WO2019097829A1 - 板材のプレス成形方法 - Google Patents

板材のプレス成形方法 Download PDF

Info

Publication number
WO2019097829A1
WO2019097829A1 PCT/JP2018/033855 JP2018033855W WO2019097829A1 WO 2019097829 A1 WO2019097829 A1 WO 2019097829A1 JP 2018033855 W JP2018033855 W JP 2018033855W WO 2019097829 A1 WO2019097829 A1 WO 2019097829A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
forming
press
press forming
target shape
Prior art date
Application number
PCT/JP2018/033855
Other languages
English (en)
French (fr)
Inventor
遼 揚場
亮伸 石渡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18879610.6A priority Critical patent/EP3677357B1/en
Priority to CN201880073714.1A priority patent/CN111344078B/zh
Priority to JP2019505084A priority patent/JP6569837B1/ja
Priority to KR1020207013738A priority patent/KR102333846B1/ko
Priority to MX2020005048A priority patent/MX2020005048A/es
Priority to US16/754,743 priority patent/US11376645B2/en
Publication of WO2019097829A1 publication Critical patent/WO2019097829A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/24Sheet material

Definitions

  • the present invention relates to a method of press-forming a plate material which can stably obtain a target shape while preventing breakage of a material when a member such as an automobile part is produced from a metal base plate by press-forming.
  • high strength steel plates have low ductility and easily break compared to low strength steel plates, so it is not always easy to obtain a member of a target shape by press forming.
  • high strengthening of the used steel plate for the purpose of weight reduction of a vehicle body is synonymous with thinning of a steel plate, the problem remained in the place which a press wrinkle tends to produce, so that a thin steel plate is thin. Therefore, there is a strong demand for development of a press forming method for suppressing breakage and press wrinkles.
  • Patent Documents 1 and 2 an intermediate molded body free of breakage and press wrinkles is produced, and press forming is performed in the subsequent steps to obtain a product which does not finally cause breakage and press wrinkles.
  • An approach is disclosed.
  • Patent Document 1 and Patent Document 2 listed above all propose a method of producing an intermediate molded body for suppressing breakage and then performing restriking.
  • patent document 1 utilizes inflow and rotation of a large-scale material in a post process, the circumference is released and it applies only to the breakage danger part of the flange part which is easy to move material. Can not do it.
  • patent document 2 shows the design guideline of an intermediate
  • the final shape is divided in a grid shape, or the shape change in the cross section set radially from the centroid. It stops at the argument of The material behavior at the time of actual wrist-like molding is not necessarily deformed radially from the grid-like divided direction or the centroid, but is three-dimensional in any direction, so the intermediate molded body is not considered If designed, the inflow of material can not be controlled.
  • the present invention advantageously solves the above-mentioned problems, and in consideration of three-dimensional deformation, the press forming is divided into two steps, and in the first step, the target shape and the surface area are the same and the shape is easy to form. It is an object of the present invention to propose a method for press-forming a sheet material, which comprises preforming in the following manner and then forming into a target shape without breakage.
  • the gist configuration of the present invention is as follows. 1.
  • a forming member having a cross-sectional hat shape including a top plate portion, a vertical wall portion, and a flange, and having a projecting portion having a closed projecting shape on the top plate portion from a metal base plate First, for the top plate portion of the above-mentioned projection portion region, a preformed shape having almost the same shape as the target shape and a surface area and which is easy to form is determined by press forming analysis in the following steps S1 and S2. Then, the metal base plate is press-formed into the above-described pre-formed shape obtained, and thereafter, the formed portion is formed into a final shape to be targeted. Press forming method of plate material.
  • S1 Discretize the projection area of the target shape into a plane element and a node for finite element analysis
  • S2 Apply an internal force to the normal direction of the plane element from the inside to the discretized portion, and the following condition a , B.
  • A Deformation of the plane element to be configured is within the elastic deformation range.
  • B The angle between adjacent plane elements can be changed freely.
  • a forming member having a hat-shaped cross section including a top plate portion, a vertical wall portion, and a flange, and having a projecting portion with a closed periphery on the top plate portion from a metal base plate By using finite element analysis, it becomes possible to automatically design an optimum intermediate formed body, and as a result, it is possible to perform press forming from a metal base plate without causing cracks or press wrinkles.
  • FIG. 5A It is a figure which shows the board thickness reduction rate at the time of shape
  • FIG. It is a figure which shows the board
  • FIG. It is a figure which shows the plate
  • FIG. 7 is a diagram showing a part shape to be targeted in Example 2; It is a figure which shows the plate
  • FIG. It is a figure which shows the thickness reduction rate at the time of carrying out shallow drawing formation (1st process) of the object component of Example 2 by the comparison method 2.
  • FIG. 15A It is a figure which shows the shape of the intermediate molded object after applying an internal pressure to the part which discretized. It is a figure which shows the target shape of the part which discretized. It is a figure which shows the board
  • FIG. 1 it is a molding member having a hat-shaped cross section consisting of a top plate portion 11, a vertical wall portion 12 and a flange 13, and the top plate portion 11 has a projecting shape whose periphery is closed, that is, a closed projecting shape
  • the formed member 10 having the shape of the protrusion 14 is not limited to the above-mentioned protrusion if the target shape is complicated and the ductility of the used material is low even if it is formed in a single process using a press molding die. The breakage occurs near the part, and it is not possible to obtain a product of the target shape.
