WO2019097729A1 - 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法 - Google Patents

焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法 Download PDF

Info

Publication number
WO2019097729A1
WO2019097729A1 PCT/JP2017/041697 JP2017041697W WO2019097729A1 WO 2019097729 A1 WO2019097729 A1 WO 2019097729A1 JP 2017041697 W JP2017041697 W JP 2017041697W WO 2019097729 A1 WO2019097729 A1 WO 2019097729A1
Authority
WO
WIPO (PCT)
Prior art keywords
plated
less
pipe
layer
steel
Prior art date
Application number
PCT/JP2017/041697
Other languages
English (en)
French (fr)
Inventor
真木 純
宗士 藤田
登代充 中村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2018513042A priority Critical patent/JP6406475B1/ja
Priority to PCT/JP2017/041697 priority patent/WO2019097729A1/ja
Priority to MX2020005237A priority patent/MX2020005237A/es
Priority to US16/753,961 priority patent/US11807924B2/en
Priority to CN201780096110.4A priority patent/CN111247266B/zh
Publication of WO2019097729A1 publication Critical patent/WO2019097729A1/ja
Priority to US18/463,110 priority patent/US20230416888A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/04Welding by high-frequency current heating by conduction heating
    • B23K13/043Seam welding
    • B23K13/046Seam welding for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to an Al-plated weld pipe for quenching, a method of manufacturing a hot-pressed Al-plated hollow member, and an Al-plated hollow member.
  • a material to be formed is temporarily heated to a high temperature (austenite region), and a steel pipe softened by heating is formed by bending and formed, and then cooled.
  • a high temperature austenite region
  • a steel pipe softened by heating is formed by bending and formed, and then cooled.
  • the material since the material is once heated to a high temperature and softened, the material can be easily bent and the mechanical strength of the material is obtained by the quenching effect of cooling after forming. Can be enhanced. As a result, a molded article having a complicated shape and high mechanical strength can be obtained.
  • the method of coating steel is mentioned.
  • a welded steel pipe since it is manufactured by molding and seam-welding a plated steel plate, the productivity of the plated steel plate is affected.
  • a zinc-based plating coating having a sacrificial anticorrosion effect is widely used from the viewpoint of its anticorrosion performance and steel plate production technology.
  • the heating temperature (800 to 1000 ° C) in hot working is higher than the decomposition temperature of the organic material or the boiling point of Zn, etc., and the surface plating layer is evaporated when heated by hot working Can cause significant deterioration of the Therefore, for steel plates subjected to hot press processing heated to high temperature, for example, decomposition reaction such as coating of organic material does not occur, and Al-based metal having a boiling point higher than that of Zn-based metal coating It is desirable to use a steel plate coated with (so-called Al-plated steel plate).
  • the Al-based metal coating By applying the Al-based metal coating, it is possible to prevent the adhesion of the scale to the steel surface, and as a result, the process such as the descaling process becomes unnecessary, and the productivity is improved. In addition, since the Al-based metal coating also has an antirust effect, the corrosion resistance after coating is also improved.
  • Patent Document 1 describes a method in which an Al-plated steel sheet obtained by applying an Al-based metal coating to a steel having a predetermined steel component is used for hot pressing.
  • Patent Document 2 discloses a technique for suppressing the generation of scale inside a plating layer in a steel sheet for hot pressing.
  • Patent Document 3 discloses a method of obtaining a high-strength member by forming an Al-plated steel sheet into a steel pipe shape, heating and forming a steel pipe having a welded seam portion, and hardening the steel pipe.
  • Patent Document 4 discloses a heat treated steel material obtained by subjecting a steel material coated with an Al-based plating layer to a heat treatment.
  • an example is disclosed in which an Al-plated steel sheet is UO-formed into a steel pipe having an outer diameter of 31.8 mm and a thickness of 1.2 mm, and is bent.
  • JP 2000-38640 A JP, 2014-118628, A JP, 2006-16674, A JP, 2008-69398, A
  • Al-plated steel sheet is used as a steel pipe and processed and used increasingly. Therefore, it is required to use ERW steel pipe having high productivity.
  • the cracks are formed in a strained steel plate and an Al-Fe-Si alloy layer at the interface of the Al plating layer when forming the Al-plated steel plate into a steel pipe shape.
  • the Al-Fe-Si alloy layer is very hard and brittle, so when forming the steel plate into a steel pipe shape, the alloy layer is partially broken and cracks occur. Then, starting from the generated crack, the steel plate is oxidized without being able to block oxygen in the air at the time of heating by the plating layer at the time of heating, whereby iron oxide (scale) is generated inside the plating layer.
  • Patent Document 2 in order to suppress generation
  • Patent Document 2 focuses on cracks in an Al-plated steel sheet for hot stamping, and discloses a technique for reducing cracks in the intermetallic compound layer in the C direction (direction perpendicular to the rolling direction).
  • the present invention has been made in view of the above problems, and for an ERW steel pipe obtained by forming an Al-plated steel sheet, while suppressing the occurrence of scale inside the plating layer due to the quenching treatment, it is hot
  • a method for manufacturing Al-plated hollow member which is capable of being press-worked, and a hot-worked Al-plated hollow member using the Al-plated welded resistance weld pipe for quenching, and the Al-plated welded resistance pipe for quenching. To be a task.
  • the present inventors have found that, in addition to the thickness of the alloy layer and the thickness of the plating layer, the plate thickness and the outer diameter of the steel pipe play an important role in suppressing the generation of scale.
  • the relationship between the thickness of the plating layer and the plate thickness is important in order to perform good electric resistance welding and to suppress the generation of scale.
  • An ERW welded pipe comprising: a base material portion made of a cylindrical steel plate; and an electric seam welded portion provided at a butt portion of the steel plate and extending in the longitudinal direction of the steel plate, the base material portion Is, by mass%, C: 0.06 to 0.50%, Si: 0.01 to 0.80%, Mn: 0.60 to 3.00%, P: 0.050% or less, S: 0 .050% or less, Al: 0.10% or less, O: 0.006% or less, N: 0.020% or less, Ti: 0.01 to 0.10%, B: 0 to 0.1000%, Nb : 0 to 0.10%, V: 0 to 0.30%, Cr: 0 to 0.50%, Mo: 0 to 0.50%, Ni: 0 to 0.50%, Cu: 0 to 0..
  • the base material portion is located on the surface of the steel sheet, and the balance is between Al-Fe-Si, and the remaining portion is Fe and impurities.
  • Al-plated ERW welded pipe for quenching characterized in that
  • the surface of the Al plating layer is further provided with a film mainly composed of ZnO, and the adhesion amount of the film is 0.1 to 1 g / m 2 in the amount of Zn [1] ] Or [2] Al-plated ERW welded pipe for quenching.
  • a base material portion made of a cylindrical steel plate, and an electric seam welded portion provided at the butt portion of the steel plate and extending in the longitudinal direction of the steel plate, wherein the base material portion is C by mass% : 0.06 to 0.50%, Si: 0.01 to 0.80%, Mn: 0.60 to 3.00%, P: 0.050% or less, S: 0.050% or less, Al: 0.10% or less, O: 0.006% or less, N: 0.020% or less, Ti: 0.01 to 0.10%, B: 0 to 0.1000%, Nb: 0 to 0.10% , V: 0 to 0.30%, Cr: 0 to 0.50%, Mo: 0 to 0.50%, Ni: 0 to 0.50%, Cu: 0 to 0.50%, Ca: 0.
  • the surface of the alloy layer is further provided with a film mainly composed of ZnO, and the adhesion amount of the film is 0.1 to 1 g / m 2 in the amount of Zn [6]. ] Or [7] Al plating hollow member.
  • a base material portion made of a cylindrical steel plate, and an electric seam welded portion provided at a butt portion of the steel plate and extending in the longitudinal direction of the steel plate, wherein the base material portion is C by mass% : 0.06 to 0.50%, Si: 0.01 to 0.80%, Mn: 0.60 to 3.00%, P: 0.050% or less, S: 0.050% or less, Al: 0.10% or less, O: 0.006% or less, N: 0.020% or less, Ti: 0.01 to 0.10%, B: 0 to 0.1000%, Nb: 0 to 0.10% , V: 0 to 0.30%, Cr: 0 to 0.50%, Mo: 0 to 0.50%, Ni: 0 to 0.50%, Cu: 0 to 0.50%, Ca: 0.
  • the base material portion is located on the surface of the steel sheet, and the balance is between Al-Fe-Si, and the remaining portion is Fe and impurities.
  • Heating step forming step for forming the heated Al-plated ERW welded pipe for quenching into a desired shape, and averaging the Al-plated ERW welded pipe for quenching formed into the desired shape
  • a quenching step of quenching at a cooling rate of 20 ° C./sec or more wherein the thickness of the intermetallic compound layer is X ( ⁇ m), the thickness of the Al plating layer is Y ( ⁇ m), and the thickness of the steel pipe is t (t mm), and the outer diameter of the steel pipe is D (mm)
  • HR ° C./sec
  • a manufacturing method of Al plating hollow member characterized by things.
  • a steel pipe obtained by forming an Al-plated steel sheet can be subjected to hot pressing while suppressing the generation of scale inside the plating layer, and the steel pipe can be subjected to a hardening treatment
  • Cracks in forming into ERW steel pipe depend on strain during forming.
  • the distortion at the time of molding can be roughly arranged by focusing on the parameter t / D representing the amount of distortion, where the plate thickness is t mm and the outer diameter of the tube is D mm. If it is considered to reduce the amount of cracks in the alloy layer when subjected to this strain amount, heating is possible if the Al plating layer present in the upper layer of the alloy layer is sufficiently thick even if the crack occurs in the alloy layer. The crack is repaired in the process.
  • the inventors of the present invention as a result of examination, assuming that the Al plating layer thickness is Y ( ⁇ m) and the alloy layer thickness (intermetallic compound layer thickness) is X ( ⁇ m), a parameter Y / X representing the ratio of the thickness of each layer The larger is, the greater the resistance to scale generation due to cracks. Therefore, it has been found that the above problem can be solved by focusing on the relationship between two parameters (t / D) and (Y / X).
  • Al-plated steel sheet has a low melting point of Al
  • ERW welding is more difficult compared to other steel sheets due to the effect of molten Al, and (Y / t) is required to perform good ERW welding. It was found that it was necessary to be in an appropriate range.
  • the inventors of the present invention have found that, as a result of examination, the temperature rising rate of the steel pipe during hot pressing also has a significant effect on scale generation, and the average temperature rise from normal temperature to the attained temperature of -50 ° C It was thought that it was important to make the product of ⁇ , which is a function of HR, (t / D) larger than (Y / X), where the velocity is HR (° C./sec). By satisfying this relationship, it becomes possible to suppress the scale formation inside the plating layer even if the Al-plated steel pipe is heated to about 900 ° C. Embodiments of the present invention are completed based on the above findings.
  • the following may be considered as the reason why the temperature rise rate affects the internal scale formation of the plating layer.
  • the components of the Al plating and the steel pipe components mutually diffuse to grow an alloy layer.
  • the growth of the alloy layer acts to repair the crack.
  • the generated crack is too large, the crack can not be repaired, and as a result, when the crack reaches the Al plated surface, the steel pipe is oxidized by oxygen in the air.
  • the Al-plated steel pipe When the Al-plated steel pipe is heated rapidly, the Al-plated layer becomes a liquid phase at about 600 ° C., and the liquid phase enters the inside of the crack, thereby promoting the repair of the crack. Rapid heating is a process that facilitates the formation of liquid phase Al, and it can be understood that rapid heating increases the crack repair effect of liquid phase Al.
  • the Al-plated weld pipe for quenching according to the present embodiment is formed by forming an Al-plated steel plate into an open pipe shape, and forming a butt joint portion into a steel pipe shape by seam welding. As seam welding, electric resistance welding is preferred.
  • the Al-plated steel sheet used in the present embodiment is one in which an Al-plated layer containing Al is formed on one side or both sides of the steel sheet.
  • a surface coating layer containing at least ZnO may be further laminated on the Al plating layer.
  • C is an element to be contained to secure the desired mechanical strength.
  • the content of C is less than 0.06%, sufficient improvement in mechanical strength can not be obtained, and the effect of containing C becomes poor.
  • the hardness can not be made Hv 350 or more by the quenching treatment after hot bending.
  • the content of C exceeds 0.50%, although the steel sheet can be further hardened, melt cracking tends to occur. Therefore, the content of C is preferably 0.06% to 0.50% by mass.
  • Si is an element used for deoxidation, and is one of strength improving elements for improving mechanical strength, and, like C, is included to secure the desired mechanical strength.
  • Si is less than 0.01%, deoxidation may not be sufficiently performed, and it is difficult to exhibit the strength improvement effect, and a sufficient improvement in mechanical strength can not be obtained.
  • Si is also an oxidizable element. Therefore, when the content of Si exceeds 0.80%, the wettability is lowered when performing the molten Al plating, and there is a possibility that the non-plating may occur. Therefore, the content of Si is preferably 0.01% or more and 0.80% or less in mass%.
  • Mn is one of the strengthening elements for strengthening the steel and is also one of the elements for enhancing the hardenability. Furthermore, Mn is an element effective to prevent hot embrittlement due to S which is one of the impurities. When the content of Mn is less than 0.60%, these effects can not be obtained, and the above effects are exhibited at 0.60% or more. On the other hand, when the content of Mn exceeds 3.00%, there is a possibility that the residual ⁇ phase is excessively increased to lower the strength. Therefore, the content of Mn is preferably 0.60% to 3.00% by mass.
  • the content is preferably as small as possible and 0.050% or less. It is difficult to make the content completely zero, and the practical lower limit is 0.001%.
  • S is an impurity element that forms nonmetallic inclusions such as MnS. Since non-metallic inclusions become a starting point of cracking during cold working, it is preferable that S be as small as possible, preferably 0.050% or less. The lower the content of S, the better, but if it is reduced to less than 0.001%, the refining cost will rise significantly, and may be 0.001% or more in consideration of the refining cost.
  • Al 0.10% or less
  • Al is an element used as a deoxidizer. Although it is not necessary to be contained in the deoxidized steel, usually, 0.0003% or more of Al remains and is contained in the steel. If the content of Al exceeds 0.10%, a large amount of inclusions are formed and the processability is reduced, so 0.10% or less is preferable.
  • the amount of O is as small as possible, preferably 0.006% or less.
  • N is an impurity and an element effective for improving the strength. Since setting the content of N to 0.001% is very expensive, it may be 0.001% or more. If the content of N increases, the ductility and the toughness deteriorate, so the content is made 0.020% or less.
  • Ti 0.01 to 0.10%
  • Ti improves the strength of steel, and has the effect of suppressing surface defects in Al plating and the effect of suppressing deterioration in oxidation resistance when surface defects occur.
  • the content of Ti is made 0.01% or more. If the content exceeds 0.10%, coarse Ti nitride will be formed and the formability will decrease, so the content is made 0.10% or less.
  • B is an element having an effect of acting at the time of quenching to improve strength, and can be contained as necessary.
  • the content of B is preferably made 0.0003% or more.
  • the content of B exceeds 0.1000%, inclusions are formed to cause embrittlement and there is a possibility that the fatigue strength may be reduced, so the content is 0.1000% or less and 0.0060% or less. Is desirable.
  • Nb raises the recrystallization temperature and forms carbonitrides to refine the steel. In order to exert these effects, it is preferable to contain 0.01% or more. If the content exceeds 0.10%, the low temperature toughness may be impaired due to the precipitation effect, so the content is made 0.10% or less.
  • V is an element that forms carbonitrides to improve strength, and can be contained as necessary. In order to effectively obtain the effect of strength improvement, it is preferable to contain 0.01% or more. If the content exceeds 0.30%, the workability of the steel sheet is reduced, so the content is made 0.30% or less.
  • Cr 0 to 0.50%
  • Cr is an element that is effective in hardenability, and can be contained as needed. In order to effectively obtain the effect of improving the hardenability, it is preferable to contain Cr in 0.01% or more. If the content of Cr exceeds 0.50%, the carbides are stabilized at the time of rapid heating, the dissolution of carbides is delayed at the time of quenching, and there is a possibility that the required quenching strength can not be achieved.
  • Mo is an element improving the hardenability, and can be contained as needed. In order to effectively obtain the hardenability improvement effect, it is preferable to contain 0.01% or more. If the content exceeds 0.50%, the heat resistance of the Al plating decreases, and the content is made 0.50% or less.
  • Ni is an element effective for improving the toughness, and can be contained as needed. In order to effectively obtain the addition effect, it is preferable to set Ni to 0.001% or more. If the content of Ni exceeds 0.50%, the processability decreases, so Ni is made 0.50% or less.
  • Cu is an element that improves hardenability and contributes to the improvement of strength, and can be contained as needed. In order to effectively obtain the effect of addition, Cu is preferably 0.001% or more. If the content of Cu exceeds 0.50%, wrinkles may be generated at the time of hot rolling, so Cu is desirably 0.50% or less.
  • Ca 0. ⁇ 0.005%
  • Ca is an element that can control the form of sulfide by a small amount of addition, and can be contained as needed. In order to effectively obtain the effect of addition, Ca is preferably 0.001% or more. When the content of Ca exceeds 0.005%, coarse Ca oxide is formed to be a starting point of cracking during processing, so Ca is made 0.005% or less.
