、Cu 2Sb、Cr 2Sb)中的一种或几种;钛基材料为钛的氧化物,所述钛的氧化物选自TiO 2、尖晶石结构的LiTi 2O 4和Li 4/3Ti 5/3O 4中的一种或几种。
本申请的一些实施例中,采用硅基材料作为可嵌锂的电极活性材料,因为此类材料的比容量较高(3000mAh/g),在嵌锂后体积膨胀大,不仅可以增大正负极的距离,还可以增大充电阻抗。
本申请的一些实施例中,电极材料层还含有粘结剂,以电极材料层的总质量为基准,粘结剂的含量为1重量%-30重量%;例如,1重量%、2重量%、3重量%、5重量%、7重量%、9重量%、11重量%、13重量%、15重量%、17重量%、19重量%、21重量%、23重量%、25重量%、27重量%或者30重量%。粘结剂含量越低,则粘接牢固度越低,引起电极材料层掉料而导致电池内部短路的可能性越高,而粘接剂含量越高,对于电极层的粘接强度越高,可以防止粘接不牢以及电极材料层掉料导致的短路事故。
本申请的一些实施例中,粘结剂选自聚丙烯腈、丁苯橡胶、聚偏氟乙烯、聚四氟乙烯、羧甲基纤维素钠、聚丙烯酸酯、聚氨酯、环氧树脂、聚甲基纤维素、聚甲基纤维素钠、羟 丙基甲基纤维素和聚丙烯醇中的一种或几种;本申请的另一些实施例中,粘结剂选自聚丙烯腈、丁苯橡胶、聚偏氟乙烯和羧甲基纤维素钠中的一种或几种;本申请的另一些实施例中,粘结剂为丁苯橡胶、聚丙烯腈和羧甲基纤维素钠。
本申请的一些实施例中,电极材料层还含有导电剂,以电极材料层的总质量为基准,所述导电剂的含量为1重量%-80重量%;例如,1重量%、3重量%、5重量%、7重量%、9重量%、11重量%、13重量%、15重量%、17重量%、19重量%、、20重量%、21重量%、23重量%、25重量%、27重量%、29重量%、31重量%、33重量%、35重量%、37重量%、39重量%、40重量%、41重量%、43重量%、45重量%、47重量%、49重量%、51重量%、53重量%、55重量%、57重量%、59重量%、60重量%、61重量%、63重量%、65重量%、67重量%、69重量%、71重量%、73重量%、75重量%、77重量%、79重量%、80重量%。导电剂含量越高,电极材料层的导电性越好,对于安全事故的反应灵敏度越高,反之则电极材料层的导电性越低,对于安全事故的反应灵敏度越低。
本申请的一些实施例中,导电剂选自石墨烯、导电碳黑、碳纳米管和金属粉中的一种或几种。
本申请的一些实施例中,电极材料层中同时含有可嵌锂的电极活性材料、粘结剂和导电剂。此时,综合考虑各方面的影响因素,可嵌锂的电极活性材料、粘结剂和导电剂同时在上述含量范围内,由此可以保证电极材料层同时兼具较好的导电性、粘接强度和过剩锂的接纳容量。如果可嵌锂的电极活性材料含量越,则导电剂含量越高,电极材料层的导电性越好,当锂枝晶穿刺时,反应越灵敏,或者粘结剂含量越高,则整个电极层的粘接越牢固,不易掉料造成电极层与电池正极/负极导通短路;如果可嵌锂的电极活性材料含量越高,则对于过剩锂的接纳容量越高,电池的安全性也高,但是如果同时降低了导电剂含量,则对于安全的反应灵敏度降低,如果同时降低了粘结剂含量,则电极层容易粘接不牢,有掉料短路风险。如果粘接剂含量越低,则电极活性材料或导电剂的含量可以更高,可以提升电极层可嵌锂容量或增大反应灵敏度;粘结剂含量越高,对于电极层的粘接强度越高,可以防止粘接不牢以及电极材料层掉料导致的短路事故。导电剂含量越高,电极材料层的导电性越好,对于安全事故的反应灵敏度越高,但导电剂含量过高会占用可嵌锂的电极活性材料比重和/或粘结剂比重,可嵌锂的电极活性材料比重降低,则会降低电极材料层容纳过剩锂能力;粘结剂比重降低,则会降低电极材料层的粘接力,容易掉料导致短路。
本申请的一些实施例中,多孔聚合物膜的材料为本领域常用基膜,本申请的一些具体实施例中,多孔聚合物膜的材料选自聚丙烯树脂与聚乙烯共聚物、聚丙烯树脂、聚乙烯、聚偏二氟乙烯、PET无纺布和聚乙烯无纺布中的一种或几种。本申请的另一些具体实施例 中,相邻两层多孔聚合物膜可以相同或不同,或者说采用两层多孔聚合物膜封装成袋式隔板中的两层多孔聚合物膜可以相同或不同。