  • a method of dividing the press forming process into plural may be adopted. That is, it is a method of press-forming into a slow shape in the pre-forming step, and performing press-forming (re-strike) again to make the target shape in a later step.
  • the design of the shape of the formed body (hereinafter referred to as a pre-formed body or an intermediate formed body) produced in the pre-forming step has conventionally been performed based on the experience and know-how of the designer.
  • the present inventors use the three-dimensional finite element method as a press forming analysis to obtain an optimum intermediate formed body. I thought about asking. Hereinafter, the concept of the present invention will be described based on FIGS. 2A to 2C.
  • FIG. 2A shows an example of the shape of the target protrusion.
  • FIGS. 2A to 2C show two-dimensional cross sections for the sake of clarity, it is actually necessary to consider three-dimensional shapes.
  • the projecting regions 1 to 8 for obtaining the target shape are discretized into plane elements and nodes as shown in FIG. 2B (mesh is created). In the figure, it is preferable to make the distances between the nodes shown by the numbers 1 to 8 as equal as possible.
  • a slow preliminary shape is obtained such that the final forming becomes easy in the next step (FIG. 2C).
  • each side connected by each node be free to bend, and that the surface shape of the obtained slow preliminary shape and the target shape be substantially the same.
  • planar element also referred to as a shell element
  • the important thing is that (a) the planar element to be configured
  • the deformation of (2) is in the range of elastic deformation and (b) the angle between adjacent planar elements is free to change.
  • a slowly shaped preliminary shape as shown in FIG. 2C is determined.
  • a mold of the preliminary shape (FIG. 2C) obtained as described above is manufactured, and after a blank is formed into the preliminary shape, it is formed into a target shape (FIG. 2A) by restriking. It is to do.
  • connection ridge line portion with the top plate portion 11 and the vertical wall portion 12 including the portion where breakage or wrinkles become a problem is discretized into a plane element and a node, and adjacent nodes Are connected by line segments, and the area enclosed by the line segments is a plane element (creates a mesh).
  • FIG. 3A This schematic diagram is shown in FIG. 3A.
  • FIG. 3B is an enlarged view of the main part.
  • the distance between the discrete nodes is not particularly limited, but preferably about 50% to 300% of the plate thickness.
  • FIG. 4A shows the shape (preliminary shape) of the intermediate molded body after applying the internal pressure
  • FIG. 4B shows the target shape.
  • the intermediate molded body obtained in this manner is slower in shape than the target shape, and local deformation and stress concentration can be avoided, so breakage or wrinkles do not occur. Further, subsequently, when the intermediate molded body is subjected to foam molding to a target shape, in this foam molding, only the bending deformation is applied to each plane element and the node, so that the plane element is hardly deformed. Therefore, an intermediate formed body free from breakage and wrinkles is obtained, and no new expansion or contraction occurs when press forming the intermediate formed body to the target shape, so that the target is finally achieved without the occurrence of breakage or wrinkles. It is possible to obtain a shape that
  • Example 1 A member having the shape shown in FIG. 1 is produced by press molding.
  • the material is a 1180 MPa grade steel plate with a thickness of 1.2 mm.
  • draw molding According to the conventional method, only one process of draw molding was used (conventional method 1).
  • FIG. 5A the first step is shallow draw drawing, and the second step is pad-formed foam formation (comparative method 1).
  • FIG. 5A shows a molded shape
  • FIG. 5B shows a pad pressing position.
  • the first step is the draw molding
  • the second step is the foam molding (the present method 1).
  • FIG. 7 the result of carrying out shallow drawing draw forming to the intermediate molded object by the comparative method 1 is shown in FIG. 7, and the result of forming foam with a pad in target shape is further shown in FIG.
  • this Comparative method 1 When this Comparative method 1 is used, local thickness reduction occurs at the time of shallow draw drawing in the first step and at the time of pad-formed foam in the second step, and there is a concern about breakage from this portion Ru.
  • the intermediate formed body was press-formed and analyzed by the finite element method.
  • part of the vertical wall and the top surface were discretized into planar elements and nodes.
  • the distance between the nodes was about 1.2 mm, which is equal to the plate thickness.
  • finite element analysis was used to apply internal pressure in the normal direction of each planar element. The results are shown in FIG. 4A. This was used as the shape of an intermediate molded body, and a mold was produced and drawn and the result is shown in FIG. It can be understood that the reduction in thickness is mitigated and breakage is avoided as compared with FIGS. 7 and 8 as well as FIG.
  • FIG. 10 shows the result of performing foam molding with a mold having a target shape. Also in the second step, no significant thickness reduction occurred and no breakage occurred, confirming that the present invention is effective.
  • Example 2 A member having a shape shown in FIG. 11 is produced by press molding.
  • the material is a 1180 MPa grade steel plate with a thickness of 1.2 mm.
  • FIG. 13 shows the result of shallow draw drawing by Comparative Method 2
  • FIG. 14 shows the result of foam forming with padding.
  • FIG. 16A shows the result of applying an internal pressure in the normal direction of each plane element using finite element analysis (note that FIG. 16B is the target shape). This was used as the shape of an intermediate molded body, and the result of molding using a draw molding die is shown in FIG. It can be understood that the reduction in thickness is mitigated and breakage is avoided as compared with FIGS. 13 and 14 as well as FIG.
  • FIG. 18 shows the result of performing foam molding using a mold having a target shape as a second step. Also in the second step, no significant thickness reduction occurred, and no breakage occurred, confirming that the present invention is effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