  • REM 0 to 0.005%
  • REM is an element effective for improving formability, and can be contained as needed.
  • the content of REM is preferably 0.001% or more. If the content of REM increases, the ductility may be impaired, so the content is made 0.005% or less.
  • Al-plated steel plate When forming an Al-plated steel plate into a steel pipe, bending and welding are required, and the end of the bent Al-plated steel plate may be stripped of plating to facilitate ERW welding. Furthermore, weld beads generated by electric resistance welding are deleted. Therefore, there is no Al plating layer in the seam weld. Therefore, in order to prevent oxidation and decarburization from the weld and to prevent the weld tube from being corroded during use, Al or the like may be sprayed. By applying metal spraying containing Al or the like, it is possible to suppress oxidation and decarburization from the weld to a certain extent.
  • the adhesion between the sprayed metal and the weld bead is affected by P, N and Al.
  • the contents of P, N, and Al in the steel sheet are preferably lower than those described above, and P: 0.01% or less, N: 0.006% or less, respectively. It is particularly preferable that Al: 0.08% or less.
  • the remainder of the steel plate is Fe and unavoidable impurities.
  • Unavoidable impurities are components which are contained in raw materials or are mixed in the process of production, and are components which are not intentionally contained in steel. Specifically, P, S, O, N, Sb, Sn, W, Co, As, Mg, Pb, Bi, and H can be mentioned.
  • P, S, O, N need to control the content in the above-mentioned range.
  • Sb, Sn, W, Co and As are 0.1% or less
  • Mg, Pb and Bi are 0.005% or less
  • H is 0.0005% or less as unavoidable impurities. There may be contamination, but within the normal range, no particular control is necessary.
  • a steel plate formed of such components is Al-plated and formed into a steel pipe shape, and then heated and processed by a hot pressing method or a hot bending method (hereinafter collectively referred to as "hot processing"), and thereafter The material is cooled by a medium such as water, gas, water, gas, etc., and quenched to have mechanical strength of about 1500 MPa or more in tensile strength.
  • a hot pressing method or a hot bending method hereinafter collectively referred to as "hot processing”
  • the material is cooled by a medium such as water, gas, water, gas, etc., and quenched to have mechanical strength of about 1500 MPa or more in tensile strength.
  • a hot working method since it can be processed in a softened state by heating, it can be easily formed.
  • the steel pipe can realize high mechanical strength, and can maintain or improve the mechanical strength even if it is thinned for weight reduction.
  • the Al plating layer is formed on one side or both sides of the steel plate.
  • the Al plating layer is formed on the surface of the steel plate by, for example, a hot-dip plating method.
  • the formation method of the Al plating layer which concerns on this embodiment is not limited to the hot-dip plating method, It is possible to utilize well-known Al plating methods, such as an electroplating method.
  • the component of the Al plating layer preferably contains 70% or more, more preferably 80% or more of Al, and further contains Si. That is, the Al plating layer according to the present embodiment is a plating layer made of Al-Si.
  • the content of Si is preferably 3% or more and 15% or less.
  • the Al plating layer is formed by the hot-dip plating method
  • 2 to 4% of Fe eluted from equipment in a bath or a steel strip may be contained as an element other than Si.
  • at least any one of Mg, Ca, Sr, and Li may be contained in the Al plating bath at about 0.01 to 1%.
  • the intermetallic compound layer As described above is formed on the surface of the steel plate as described above, the components of the steel plate and the components of the Al plating layer mutually diffuse between the steel plate and the Al plating layer, thereby forming Al-Fe- An intermetallic compound layer including an intermetallic compound made of a Si-based alloy is formed.
  • the thickness of the intermetallic compound layer is determined depending on the bath temperature at the time of Al plating, sheet passing speed, steel components and the like, but it is, for example, in the range of about 3 ⁇ m to 8 ⁇ m.
  • the components of the intermetallic compound layer usually contain, by mass%, Al: 35 to 65%, Si: 3 to 15%, and the balance is Fe and impurities.
  • the thicknesses of the Al plating layer and the intermetallic compound layer as described above can be measured by various known measurement methods. For example, it is possible to measure by observing the cross section of an Al-plated steel plate before forming a steel pipe or an Al-plated welded pipe with an optical microscope, a scanning electron microscope, or the like.
  • the cross section of the Al-plated steel plate or the Al-plated welded tube is observed at a suitable magnification for a plurality of views, and the thicknesses of the Al plating layer and the intermetallic compound layer in each view are measured. Thereafter, the thicknesses of the Al plating layer and the intermetallic compound layer can be obtained by averaging the measured values obtained between the measured fields of view.
  • a surface coating layer may be further laminated on the surface of the Al plated layer with respect to the Al plated steel sheet.
  • the surface coating layer preferably contains at least ZnO.
  • a surface coating layer can be formed by applying and drying this suspension with a roll coater or the like using a liquid in which ZnO fine particles are suspended in an aqueous solution. This surface coating layer has the effect of improving the lubricity in hot working and the reactivity with the chemical conversion solution.
  • the surface coating layer can contain, for example, an organic binder component as a component other than ZnO.
  • organic binder include water-soluble resins such as polyurethane resins, polyester resins, acrylic resins, and silane coupling agents.
  • oxides other than ZnO for example, SiO 2 , TiO 2 , Al 2 O 3 and the like may be contained in the surface film layer.
  • a method of forming a surface film layer containing a binder component as described above for example, a method of mixing a suspension containing ZnO with a predetermined organic binder and coating it on the surface of an Al plating layer, powder The coating method by coating etc. are mentioned.
  • the adhesion amount of the surface coating layer containing ZnO is preferably 0.1 to 1 g / m 2 in terms of the amount of Zn per one side of the steel sheet.
  • the content of ZnO is 0.1 g / m 2 or more in Zn content, the coating film adhesion improvement effect, the lubrication improvement effect, and the like can be effectively exhibited.
  • the content of ZnO exceeds 1 g / m 2 as Zn, a film more than necessary is provided, so that the economic rationality is lacking.
  • the formation method of a surface film layer is not limited to said example, It can form by well-known various methods.
  • the surface coating layer When an Al-plated steel sheet having a surface coating layer is formed into a steel pipe, the surface coating layer may be partially exfoliated or removed during the formation. In order to avoid this, a surface coating layer may be applied after steel pipe forming.
  • the surface coating layer can be applied after forming the steel pipe by a method such as immersing the steel pipe in the suspension or applying the suspension with a spray.
  • an Al-plated steel sheet is processed into an open pipe shape, and both ends are heated, pressed and welded by arc welding to form an Al-plated welded pipe.
  • High frequency welding is often used as ERW welding.
  • a metal containing Al may be sprayed onto the weld bead to form a sprayed coating on the weld bead.
  • the metal containing Al include pure Al, Al-Zn, Al-Si, Al-Mg and the like. Since Al is excellent in heat resistance, it is excellent in protection during hot working.
  • the thickness of the thermal spray coating at this time is, for example, preferably 5 to 100 ⁇ m. Spraying is performed on the outer surface of the steel pipe.
  • the diameter of the steel pipe is usually about 20 to 70 mm in many cases, but is not particularly limited.
  • the Al-plated hollow member of the present embodiment is obtained after hot working of an Al-plated welded pipe, it is difficult to obtain an accurate steel pipe diameter and plate thickness in a steel pipe state from the Al-plated hollow member. So, in this embodiment, the state before hot working shall be prescribed.
  • the Al plating layer formed of the above components can suppress the oxidation of the steel substrate when the steel plate is heated, and also improves the corrosion resistance. Furthermore, as mentioned above, the resistance to scale generation due to cracks can be improved by making two parameters (t / D) and (Y / X) appropriate. Specifically, by satisfying 70 ⁇ t / D ⁇ Y / X (1), it is possible to obtain the resistance to scale generation due to the excellent crack.
  • X is the thickness ( ⁇ m) of the intermetallic compound layer (alloy layer)
  • Y is the thickness of the Al plating layer ( ⁇ m)
  • t is the plate thickness (mm)
  • D is the steel pipe outer diameter (mm).
  • Al plating layer shall mean the plating layer containing Al or Al and Si which do not contain an alloy layer.
  • (Y / t) needs to be in an appropriate range in order to perform good electric resistance welding.
  • good resistance welding can be performed by satisfying Y / t ⁇ 30 (2). Thereby, it can suppress that a scale generate
  • the t / D of the Al-plated ERW welded pipe for quenching of the present invention is not particularly limited. However, if t / D is large, the strain at the time of electric resistance welding becomes larger, and the generation of scale at the time of hot working tends to be a problem. Therefore, when t / D is large, for example, t / D 2 2 It is particularly effective for ERW welded tubes in which%, t / D 4 4%. Further, as described above, t / D is preferably 10% or less because molding strain increases as t / D increases.
  • an Al-plated steel pipe (Al-plated welded pipe) is heated to a high temperature to be softened.
  • the softened plated steel sheet is formed by pressing or bending, and then the formed plated steel pipe is quenched by a heat removal using a press die or a cooling medium such as water, gas, water, or the like.
  • a press die or a cooling medium such as water, gas, water, or the like.
  • a method of heating by passing the Al-plated steel pipe in a furnace maintained at high temperature such as an electric furnace Can be used.
  • the temperature rise rate is often 4 to 5 ° C./second.
  • rapid heating of 15 ° C./sec or more can be achieved by applying, for example, a near infrared heating furnace, high frequency heating, or electric heating. In view of oxidation and decarburization of the thermal spray site, rapid heating is preferred.
  • (Y / X) is set to be ⁇ times or more of (t / D).
  • is 168 ⁇ HR ⁇ 0.45 .
  • HR is an average heating rate (° C./sec) from normal temperature set at the time of hot working to (final temperature ⁇ 50) ° C. That is, the temperature rising rate is set to satisfy both of the following equations (101) and (103).
  • the Al-plated welded pipe satisfies the relationships represented by the above formulas (101) and (103), the crack generated in the intermetallic compound layer during the hot working performed in the latter stage is properly repaired, and the plating is performed. It is possible to hot-work an Al-plated welded pipe while suppressing the generation of scale in the layer.
  • the Al-plated welded pipe does not satisfy the relationships represented by the above formulas (101) and (103)
  • repair of cracks generated in the intermetallic compound layer at the time of hot working performed in the latter stage It does not catch up, and the scale resulting from a crack may occur.
  • the object to be processed is a tubular body, heat is removed from one side unlike a plate material, so it is difficult to increase the cooling rate. For this reason, it is preferable to introduce a gas (fluid with a small heat capacity) inside. Since thermal spraying is difficult on the inner surface of the steel pipe, the gas introduced to the inner surface is preferably non-oxidizable (for example, nitrogen gas).
  • the cooling is usually performed by a heat removal by a mold, a cooling medium such as water, air, water, gas or the like.
  • the cooling rate (average cooling rate) is 20 ° C./sec or more in order to obtain a high strength member by quenching.
  • the upper limit value of the cooling rate is not particularly limited, it is difficult in practice to set it to 300 ° C./second or more.
  • the cooling rate of the quenching by the mold is more preferably 30 ° C./s or more and 300 ° C./s or less.
  • Al-plated steel pipe Al-plated welded pipe melts above the melting point when the Al-plated steel pipe is heated, and at the same time, by mutual diffusion with Fe, to an alloy layer centered on Al-Fe. Change.
  • the melting point of the Al—Fe alloy layer is high, about 1150 ° C.
  • the surface condition of the hot pressed Al plated hollow member which is the final product is in the state of being alloyed to the surface of the Al plated layer in the material Al plated steel pipe (Al plated welded pipe) and It is preferable that the generation rate of Fe oxide (scale) in the plating layer formed as a result is 5% or less. Further, a further preferable surface state as a hot-worked Al-plated hollow member which is a final product is in a state of being alloyed to the surface of an Al-plated layer in an Al-plated steel pipe (Al-plated welded pipe) which is a material and The Fe oxide is not generated in the plating layer formed as a result of the alloying.
  • a surface coating layer mainly composed of ZnO is formed on the surface of the Al plating layer of the Al-plated steel pipe (Al-plated welded pipe) used as the material, even on the alloy layer of the Al-plated hollow member which is the final product, There is a surface film layer mainly composed of ZnO.
  • the surface of an Al-plated hollow member manufactured after the Al-plated hollow member is manufactured by a hot working method using an Al-plated steel pipe (Al-plated welded pipe) having no surface coating layer mainly composed of ZnO.
  • a surface coating layer mainly composed of ZnO as described above may be provided.
  • the scale generation rate in the alloy layer is defined as follows.
  • the cross-section of the steel pipe part is embedded and polished, and a 0.5 mm range in the circumferential direction is observed with an optical microscope or SEM to measure the proportion of the scale-generating tissue as a whole.
  • the scale inside the alloy layer is relatively coarse (for example, 5 to 20 ⁇ m wide), it can be easily measured, for example, by optical microscope observation as shown in FIG.
  • FIG. 2 shows a cross-sectional photograph of an Al plated layer of an Al plated steel pipe which is a material before heating.
  • the hardness of the steel base portion of the quenched part is about 350 to 800 in Vickers hardness (Hv).
  • the hardness value substantially corresponds to the amount of C in the steel, and in the case of 0.06% C, Hv is about 350 at the maximum, and in the case of 0.5% C, Hv is about 800.
  • Hv can be measured in accordance with JIS Z2244. When measuring Hv, the area near the center of thickness of the steel plate is measured with a load of 5 kgf (1 kgf is about 9.8 N). I assume.
  • the Al plating welding pipe for hardening which concerns on this invention which concerns on this invention
  • the experimental examples shown below are merely examples of the Al-plated weld pipe for quenching according to the present invention, the hot-worked Al-plated hollow member, and the Al-plated hollow member, and for quenching according to the present invention.
  • the Al-plated welded pipe, the method for producing a hot-worked Al-plated hollow member, and the Al-plated hollow member are not limited to the following examples. In particular, hot working can be applied to bending, diameter reduction, pipe expansion, crushing, and the like.
  • a liquid containing 20% of an acrylic binder relative to the amount of ZnO is applied to a suspension containing ZnO having an average particle diameter of about 50 nm on a portion of the cold rolled steel plate by a roll coater, Baking at about 80 ° C.
  • the adhesion amount was 0.1 to 1.5 g / m 2 per one side in the amount of Zn.
  • Al-plated steel pipe (Al-plated welded pipe) was manufactured using the manufactured Al-plated steel sheet.
  • ERW welding was high frequency welding, the frequency at welding was 300 kHz, and the welding speed was 5 m / sec.
  • the weld bead portion was cut, ie, bead-cut, and 50 ⁇ m of the Al sprayed coating was applied to the outer surface portion of a part of the steel pipe.
  • Steel pipes having various thicknesses and outer diameters were manufactured, and their characteristics were evaluated. The evaluation method is shown below.
  • the formed shape was simply hardened by a mold, with the steel pipe simply reduced to a half thickness (diameter in the longitudinal direction).
  • the weld bead portion at this time was arranged to be on the top surface.
  • a sample was taken from the molded product, and the structure of the steel and the plated layer was revealed by cross-sectional polishing and 2 volume% nital etching.
  • the thickness of the decarburized layer was also measured about the sample in which the decarburized layer is producing
  • Hot-water salt adhesion The above-mentioned samples subjected to chemical conversion treatment and electrodeposition coating are immersed in a 5% salt water at 50 ° C. for 2 weeks without wrinkling the coating, and within 1 hour after immersion After applying a 1 mm grid, the coating film adhesion was evaluated by taping. Such evaluation is much more severe than the adhesion shown in (4). Usually, such severe coating film adhesion is not required, but it is a characteristic that is required particularly when used in a severe corrosive environment.
  • Example 2 Al plating was applied to a steel plate having a thickness of 1.4 mm having steel components shown in Table 3 below under the same conditions as in Example 1.
  • the thickness of the Al plating layer was 24 ⁇ m, and the thickness of the alloy layer was 5 ⁇ m.
  • the steel plate was formed into a steel pipe having an outer diameter of 32 mm, and the welded portion was subjected to Al spraying of about 30 ⁇ m. Thereafter, the thermal spray material adhesion evaluation shown in Example 1 was carried out.
  • the Al-plated welded pipe for quenching of the present invention By using the Al-plated welded pipe for quenching of the present invention, it is possible to manufacture a high strength member by hot working, and it is possible to obtain a part which is lighter than in the past. This contributes to further weight reduction in the final use automobile and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