本申请的一些实施例中,每层所述多孔聚合物膜划分为电极材料层附着区和封装区,所述封装区位于所述电极材料层附着区四周的至少一侧,相邻两层多孔聚合物膜通过封装区封装在一起;或者说相邻两层多孔聚合物膜通过所述多孔聚合物膜的封装边(即封装区)封装,所述封装边的宽度为0.5mm-20mm,例如,0.5mm、1mm、2mm、3mm、4mm、5mm、6mm、mm、mm、9mm、10mm、11mm、12mm、13mm、14mm、15mm、16mm、17mm、18mm、19mm、20mm。封装边过窄不便于封装形成袋式隔板;封装边过宽,电极材料层的表面积减小,锂枝晶针刺到封装边的几率升高,电池安全性较差。
本申请的一些实施例中,封装区可以为多孔聚合物膜的四周的一侧、两侧、三侧或者围绕多孔聚合物膜的四周设置。具体的,本申请的一些实施例中,隔板可以用同一片多孔聚合物膜回折,将对齐后的三边封装形成袋式隔板,即上述三边的边缘处为封装区;也可以用两片多孔聚合物膜四边对齐,封装形成袋式隔板,即每层多孔聚合物外膜四周边缘处均为封装区;其中,相邻两片多孔聚合物膜的材料可以相同或不同。
本申请的一些具体实施例中作为本申请的优选,靠近负极侧的多孔聚合物膜的材料为聚乙烯。在遇到针刺、挤压,或电池温度过高时(例如当电池温度升至120摄氏度以上时),靠近负极侧的多孔聚合物膜会优先破裂或熔融从而使得负极与隔板中的电极材料层接触,两者接触后负极中的锂会嵌入电极材料层中,电极材料层表面会与电解液发生副反应生成SEI膜,在此过程中会产生大量的气体,该气体能够冲破防爆阀或启动电池中的电流中断装置,避免进电池一步热失控,从而保护电池。
在本申请的另一方面,本申请还提供一种锂离子电池隔板的制备方法,该方法包括:在至少一层多孔聚合物膜的至少一侧表面上附着电极材料层,所述电极材料层含有可嵌锂的电极活性材料,然后将该附着有电池材料层的多孔聚合物膜与至少一层所述多孔聚合物膜层叠设置,以封装所述电极材料层,其中,相邻两层所述多孔聚合物膜彼此相对的两个表面中的至少一个上附着有所述电极材料层。
本申请的一些实施例中,每层所述多孔聚合物膜划分为电极材料层附着区和封装区,所述封装区位于所述电极材料层附着区四周的至少一侧,上述方法还包括:仅在所述电极材料层附着区上附着所述电极材料层,然后通过所述封装区将相邻两层所述多孔聚合物膜封装在一起。
本申请的一些实施例中,该方法还可以是包括以下步骤:步骤1、相邻两层多孔聚合物膜具有相对的两个表面,将所述相对的两个表面中的至少一面附着电极材料层,得到夹 持有电极材料层的两层多孔聚合物膜;步骤2、将夹持有电极材料层的相邻两层多孔聚合物膜封装,得到锂离子电池隔板。
本申请的一些实施例中,电极材料层是通过以下步骤形成的:将粘结剂、导电剂、可嵌锂的电极活性材料混合、搅拌、真空脱泡得到电极材料浆料,将电极材料浆料附着在多孔聚合物膜的表面上,干燥,得到电极材料层;或者是将粘结剂、导电剂、可嵌锂的电极活性材料混合、搅拌、真空脱泡得到电极材料浆料,将电极材料浆料附着在相邻两层多孔聚合物膜的多孔聚合物膜的至少一层的表面上,干燥,得到夹持有电极材料层的两层多孔聚合物膜;
本申请的一些实施例中,可以先将粘结剂和溶剂混合均匀,再加入导电剂混合均匀,最后加入可嵌锂的电极活性材料,搅拌、真空脱泡得到电极材料浆料。
本申请的一些实施例中,上述电极材料浆料中,以电极材料浆料的总量为基准,所述可嵌锂的电极活性材料的含量为10重量%-60重量%,如10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%;所述粘结剂的含量为1重量%-30重量%,如1重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%;所述导电剂的含量为1重量%-20重量%,如1重量%、5重量%、10重量%、15重量%、20重量%;所述溶剂的含量为38重量%-80重量%,如40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%。其中,上述可嵌锂的电极活性材料、粘接剂和导电剂可以与前文描述一致,在此不再过多赘述。