天板部に、閉塞突出形状の突起部を有する成形部材をプレス成形するに際し、予備成形後、目標形状に成形するものとし、その際、予備成形における成形形状を、プレス成形解析により、以下に述べるS1、S2の手順で求めることにより、高強度鋼板を、破断やしわの発生なしに目標形状に成形することができる板材のプレス成形方法を提供する。 S1:目標形状の突起部領域を有限要素解析用の平面要素と節点に離散化する S2:離散化した部位に対し、その内側から平面要素の法線方向に内力を加え、次の条件a、bのもとで変形させる (a)構成する平面要素の変形は弾性変形範囲内 (b)隣り合う平面要素同士の角度は変化自由

Description

板材のプレス成形方法
 本発明は、金属素板から自動車部品等の部材をプレス成形によって作製する場合に、材料の破断を防ぎつつ、目標の形状を安定して得ることができる板材のプレス成形方法に関するものである。
 近年、環境問題に起因した自動車車体の軽量化のため、自動車部品として高強度鋼板が多用されつつある。
 また、自動車部品の作製には、製作コストに優れたプレス成形が用いられることが多い。
 しかし、高強度鋼板は、低強度な鋼板と比較すると、延性が低く破断を生じやすいため、目標形状の部材をプレス成形によって得ることは必ずしも容易ではない。
 また、車体軽量化を目的とした使用鋼板の高強度化は、鋼板の薄肉化と同義であるが、板厚の薄い鋼板ほどプレスしわが生じやすいところにも問題を残していた。
 したがって、破断やプレスしわを抑制するためのプレス成形工法の開発が強く要求されている。
 特許文献1および特許文献2には、破断およびプレスしわが発生しない中間成形体を作製し、その後の工程でプレス成形を行うことで、最終的に破断およびプレスしわが発生しない製品を得るための手法が開示されている。
国際公開第2017-006793号公報 特許第5867657号公報
 プレス成形時における破断を抑制する手法としては、予備成形工程として形状を緩和した中間成形体を作製し、その後にリストライク成形を行って、目標とする形状とする手法が有効と考えられる。
 前掲した特許文献1および特許文献2はいずれも、破断を抑制するための中間成形体を作製し、その後にリストライクを行う工法を提案したものである。
 しかし、特許文献1は、後工程にて大規模な素材の流入と回転を利用するものであるため、周囲が解放されていて、材料の移動が容易なフランジ部の破断危険部のみにしか適用することができない。
 また、特許文献2は、製品内部の成形不良を抑止するために中間成形体の設計指針を示すものであるが、最終形状を格子状に区切るか、図心から放射状に設定した断面内における形状変更の議論に止まっている。実際のリストライク成形時の材料挙動は、必ずしも格子状に区切った方向や図心から放射状に変形するものではなく、任意の方向に三次元的であるため、それを考慮せずに中間成形体を設計した場合には、材料の流入をコントロールすることができない。また、その実施に際しては多大の労力と時間を要するという問題もあった。
 本発明は、上記の課題を有利に解決するもので、三次元的変形を考慮した上で、プレス成形を2工程に分け、最初の工程で目標形状と表面積が同一でかつ成形が簡易な形状に予備成形し、その後に破断なしに目標形状に成形することからなる板材のプレス成形方法を提案することを目的とする。
 すなわち、本発明の要旨構成は以下の通りである。
1.天板部と縦壁部およびフランジからなる断面ハット形であって、該天板部に、閉塞突出形状の突起部を有する成形部材を、金属素板からプレス成形するに際し、
 まず、プレス成形解析により、上記突起部領域の天板部について、下記に述べるS1、S2の手順で、目標とする形状と表面積がほぼ同一でかつ成形が簡易な予備成形形状を求め、