めっき層内部へのスケール発生を抑制しつつ熱間加工を施すことが可能な焼入れ用Alめっき電縫溶接管、並びに上記Alめっき電縫溶接管を用いたAlめっき中空部材であって、上記焼入れ用Alめっき電縫溶接管は、筒状の鋼板からなり所定の化学組成を有する母材部と、前記鋼板の突合せ部に設けられ、前記鋼板の長手方向に延在する電縫溶接部からなり、前記母材部は、前記鋼板の表面に位置し、Al-Fe-Si系の金属間化合物を含む金属間化合物層と、前記金属間化合物層の表面に位置し、Al及びSiを含有するAlめっき層とをさらに備え、前記金属間化合物層の厚みをX(μm)とし、Alめっき層の厚みをY(μm)とし、前記鋼管の管厚をt(mm)とし、前記鋼管の外径をD(mm)としたときに、70×X/D≦Y/t≦30を満たすことを特徴とする。

Description

焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
 本発明は、焼入れ用Alめっき溶接管、並びに熱間プレス加工されたAlめっき中空部材の製造方法及びAlめっき中空部材に関する。
 近年、環境保護及び地球温暖化の抑制のために、化石燃料の消費を抑制する要請が高まっており、この要請は、様々な製造業に対して影響を与えている。例えば、移動手段として日々の生活や活動に欠かせない自動車についても例外ではなく、車体の軽量化などによる燃費の向上等が求められている。しかしながら、自動車では単に車体の軽量化するだけではなく、要求される強度と適切な安全性を確保する必要がある。
 自動車の構造の多くは、鋼により形成されており、この鋼の質量を低減することが、車体の軽量化にとって重要である。特に、鋼管は閉構造であるため、高い剛性が得られるため、近年、自動車の構造部材として使用が増えている。鋼管を部材に加工する方法としては、冷間での曲げ加工法、ハイドロフォーム法が従来から使用されているが、近年、熱間で3次元に曲げ加工後、直後に水冷して、高強度の中空部材を加工する方法が提案されている。
 この熱間曲げ加工方法では、成形対象である材料を一旦高温(オーステナイト域)に加熱して、加熱により軟化した鋼管を曲げ加工を行って成形した後に、冷却する。この熱間曲げ加工方法によれば、材料を一旦高温に加熱して軟化させるので、その材料を容易に曲げ加工することができ、さらに、成形後の冷却による焼入れ効果により、材料の機械的強度を高めることができる。その結果、複雑な形状と高い機械的強度とを両立した成形品が得られる。
 熱間曲げ加工方法を鋼管に適用した場合、例えば800℃以上の高温に加熱することにより、表面の鉄などが酸化してスケール(酸化物)が発生する。したがって、熱間プレス加工を行った後に、このスケールを除去する工程(デスケーリング工程)が必要となり、生産性が低下する。また、耐食性を必要とする部材等では、加工後に部材表面へ防錆処理や金属被覆を実施する必要があり、表面清浄化工程、表面処理工程が必要となって、やはり生産性が低下する。特に、鋼管形状の場合には、内面側をデスケーリングすることが困難である。
 このような生産性の低下を抑制する方法の例として、鋼に被覆を施す方法が挙げられる。溶接鋼管を使用する場合には、めっき鋼板を成型、シーム溶接して製造されるため、めっき鋼板の生産性が影響する。例えば犠牲防食作用のある亜鉛系めっき被覆が、その防食性能と鋼板生産技術の観点から、広く使われている。
 しかしながら、熱間加工における加熱温度(800~1000℃)は、有機系材料の分解温度やZnの沸点などよりも高く、熱間加工で加熱したときに表面のめっき層が蒸発して、表面性状の著しい劣化の原因となる場合がある。したがって、高温に加熱する熱間プレス加工を行う鋼板に対しては、例えば、有機系材料被覆のような分解反応が生じず、また、Zn系の金属被覆に比べて沸点が高いAl系の金属を被覆した鋼板(いわゆるAlめっき鋼板)を使用することが望ましい。
 Al系の金属被覆を施すことにより、鋼表面へのスケールの付着を防止でき、その結果、デスケーリング工程などの工程が不要となるため、生産性が向上する。また、Al系の金属被覆には防錆効果もあるため、塗装後の耐食性も向上する。
 特許文献1には、Al系の金属被覆を所定の鋼成分を有する鋼に対して施したAlめっき鋼板を、熱間プレス加工に用いる方法が記載されている。
 特許文献2には、熱間プレス加工用鋼板において、めっき層内部でのスケール発生を抑制するための技術が開示されている。
 特許文献3には、Alめっき鋼板を鋼管状に成型し、シーム部を溶接した鋼管を加熱及び成形して焼き入れることで、高強度の部材を得る方法が開示されている。
 特許文献4には、Al系めっき層で被覆された鋼材に熱処理を施した熱処理鋼材を開示している。実施例では、Alめっき鋼板を外径が31.8mm、肉厚が1.2mmの鋼管にUO成形し、曲げ加工する例が開示されている。
特開2000-38640号公報 特開2014-118628号公報 特開2006-16674号公報 特開2008-69398号公報
 前述のとおり、自動車の構造部材として、Alめっき鋼板を鋼管とし、加工して使用することが増えている。そのため、生産性の高い、電縫鋼管を使用することが求められている。また、構造部材の強度の観点からは、板厚の厚い鋼管を用いることが求められる。すなわち、板厚をt、鋼管の外径をDとしたとき、t/Dの大きな鋼管を加工する必要が生じる。
 Alめっき鋼板を成形して電縫鋼管とし、その後、熱間加工、焼入れ処理する際に考慮すべき課題として、電縫鋼管成型時の合金層へのクラック発生と、クラックに起因するめっき層内部における鉄酸化物(スケール)の発生とが挙げられる。
 クラックは、Alめっき鋼板を鋼管状に成形する際に、歪を受けた鋼板とAlめっき層界面のAl-Fe-Si系合金層に生成するものである。Al-Fe-Si系の合金層は、非常に硬質であって脆性であるために、鋼板を鋼管形状へ成形する際に、合金層が部分的に破壊され、クラックが発生する。そして、発生したクラックを起点として、加熱時に大気中の酸素をめっき層で遮断しきれずに鋼板が酸化することで、めっき層内部において鉄酸化物(スケール)が発生する。
 特許文献2では、鉄酸化物(スケール)の発生を抑制するために合金層厚みとめっき層厚みとを規定している。特許文献2はホットスタンプ用のAlめっき鋼板のクラックに注目しており、C方向(圧延方向に対して直角な方向)の金属間化合物層のクラックを小さくする技術を開示している。
 しかしながら、電縫鋼管の場合、その成形歪は一般に鋼板やUO成形した鋼管よりも大きい傾向がある。例えば製管する際に曲げ戻しを行う場合があることや、その後のフィンパス、スクイズ工程で周方向に圧縮歪を付与する工程が存在するためである。また、鋼管の成形過程における主歪はC方向であるから、クラックはL方向(圧延方向)に進展することとなる。t/Dが大きい場合は、さらに歪が大きくなり、クラックが発生しやすくなる。すなわち、このクラックを起点として加熱時にスケールが発生するという問題が、鋼板やUO鋼管の熱加工と比較して生じやすい。
 さらに、本発明者らは、Alめっき鋼板を電縫溶接する場合、Alの融点が低いことから、溶融するAlの影響で電縫溶接が他の鋼板と比較して難しく、良好な電縫溶接がされない場合、溶接部がスケール発生の起点となり得ることを知見した。
 すなわち、Alめっき鋼板を電縫溶接し、それを熱間加工して構造部材を製造する場合、これらを考慮した特有の対策が必要となる。
 本発明は、上記問題に鑑みてなされたものであり、Alめっき鋼板を成形することで得た電縫鋼管に対して、焼入れ処理によるめっき層内部へのスケールの発生を抑制しつつ、熱間プレス加工を施すことが可能な焼入れ用Alめっき電縫溶接管と、かかる焼入れ用Alめっき電縫溶接管を用いた熱間加工されたAlめっき中空部材の製造方法及びAlめっき中空部材とを提供することを課題とする。
 本発明者らは鋭意検討を重ねた結果、合金層の厚み及びめっき層の厚みに加えて、板厚及び鋼管の外径がスケールの発生の抑制に重要な役割を果たすことを知見した。また、良好な電縫溶接を行い、スケールの発生を抑制するためには、めっき層の厚みと板厚との関係が重要であることを知見した。
 本発明は上記の知見に基づき完成されたものであって、その要旨は、以下のとおりである。
 [1]筒状の鋼板からなる母材部と、前記鋼板の突合せ部に設けられ、前記鋼板の長手方向に延在する電縫溶接部からなる電縫溶接管であって、前記母材部は、質量%で、C:0.06~0.50%、Si:0.01~0.80%、Mn:0.60~3.00%、P:0.050%以下、S:0.050%以下、Al:0.10%以下、O:0.006%以下、N:0.020%以下、Ti:0.01~0.10%、B:0~0.1000%、Nb:0~0.10%、V:0~0.30%、Cr:0~0.50%、Mo:0~0.50%、Ni:0~0.50%、Cu:0~0.50%、Ca:0.~0.005%、及びREM:0~0.005%を含有し、残部がFe及び不純物であり、前記母材部は、前記鋼板の表面に位置し、Al-Fe-Si系の金属間化合物を含む金属間化合物層と、前記金属間化合物層の表面に位置し、Al及びSiを含有するAlめっき層とをさらに備え、前記金属間化合物層の厚みをX(μm)とし、Alめっき層の厚みをY(μm)とし、前記鋼管の管厚をt(mm)とし、前記鋼管の外径をD(mm)としたときに、70×X/D≦Y/t≦30を満たすことを特徴とする焼き入れ用Alめっき電縫溶接管。
 [2]X≦5.0μm、Y≦32μm、及び4.0≦Y/X≦6.0を満たすことを特徴とする前記[1]の焼き入れ用Alめっき電縫溶接管。
 [3]前記Alめっき層の表面に、さらに、ZnOを主体とする皮膜を備え、前記皮膜の付着量は、Zn量で0.1~1g/mであることを特徴とする前記[1]又は[2]の焼き入れ用Alめっき電縫溶接管。
 [4]前記溶接部がAlを主成分とする合金で被覆されたことを特徴とする前記[1]~[3]のいずれかの焼き入れ用Alめっき電縫溶接管。
 [5]2%≦t/D≦10%を満たすことを特徴とする前記[1]~[4]の焼き入れ用Alめっき電縫溶接管。
 [6]筒状の鋼板からなる母材部と、前記鋼板の突合せ部に設けられ、前記鋼板の長手方向に延在する電縫溶接部からなり、前記母材部は、質量%で、C:0.06~0.50%、Si:0.01~0.80%、Mn:0.60~3.00%、P:0.050%以下、S:0.050%以下、Al:0.10%以下、O:0.006%以下、N:0.020%以下、Ti:0.01~0.10%、B:0~0.1000%、Nb:0~0.10%、V:0~0.30%、Cr:0~0.50%、Mo:0~0.50%、Ni:0~0.50%、Cu:0~0.50%、Ca:0.~0.005%、及びREM:0~0.005%を含有し、残部がFe及び不純物である電縫溶接管と、前記電縫溶接管の表面に位置し、Al-Fe系合金、及び、Al-Fe-Si系合金の少なくとも何れかを含む合金層とを備え、前記合金層中におけるFe酸化物の発生率が5%以下であり、前記電縫溶接管の鋼素地のビッカース硬度Hvが、350~800であることを特徴とするAlめっき中空部材。
 [7]前記合金層中に、合金となっていないAlが残存しないことを特徴とする前記[6]のAlめっき中空部材。
 [8]前記合金層の表面に、さらに、ZnOを主体とする皮膜を備え、前記皮膜の付着量は、Zn量で、0.1~1g/mであることを特徴とする前記[6]又は[7]のAlめっき中空部材。