本申请的一些实施例中,上述干燥的温度为40℃-80℃(如40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃),干燥的时间为4min-60min(如5min、10min、15min、20min、25min、30min、35min、40min、45min、50min、55min、60min),干燥的速率为1m/min-10m/min(如1m/min、2m/min、3m/min、4m/min、5m/min、6m/min、7m/min、8m/min、9m/min、10m/min)。具体的,干燥为分段干燥,其中,第一温度阶段,温度为40℃-60℃(如42℃、44℃、46℃、48℃、50℃、52℃、54℃、56℃、58℃、60℃),时间为1min-15min(如1min、2min、3min、4min、5min、6min、7min、8min、9min、10min、11min、12min、13min、14min、15min);第二温度阶段,温度为60℃-80℃(如62℃、64℃、66℃、68℃、70℃、72℃、74℃、76℃、78℃、80℃),时间为1min-25min(如1min、2min、3min、4min、5min、6min、7min、8min、9min、10min、11min、12min、13min、14min、15min、16min、17min、18min、19min、20min、21min、22min、23min、24min、25min);第三温度阶段,温度为70℃-80℃(如70℃、71℃、72℃、73℃、74℃、75℃、 76℃、77℃、78℃、79℃、80℃),时间为1-20min(如1min、2min、3min、4min、5min、6min、7min、8min、9min、10min、11min、12min、13min、14min、15min、16min、17min、18min、19min、20min);第四温度阶段,温度为60℃-40℃(如42℃、44℃、46℃、48℃、50℃、52℃、54℃、56℃、58℃、60℃),时间为1min-15min(如1min、2min、3min、4min、5min、6min、7min、8min、9min、10min、11min、12min、13min、14min、15min)。
本申请的一些实施例中,形成电极材料层时,仅在多孔聚合物膜的电极材料附着区上形成电极材料层,即多孔聚合物膜的边缘为未附着电极材料层的封装边(即封装区)。具体的,附着所述电极材料层的所述多孔聚合物膜的边缘未附着电极材料层,所述未附着电极材料层的边缘为封装边,和/或未附着所述电极材料层的所述多孔聚合物膜的边缘为封装边。
本申请的一些实施例中,封装边的宽度为0.5mm-20mm例如,0.5mm、1mm、2mm、3mm、4mm、5mm、6mm、mm、mm、9mm、10mm、11mm、12mm、13mm、14mm、15mm、16mm、17mm、18mm、19mm、20mm。宽度过窄不便于封装形成袋式隔板;宽度过宽,电极材料层的表面积减小,存在锂枝晶针刺到空白边缘区的几率升高,安全性较差。
本申请的一些实施例中,本文中所述的附着包括涂布、涂覆、喷涂、丝网印刷、静电纺丝、同轴纺丝等隔板领域常规技术手段,即可以利用电极材料浆料、通过涂布、涂覆、喷涂、丝网印刷、静电纺丝、同轴纺丝等方法在多孔聚合物膜的表面上形成电极材料层。
本申请的一些实施例中,将相邻两层多孔聚合物膜封装的方法可以为热压、冷压或者粘接。本申请的一个具体实施例,可以将电极材料的浆料附着在一层多孔聚合物膜的浆料附着区(即电极材料层附着区)上,干燥后得到表面附着有电极材料层的多孔聚合物膜,将电极材料层与另一层多孔聚合物膜贴合,通过热压、冷压或者粘接等方式将两层多孔聚合物膜压合得到密封有电极材料层的袋式隔板。
本申请的一些实施例中,电极材料浆料还可以含有溶剂,所用溶剂可以是本领域常规的各种用于制备锂离子电池用电极浆料的溶剂。本申请的一些实施例中,所述溶剂为水、N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、N、N-二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO)、1,2-丙二醇碳酸酯、醇、四氢呋喃和丙酮中的一种或多种。本申请的一些具体实施例中,所述溶剂为水和/或丙酮,本申请的一些具体实施例中,所述溶剂为水。
在本申请的另一方面,本申请还提供了一种锂离子电池,该离子电池包括正极片、负 极片及位于正极片和负极片之间的隔板,所述隔板为上述锂离子电池隔板。