 ついで、金属素板を、求めた上記予備成形形状にプレス成形し、しかる後、該当箇所を目標とする最終形状にフォーム成形する、
板材のプレス成形方法。
                 記
 S1:目標形状の突起部領域を有限要素解析用の平面要素と節点に離散化する
 S2:離散化した部位に対し、その内側から平面要素の法線方向に内力を加え、次の条件a、bのもとで変形させる
  (a)構成する平面要素の変形は弾性変形範囲内
  (b)隣り合う平面要素同士の角度は変化自由
 本発明によれば、天板部と縦壁部およびフランジからなる断面ハット形で、かつ天板部に、周囲が閉じた突出形状の突起部を有する成形部材を、金属素板から成形するに際し、有限要素解析を用いて最適な中間成形体を自動的に設計することができるようになり、その結果、割れやプレスしわを生じることのない金属素板からのプレス成形が可能となった。
天板部に、閉塞突出形状の突起部を有する成形部材を示す図である。 本発明の考え方を示す概略図であり、目標とする突出部の形状の一例である。 上記突出部を平面要素と節点に離散化した状態を示す図である。 上記突出部の予備形状を示す図である。 突起部周辺を離散化した状態を示す図である。 図3Aの要部拡大図である。 離散化した部位に内圧を付与した後の中間成形体の形状を示す図である。 離散化した部位の目標形状を示す図である。 第一工程が浅絞り成形、第二工程がパッドつき曲げ成形からなる比較法を示す図である。 図5Aにおけるパッド押さえ位置を示す図である。 従来法1にて成形した際の板厚減少率を示す図である。 比較法1にて浅絞り成形(第一工程)した際の板厚減少率を示す図である。 比較法1にてパッドつき曲げ成形(第二工程)した際の板厚減少率を示す図である。 本発明法1に従って中間成形体形状に成形した際の板厚減少率を示す図である。 本発明法1に従って目標形状に成形した際の板厚減少率を示す図である 実施例2で対象とする部品形状を示す図である。 実施例2の対象部品を従来法2にて成形した際の板厚減少率を示す図である。 実施例2の対象部品を比較法2にて浅絞り成形(第一工程)した際の板厚減少率を示す図である。 実施例2の対象部品を比較法2にてパッドつき曲げ成形(第二工程)した際の板厚減少率を示す図である。 実施例2の対象部品の破断危険部付近を離散化した状態を示す図である。 図15Aの要部拡大図である。 離散化した部位に内圧を付与した後の中間成形体の形状を示す図である。 離散化した部位の目標形状を示す図である。 本発明法2に従って中間成形体形状に成形した際の板厚減少率を示す図である。 本発明法2に従って目標形状に成形した際の板厚減少率を示す図である。
 以下、本発明を具体的に説明する。
 例えば、図1に示すような、天板部11と縦壁部12およびフランジ13からなる断面ハット形の成形部材であって、かつ天板部11に、周囲が閉じた突出形状すなわち閉塞突出形状の突起部14を有するような形状になる成形部材10について、プレス成形金型を用いて1回の工程で成形しようとしても、目標形状が複雑かつ使用材料の延性が低い場合には、上記突起部付近で破断を生じ、目標とする形状の製品を得ることができない。
 この問題を解決するために、プレス成形工程を複数に分割する手法が採られることがある。すなわち、予備成形工程にて緩慢な形状にプレス成形し、後の工程で目標形状にすべく再度プレス成形(リストライク)を行う方法である。このとき、予備成形工程で作製する成形体(以下、予備成形体または中間成形体と呼ぶ)の形状の設計は、従来は、設計者の経験やノウハウによって行われていた。
 最近では、破断領域を含む格子状または図心から放射状の製品断面をとり、その断面線長を適切な範囲内としながら変形させることで、リストライク工程における材料の伸び縮みが抑制され、破断やしわのない製品を得ることができる、という考え方に基づいた設計が行われるようになってきている(例えば特許文献2)。