 [9]筒状の鋼板からなる母材部と、前記鋼板の突合せ部に設けられ、前記鋼板の長手方向に延在する電縫溶接部からなり、前記母材部は、質量%で、C:0.06~0.50%、Si:0.01~0.80%、Mn:0.60~3.00%、P:0.050%以下、S:0.050%以下、Al:0.10%以下、O:0.006%以下、N:0.020%以下、Ti:0.01~0.10%、B:0~0.1000%、Nb:0~0.10%、V:0~0.30%、Cr:0~0.50%、Mo:0~0.50%、Ni:0~0.50%、Cu:0~0.50%、Ca:0.~0.005%、及びREM:0~0.005%を含有し、残部がFe及び不純物であり、前記母材部は、前記鋼板の表面に位置し、Al-Fe-Si系の金属間化合物を含む金属間化合物層と、前記金属間化合物層の表面に位置し、Al及びSiを含有するAlめっき層とをさらに備えた焼き入れ用Alめっき電縫溶接管を850℃以上の加熱温度で加熱する加熱工程と、加熱された前記焼入れ用Alめっき電縫溶接管を所望の形状へと形成する成形工程と、所望の形状へと成形された前記焼入れ用Alめっき電縫溶接管を平均冷却速度20℃/秒以上で急冷する急冷工程とを備え、前記金属間化合物層の厚みをX(μm)とし、Alめっき層の厚みをY(μm)とし、前記鋼管の管厚をt(mm)とし、前記鋼管の外径をD(mm)とし、熱間加工時に設定される常温から到達温度-50℃までの平均昇温速度をHR(℃/秒)としたときに、以下の式(1)及び式(2)で表される関係を満たすことを特徴とするAlめっき中空部材の製造方法。
  Y/X≧α×t/D ・・・(1)
  α=168×HR-0.45 ・・・(2)
 本発明によれば、Alめっき鋼板を成形することで得た鋼管に対して、めっき層内部へのスケールの発生を抑制しつつ、熱間プレス加工を施し、鋼管に焼入れ処理を施すことが可能となり、Alめっき鋼管を母材としたAlめっき中空部材を製造することが可能となる。
熱間プレス加工されたAlめっき中空部材の合金層中のスケールの断面写真である。 加熱前の素材であるAlめっき鋼管のAlめっき層の断面写真である。
 以下に、本発明の好適な実施の形態について詳細に説明する。
 本発明の実施形態に係る焼入れ用Alめっき電縫溶接管、並びにAlめっき中空部材の製造方法及び熱間プレス加工されたAlめっき中空部材について説明するに先立ち、まず、本発明者らが前記課題を解決するために行った検討の内容について説明する。
 電縫鋼管に成形する際のクラックは、成形時の歪に依存する。成形時の歪は、板厚をtmmとし、管の外径をDmmとしたときに、歪量を表すパラメータt/Dに着目することで、ほぼ整理可能である。この歪量を受けたときの合金層クラック量を低減することを考えた場合に、合金層にクラックが生じたとしても、合金層の上層に存在するAlめっき層が十分に厚ければ、加熱過程でクラックは修復される。
 本発明者らは、検討の結果、Alめっき層厚をY(μm)、合金層厚(金属間化合物層厚)をX(μm)としたとき、各層の厚みの比率を表すパラメータY/Xが大きいほど、クラックに起因するスケール発生に対する耐性が大きいことを意味する。したがって、上記課題は、2つのパラメータ(t/D)と(Y/X)との関係に着目することで、解決することが可能であることを知見した。
 また、Alめっき鋼板は、Alの融点が低いことから、溶融するAlの影響で電縫溶接が他の鋼板と比較して難しく、良好な電縫溶接を行うためには(Y/t)を適切な範囲にする必要が有ることを知見した。
 さらに、本発明者らは、検討の結果、熱間プレス加工時の鋼管の昇温速度も、スケール発生に大きな影響を及ぼすとの知見を得、常温から到達温度-50℃までの平均昇温速度をHR(℃/秒)としたときに、HRの関数であるαと(t/D)との積を、(Y/X)よりも大きくすることが重要である旨に想到した。かかる関係性が満たされることで、Alめっき鋼管を900℃程度まで加熱しても、めっき層内部のスケール生成を抑制することが可能となる。本発明の実施形態は、上記のような知見に基づき完成されたものである。
 昇温速度がめっき層内部スケール発生に影響する理由については、以下のような理由が考えられる。
 熱間プレス加工時の加熱により、Alめっきの成分及び鋼管成分は相互拡散し、合金層が成長する。合金層にクラックが発生すると、合金層の成長は、クラックを修復する方向に作用する。しかしながら、発生したクラックが大きすぎる場合、クラックを修復することができず、その結果クラックがAlめっき表面に到達すると、大気中の酸素により鋼管が酸化される。
 Alめっき鋼管を急速に加熱する場合、Alめっき層が約600℃で液相となり、この液相がクラック内部に入り込むことでクラックの修復が促進される。急速加熱は、液相のAlを生成しやすくする処理であり、急速加熱により、液相Alによるクラック修復作用が大きくなると理解できる。
 なお、(Y/X)を(t/D)で除した値を、以下の本実施形態ではαと表記することとし、α=168×HR-0.68と定義した。この定義式は、本発明者らによる実験から算出したものである。
 以下、本実施形態に係る焼入れ用Alめっき溶接管、熱間プレス加工されたAlめっき中空部材の製造方法及び熱間プレス加工されたAlめっき中空部材について、詳細に説明する。以下、「%」は「質量%」を意味する。
 <Alめっき鋼板について>
 本実施形態に係る焼入れ用Alめっき溶接管は、Alめっき鋼板をオープン管形状に成形し、突合せ部をシーム溶接により鋼管形状としたものである。シーム溶接としては、電縫溶接が好ましい。
 本実施形態で使用するAlめっき鋼板は、鋼板上の片面又は両面に対し、Alを含有するAlめっき層が形成されたものである。また、Alめっき層上に、少なくともZnOを含有する表面皮膜層がさらに積層されていてもよい。
 [鋼板について]
 Alめっき鋼板に用いられる鋼板としては、熱間プレス加工後に高い機械的強度(例えば、引張強さ・降伏点・伸び・絞り・硬さ・衝撃値・疲れ強さ・クリープ強さなどの機械的な変形及び破壊に関する諸性質を意味する)を有するように設計された鋼板を使用することが好ましい。
 本発明の一実施形態に使用されうる高い機械的強度を実現する鋼板の成分の一例について、以下説明する。
 [C:0.06~0.50%]
 Cは、目的とする機械的強度を確保するために含有させる元素である。Cの含有量が0.06%未満である場合には、十分な機械的強度の向上が得られず、Cを含有させる効果が乏しくなる。さらに、熱間曲げ後の焼き入れ処理により硬さをHv350以上とすることができない。Cの含有量が0.50%を超える場合には、鋼板を更に硬化させることができるものの、溶融割れが生じやすくなる。従って、Cの含有量は、質量%で、0.06%以上0.50%以下であることが好ましい。
 [Si:0.01~0.80%]
 Siは、脱酸のために用いられる元素であり、さらに、機械的強度を向上させる強度向上元素の一つであり、Cと同様に、目的とする機械的強度を確保するために含有させる。Siの含有量が0.01%未満である場合には、脱酸が十分に行われない可能性があり、強度向上効果を発揮しにくく、十分な機械的強度の向上が得られない。一方、Siは、易酸化性元素でもある。よって、Siの含有量が0.80%を超える場合には、溶融Alめっきを行う際に濡れ性が低下して、不めっきが生じる恐れがある。従って、Siの含有量は、質量%で、0.01%以上0.80%以下であることが好ましい。
 [Mn:0.60~3.00%]
 Mnは、鋼を強化させる強化元素の一つであり、焼入れ性を高める元素の一つでもある。さらに、Mnは、不純物の一つであるSによる熱間脆性を防止するために有効な元素である。Mnの含有量が0.60%未満である場合には、これらの効果が得られず、0.60%以上で上記効果が発揮される。一方、Mnの含有量が3.00%を超える場合には、残留γ相が多くなり過ぎて強度が低下するおそれがある。従って、Mnの含有量は、質量%で、0.60%以上3.00%以下であることが好ましい。
 [P:0.050%以下]
 Pは不純物であり、粒界偏析して部品を脆化させるので、含有量は少ない方が好ましく0.050%を以下とする。含有量を完全に0とするのは難しく、現実的な下限は0.001%である。
 [S:0.050%以下]
 Sは、MnSなどの非金属介在物を形成する不純物元素である。非金属介在物は、冷間加工時、割れ発生の起点となるので、Sは少ないほど好ましく、0.050%以下とすることが好ましい。Sの含有量は低いほどよいが、0.001%未満に低減すると、精錬コストが大幅に上昇するので、精錬コストを考慮すると0.001%以上であってもよい。
 [Al:0.10%以下]
 Alは、脱酸剤として用いられる元素である。脱酸後の鋼に含まれる必要はないが、通常は0.0003%以上のAlが残留し、鋼に含有される。Alの含有量が0.10%を超えると、介在物が多量に生成し、加工性が低下するので0.10%以下が好ましい。
 [O:0.006%以下]
 Oは、多量に含有すると鋼中に粗大な酸化物を形成するので、少ないほうが好ましく、0.006%以下とすることが好ましい。Oの含有量は低いほどよいが、0.001%未満に低減すると、精錬コストが大幅に上昇するので、精錬コストを考慮すると0.001%以上であってもよい。
 [N:0.020%以下]
 Nは不純物であると共に、強度の向上に有効な元素である。Nの含有量を0.001%とすることは大幅なコストがかかるので、0.001%以上としてもよい。Nの含有量が多くなると延性、靭性が劣化するので、含有量は0.020%以下とする。
 [Ti:0.01~0.10%]
 Tiは鋼の強度を向上させるとともに、Alめっきの表面欠陥を抑制する効果、表面欠陥が生じたときの耐酸化性劣化を抑制効果がある。この効果を得るために、Tiの含有量は0.01%以上とする。含有量が0.10%を超えると、粗大なTi窒化物が生成し、成形性が低下するので、0.10%以下とする。
 [B:0.1000%以下]
 Bは、焼入れ時に作用して強度を向上させる効果を有する元素であり、必要に応じて含有させることができる。強度向上効果を有効に得るためには、Bの含有量を0.0003%以上とすることが好ましい。一方、Bの含有量が0.1000%を超える場合には、介在物を形成して脆化し、疲労強度を低下させるおそれがあるので0.1000%以下とし、0.0060%以下とすることが望ましい。
 [Nb:0~0.10%]
 Nbは再結晶温度を高めたり、炭窒化物を形成して、鋼を細粒化する。これらの効果を発揮させるためには0.01%以上含有させることが好ましい。含有量が0.10%を超えると析出効果により低温靭性を損なうことがあるので、0.10%以下とする。
 [V:0~0.30%]
 Vは炭窒化物を形成して、強度を向上させる元素であり、必要に応じて含有させることができる。強度向上の効果を有効に得るためには0.01%以上含有させることが好ましい。含有量が0.30%を超えると鋼板の加工性が低下するので、0.30%以下とする。
 [Cr:0~0.50%]
 Crは、Mnと同様に焼入性に効果がある元素であり、必要に応じて含有させることができる。焼入れ性向上の効果を有効に得るためには、Crを0.01%以上含有させることが好ましい。Crの含有量が0.50%を超えると、急速加熱時に炭化物が安定化し、焼入れ時に炭化物の溶解が遅れ、所要の焼入れ強度を達成できないおそれがあるので0.50%以下とする。
 [Mo:0~0.50%]
 Moは焼き入れ性を向上させる元素であり、必要に応じて含有させることができる。焼き入れ性向上効果を有効に得るためには0.01%以上含有させることが好ましい。含有量が0.50%を超えるとAlめっきの耐熱性が低下する、0.50%以下とする。
 [Ni:0~0.50%]
 Niは、靭性の向上に有効な元素であり、必要に応じて含有させることができる。添加効果を有効に得るためには、Niは0.001%以上とするのが好ましい。Niの含有量が0.50%を超えると、加工性が低下するので、Niは0.50%以下とする。
 [Cu:0~0.50%]
 Cuは、焼き入れ性を向上させ強度の向上に寄与する元素であり、必要に応じて含有させることができる。添加の効果を有効に得るためには、Cuは0.001%以上とするのが好ましい。Cuの含有量が0.50%を超えると、熱間圧延時に疵を発生させる可能性があるので、Cuは0.50%以下とすることが望ましい。
 [Ca:0.~0.005%]
 Caは、微量の添加で硫化物の形態を制御できる元素であり、必要に応じて含有させることができる。添加の効果を有効に得るためには、Caは0.001%以上とするのが好ましい。Caの含有量が0.005%を超えると、粗大なCa酸化物が生成し、加工時に割れ発生の起点となるので、Caは0.005%以下とする。
 [REM:0~0.005%]