本申请的一些具体实施例中,上述电池可以配合CID结构使用,当隔板中的电极材料层通过锂枝晶与负极导通后,正极中的过剩锂首次嵌入电极材料层中,在电极材料层的表面生成SEI膜,从而产生大量气体(主要为CH 4、C 2H 6、C 2H 4、CO 2、CO等),CID结构因气压增大而开启,从而使得电池正负极断路,终止了热失控的发生。同时采用硅基材料作为电极材料层中的可嵌锂电极活性材料,随着硅基材料体积膨胀后材料粉化,比表面积增大,产气量更大,对于CID结构开启和防爆阀开启均更有利。
下列实施例是对本申请的进一步解释和说明,对本申请不构成任何限制。
实施例1-实施例9
表1
Figure PCTCN2018117265-appb-000001
Figure PCTCN2018117265-appb-000002
注:表1括号中数字为对应材料添加的重量份(总份为100重量份)
PVDF:聚偏氟乙烯粘结剂
SBR:丁苯橡胶粘结剂,固含量为40%
CMC:羧甲基纤维素钠
NMP:N-甲基吡咯烷酮
1、锂离子电池用隔板及其制备
(1)电极材料浆料的制备
按照表1中的重量份,将粘结剂与溶剂混合,1000rpm下搅拌70min使分散均匀,然后再按表1中重量份加入导电剂,1200rpm搅拌30min(无导电剂配方可略过本步),然后再按表1中重量份加入可嵌锂的电极活性材料,在不超过60℃下1500rpm搅拌120min使混合物料分散均匀。然后将分散均匀的混合物料进行真空脱泡并用100目筛网过筛除去大颗粒,由此得到电极材料浆料SA1-电极材料浆料SA9。
(2)封装有电极材料层的隔板的制备
采用转移式涂布机,分别将电极材料浆料SA1-电极材料浆料SA9涂布在多孔聚合物膜的一面后(基材规格:500cm(长)×47cm(宽)),多孔聚合物膜边缘留0.5cm空白不涂覆电极材料浆料,进入干燥流程,干燥温度分为四段,分别为40℃-60℃、60℃-70℃、70℃-80℃和60℃-40℃,干燥后得到表面含有电极材料层的多孔聚合物膜;将同样规格的另一张多孔聚合物膜与电极材料层贴合后封装,得到封装有电极材料层的隔板,即本申请的锂离子电池用隔板SP1-隔板SP9。
2、锂离子电池的制备
采用以上隔板SP1-隔板SP9制作锂离子电池SB1-电池SB9。
对比例1
采用CN201310119689.5中的三层复合隔板DA1(聚乙烯薄膜的两面分别与导电层复合而成)。采用隔板DA1制作锂离子电池DB1。
对比例2
采用现有的传统锂离子电池隔板,三层复合隔板DA2(两层PE无纺布及复合在两层PE无纺布中间的陶瓷涂层)。采用隔板DA2制作锂离子电池DB2。
性能测试
1、过充测试
以0.1C的电流分别将待测锂离子电池充电至4.2V,搁置2h后,将待测电池以1C电流恒流充电至6.5V或以时间1h为截止条件,记录电池表面最高温度以及电池过充截止后状态。测试结果如表2。
表2
  过充终止温度 电池状态
DB1 543℃ 防爆阀开启,电池起火,爆炸
DB2 425℃ 防爆阀开启,电池起火,爆炸
SB1 74℃ 电池轻微发鼓,防爆阀开启
SB2 92℃ 电池发鼓,防爆阀开启
SB3 78℃ 电池轻微发鼓,防爆阀开启
SB4 130℃ 电池发鼓,防爆阀开启
SB5 86℃ 电池发鼓,防爆阀开启
SB6 65℃ 电池轻微发鼓,防爆阀开启
SB7 69℃ 电池轻微发鼓,防爆阀开启
SB8 86℃ 电池轻微发鼓,防爆阀开启
SB9 58℃ 电池轻微发鼓,防爆阀开启
从上表结果可以看出,未使用本申请隔板的对比例电池DB1-电池DB2过充时温度很高,且电池出现起火、爆炸等热失控状态;其中直接使用导电剂作为隔板的DB1电池安全性比使用陶瓷涂层作为隔板的DB2电池更差,其原因在于当隔板层在热失控状态下收缩后,导电层直接连通了正负极,加速了安全事故的发生;而绝缘层却可以一定时间内阻隔正负极,但是进一步形成的锂枝晶会穿刺陶瓷绝缘层,连通正负极,导致安全事故的发生。
而使用本申请实施例制备的电池SB1-电池SB9均未出现起火、爆炸等热失控状态,仅仅是电池内部产气较多,使得电池发鼓,防爆阀开启。从过充终止时电池表面温度数据来看,使用纳米硅粉(SB1,SB6-SB9)和氧化锡(SB3)作为可嵌锂的电极活性材料的电池,具有最低的过充终止温度,这是因为纳米硅粉或氧化锡在过充时嵌入锂,体积膨胀较大,撑开了两层隔板,使得正负极距离增大,从而增大了电池阻抗,使得过充失控终止。在使用纳米硅粉的电池中(SB1,SB6-SB9),均具有最优的安全性,通过合理搭配电极活性材料和导电剂比例,可以得到较优的安全特性(SB9)。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (20)