 しかし、リストライクが行われた際の材料の変形は、格子状または図心から放射状の断面内に沿って行われることは稀であり、通常は任意の方向に三次元的な材料の移動がほぼ全ての領域にわたって発生する。したがって、特許文献2に記載される断面線長を合わせるという考え方のみでは、リストライク時に破断やしわの不具合を生じる場合が多く、試行錯誤を繰り返して中間成形体の形状を決定しなければならず、最悪の場合は適した中間成形体の形状が求まらないこともあった。
 そこで、本発明者らは、断面線長を用いた考え方では対応できない三次元的な材料の変形に対応するため、プレス成形解析として三次元有限要素法を利用することにより最適な中間成形体を求めることを考えた。
 以下、本発明の考え方を、図2A~図2Cに基づいて説明する。
 図2Aに、目標とする突出部の形状の一例を示す。図2A~図2Cでは、分りやすくするため二次元断面で示しているが、実際は三次元的な形状を考慮する必要がある。
 ついで、この目標形状とするための突出部領域1~8を、図2Bに示すように平面要素と節点に離散化する(メッシュを作成する)。なお、図中、番号1~8で示した各節点間の距離はできるだけ等しくなるようにするのが好ましい。
 ついで、有限要素法(Finite Element Method)を用いて、次工程で最終成形が簡便となるような緩慢な予備形状を求める(図2C)。このとき各節点で接続された各辺は、折れ曲がりが自由であり、また求めた緩慢な予備形状と目標形状とは表面積がほぼ同一となるようにするのが好ましい。
 すなわち、離散化した部位に対し、その内側から平面要素(シェル要素ともいう)の法線方向に内力を加えて、予備形状を決定するが、その際重要なのが、(a)構成する平面要素の変形は弾性変形範囲内とすることと、(b)隣り合う平面要素同士の角度は変化自由とすることである。
 かくして、図2Cに示すような、緩慢な形状の予備形状が決定される。
 次に、実際のプレス成形においては、上記のようにして求めた予備形状(図2C)の金型を作製し、ブランクを予備形状に成形したのち、リストライクにより目標形状(図2A)に成形するのである。
 次に、上記の方法を利用した具体的な手順について説明する。
 まず、図1に示した目標形状のなかで破断やしわが問題となる部位を含む、天板部11および縦壁部12との接続稜線部を、平面要素と節点に離散化し、近接する節点を線分で結び、線分で囲まれた領域を平面要素とする(メッシュを作成する)。この模式図を図3Aに示す。なお、図3Bは、要部拡大図である。
 この時、離散化された各節点の間隔は特に制限されないが、板厚の50%~300%程度とするのが好ましい。
 次に、離散化した部位を構成する平面に、部位の内側から平面要素の法線方向に内圧を付与して変形させる有限要素解析を実施する。このとき、構成する各平面要素の変形は弾性変形範囲内とし、また隣り合う平面要素同士の角度は変化自由の条件で行う。
 以上により、目標形状よりも形状が緩慢なため成形が容易で、かつ目標形状と同じ表面積を持つ中間成形体の形状を、容易に求めることができる。得られる中間成形体の形状の例を図4Aに示す。図4Aは、内圧を付与した後の中間成形体の形状(予備形状)、図4Bは、目標形状である。
 このようして得られた中間成形体は、目標形状よりも形状が緩慢で局所的な変形や応力集中を回避できるため、破断やしわは発生しない。また、続いて中間成形体から目標形状へとフォーム成形すると、このフォーム成形では各平面要素と節点に曲げ変形が施されるのみなので平面要素が変形しにくい。したがって、破断やしわの発生しない中間成形体が得られ、その中間成形体から目標形状へのプレス成形時には新たな伸び縮みは発生せず、そのため、最終的に破断やしわの発生なしに目標とする形状を得ることができる。