 REMは成形性の改善に有効な元素であり、必要に応じて含有させることができる。添加の効果を有効に得るためには、REMの含有量を0.001%以上とするのが好ましい。REMの含有量が多くなると延性を損なうおそれがあるので、含有量は0.005%以下とする。
 Alめっき鋼板を鋼管へと成形する際には、曲げ加工及び溶接が必要であり、曲げ加工されたAlめっき鋼板の端部は、電縫溶接を行いやすくするためにめっきを削除することがあり、さらに、電縫溶接で生成した溶接ビードは、削除される。従って、シーム溶接部にはAlめっき層は存在しない。そこで、溶接部からの酸化及び脱炭を防ぎ、溶接管が使用中に腐食される可能性を避けるために、Al等を溶射することがある。Al等を含有する金属溶射を適用することで、溶接部からの酸化及び脱炭をある程度抑制することが可能となる。
 溶射金属と溶接ビードとの密着性には、P、N、Alが影響する。Al等を溶射する場合には、鋼板中のP、N、Alの含有量を上述したよりもさらに低くすることが好ましく、それぞれ、P:0.01%以下、N:0.006%以下、Al:0.08%以下であることが特に好ましい。P、N、Alを上記の含有量以上で含有する鋼板を用いた場合、補修溶射部の密着性が低下し、その後の工程の熱間プレス加工時での昇温等で、溶射部が剥離してしまう場合がある。
 鋼板の残部はFe及び不可避的不純物である。不可避的不純物とは、原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。具体的には、P、S、O、N、Sb、Sn、W、Co、As、Mg、Pb、Bi、及びHがあげられる。
 P、S,O,Nは、含有量を上述した範囲に制御する必要がある。その他の元素については、通常、Sb、Sn、W、Co、及びAsは0.1%以下、Mg、Pb及びBiは0.005%以下、Hは0.0005%以下の不可避的不純物としての混入があり得るが、通常の範囲であれば、特に制御する必要はない。
 このような成分で形成される鋼板は、Alめっきされ、鋼管形状に成形された後に熱間プレス加工や熱間曲げ加工方法(以下「熱間加工」と総称)などにより加熱、加工され、その後、プレス金型による抜熱、水、気水、気体等の媒体により冷却し、焼入れされて、引張強度で約1500MPa以上の機械的強度を有するようになる。このように高い機械的強度を有する鋼管ではあるが、熱間加工方法により加工すれば、加熱により軟化した状態で加工を行うことができるので、容易に成形することができる。また、鋼管は、高い機械的強度を実現でき、ひいては、軽量化のために薄くしたとしても機械的強度を維持又は向上することができる。
 [Alめっき層について]
 Alめっき層は、鋼板の片面又は両面に形成される。Alめっき層は、例えば溶融めっき法により鋼板の表面に形成される。本実施形態に係るAlめっき層の形成方法は、溶融めっき法に限定されるものではなく、電気めっき法等といった公知のAlめっき法を利用することが可能である。
 Alめっき層の成分としては、Alを好ましくは70%以上、より好ましくは80%以上含有し、さらSiを含有する。すなわち、本実施形態に係るAlめっき層は、Al-Siからなるめっき層である。
 Alめっき層中にSiが含有されると、溶融めっき金属の被覆時に生成される合金層を制御することができる。Siの含有量が3%未満である場合には、Fe-Al合金層がAlめっきを施す段階で厚く成長し、鋼管への成形時にクラックが入って耐食性等に悪影響を及ぼす可能性がある。一方、Siの含有量が15%を超える場合には、めっき層の加工性や耐食性が低下するおそれがある。したがって、Siの含有量は、3%以上15%以下であることが好ましい。
 溶融めっき法によりAlめっき層を形成する場合、Si以外の元素として、浴中の機器や鋼帯より溶出するFeが2~4%含有されることがある。また、かかるFeに加えて、Alめっき浴中に、Mg、Ca、Sr、Liの少なくとも何れかをそれぞれ0.01~1%程度含有させてもよい。
 [金属間化合物層について]
 上記のような鋼板の表面に上記のようなAlめっき層を形成すると、鋼板とAlめっき層との間に、鋼板の成分とAlめっき層の成分とが相互拡散することで、Al-Fe-Si系の合金からなる金属間化合物を含む金属間化合物層が形成される。金属間化合物層の厚みは、Alめっき時の浴温、通板速度、鋼成分等に依存して決まるものであるが、例えば、3μm~8μm程度の範囲となる。
 かかる金属間化合物層の成分は、通常、質量%で、Al:35~65%、Si:3~15%を含有し、残部は、Fe及び不純物からなる。
 [Alめっき層及び金属間化合物層の厚みの測定方法について]
 上記のようなAlめっき層及び金属間化合物層の厚みは、公知の各種測定方法により測定することが可能である。例えば、鋼管成形前のAlめっき鋼板、又は、Alめっき溶接管の断面を、光学顕微鏡や走査型電子顕微鏡等で観察することで、測定することが可能である。
 具体的には、Alめっき鋼板又はAlめっき溶接管の断面を、適切な倍率で複数の視野について観察を行い、各視野におけるAlめっき層及び金属間化合物層の厚みを測定する。その後、測定した視野間で得られた測定値の平均をとることで、Alめっき層及び金属間化合物層の厚みとすることができる。
 [表面皮膜層について]
 Alめっき鋼板に対して、さらに表面皮膜層を、Alめっき層の表面に積層させてもよい。表面皮膜層は、少なくとも、ZnOを含有することが好ましい。ZnOの微粒子を水溶液中に懸濁させた液を用い、かかる懸濁液をロールコーター等で塗布及び乾燥させることで、表面皮膜層を形成することができる。この表面皮膜層は、熱間加工における潤滑性、及び、化成処理液との反応性を改善する効果がある。
 表面皮膜層にはZnO以外の成分として、例えば有機物のバインダー成分を含有させることができる。有機性バインダーとしては、例えば、ポリウレタン系樹脂、ポリエステル系樹脂、アクリル系樹脂、シランカップリング剤などの水溶性樹脂が挙げられる。また、表面皮膜層に対し、ZnO以外の酸化物(例えば、SiO、TiO、Al等)を含有させてもよい。
 上記のようなバインダー成分を含む表面皮膜層の形成方法としては、例えば、ZnOを含有する懸濁液を所定の有機性のバインダーと混合してAlめっき層の表面に塗布する方法や、粉体塗装による塗布方法などが挙げられる。
 ZnOを含有する表面皮膜層の付着量は、鋼板の片面当たり、Zn量換算で0.1~1g/mであることが好ましい。ZnOの含有量がZn量で0.1g/m以上である場合に、塗膜密着性向上効果や潤滑向上効果などを効果的に発揮させることができる。一方、ZnOの含有量がZnとして1g/mを超える場合には、必要以上の皮膜を付与しているために経済合理性に欠ける。自動車等に用いられる高強度鋼管部品において、鋼管部品の内面は腐食環境に晒される可能性が低いため、ZnOを含有する表面皮膜層を、鋼管部品の外面となる側だけに付与することも可能である。
 表面皮膜層の形成方法は、上記の例に限定されるものではなく、公知の様々な方法により形成可能である。
 表面皮膜層を有するAlめっき鋼板を鋼管に成形する場合、成形の際に表面皮膜層が部分的に剥離あるいは除去される可能性もある。これを避けるために、表面皮膜層を鋼管成形後に付与してもよい。鋼管成形後の表面皮膜層の付与は、鋼管を上記懸濁液中に浸漬する、あるいは、上記懸濁液をスプレーで付与する等の方法により可能である。
 <鋼管の製造について>
 本実施形態においては、Alめっき鋼板をオープン管形状に加工し、両端部を加熱、押付けて電縫溶接することで製管し、Alめっき溶接管とする。電縫溶接としては、高周波溶接が用いられることが多い。通常、溶接ビード部となる部位のめっき層は、予め研削等で除去してから溶接することが好ましい。また、溶接後に溶接ビード部を平坦にするために、切削加工等を用いることが好ましい。
 さらに、溶接ビード部にはめっきが被覆されていないため、その後の熱間加工時の表面酸化とそれに伴う表層からの脱炭、及び、使用時の腐食等が生じることがある。これを避けるために、溶接ビード部に対してAlを含有する金属を溶射して、溶接ビード部上に溶射皮膜を形成してもよい。ここで、Alを含有する金属とは、純Al、Al-Zn、Al-Si、Al-Mg等を挙げることができる。Alは、耐熱性に優れるために、熱間加工時の保護性に優れる。この際の溶射皮膜の厚みは、例えば、5~100μmが好ましい。溶射は、鋼管外面に対して行う。
 鋼管の径は、通常、20~70mm程度であることが多いが、特に限定されるものではない。なお、本実施形態のAlめっき中空部材は、Alめっき溶接管の熱間加工後に得られるため、鋼管状態での正確な鋼管径、板厚をAlめっき中空部材から求めることは困難である。そこで、本実施形態では、熱間加工前の状態を規定するものとする。
 [Alめっき層及び金属間化合物層の厚みと歪量との関係について]
 上記のような成分で形成されるAlめっき層は、鋼板を加熱した際の鋼素地の酸化を抑制することができ、なおかつ、耐食性も向上させる。さらに、前述したように、クラックに起因するスケール発生に対する耐性は、2つのパラメータ(t/D)と(Y/X)を適切にすることにより向上させることができる。具体的には、70×t/D≦Y/X…(1)を満たすことで優れたクラックに起因するスケール発生に対する耐性を得ることができる。ここで、Xは金属間化合物層(合金層)厚み(μm)、YはAlめっき層厚み(μm)、tは板厚(mm)、Dは鋼管外径(mm)である。また、「Alめっき層」とは、合金層を含まないAlあるいはAl及びSiを含有するめっき層を意味するものとする。
 さらに、前述したように、良好な電縫溶接を行うためには(Y/t)を適切な範囲にする必要がある。具体的には、Y/t≦30…(2)を満たすことにより、良好な電縫溶接を行うことができる。これにより、溶接部を起点としてスケールが発生することを抑制することができる。
 上記、(1)、(2)式をまとめると、70×X/D≦Y/t≦30と書ける。
 上述したとおり、Y/Xが大きいほど、クラックに起因するスケール発生に対する耐性は大きい。しかしながら、上述のとおり、Alめっき層の厚みYが大きくなると電縫溶接は難しくなる。この点を考慮すると、X≦5.0(μm)、Y≦32(μm)、4.0≦Y/X≦6.0とするのが好ましい。
 本発明の焼き入れ用Alめっき電縫溶接管のt/Dは特に限定されない。ただし、t/Dが大きい場合のほうが電縫溶接時の歪が大きくなり、熱間加工時のスケールの発生が問題となりやすいので、本発明はt/Dが大きいとき、例えばt/D≧2%、t/D≧4%となるような電縫溶接管に特に有効である。また、前述のとおり、t/Dが大きくなると成形歪が大きくなるので、t/Dは10%以下が好ましい。
 <熱間加工方法による加工について>
 次に、Alめっき鋼管(Alめっき溶接管)が熱間加工方法により加工される場合について、説明する。以下で説明する鋼管の熱間加工による加工方法は、基本的には、鋼板を熱間加工する際と同様のものである。
 本実施形態に係る熱間加工方法では、まず、Alめっき鋼管(Alめっき溶接管)を高温に加熱して、軟化させる。続いて、軟化しためっき鋼板をプレス加工や曲げ加工により成形し、その後、成形されためっき鋼管を、プレス金型による抜熱や水、気水、気体等の冷却媒体により急冷する。このように鋼板を一旦軟化させることにより、プレス加工や曲げ加工を容易に行うことができる。また、上記成分を有するAlめっき鋼管は、加熱及び冷却されることにより焼入れされて、引張強度で約1500MPa以上の高い機械的強度が実現される。
 ここで、本実施形態に係るAlめっき鋼管(Alめっき溶接管)を熱間加工する際の加熱では、電気炉等の高温に保持された炉内にAlめっき鋼管を通過させることで加熱する方式を用いることができる。この場合、Alめっきの表面輻射率は比較的低いために、昇温速度は4~5℃/秒であることが多い。これに対して、例えば近赤外線加熱炉や高周波加熱、通電加熱を適用することで、15℃/秒以上の急速加熱を達成することができる。溶射部位の酸化及び脱炭を考慮すると、急速加熱を行うことが好ましい。