  1. 一种锂离子电池隔板,包括至少两层层叠设置的多孔聚合物膜,其中,两层层叠设置的多孔聚合物膜之间设置有电极材料层;所述电极材料层含有可嵌锂的电极活性材料。
  2. 根据权利要求1所述的锂离子电池隔板,其中,所述电极材料层封装在两层层叠设置的多孔聚合物膜之间。
  3. 根据权利要求1或2所述的锂离子电池隔板,其中,所述电极材料层的厚度为1μm-50μm,每层所述多孔聚合物膜的厚度为5μm-50μm。
  4. 根据权利要求1-3中任一项所述的锂离子电池隔板,其中,所述电极材料层的孔隙率为5%-60%。
  5. 根据权利要求1-4中任一项所述的锂离子电池隔板,其中,所述电极材料层和所述多孔聚合物膜之间还设置有无机材料层;所述无机材料层中含有无机颗粒。
  6. 根据权利要求5所述的锂离子电池隔板,所述无机材料层的厚度为10nm-10μm。
  7. 根据权利要求5或6任意一项所述的锂离子电池隔板,其中,所述无机材料层中的无机颗粒的粒径为100nm-1000nm。
  8. 根据权利要求5-7任意一项所述的锂离子电池隔板,其中,所述无机材料层的孔隙率为5%-60%。
  9. 根据权利要求1-7中任一项所述的锂离子电池隔板,其中,以所述电极材料层的总重量为基准,所述可嵌锂的电极活性材料的含量为10重量%-60重量%。
  10. 根据权利要求1-9任意一项所述的锂离子电池隔板,其中,所述可嵌锂的电极活性材料的粒径为10nm-100μm。
  11. 根据权利要求1-10任意一项所述的锂离子电池隔板,其中,所述可嵌锂的电极活性材料选自硅基材料、锡基材料、铝基材料、锑基材料、钛基材料和过渡金属氮化物中的 一种或几种。
  12. 根据权利要求10所述的锂离子电池隔板,其中,所述可嵌锂的电极活性材料选自硅基材料、锡基材料中的一种或几种。
  13. 根据权利要求11或12任意一项所述的锂离子电池隔板,其中,
    所述硅基材料选自硅、硅的氧化物、硅碳复合材料和硅合金中的一种或几种;
    所述锡基材料选自锡的氧化物、锡基复合氧化物、锡盐、锡酸盐和锡合金中的一种或几种;
    所述铝基材料选自铝金属和铝合金中的一种或几种;
    所述锑基材料选自锑金属和锑合金中的一种或几种;
    所述钛基材料为钛的氧化物,所述钛的氧化物选自TiO 2、尖晶石结构的LiTi 2O 4和Li 4/3Ti 5/3O 4中的一种或几种。
  14. 根据权利要求1-13中任意一项所述的锂离子电池隔板,其中,所述电极材料层还含有粘结剂,以所述电极材料层的总重量为基准,所述粘结剂的含量为1重量%-30重量%。
  15. 根据权利要求1-14中任意一项所述的锂离子电池隔板,其中,所述电极材料层还含有导电剂,以所述电极材料层的总重量为基准,所述导电剂的含量为1重量%-80重量%。
  16. 根据权利要求1-15中任意一项所述的锂离子电池隔板,其中,所述多孔聚合物膜的材料选自聚乙烯-聚丙烯共聚物、聚丙烯树脂、聚乙烯、聚偏氟乙烯中的一种或几种。
  17. 根据权利要求1-16任意一项所述的锂离子电池隔板,其中,每层所述多孔聚合物膜划分为电极材料层附着区和封装区,所述封装区位于所述电极材料层附着区四周的至少一侧,所述封装区的宽度为0.5mm-20mm。
  18. 一种制备权利要求1-17任意一项所述的锂离子电池隔板的方法,包括:在至少一层多孔聚合物膜的至少一侧表面上附着电极材料层,所述电极材料层含有可嵌锂的电极活性材料,然后将该附着有电池材料层的多孔聚合物膜与至少一层所述多孔聚合物膜层叠设置,以封装所述电极材料层,其中,相邻两层所述多孔聚合物膜彼此相对的两个表面中的 至少一个上附着有所述电极材料层。
  19. 根据权利要求18所述的锂离子电池隔板的制备方法,其中,每层所述多孔聚合物膜划分为电极材料层附着区和封装区,所述封装区位于所述电极材料层附着区四周的至少一侧,所述方法还包括:仅在所述电极材料层附着区上附着所述电极材料层,然后通过所述封装区将相邻两层所述多孔聚合物膜封装在一起。
  20. 一种锂离子电池,包括正极片、负极片及位于正极片和负极片之间的隔板,所述隔板为权利要求1-17中任意一项所述的锂离子电池隔板。