(実施例1)
 図1に示した形状の部材を、プレス成形により作製する。材料は1180MPa級、板厚1.2mmの鋼板とする。
 従来法としては、ドロー成形の1工程のみとした(従来法1)。
 また、比較法としては、図5Aに示すように、第一工程を浅絞りドロー成形、第二工程をパッドつきフォーム成形とした(比較法1)。ここで、図5Aは成形形状、図5Bはパッド押さえ位置を示す。
 本発明法としては、第一工程をドロー成形、第二工程をフォーム成形とした(本発明法1)。
 まず、従来法1にて成形した結果を図6示す。同図に示すように、従来法1では、局所的に大きな板厚減少が生じ、この部位から破断を生じる。
 また、比較法1にて、中間成形体に浅絞りドロー成形した結果を図7に、さらに目標形状にパッドつきフォーム成形した結果を図8に示す。この比較法1に従った場合には、第一工程の浅絞りドロー成形時、第二工程のパッドつきフォーム成形時ともに局所的な板厚減少が生じており、この部位からの破断が懸念される。
 次に、本発明法1の実施に当たり、中間成形体を有限要素法によりプレス成形解析した。図3A、Bに示したように縦壁の一部と天板面を平面要素と節点に離散化した。離散化に際して節点の間隔は板厚と同等の約1.2mmとした。次に、有限要素解析を用いて各平面要素の法線方向に内圧を与えた。その結果を図4Aに示す。これを中間成形体の形状とし、金型を作製してドロー成形した結果を図9に示す。図6とは勿論のこと、図7や図8と比較しても板厚減少が緩和され、破断が回避されていることが分かる。
 さらに、第二工程として、目標形状を有する金型でフォーム成形を行った結果を図10に示す。第二工程においても顕著な板厚減少が発生してなく、破断に至らず、本発明が有効であることが確認された。
(実施例2)
 図11に示す形状の部材を、プレス成形により作製する。材料は1180MPa級、板厚1.2mmの鋼板とする。
 実施例1と同様に、従来法としては、ドロー工程の1工程のみとした(従来法2)。
 比較法としては、第一工程を浅絞りドロー成形、第二工程をパッドつきフォーム成形とした(比較法2)。
 本発明法としては、第一工程をドロー成形、第二工程をフォーム成形とした(本発明法2)。
 まず、従来法2にて成形した結果を図12示す。
 同図に示したように、従来法2では、局所的に大きな板厚減少が生じ、この部位から破断を生じる。
 また、比較法2にて浅絞りドロー成形した結果を図13に、さらにパッドつきフォーム成形した結果を図14に示す。この比較法2に従った場合には、第一工程の浅絞りドロー成形時、第二工程のパッドつきフォーム成形時ともに、局所的な板厚減少が生じており、やはりこの部位からの破断が生じやすい。
 次に、本発明法2の実施に当たり、中間成形体を有限要素法によりプレス成形解析した。図15A、Bに示すように、縦壁の一部と天板面を平面要素と節点に離散化した。離散化に際して節点の間隔は板厚と同等の約1.2mmとした。次に、有限要素解析を用いて各平面要素の法線方向に内圧を与えた結果を図16Aに示す(なお、図16Bは、目標形状である)。これを中間成形体の形状とし、ドロー成形金型により成形した結果を図17に示す。図12とは勿論のこと、図13や図14と比較しても板厚減少が緩和され、破断が回避されていることが分かる。
 さらに、第二工程として目標形状を有する金型でフォーム成形を行った結果を図18に示す。第二工程においても顕著な板厚減少が発生しておらず、破断に至らず、本発明が有効であることが確認された。
 1~8 突出部領域の各節点
 10 成形部材
 11 天板部
 12 縦壁部
 13 フランジ
 14 突起部