 鋼素地の酸化に対しては、合金層の厚みとその上層のAlめっき層の厚みの影響が大きく、なおかつ、鋼管の成形寸法及び加熱時の昇温速度等にも依存する。そこで、本実施形態では、前述したように、(Y/X)が(t/D)のα倍以上となるようにする。αは、168×HR-0.45である。HRは、熱間加工時に設定される常温から(到達温度-50)℃までの平均昇温速度(℃/秒)である。すなわち、下記の式(101)と式(103)をともに満たすように昇温速度を設定する。
Figure JPOXMLDOC01-appb-M000001
 Alめっき溶接管が上記式(101)及び式(103)で表される関係を満足すれば、後段で実施される熱間加工時に金属間化合物層中に発生するクラックが適切に修復され、めっき層中でのスケールの発生を抑制しつつ、Alめっき溶接管を熱間加工することが可能となる。一方、Alめっき溶接管が上記式(101)及び式(103)で表される関係を満足しない場合には、後段で実施される熱間加工時に金属間化合物層中に発生するクラックの修復が追い付かず、クラックに起因するスケールが発生することがある。
 鋼管を熱間加工する際には、加工対象が管状体であるため、板材とは異なり片面からの抜熱となるため、冷却速度を大きくすることが難しい。このため、内部に気体(熱容量の小さい流体)を導入することが好ましい。鋼管内面は溶射が困難であるため、内面に導入する気体は、非酸化性のもの(例えば、窒素ガス)とすることが好ましい。
 熱間加工後、得られた成形品は、急冷される。冷却は、通常は、金型による抜熱、水、気水、気体等の冷却媒体で行う。冷却速度(平均冷却速度)は、焼入れにより高強度部材を得るために、20℃/秒以上とする。なお、冷却速度の上限値は、特に規定するものではないが、実用上300℃/秒以上とすることは困難である。金型による急冷の冷却速度は、より好ましくは、30℃/秒以上300℃/秒以下である。
 <Alめっき中空部材について>
 Alめっき鋼管(Alめっき溶接管)におけるAlめっき層は、Alめっき鋼管が加熱された際に融点以上で溶融し、同時に、Feとの相互拡散により、Al-Feを中心とした合金層へと変化する。Al-Fe合金層の融点は高く、1150℃程度である。Al-Fe、又は、Siを含有するAl-Fe-Si化合物は複数存在し、高温加熱又は長時間加熱すると、よりFe濃度の高い化合物へと変態する。
 最終製品である熱間プレス加工されたAlめっき中空部材の表面状態は、素材であるAlめっき鋼管(Alめっき溶接管)におけるAlめっき層の表面まで合金化された状態で、かつ、合金化の結果形成されるめっき層中のFe酸化物(スケール)の発生率が5%以下であることが好ましい。また、最終製品である熱間加工されたAlめっき中空部材としてさらに好ましい表面状態は、素材であるAlめっき鋼管(Alめっき溶接管)におけるAlめっき層の表面まで合金化された状態で、かつ、合金化の結果形成されるめっき層中にFe酸化物が発生していない状態である。
 中空部材の合金層中に未合金のAlが残存すると、合金化されていないAlが残存する部位のみが急速に腐食して、塗装後耐食性において塗膜膨れが極めて起こりやすくなるために好ましくない。また、合金層内部に5%以上スケールが存在すると、鋼管表面に脱炭層が存在し、疲労特性が低下する懸念がある。また、脱炭層に該当する部位はめっきが無いために、耐食性も低下する。
 素材として用いたAlめっき鋼管(Alめっき溶接管)のAlめっき層の表面にZnOを主体とする表面皮膜層が形成されていた場合、最終製品であるAlめっき中空部材の合金層上においても、ZnOを主体とする表面皮膜層が存在する。また、ZnOを主体とする表面皮膜層の形成されていないAlめっき鋼管(Alめっき溶接管)を用いてAlめっき中空部材を熱間加工法により製造した後、製造されたAlめっき中空部材の表面に、上記のようなZnOを主体とする表面皮膜層を設けてもよい。
 合金層中のスケール発生率は、以下のように定義する。鋼管部品の断面を埋め込み研磨し、円周方向に0.5mm範囲を光学顕微鏡又はSEM観察して、スケールの発生している組織の全体における割合を計測する。合金層内部でのスケールは、比較的粗大(例えば5~20μm幅)であるために、例えば、図1に示したように光学顕微鏡観察でも容易に測定することができる。例えば0.5mm(500μm)範囲を光学顕微鏡観察し、かかる範囲中に10μm幅のスケールが5個存在した場合は、(10μm×5個)/500μm=10%のスケール発生率と判定する。比較として、図2に加熱前の素材であるAlめっき鋼管のAlめっき層の断面写真を示す。
 焼入れされた部品の鋼素地部位の硬度は、ビッカース硬度(Hv)で350~800程度となる。硬度の値は、鋼中のC量にほぼ対応するもので、C量0.06%においては、Hvは最大350程度となり、C量0.5%においては、Hvは800程度となる。なお、Hvは、JIS Z2244に則して測定可能であり、Hvを測定する際には、鋼板の板厚中央部付近を荷重5kgf(1kgfは、約9.8Nである。)で測定するものとする。
 以下では、実験例を示しながら、本発明に係る焼入れ用Alめっき溶接管、熱間曲げ加工されたAlめっき中空部材の製造方法及びAlめっき中空部材について、具体的に説明する。なお、以下に示す実験例は、あくまでも本発明に係る焼入れ用Alめっき溶接管、熱間加工されたAlめっき中空部材の製造方法及びAlめっき中空部材の一例にすぎず、本発明に係る焼入れ用Alめっき溶接管、熱間加工されたAlめっき中空部材の製造方法及びAlめっき中空部材が下記の例に限定されるものではない。特に、熱間加工は曲げ、縮径、拡管、潰し等でも適用可能である。
<実験例1>
 以下の表1に示す鋼成分の冷延鋼板(板厚1.2~2.0mm)を使用して、溶融めっき法によりAlめっきを施した。Alめっき時の焼鈍温度は約800℃であり、Alめっき浴は、Si:9%を含有し、他に鋼帯から溶出するFeを約2%含有していた。めっき後のめっき付着量を、ガスワイピング法で片面あたり20~100g/mに調整した。
 一部の冷延鋼板には、冷却後、ロールコーターで、平均粒径が約50nmのZnOを含有する懸濁液にアクリル系のバインダーをZnO量に対して20%含有する液を塗布し、約80℃で焼きつけた。付着量は、Zn量で、片面あたり0.1~1.5g/mとした。
Figure JPOXMLDOC01-appb-T000002
 製造したAlめっき鋼板を用いて、Alめっき鋼管(Alめっき溶接管)を製造した。電縫溶接は、高周波溶接とし、溶接時の周波数は300kHz、溶接速度は5m/秒とした。溶接ビード部は、切削加工、すなわちビードカットし、一部の鋼管の外面部に、Al溶射皮膜を50μm付与した。種々の板厚、外径を有する鋼管を製造し、その特性を評価した。評価方法を、以下に示す。
 (1)断面組織及びめっき厚み
 鋼管の断面を鏡面研磨し、2体積%ナイタール溶液でエッチングした後に光学顕微鏡観察して、合金層(金属間化合物層)の厚み、Alめっき層の厚みをそれぞれ測定した。鋼管の周方向に試料を3枚採取し、その外面の光学顕微鏡写真を各1枚撮影し、合計6部位の合金層厚みの平均値、及び、Alめっき層厚みの平均値をそれぞれ算出した。溶射した試料についても、同様に溶射皮膜厚みを長手方向に3枚採取して、3部位の平均値を算出した。
 (2)熱間プレス加工による実施例
 油圧プレス機内に成形のための金型を配置し、その内部に、鋼管と鋼管の加熱装置とを配置した。長さ800mmの鋼管の両端を、フランジを介してシールし、内面に窒素ガスを導入した。その状態で高周波加熱を用いて鋼管を900℃まで昇温した。高周波加熱は、誘導コイルを鋼管の片側から反対の側まで移動させることで行い、加熱後コイルは金型外に搬送し、その後プレス機で成形した。加熱の際の雰囲気は、大気とした。誘導コイルの搬送速度を制御することで、鋼管の昇温速度(平均昇温速度)を変化させた。
 成形形状は、単純に鋼管を1/2の厚み(縦方向の径)まで減じるだけとし、金型で焼入れた。この際の溶接ビード部は、上面にくるように配置した。その後成形品より試料を採取し、断面研磨及び2体積%のナイタールエッチングにより、鋼及びめっき層の組織を現出させた。この際に、Al-Fe層内部にFeOを主体とするスケールが内在する試料があり、このスケール発生率を上記の方法に則して観察、評価した。また、脱炭層が生成している試料については、脱炭層の厚みも測定した。評価基準は、以下のとおりである。また、各試料の断面から、JIS Z2244に規定された方法に則して、Hv:ビッカース硬度を荷重5kgfにて測定した。
  G:スケール発生率無し(0%)
  F:スケール発生率1~5%
  P:スケール発生率5%超であり、かつ、脱炭層が3μm以上生成
(3)溶射材密着性
 Alを溶射した後に、溶射部の密着性を評価した。評価は、テーピングを用いて行うこととし、以下の基準で評価した。具体的には、市販のセロハンテープを各試料に対して貼り付け、張り付けたセロハンテープをはがす際に、溶射部に剥離が生じるか否かで評価を行った。
  G:剥離無し
  F:剥離1mm径以内
  P:剥離1mm超
(4)塗膜密着性
 熱間プレス加工後の鋼管試験片より、溶接ビード部を含む部位を切出し、塗膜密着性を評価した。化成処理は、日本パーカライジング(株)社製化成処理液(PB-SX35)を用い、電着塗装は、日本ペイント(株)社製電着塗料(パワーニクス110)を15μm狙いで塗装し、170℃で焼き付けた。
 塗膜密着性評価として、50℃の5%塩水中に480時間浸漬し、取り出した後に1mm碁盤目をカッターで付与し、その後テーピングした。この際の剥離状況を、下の基準で評価した。
  G:剥離無し
  F:剥離3マス以下
  P:剥離4マス以上又はマスに関係なく剥離
(5)塩温水密着性
 上記の化成処理及び電着塗装を施した試料に対して、塗膜に疵を入れずに50℃の5%塩水中に2週間浸漬し、浸漬後1時間以内に1mm碁盤目を付与後テーピングして塗膜密着性を評価した。かかる評価は、(4)に示した密着性よりも非常に厳しい評価となる。通常は、このような厳しい塗膜密着性は問われないが、特に厳しい腐食環境にて使用する際には、必要となる特性である。
  G:剥離無し
  F:剥離3マス以下
  P:剥離4マス以上又はマスに関係なく剥離
 評価した水準とそのときの評価結果を、以下の表2にまとめて示した。
Figure JPOXMLDOC01-appb-T000003
 上記表2から明らかなように、熱間プレス加工後の断面からのスケール発生状況を観察すると、70×X/D≦Y/t≦30を満たし、Y/Xがt/Dのα倍以上の場合はスケールの発生は軽微であるか、まったく見られなかった。スケール発生状況は、昇温速度にも依存し、昇温速度を大きくすることでスケール発生は軽減される傾向にあることが明らかとなった。また、Alめっき表面にZnOを含有する皮膜を付与することで、特に塩温水試験による塗膜密着性が向上することが明らかとなった。また、表2から明らかなように、本発明例に該当する試料の鋼素地の硬度(Hv)は、いずれも450~530の間の値を示した。
 <実験例2>
 以下の表3に示す鋼成分を有する板厚1.4mmの鋼板に、実施例1と同様の条件でAlめっきを施した。Alめっき層の厚さは24μmであり、合金層の厚さは5μmであった。この鋼板を、外径32mmの鋼管に成形し、溶接部に約30μmのAl溶射を施した。その後、実施例1に示した溶射材密着性評価を実施した。
Figure JPOXMLDOC01-appb-T000004
 その結果、符号B~Dについては、溶射材の剥離が認められた。この結果より、鋼中成分として、P、Al、Nは低減することが好ましいことが明らかとなった。これら以外の条件については、溶射材の剥離は認められなかった。
 また、これらの鋼管を、実施例1と同様の条件(昇温速度は10℃/秒)にて熱間プレス加工をして、実施例1と同様の評価をした。その結果、熱間プレス加工後、断面組織、塗膜密着性ともに「G」相当の評価結果が得られた。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明の焼き入れ用Alめっき溶接管を用いれば、熱間加工により高強度部材を製造することが可能となり、従来よりも軽量化した部品を得ることができる。これにより、最終用途である自動車等において、さらなる軽量化に資するものである。