PCT/CN2018/117265 2017-11-24 2018-11-23 锂离子电池隔板及其制造方法和含有此隔板的锂离子电池 WO2019101174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711186886.3A CN109841780A (zh) 2017-11-24 2017-11-24 一种锂离子电池隔板及其制造方法和含有此隔板的锂离子电池
CN201711186886.3 2017-11-24

Publications (1)

Publication Number Publication Date
WO2019101174A1 true WO2019101174A1 (zh) 2019-05-31

Family

ID=66630508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117265 WO2019101174A1 (zh) 2017-11-24 2018-11-23 锂离子电池隔板及其制造方法和含有此隔板的锂离子电池

Country Status (2)

Country Link
CN (1) CN109841780A (zh)
WO (1) WO2019101174A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325509A (zh) * 2021-12-30 2022-04-12 北京理工大学重庆创新中心 一种用于检测锂离子电池枝晶生长的智能隔膜及检测方法
CN114649640A (zh) * 2020-12-21 2022-06-21 丰田自动车株式会社 锌二次电池用分隔体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247009A (zh) * 2019-07-03 2019-09-17 珠海冠宇电池有限公司 一种防过充隔膜及其制备方法和锂离子电池
CN110429232A (zh) * 2019-08-14 2019-11-08 中南大学 一种超大容量锂离子电池用隔板及锂离子电池
JP7213990B2 (ja) * 2019-10-11 2023-01-27 エルジー エナジー ソリューション リミテッド リチウム二次電池及びリチウム二次電池の製造方法
CN112034359B (zh) * 2020-08-31 2022-09-09 郑州大学 基于氢气探测的锂电池早期安全预警方法及装置
CN113192846B (zh) * 2021-03-30 2022-09-30 赛创电气(铜陵)有限公司 金属围坝的压膜方法以及由此制得的金属围坝和陶瓷基板
CN116544615A (zh) * 2023-07-03 2023-08-04 宁德时代新能源科技股份有限公司 隔离膜、锂二次电池和用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794814A (zh) * 2012-10-29 2014-05-14 比亚迪股份有限公司 一种锂离子电池及其制备方法
JP2014222606A (ja) * 2013-05-13 2014-11-27 三星電子株式会社Samsung Electronics Co.,Ltd. 電気化学デバイス
CN104347836A (zh) * 2013-08-07 2015-02-11 深圳市沃特玛电池有限公司 一种锂离子电池的双层复合陶磁隔膜
CN106558664A (zh) * 2015-09-25 2017-04-05 比亚迪股份有限公司 一种锂离子电池用隔膜及其制备方法以及锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170087315A (ko) * 2016-01-20 2017-07-28 주식회사 엘지화학 전기화학소자용 복합 분리막 및 이를 제조하는 방법
CN106953050B (zh) * 2017-02-13 2019-08-06 河北金力新能源科技股份有限公司 一种耐高温多层隔膜复合锂离子电池隔膜及其制备方法
CN107359303A (zh) * 2017-07-17 2017-11-17 济南大学 锂硫电池用修饰隔膜及其制备方法以及具有该隔膜的锂硫电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794814A (zh) * 2012-10-29 2014-05-14 比亚迪股份有限公司 一种锂离子电池及其制备方法
JP2014222606A (ja) * 2013-05-13 2014-11-27 三星電子株式会社Samsung Electronics Co.,Ltd. 電気化学デバイス
CN104347836A (zh) * 2013-08-07 2015-02-11 深圳市沃特玛电池有限公司 一种锂离子电池的双层复合陶磁隔膜
CN106558664A (zh) * 2015-09-25 2017-04-05 比亚迪股份有限公司 一种锂离子电池用隔膜及其制备方法以及锂离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649640A (zh) * 2020-12-21 2022-06-21 丰田自动车株式会社 锌二次电池用分隔体
CN114325509A (zh) * 2021-12-30 2022-04-12 北京理工大学重庆创新中心 一种用于检测锂离子电池枝晶生长的智能隔膜及检测方法
CN114325509B (zh) * 2021-12-30 2023-11-07 北京理工大学重庆创新中心 一种用于检测锂离子电池枝晶生长的智能隔膜及检测方法

Also Published As

Publication number Publication date
CN109841780A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2019101174A1 (zh) 锂离子电池隔板及其制造方法和含有此隔板的锂离子电池
JP6352870B2 (ja) 電気化学素子およびその製造方法
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
US8771859B2 (en) Separator for battery and nonaqueous electrolyte battery using same
JP5334281B2 (ja) リチウム二次電池
JP5213007B2 (ja) 電池用セパレータおよび非水電解質電池
US9287544B2 (en) Heat-resistant porous film, separator for nonaqueous battery, and nonaqueous battery
JP5241314B2 (ja) ラミネート形非水二次電池
CN103620818B (zh) 带耐热绝缘层的隔板
CN112768784B (zh) 一种电化学装置和电子装置
WO2011069331A1 (zh) 锂离子电池
WO2005124899A1 (ja) 二次電池およびその製造方法
JP2016541087A (ja) 有機−無機複合多孔性膜、これを含むセパレーター及び電極構造体
CN111095613B (zh) 电极、非水电解质电池及电池包
JP6187650B2 (ja) 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
WO2010053058A1 (ja) 電気化学素子
WO2013051468A1 (ja) 耐熱絶縁層付セパレータ
JP2009245922A (ja) 非水電解液二次電池
WO2024077822A1 (zh) 隔离膜及其制备方法、二次电池和用电装置
WO2021023138A1 (zh) 正极极片及其相关的锂离子电池、装置
JP2012155914A (ja) 電気化学素子用セパレータおよび電気化学素子
WO2022156459A1 (zh) 锂离子电池的负极片、锂离子电池和电子设备
JP5702873B2 (ja) 電気化学素子用セパレータ、電気化学素子およびその製造方法
JP2017073330A (ja) 非水電解質二次電池
JP6417270B2 (ja) 電気化学素子用セパレータ、および電気化学素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881852

Country of ref document: EP

Kind code of ref document: A1