Claims (1)

  1.  天板部と縦壁部およびフランジからなる断面ハット形であって、該天板部に、閉塞突出形状の突起部を有する成形部材を、金属素板からプレス成形するに際し、
     まず、プレス成形解析により、上記突起部領域の天板部について、下記に述べるS1、S2の手順で、目標とする形状と表面積がほぼ同一でかつ成形が簡易な予備成形形状を求め、
     ついで、金属素板を、求めた上記予備成形形状にプレス成形し、しかる後、該当箇所を目標とする最終形状にフォーム成形する、
    板材のプレス成形方法。
                     記
     S1:目標形状の突起部領域を有限要素解析用の平面要素と節点に離散化する
     S2:離散化した部位に対し、その内側から平面要素の法線方向に内力を加え、次の条件a、bのもとで変形させる
      (a)構成する平面要素の変形は弾性変形範囲内
      (b)隣り合う平面要素同士の角度は変化自由
PCT/JP2018/033855 2017-11-15 2018-09-12 板材のプレス成形方法 WO2019097829A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18879610.6A EP3677357B1 (en) 2017-11-15 2018-09-12 Sheet material press forming method
CN201880073714.1A CN111344078B (zh) 2017-11-15 2018-09-12 板材的冲压成形方法
JP2019505084A JP6569837B1 (ja) 2017-11-15 2018-09-12 板材のプレス成形方法
KR1020207013738A KR102333846B1 (ko) 2017-11-15 2018-09-12 판재의 프레스 성형 방법
MX2020005048A MX2020005048A (es) 2017-11-15 2018-09-12 Metodo de formacion en prensa de material laminar.
US16/754,743 US11376645B2 (en) 2017-11-15 2018-09-12 Sheet material press forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-220224 2017-11-15
JP2017220224 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019097829A1 true WO2019097829A1 (ja) 2019-05-23

Family

ID=66539646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033855 WO2019097829A1 (ja) 2017-11-15 2018-09-12 板材のプレス成形方法

Country Status (7)

Country Link
US (1) US11376645B2 (ja)
EP (1) EP3677357B1 (ja)
JP (1) JP6569837B1 (ja)
KR (1) KR102333846B1 (ja)
CN (1) CN111344078B (ja)
MX (1) MX2020005048A (ja)
WO (1) WO2019097829A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139447A (ja) * 2004-11-11 2006-06-01 Japan Research Institute Ltd 板材成形シミュレーションシステム及び板材成形シミュレーション用プログラム
JP2008006464A (ja) * 2006-06-29 2008-01-17 Japan Research Institute Ltd 絞り成形品モデル作成システムとそれを備えた絞り成形品モデル解析システム、および絞り成形品モデル作成プログラムとそれを備えた絞り成形品解析プログラム。
US20090272171A1 (en) * 2008-05-05 2009-11-05 Ford Global Technologies, Llc Method of designing and forming a sheet metal part
JP2015139782A (ja) * 2014-01-27 2015-08-03 Jfeスチール株式会社 プレス成形方法
JP5867657B2 (ja) 2013-07-09 2016-02-24 Jfeスチール株式会社 板材の成形方法、及び予成形形状の設定方法
WO2017006793A1 (ja) 2015-07-06 2017-01-12 新日鐵住金株式会社 プレス部品の製造方法および製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206505B2 (ja) * 1997-08-06 2001-09-10 住友金属工業株式会社 金属管の液圧バルジ加工方法および液圧バルジ加工装置
JP4596908B2 (ja) * 2004-12-28 2010-12-15 株式会社日本総合研究所 多段階成形シミュレーションシステム及び多段階成形シミュレーション用プログラム
JP5281519B2 (ja) * 2009-08-26 2013-09-04 トヨタ自動車株式会社 プレス成形方法
JP2012074000A (ja) * 2010-09-03 2012-04-12 Aisin Aw Co Ltd 有限要素法を用いた解析方法、及び有限要素法を用いた解析演算プログラム
US9921572B2 (en) * 2013-11-12 2018-03-20 Embraer S.A. Springback compensation in formed sheet metal parts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139447A (ja) * 2004-11-11 2006-06-01 Japan Research Institute Ltd 板材成形シミュレーションシステム及び板材成形シミュレーション用プログラム
JP2008006464A (ja) * 2006-06-29 2008-01-17 Japan Research Institute Ltd 絞り成形品モデル作成システムとそれを備えた絞り成形品モデル解析システム、および絞り成形品モデル作成プログラムとそれを備えた絞り成形品解析プログラム。
US20090272171A1 (en) * 2008-05-05 2009-11-05 Ford Global Technologies, Llc Method of designing and forming a sheet metal part
JP5867657B2 (ja) 2013-07-09 2016-02-24 Jfeスチール株式会社 板材の成形方法、及び予成形形状の設定方法
JP2015139782A (ja) * 2014-01-27 2015-08-03 Jfeスチール株式会社 プレス成形方法
WO2017006793A1 (ja) 2015-07-06 2017-01-12 新日鐵住金株式会社 プレス部品の製造方法および製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677357A4