Claims (9)

  1.  筒状の鋼板からなる母材部と、前記鋼板の突合せ部に設けられ、前記鋼板の長手方向に延在する電縫溶接部からなる電縫溶接管であって、
     前記母材部は、質量%で、
      C :0.06~0.50%、
      Si:0.01~0.80%、
      Mn:0.60~3.00%、
      P :0.050%以下、
      S :0.050%以下、
      Al:0.10%以下、
      O :0.006%以下、
      N :0.020%以下、
      Ti:0.01~0.10%、
      B :0~0.1000%、
      Nb:0~0.10%、
      V :0~0.30%、
      Cr:0~0.50%、
      Mo:0~0.50%、
      Ni:0~0.50%、
      Cu:0~0.50%、
      Ca:0.~0.005%、及び
      REM:0~0.005%
    を含有し、残部がFe及び不純物であり、
     前記母材部は、前記鋼板の表面に位置し、Al-Fe-Si系の金属間化合物を含む金属間化合物層と、
     前記金属間化合物層の表面に位置し、Al及びSiを含有するAlめっき層と
    をさらに備え、
     前記金属間化合物層の厚みをX(μm)とし、Alめっき層の厚みをY(μm)とし、前記鋼管の管厚をt(mm)とし、前記鋼管の外径をD(mm)としたときに、
      70×X/D≦Y/t≦30
    を満たすことを特徴とする焼き入れ用Alめっき電縫溶接管。
  2.  X≦5.0、Y≦32、及び4.0≦Y/X≦6.0を満たすことを特徴とする請求項1に記載の焼き入れ用Alめっき電縫溶接管。
  3.  前記Alめっき層の表面に、さらに、ZnOを主体とする皮膜を備え、前記皮膜の付着量は、Zn量で0.1~1g/mであることを特徴とする請求項1又は2に記載の焼き入れ用Alめっき電縫溶接管。
  4.  前記溶接部がAlを主成分とする合金で被覆されたことを特徴とする請求項1~3のいずれか1項に記載の焼き入れ用Alめっき電縫溶接管。
  5.  2%≦t/D≦10%を満たすことを特徴とする請求項1~4のいずれか1項に記載の焼き入れ用Alめっき電縫溶接管。
  6.  筒状の鋼板からなる母材部と、前記鋼板の突合せ部に設けられ、前記鋼板の長手方向に延在する電縫溶接部からなり、前記母材部は、質量%で、
      C :0.06~0.50%、
      Si:0.01~0.80%、
      Mn:0.60~3.00%、
      P :0.050%以下、
      S :0.050%以下、
      Al:0.10%以下、
      O :0.006%以下、
      N :0.020%以下、
      Ti:0.01~0.10%、
      B :0~0.1000%、
      Nb:0~0.10%、
      V :0~0.30%、
      Cr:0~0.50%、
      Mo:0~0.50%、
      Ni:0~0.50%、
      Cu:0~0.50%、
      Ca:0.~0.005%、及び
      REM:0~0.005%
    を含有し、残部がFe及び不純物である電縫溶接管と、
     前記電縫溶接管の表面に位置し、Al-Fe系合金、及び、Al-Fe-Si系合金の少なくとも何れかを含む合金層と
    を備え、
     前記合金層中におけるFe酸化物の発生率が5%以下であり、
     前記電縫溶接管の鋼素地のビッカース硬度Hvが、350~800である
    ことを特徴とするAlめっき中空部材。
  7.  前記合金層中に、合金となっていないAlが残存しないことを特徴とする請求項6に記載のAlめっき中空部材。
  8.  前記合金層の表面に、さらに、ZnOを主体とする皮膜を備え、
     前記皮膜の付着量は、Zn量で、0.1~1g/mであることを特徴とする請求項6又は7に記載のAlめっき中空部材。
  9.  筒状の鋼板からなる母材部と、前記鋼板の突合せ部に設けられ、前記鋼板の長手方向に延在する電縫溶接部からなり、前記母材部は、質量%で、
      C :0.06~0.50%、
      Si:0.01~0.80%、
      Mn:0.60~3.00%、
      P :0.050%以下、
      S :0.050%以下、
      Al:0.10%以下、
      O :0.006%以下、
      N :0.020%以下、
      Ti:0.01~0.10%、
      B :0~0.1000%、
      Nb:0~0.10%、
      V :0~0.30%、
      Cr:0~0.50%、
      Mo:0~0.50%、
      Ni:0~0.50%、
      Cu:0~0.50%、
      Ca:0.~0.005%、及び
      REM:0~0.005%
    を含有し、残部がFe及び不純物であり、
     前記母材部は、前記鋼板の表面に位置し、Al-Fe-Si系の金属間化合物を含む金属間化合物層と、
     前記金属間化合物層の表面に位置し、Al及びSiを含有するAlめっき層と
    をさらに備えた焼き入れ用Alめっき電縫溶接管を850℃以上の加熱温度で加熱する加熱工程と、
     加熱された前記焼入れ用Alめっき電縫溶接管を所望の形状へと形成する成形工程と、
     所望の形状へと成形された前記焼入れ用Alめっき電縫溶接管を平均冷却速度20℃/秒以上で急冷する急冷工程と
    を備え、
     前記金属間化合物層の厚みをX(μm)とし、Alめっき層の厚みをY(μm)とし、前記鋼管の管厚をt(mm)とし、前記鋼管の外径をD(mm)とし、熱間加工時に設定される常温から到達温度-50℃までの平均昇温速度をHR(℃/秒)としたときに、以下の式(1)及び式(2)で表される関係を満たすことを特徴とするAlめっき中空部材の製造方法。
      Y/X≧α×t/D ・・・(1)
      α=168×HR-0.45 ・・・(2)
PCT/JP2017/041697 2017-11-20 2017-11-20 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法 WO2019097729A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018513042A JP6406475B1 (ja) 2017-11-20 2017-11-20 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
PCT/JP2017/041697 WO2019097729A1 (ja) 2017-11-20 2017-11-20 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
MX2020005237A MX2020005237A (es) 2017-11-20 2017-11-20 Tubo soldado chapado en al para uso de endurecimiento y miembro hueco chapado en al y metodo para producir el mismo.
US16/753,961 US11807924B2 (en) 2017-11-20 2017-11-20 Al plated welded pipe for hardening use and Al plated hollow member and method for producing same
CN201780096110.4A CN111247266B (zh) 2017-11-20 2017-11-20 淬火用Al镀覆焊接管、Al镀覆中空构件及其制造方法
US18/463,110 US20230416888A1 (en) 2017-11-20 2023-09-07 Al plated welded pipe for hardening use and al plated hollow member and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041697 WO2019097729A1 (ja) 2017-11-20 2017-11-20 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/753,961 A-371-Of-International US11807924B2 (en) 2017-11-20 2017-11-20 Al plated welded pipe for hardening use and Al plated hollow member and method for producing same
US18/463,110 Division US20230416888A1 (en) 2017-11-20 2023-09-07 Al plated welded pipe for hardening use and al plated hollow member and method for producing same

Publications (1)

Publication Number Publication Date
WO2019097729A1 true WO2019097729A1 (ja) 2019-05-23

Family

ID=63855141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041697 WO2019097729A1 (ja) 2017-11-20 2017-11-20 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法

Country Status (5)

Country Link
US (2) US11807924B2 (ja)
JP (1) JP6406475B1 (ja)
CN (1) CN111247266B (ja)
MX (1) MX2020005237A (ja)
WO (1) WO2019097729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111230A1 (ja) 2018-11-30 2020-06-04 日本製鉄株式会社 アルミめっき鋼板、ホットスタンプ部材及びホットスタンプ部材の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099330B2 (ja) * 2019-01-07 2022-07-12 日本製鉄株式会社 鋼板、テーラードブランク、熱間プレス成形品、鋼管状のテーラードブランク、中空状熱間プレス成形品、及び鋼板の製造方法
JP7307307B2 (ja) * 2019-02-04 2023-07-12 日本製鉄株式会社 突合せ溶接用アルミニウムめっき鋼板、突合せ溶接部材及び熱間プレス成形品
CN110964989A (zh) * 2019-11-13 2020-04-07 浙江金洲管道科技股份有限公司 用于核电的超重荷型刚性钢导管及其制造方法
CN115178964B (zh) * 2022-07-27 2024-07-05 浙江金信不锈钢制造有限公司 一种不锈钢无缝钢管表面细裂纹消除工艺及其加工设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204179A (ja) * 1982-05-24 1983-11-28 Usui Internatl Ind Co Ltd 耐熱耐食性被覆鋼材
JP2008069398A (ja) * 2006-09-13 2008-03-27 Sumitomo Metal Ind Ltd Al系めっき熱処理鋼材およびその製造方法
WO2009131233A1 (ja) * 2008-04-22 2009-10-29 新日本製鐵株式会社 めっき鋼板及びめっき鋼板の熱間プレス方法
JP2014118628A (ja) * 2012-12-19 2014-06-30 Nippon Steel & Sumitomo Metal ホットスタンプ用溶融Alめっき鋼板およびその製造方法、ならびにホットスタンプ製品
JP2017026147A (ja) * 2015-07-27 2017-02-02 クーパー−スタンダード・オートモーティブ・インコーポレーテッド 管材、二重壁鋼管および二重壁鋼管を製造する方法
WO2017080621A1 (en) * 2015-11-13 2017-05-18 Prysmian S.P.A. Electric cable with corrosion resistant armor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104164A (ja) * 1981-12-16 1983-06-21 Hitachi Ltd アルミニウムメツキ鋼材の製造方法
JPS62116720A (ja) * 1985-11-13 1987-05-28 Nippon Steel Corp 耐熱特性に優れた電縫鋼管の製造法
JPH0433799A (ja) * 1990-05-30 1992-02-05 Nippon Steel Corp メッキ鋼管のビード切削方法
JPH06330280A (ja) * 1993-05-25 1994-11-29 Nisshin Steel Co Ltd 耐食性の優れたAlめっきステンレス電縫管の製造方法
FR2780984B1 (fr) 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
JP2005256018A (ja) * 2004-03-09 2005-09-22 Nisshin Steel Co Ltd 造管時のビードカット性に優れた溶融アルミニウムめっき電縫鋼管用素材
JP2006016674A (ja) 2004-07-02 2006-01-19 Nippon Steel Corp 自動車排気系用Al系めっき鋼板及びこれを用いたAl系めっき鋼管
JP5303842B2 (ja) * 2007-02-26 2013-10-02 Jfeスチール株式会社 偏平性に優れた熱処理用電縫溶接鋼管の製造方法
CN101579777A (zh) * 2009-06-12 2009-11-18 哈尔滨工业大学 一种采用在钢表面预置a1涂层实现铝-钢焊接的方法
ES2899474T3 (es) 2011-04-01 2022-03-11 Nippon Steel Corp Componente de alta resistencia moldeado por estampación en caliente que tiene excelente resistencia a la corrosión después del metalizado
JP5293903B1 (ja) * 2011-08-23 2013-09-18 新日鐵住金株式会社 厚肉電縫鋼管及びその製造方法
US9963767B2 (en) * 2013-09-13 2018-05-08 Nippon Steel & Sumikin Stainless Steel Corporation Inexpensive automotive member and feed oil pipe, exhibiting excellent salt corrosion resistance
BR112017008460A2 (pt) 2014-11-05 2017-12-26 Nippon Steel & Sumitomo Metal Corp chapa de aço galvanizada por imersão a quente
CA2967902C (en) * 2014-12-25 2020-07-21 Jfe Steel Corporation High-strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells
US11124852B2 (en) * 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204179A (ja) * 1982-05-24 1983-11-28 Usui Internatl Ind Co Ltd 耐熱耐食性被覆鋼材
JP2008069398A (ja) * 2006-09-13 2008-03-27 Sumitomo Metal Ind Ltd Al系めっき熱処理鋼材およびその製造方法
WO2009131233A1 (ja) * 2008-04-22 2009-10-29 新日本製鐵株式会社 めっき鋼板及びめっき鋼板の熱間プレス方法
JP2014118628A (ja) * 2012-12-19 2014-06-30 Nippon Steel & Sumitomo Metal ホットスタンプ用溶融Alめっき鋼板およびその製造方法、ならびにホットスタンプ製品
JP2017026147A (ja) * 2015-07-27 2017-02-02 クーパー−スタンダード・オートモーティブ・インコーポレーテッド 管材、二重壁鋼管および二重壁鋼管を製造する方法
WO2017080621A1 (en) * 2015-11-13 2017-05-18 Prysmian S.P.A. Electric cable with corrosion resistant armor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111230A1 (ja) 2018-11-30 2020-06-04 日本製鉄株式会社 アルミめっき鋼板、ホットスタンプ部材及びホットスタンプ部材の製造方法

Also Published As

Publication number Publication date
US20230416888A1 (en) 2023-12-28
CN111247266A (zh) 2020-06-05
US20200347489A1 (en) 2020-11-05
US11807924B2 (en) 2023-11-07
MX2020005237A (es) 2020-08-24
JP6406475B1 (ja) 2018-10-17
JPWO2019097729A1 (ja) 2019-11-21
CN111247266B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN108699664B (zh) 耐冲击剥离性及加工部耐腐蚀性优异的高强度热浸镀锌钢板
TWI564404B (zh) 熔融鍍鋅鋼板
KR102301116B1 (ko) 부식에 대한 보호를 제공하는 금속성 코팅이 제공된 강 부품의 제조 방법, 및 강 부품
WO2019097729A1 (ja) 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
JP6048525B2 (ja) 熱間プレス成形品
EP1878811A1 (en) Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
WO2013099712A1 (ja) 低温靭性と耐食性に優れたプレス加工用溶融めっき高強度鋼板とその製造方法
WO2004090187A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
AU2006217983A1 (en) Method for steel strip coating and a steel strip provided with said coating
WO2008126945A1 (ja) 低温靱性に優れたプレス加工用溶融めっき高強度鋼板およびその製造方法
AU2014367679A1 (en) Steel sheet hot-dip-coated with Zn-Al-Mg-based system having excellent workability and method for manufacturing same
JP2004323970A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6874919B1 (ja) 高強度薄鋼板およびその製造方法
JP6939393B2 (ja) Alめっき鋼管部品
WO2018179397A1 (ja) 表面処理鋼板
JP3601512B2 (ja) 燃料タンク・燃料パイプ用フェライト系ステンレス鋼板およびその製造方法
JP4698968B2 (ja) 塗膜密着性と加工性に優れた高強度冷延鋼板
JP5228722B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5732741B2 (ja) 耐食性に優れたプレス加工用Sn−Znめっき高強度鋼板およびその製造方法
JP4720618B2 (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
WO2024203603A1 (ja) ホットスタンプ用亜鉛系めっき鋼板およびその製造方法
TWI711718B (zh) 熱浸鍍鋅鋼片之製造方法
JP4698967B2 (ja) 塗膜密着性と加工性に優れた高強度冷延鋼板
WO2023074114A1 (ja) 熱間プレス部材
WO2024122121A1 (ja) めっき鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513042

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932223

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17932223

Country of ref document: EP

Kind code of ref document: A1