Also Published As

Publication number Publication date
EP3677357A4 (en) 2020-11-11
CN111344078B (zh) 2022-05-24
EP3677357A1 (en) 2020-07-08
EP3677357B1 (en) 2024-01-10
JP6569837B1 (ja) 2019-09-04
US11376645B2 (en) 2022-07-05
JPWO2019097829A1 (ja) 2019-11-21
KR102333846B1 (ko) 2021-12-01
MX2020005048A (es) 2020-08-20
CN111344078A (zh) 2020-06-26
KR20200067879A (ko) 2020-06-12
US20200316667A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6032374B2 (ja) プレス成形体の製造方法及びプレス成形装置
JP6590071B2 (ja) プレス成形品の製造方法
JP6531819B2 (ja) バーリング加工方法
CN101657278B (zh) 液压成形加工方法
JP2011045905A (ja) プレス成形方法
JPWO2011148880A1 (ja) 形状凍結性に優れた金属部材の成形方法
WO2019167792A1 (ja) プレス部品の製造方法、プレス成形装置及びプレス成形用の金属板
WO2018123989A1 (ja) 金属板の成形方法、中間形状の設計方法、金属板の成形用金型、コンピュータプログラム、及び記録媒体
KR101216789B1 (ko) 하이드로폼 가공품
JP5987942B1 (ja) プレス成形金型
JP2009202189A (ja) 部材長手方向の平面内に屈曲部を有する金属製断面ハット型形状部材およびそのプレス成形方法
JP6354864B2 (ja) プレス成形品、並びにそのプレス成形品の製造方法及び製造設備列
JP5031703B2 (ja) 形状凍結性に優れる多段プレス成形方法
WO2019097829A1 (ja) 板材のプレス成形方法
JP6152911B1 (ja) プレス成形方法
WO2017141603A1 (ja) プレス成形品の製造方法
JP6112226B2 (ja) プレス成形方法、及びプレス成形部品の製造方法
JP4621185B2 (ja) 形状凍結性に優れた2段プレス成形用金型の設計方法
JP6176429B1 (ja) プレス成形品の製造方法
JP2021164954A (ja) プレス部品の製造方法、曲げ戻し用の金型、プレス部品の成形方法及び高強度鋼板
JP2020093303A (ja) プレス部品の製造方法及び下金型の設計方法
JP2005186113A (ja) 金属板のプレス成形方法
JP7310777B2 (ja) プレス成形方法、中間成形用プレス成形金型およびプレス成形品
JP2019166542A (ja) プレス成形品の成形方法
JP2011073050A (ja) 曲がり部材成形方法および曲がり部材ならびに曲がり部材製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019505084

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018879610

Country of ref document: EP

Effective date: 20200331

ENP Entry into the national phase

Ref document number: 20207013738

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE