WO2019097662A1 - 電力変換回路 - Google Patents

電力変換回路 Download PDF

Info

Publication number
WO2019097662A1
WO2019097662A1 PCT/JP2017/041402 JP2017041402W WO2019097662A1 WO 2019097662 A1 WO2019097662 A1 WO 2019097662A1 JP 2017041402 W JP2017041402 W JP 2017041402W WO 2019097662 A1 WO2019097662 A1 WO 2019097662A1
Authority
WO
WIPO (PCT)
Prior art keywords
mosfet
type column
conversion circuit
power conversion
region
Prior art date
Application number
PCT/JP2017/041402
Other languages
English (en)
French (fr)
Inventor
大輔 新井
茂 久田
北田 瑞枝
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2017/041402 priority Critical patent/WO2019097662A1/ja
Priority to US16/490,558 priority patent/US11005354B2/en
Priority to JP2018519988A priority patent/JP6556948B1/ja
Priority to TW107115481A priority patent/TWI692924B/zh
Priority to NL2021932A priority patent/NL2021932B1/en
Publication of WO2019097662A1 publication Critical patent/WO2019097662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0051Diode reverse recovery losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion circuit.
  • Patent Document 1 a power conversion circuit including a MOSFET having a super junction structure is known (see, for example, Patent Document 1).
  • the conventional power conversion circuit 900 is a step-up chopper circuit including a MOSFET 910 having a super junction structure, a reverse current blocking diode 920, and an inductive load (reactor) 930 (see FIG. 14).
  • the MOSFET 910 having the super junction structure since the MOSFET 910 having the super junction structure is provided, not only the high withstand voltage of the MOSFET 910 but also the ON resistance of the MOSFET is low, and the conduction loss is increased even if the switching frequency is increased. It can be suppressed.
  • the inventors of the present invention have found that when the charge balance of the super junction structure of the MOSFET in the power conversion circuit is varied, the waveform of the drain current of the MOSFET at turn-off is relatively large. Between the start and the drain current first becoming zero, a first period in which the drain current decreases, a second period in which the drain current increases, and a third period in which the drain current decreases again appear in this order Waveforms (see FIGS. 4 and 5), and such turnout may increase (although there is a merit that the surge voltage of the drain-source voltage decreases) due to such a hump waveform. I found that there was a problem.
  • the present invention has been made to solve the above-mentioned problems, and can provide a power conversion circuit which can relatively reduce the cobb waveform of the drain current when turned off and does not make the turn-off loss large.
  • the purpose is
  • a power conversion circuit has a n-type column region and a p-type column region, and a MOSFET having a semiconductor substrate in which a super junction structure is formed in the n-type column region and the p-type column region.
  • the MOSFET has a freewheeling diode and an inductive load, the switching frequency of the MOSFET is 10 kHz or more, and when the MOSFET is turned off, the drain current waveform starts to decrease the drain current before the drain current starts to decrease.
  • the freewheeling diode is a lifetime controlled Si-FRD, or
  • the current value of the forward current is set at the peak of the forward current of the free wheeling diode.
  • the current density divided by the area of the active region of the free wheeling diode is in the range of 200 A / cm 2 to 400 A / cm 2 when the free wheeling diode is the Si-FRD, and the free wheeling diode is In the case of the SiC-SBD, a power conversion circuit characterized by being in the range of 400 A / cm 2 to 1500 A / cm 2 .
  • the free wheeling diode is preferably a lifetime controlled Si-FRD.
  • the free wheeling diode is preferably SiC-SBD.
  • the free wheeling diode preferably has an MPS structure or a JBS structure.
  • a turn-off loss when the MOSFET is turned on a turn-on loss when the MOSFET is turned off
  • a recovery loss of the free wheeling diode a proportion of the sum of the three losses is greater than the proportion of the conduction loss of the free wheeling diode.
  • the total amount of impurities in the n-type column region is preferably larger than the total amount of impurities in the p-type column region.
  • the total amount of impurities in the n-type column region is preferably equal to the total amount of impurities in the p-type column region.
  • the reduction amount of the drain current per unit time in the third period is higher than the reduction amount of the drain current per unit time in the first period. It is preferable to be small.
  • the semiconductor base in the MOSFET is a p-type base region formed on the surface of the n-type column region and the p-type column region, and a surface of the base region.
  • the semiconductor base in the MOSFET is a p-type base region formed on part of the n-type column region and the entire surface of the p-type column region; An n-type source region formed on the surface of the base region, and an n-type surface high concentration diffusion region formed on a portion of the surface of the n-type column region where the base region is not formed,
  • the planar gate type MOSFET further includes a gate electrode formed on the base region between the source region and the n-type column region on the first main surface side of the MOSFET via a gate insulating film. It is preferable that it is MOSFET.
  • a source electrode is formed on one surface of the semiconductor substrate, and a drain electrode is formed on the other surface of the semiconductor substrate,
  • the width of the p-type column region on the source electrode side is wider than the width of the p-type column region on the drain electrode side, and the width of the n-type column region on the source electrode side is the n on the drain electrode side Preferably, it is narrower than the width of the mold column area.
  • a source electrode is formed on one surface of the semiconductor substrate, and a drain electrode is formed on the other surface of the semiconductor substrate, the source electrode On the side, the impurity concentration of the p-type column region is higher than the impurity concentration of the n-type column region, and on the drain electrode side, the impurity concentration of the p-type column region is an impurity of the n-type column region It is preferred that the concentration be lower.
  • the forward current current value is set to the value of the free wheel diode at the peak of the forward current of the free wheel diode.
  • the current density divided by the active area is 200 A / cm 2 or more in the case of Si-FRD and 400 A / cm 2 or more in the case of SiC-SBD, and the area of the active region of the free wheeling diode is Since it is relatively small, the junction capacitance Cj of the free wheeling diode is small.
  • the current component flowing from the free wheeling diode to the MOSFET in the second period when the MOSFET is turned off is reduced, and therefore the MOSFET's drain current can have a relatively small waveform (see FIG. 5A). As a result, the turn-off loss can be reduced.
  • the power conversion circuit of the present invention since the area of the active region of the free wheeling diode is relatively small, the junction capacitance Cj of the free wheeling diode is reduced. Therefore, since the recovery current of the free wheeling diode is reduced (see the area enclosed by the broken line B in FIG. 7), the recovery loss of the free wheeling diode can be reduced. In addition, since the recovery current of the freewheeling diode is reduced, the peak current of the drain current when the MOSFET is turned on is reduced (see the area enclosed by the broken line A in FIG. 6), and the MOSFET turn-on loss is reduced. Can.
  • the current density is 400 A / cm 2 or less in the case of Si-FRD and 1500 A / cm 2 or less in the case of SiC-SBD.
  • the area of the active area of the wheel diode does not become too small. Therefore, the heat generated from the semiconductor element or the like can be easily released to the outside, so that the free wheeling diode can be prevented from becoming high temperature, and the heat resistance when the heat generated from the semiconductor element or the like is released to the outside is relatively It can be made smaller. As a result, the heat generated by the switching loss and the conduction loss can be efficiently discharged to the outside.
  • FIG. 1 is a circuit diagram showing a power conversion circuit 1 according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing the MOSFET 100 in the first embodiment.
  • 5 is a cross-sectional view showing a free wheeling diode 200 in Embodiment 1.
  • FIG. 7 is a schematic view of a graph showing temporal changes in drain-source voltage Vds and drain current Id of the MOSFET 100 and forward voltage ⁇ Vf of the free wheeling diode 200 and forward current If in the first embodiment.
  • FIG. 4 (a) is a schematic view of a graph showing temporal changes in drain-source voltage Vds and drain current Id of the MOSFET 100, and FIG.
  • FIG. 4 (b) is a forward voltage -Vf and forward current of the free wheeling diode 200. It is a schematic diagram of the graph which shows the time change of If.
  • the broken line near time t3 and time t5 in the graph of drain current Id in FIG. 4A indicates that the area of the active region of the free wheeling diode is four times the area of the active region of the free wheeling diode of the first embodiment.
  • 4B the broken line near time t5 in the graph of forward current If in FIG. 4B indicates that the effective area of the active region of the free wheeling diode is the active region of the freewheeling diode of the first embodiment.
  • the graph of the forward direction current If at the time of area 4 time is shown. Further, in FIG.
  • FIG. 5 (a) is a graph showing temporal changes in drain-source voltage Vds, gate-source voltage Vgs and drain current Id of the MOSFET in the power conversion circuit according to the embodiment, and FIG.
  • the power conversion circuit according to the comparative example is a power conversion circuit including a free wheeling diode whose area of the active region is four times the area of the free wheeling diode in Embodiment 1 as a free wheeling diode (FIGS. 6 and 7). The same in 7).
  • the unit of elapsed time "20 nsec / div" indicates that one division is 20 nsec
  • the unit of drain-source voltage Vds "100 V / div” indicates that one division is 100 V
  • between gate and source The unit “2 V / div” of the voltage Vgs indicates that one division is 2 V
  • the unit “1 A / div” of the drain current Id indicates that one division is 1 A. It is a graph which shows the simulation result of the time change of drain-source voltage Vds at the time of turning on MOSFET in, when the area of the active region of a free wheeling diode is changed.
  • FIG. 16 is a graph (recovery waveform) showing simulation results of temporal change in forward voltage ⁇ Vf of free wheel diode 200 and forward current If when the MOSFET is turned on when the area of the active region of the free wheel diode is changed.
  • . 5 is a cross-sectional view showing a free wheeling diode 202 in Embodiment 2.
  • FIG. It is a graph which shows the time change of drain-source voltage Vds, gate-source voltage Vgs, and drain current Id when the MOSFET is turned off.
  • Vds drain-source voltage
  • Vgs gate-source voltage
  • Id drain current Id
  • n excess indicates that the total amount of impurities in the n-type column region is 10% more than the total amount of impurities in the p-type column region
  • “Just” indicates the total amount of impurities in the n-type column region
  • p "P excess” indicates that the total amount of impurities in the p-type column region is 10% more than the total amount of impurities in the n-type column regions.
  • the power supply voltage is 300V.
  • FIG. 7 is a circuit diagram showing a power conversion circuit 2 in a first modification.
  • FIG. 18 is a cross-sectional view showing a MOSFET 102 in Modification 2;
  • FIG. 18 is a cross-sectional view showing a MOSFET 104 in a third modification. It is a figure shown in order to demonstrate the conventional power inverter circuit 900.
  • FIG. 18 is a cross-sectional view showing a MOSFET 102 in Modification 2;
  • FIG. 18 is a cross-sectional view showing a MOSFET 104 in a third modification. It is a figure shown in order to demonstrate the conventional power inverter circuit 900.
  • Reference numeral 901 indicates a DC / AC converter
  • reference numeral 902 indicates a filter
  • reference numeral 903 indicates a noise filter
  • reference numeral 904 indicates a system
  • reference numeral 940 indicates a power supply
  • reference numeral 950 indicates a smoothing capacitor.
  • Embodiment 1 Configuration of Power Conversion Circuit 1 According to Embodiment 1
  • the power conversion circuit 1 according to Embodiment 1 is a chopper circuit (step-up chopper circuit) that is a component such as a DC-DC converter or an inverter.
  • the power conversion circuit 1 according to the first embodiment includes a MOSFET 100, a free wheeling diode 200, an inductive load (reactor) 300, a power supply 400, and a smoothing capacitor 500.
  • a load 600 is connected to the external terminal of the power conversion circuit 1 according to the first embodiment.
  • the MOSFET 100 controls the current supplied from the power supply 400 to the inductive load 300 and the current supplied from the power supply 400. Specifically, MOSFET 100 switches in response to a clock signal applied from the drive circuit (not shown) to the gate electrode of MOSFET 100, and when it is turned on, between inductive load 300 and the negative electrode of power supply 400. To conduct. The specific configuration of the MOSFET 100 will be described later.
  • the freewheeling diode 200 rectifies the current supplied from the power supply 400 to the inductive load 300. The specific configuration of the free wheeling diode 200 will be described later.
  • the inductive load 300 is a passive element capable of storing energy in the magnetic field formed by the flowing current.
  • the anode (+) of the power supply 400 is electrically connected to one end of the inductive load 300, and the negative electrode ( ⁇ ) of the power supply 400 is electrically connected to the source electrode of the MOSFET 100. Also, the drain electrode of the MOSFET 100 is electrically connected to the other end of the inductive load 300 and the anode electrode of the free wheeling diode 200.
  • MOSFET 100 in Embodiment 1 is, as shown in FIG. 2, a semiconductor substrate 110, a gate insulating film 124, a gate electrode 126, an interlayer insulating film 128, a source electrode 130, and a drain. It is a trench gate type MOSFET provided with the electrode 132.
  • the withstand voltage between the drain and the source of the MOSFET 100 is 300 V or more, for example, 600 V.
  • the switching frequency of the MOSFET 100 is 10 kHz or more.
  • the semiconductor substrate 110 alternates horizontally on the low resistance semiconductor layer 112, the n-type buffer layer 113 formed on the low resistance semiconductor layer 112 and having a lower impurity concentration than the low resistance semiconductor layer 112, and the buffer layer 113.
  • a super junction structure 117 is constituted by the n-type column region 114 and the p-type column region 116 having the n-type source region 120 selectively formed on the surface.
  • the buffer layer 113 and the n-type column region 114 are integrally formed, and the buffer layer 113 and the n-type column region 114 constitute an n-type semiconductor layer 115.
  • the total amount of impurities in the n-type column region 114 is larger than the total amount of impurities in the p-type column region 116.
  • the total amount of impurities in the n-type column region 114 is the total amount of impurities in the p-type column region 116 And in the range of 1.05 times to 1.15 times, for example 1.10 times.
  • the impurity concentration in n-type column region 114 may be made higher than the impurity concentration in p-type column region 116.
  • the width of the n-type column region 114 may be wider than the width of the p-type column region 116.
  • total amount of impurities refers to the total amount of impurities (n-type impurities or p-type impurities) of components (n-type column region or p-type column region) in the MOSFET.
  • the width of the p-type column region 116 on the source electrode 130 side is wider than the width of the p-type column region 116 on the drain electrode 132 side, and the width of the n-type column region 114 on the source electrode 130 side is n on the drain electrode 132 side. It is narrower than the width of the mold column area 114.
  • the width (cross-sectional area) of the p-type column region can be nonlinearly increased toward the source electrode side, and the width (cross-sectional area) of the n-type column region can be nonlinearly reduced toward the source electrode side.
  • the periphery of the gate is excessively p and the n-type column region 114 is easily depleted, so that the potential of the n-type column region 114 in the periphery of the gate does not easily increase even if the drain voltage rises.
  • the distance between the non-depleted region in n-type column region 114 and the gate electrode is relatively long, and feedback capacitance Crss (equal to gate-drain capacitance Cgd) is relatively small.
  • the impurity concentrations of the n-type column region 114 and the p-type column region 116 are constant regardless of the depth.
  • n-type column region 114, the p-type column region 116, the source region 120, and the gate electrode 126 are all formed in a stripe shape in plan view.
  • the thickness of the low resistance semiconductor layer 112 is, for example, in the range of 100 ⁇ m to 400 ⁇ m, and the impurity concentration of the low resistance semiconductor layer 112 is, for example, in the range of 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3. is there.
  • the thickness of the n-type semiconductor layer 115 is, for example, in the range of 5 ⁇ m to 120 ⁇ m.
  • the impurity concentration of the n-type semiconductor layer 115 is, for example, in the range of 5 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 16 cm ⁇ 3 .
  • the impurity concentration of the p-type column region 116 is, for example, in the range of 5 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 16 cm ⁇ 3 .
  • the deepest position of the deepest portion of the base region 118 is, for example, in the range of 0.5 ⁇ m to 4.0 ⁇ m, and the impurity concentration of the base region 118 is, for example, 5 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 In the range of
  • the deepest position of the deepest part of the source region 120 is, for example, in the range of 0.1 ⁇ m to 0.4 ⁇ m, and the impurity concentration of the source region 120 is, for example, 5 ⁇ 10 19 cm ⁇ 3 to 2 ⁇ 10 20 cm ⁇ 3 In the range of
  • Trench 122 is formed to a depth position deeper than the deepest portion of base region 118 in a region where n-type column region 114 is located in a plan view, and a part of source region 120 is formed on the inner circumferential surface. It is formed to be exposed (at an exposed position).
  • the depth of the trench 122 is, for example, 3 ⁇ m.
  • the gate electrode 126 is embedded in the inside of the trench 122 via the gate insulating film 124 formed on the inner peripheral surface of the trench 122.
  • the gate insulating film 124 is formed of a silicon dioxide film having a thickness of, for example, 100 nm formed by a thermal oxidation method.
  • the gate electrode 126 is made of low resistance polysilicon formed by the CVD method and the ion implantation method.
  • the interlayer insulating film 128 is formed to cover a part of the source region 120, the gate insulating film 124, and the gate electrode 126.
  • the interlayer insulating film 128 is made of, for example, a PSG film having a thickness of 1000 nm formed by the CVD method.
  • the source electrode 130 is formed to cover the base region 118, a part of the source region 120, and the interlayer insulating film 128, and is electrically connected to the source region 120.
  • the drain electrode 132 is formed on the surface of the low resistance semiconductor layer 112.
  • the source electrode 130 is made of, for example, an aluminum-based metal (for example, an Al—Cu-based alloy) having a thickness of 4 ⁇ m, for example, formed by sputtering.
  • the drain electrode 132 is formed of a multilayer metal film such as Ti—Ni—Au. The total thickness of the multilayer metal film is, for example, 0.5 ⁇ m.
  • the free-wheel diode 200 includes a semiconductor substrate 210, an interlayer insulating film 220, an anode electrode 230, and a cathode electrode 240. It is a lifetime controlled Si-FRD (silicon-fast recovery diode).
  • Anode electrode 230 is formed on the first main surface (the upper main surface in FIG. 3) of semiconductor substrate 210, and semiconductor substrate 210 (p-type high concentration region 218 and p-type semiconductor layer 216) in active region AR. It is in contact with In the peripheral region, interlayer insulating film 220 is formed on the surface of semiconductor substrate 210.
  • the cathode electrode 240 is formed on the second main surface (the lower main surface in FIG. 3) of the semiconductor substrate 210.
  • the semiconductor substrate 210 is formed on the surface of the low resistance semiconductor layer 212, the n type semiconductor layer 214 formed on the low resistance semiconductor layer 212 and having an impurity concentration lower than that of the low resistance semiconductor layer 212, and the n type semiconductor layer 214.
  • a p-type high concentration region selectively formed on the surfaces of the p-type semiconductor layer 216 and the p-type semiconductor layer 216 and having a depth which penetrates the p-type semiconductor layer 216 and reaches the n-type semiconductor layer 214
  • a PN junction is formed between the n-type semiconductor layer 214 and the p-type semiconductor layer 216, and between the n-type semiconductor layer 214 and the p-type high concentration region 218.
  • the free wheel diode 200 is lifetime controlled by electron beam irradiation, diffusion of heavy metals, local lifetime control (He or proton irradiation) or the like.
  • the current value of the forward current is the area of the active region AR of the free wheel diode 200 (effective The current density divided by the area) is in the range of 200 A / cm 2 to 400 A / cm 2 .
  • the active region AR of the free wheeling diode 200 is a region that is substantially effective as a diode in a plan view (a region in which the anode electrode and the semiconductor substrate are in contact).
  • the rated maximum load is the maximum load when the power conversion circuit can supply power to the outside.
  • the power conversion circuit is a circuit that performs regenerative operation
  • the power conversion circuit when the power conversion circuit is operated with the rated maximum load or rated maximum regenerative current of the power conversion circuit, when the forward current of the free wheeling diode peaks,
  • the current density obtained by dividing the current value of the forward current by the area of the active area AR of the free wheeling diode is in the range of 200 A / cm 2 to 400 A / cm 2 .
  • the rated maximum regenerative current refers to regenerative operation (when the load applies a brake, etc., power is generated from the load and the generated power is returned to the power supply as reverse flow) from the load to the power supply. It refers to the maximum current when power can be supplied.
  • the depletion layer generated from the pn junction surface of the p-type region on the anode electrode side and the n-type region on the cathode electrode side is spread. Therefore, the forward current If does not flow (it is 0), and the forward voltage -Vf has a predetermined voltage value (see FIG. 4 (b)). At this time, the electrical load of the power supply 400 is accumulated in the inductive load 300.
  • the drain potential of the MOSFET 100 increases with time, and the potential (electrostatic potential) of the n-type column region 114 around the gate also increases with time. Then, the lowered potential of the gate electrode 126 becomes higher through the gate-drain capacitance Cgd, and when the channel becomes wider, the drain current Id increases and shifts to the second period.
  • the inflow from the anode electrode toward the depletion layer temporarily stops the movement of holes contributing to the reduction of the depletion layer, and the inflow from the cathode electrode toward the depletion layer causes the depletion layer
  • the movement of electrons that had contributed to the reduction of Therefore, no displacement current flows in the free wheel diode 200 (in the depletion layer), and the amount of current passing through the free wheel diode 200 decreases (the forward current If decreases (see FIG. 4B)).
  • the drain-source voltage Vds increases again at an increasing rate (slope) and decreases to the rated voltage after reaching the rated voltage.
  • the depletion layer narrows again and a displacement current flows, so the forward current If increases again (see FIG. 4B).
  • the gate-source voltage Vgs becomes lower than the gate threshold voltage, the channel disappears and the drain current Id becomes 0 (transition to the off state).
  • the reduction amount of the drain current Id per unit time in the third period is smaller than the reduction amount of the drain current per unit time in the first period (see FIGS. 4, 5 and 9). Also, the MOSFET 100 operates such that when the MOSFET is turned off, there is a period in which the gate-source voltage temporarily rises after the end of the mirror period (see FIGS. 5 and 9).
  • the depletion layer extending from the pn junction surface disappears, and electrons and holes flow directly, so the forward current If flows and gradually decreases as time passes (see FIG. 4B). ).
  • forward voltage -Vf becomes negative value (reverse voltage is generated), and conduction loss occurs.
  • the power conversion circuit according to the comparative example basically has the same configuration as the power conversion circuit 1 according to the first embodiment, but as the free wheel diode, the area of the active region is the active region of the free wheel diode in the first embodiment.
  • the power conversion circuit using a free wheeling diode whose area is four times the area of In the power conversion circuit according to the comparative example, when the MOSFET is turned off, the first period in which the drain current Id decreases, the second period in which the drain current Id increases, and the third period in which the drain current Id decreases again.
  • the drain current Id sharply decreases when the MOSFET is turned off, and then rapidly increases to about one half before the drain current decreases. It then becomes 0 after repeated vibration up and down.
  • the drain current Id is the same as the power conversion circuit according to the comparative example.
  • the first period in which the drain current Id decreases the second period in which the drain current Id increases, and the third period in which the drain current Id decreases again, from when it begins to decrease until the drain current Id first becomes zero. Operates to appear in this order, but after the drain current Id decreases when the MOSFET is turned off, it increases to about 1/3 before the decrease of the drain current, and then repeats oscillations up and down. (See FIG. 5 (a)). That is, the cobb waveform is smaller than in the case of the power conversion circuit according to the comparative example. Therefore, the turn-off loss is smaller than in the comparative example.
  • the turn-on loss in the power conversion circuit 1 according to the first embodiment will be described.
  • the drain current Id increases to a value exceeding the steady state current (peak current) and then approaches the steady state value while ringing. (See the thin solid line in FIG. 6). Further, the drain-source voltage Vds monotonously decreases rapidly (see the thin broken line in FIG. 6).
  • the power conversion circuit 1 according to the embodiment when the MOSFET 100 is turned on, the peak current is smaller and the ringing is also smaller and faster than in the power conversion circuit according to the comparative example. Ringing ends (see thick solid line in FIG. 6). Therefore, the power conversion circuit according to the embodiment has a smaller turn-on loss than the power conversion circuit according to the comparative example.
  • the free wheeling diode has a reverse recovery current (peak) value Irp smaller than that of the comparative example, and a reverse recovery time trr shorter than that of the comparative example. Therefore, the power conversion circuit according to the embodiment has a smaller recovery loss than the power conversion circuit according to the comparative example. Also, the forward voltage -Vf rapidly decreases once before reaching the steady state value and increases again to near the steady state value. At this time, the ringing amplitude is smaller than that of the comparative example (see thick dashed line in FIG. 7).
  • the power conversion circuit 1 according to the first embodiment when the power conversion circuit 1 is operated with the rated maximum load or the rated maximum regenerative current, At the peak of the directional current, the current density obtained by dividing the current value of the forward current by the active area of the free wheeling diode 200 is 200 A / cm 2 or more in the case of Si-FRD, and the free wheeling diode against the flowing current Since the area of the active region AR of 200 is relatively small, the junction capacitance Cj of the free wheeling diode 200 is reduced.
  • the current density of 200 A / cm 2 or more is obtained by dividing the current value of the forward current by the active area of the free wheel diode 200 at the peak of the forward current of the free wheel diode 200.
  • it is less than cm 2 , the area of the active region AR of the free wheeling diode 200 is relatively large, and the junction capacitance Cj of the free wheeling diode 200 is large, and the MOSFET is turned off (second period when turned off And the current component flowing from the free wheeling diode 200 toward the MOSFET 100 is small, so it is difficult to reduce the bump waveform.
  • the peak of the forward current of the free wheeling diode 200 when the power conversion circuit 1 is operated at the rated maximum load or rated maximum regenerative current, the peak of the forward current of the free wheeling diode 200
  • the current density obtained by dividing the current value by the active area of the free wheeling diode 200 is 200 A / cm 2 or more in the case of Si-FRD, and the area of the active region AR of the free wheeling diode 200 is relatively small.
  • the junction capacitance Cj of the wheel diode 200 is reduced. Therefore, since the recovery current of the free wheeling diode 200 is reduced (see the area enclosed by the broken line B in FIG. 7), the recovery loss of the free wheeling diode 200 can be reduced.
  • the recovery current of the free wheeling diode 200 is reduced, the peak current of the drain current Id when the MOSFET 100 is turned on is reduced (see the area surrounded by the broken line A in FIG. 6). can do.
  • the power conversion circuit 1 since the current density is 400 A / cm 2 or less in the case of Si-FRD, the area of the active region of the free wheeling diode 200 becomes too small. There is no Therefore, the heat generated from the semiconductor element or the like can be easily released to the outside, so that the free wheel diode 200 can be prevented from becoming high temperature, and the heat resistance when the heat generated from the semiconductor element or the like is discharged to the outside is compared Can be made smaller. As a result, the heat generated by the switching loss and the conduction loss can be efficiently discharged to the outside.
  • the current (lash current) having a large peak value flows when the power conversion circuit not connected to the power supply is connected to the power supply. Even when the smoothing capacitor incorporated in the power conversion circuit is suddenly charged with an amount of charge corresponding to the maximum value of the power supply voltage, even if it passes through the free wheeling diode 200, it is possible to prevent the occurrence of IFSM breakdown it can.
  • the free wheeling diode 200 is a lifetime controlled Si-FRD, the forward voltage -Vf does not easily increase. Therefore, the conduction loss is less likely to occur than when Si-SBD is used.
  • the turn-off loss when the MOSFET is turned off the turn-on loss when the MOSFET is turned on
  • the recovery loss of the free wheeling diode 200 Since the ratio of the sum of the three losses is larger than the ratio of the conduction loss of the free wheeling diode 200, the turn-on loss, the turn-off loss and the recovery loss can be reduced by the above configuration, and the total loss Can be made smaller.
  • the power conversion circuit 1 in the MOSFET 100, since the total amount of impurities in the n-type column region 114 is larger than that of the p-type column region 116, n-type around the gate when the MOSFET 100 is turned off. Column region 114 is less likely to be depleted. Therefore, the withstand voltage between the drain and the source can be increased. In addition, a bump waveform is generated at the time of turn-off, and the time until the current value of the drain current Id becomes zero can be lengthened. Therefore, the surge voltage of the MOSFET becomes difficult to increase.
  • the drain-source voltage Vds is maximized. Since it is possible to lengthen the time until the voltage Vds between the drain and the source becomes maximum, the amount of increase per unit time of the voltage Vds between the drain and the source can be reduced, so that the oscillation hardly occurs.
  • the reduction amount of the drain current per unit time in the third period is smaller than the reduction amount of the drain current per unit time in the first period.
  • the surge voltage of the MOSFET 100 can be further reduced.
  • the MOSFET when the MOSFET is turned off, the MOSFET operates such that a period in which the voltage between the gate and the source temporarily rises after the end of the mirror period appears.
  • the time until the current value of the current Id becomes zero can be reliably extended, and the reduction amount of the drain current Id per unit time in the third period can be reliably reduced. Therefore, the surge voltage of the MOSFET 100 can be reliably reduced.
  • the width of the p-type column region on the source electrode 130 side is wider than the width of the p-type column region 116 on the drain electrode 132 side. Since the width of the n-type column region 114 on the side 130 is narrower than the width of the n-type column region 114 on the side of the drain electrode 132, the periphery of the gate becomes excessive p, so it is easy to spread the depletion layer at turn-off. Tolerable amount can be increased
  • the power conversion circuit (not shown) according to the second embodiment basically has the same configuration as the power conversion circuit 1 according to the first embodiment, but the free wheeling diode is a SiC-SBD (silicon carbide-Schottky). It differs from the case of the power conversion circuit 1 according to the first embodiment in that it is a barrier diode. That is, in the power conversion circuit according to the second embodiment, as shown in FIG. 8, in free wheel diode 202, semiconductor substrate 210a is made of SiC (silicon carbide), and position of anode electrode 232 in contact with at least semiconductor substrate 210a. A Schottky barrier metal is disposed in the device, and the Schottky barrier metal is a Schottky barrier diode in which the Schottky barrier metal and the semiconductor base 210a are in Schottky contact with each other.
  • SiC-SBD silicon carbide-Schottky
  • the free wheeling diode 202 has a JBS structure (or MPS structure) in which a Schottky junction and a pn junction are combined. That is, the p-type semiconductor layer 216 as in the case of the free wheeling diode 200 in the first embodiment is not formed on the semiconductor substrate 210 a.
  • the JBS structure or MPS structure
  • the Schottky junction is less likely to be destroyed by passing the current using not only the Schottky junction but also the PN junction, thereby avoiding IFSM destruction. It has a structure (larger IFSM tolerance).
  • the current density of the freewheeling diode 202 is in the range of 400 A / cm 2 to 1500 A / cm 2 .
  • the reason why the current density of the freewheeling diode 202 is not 200A / cm 2 or more but 400A / cm 2 or more as in the case of the current density of the freewheeling diode 200 having the Si-FRD structure is as follows: by. That is, in the case of SiC, a high breakdown voltage SBD (Schottky Barrier Diode) having a high breakdown electric field strength is generally manufactured in a state where the thickness of the withstand voltage layer (drift layer) is small and the impurity concentration is high.
  • SBD Schottky Barrier Diode
  • the forward voltage drop can be smaller than in the case of Si, so that the active area can be smaller than in the case of Si-FRD (ie current The density can be higher than in the case of Si-FRD).
  • the current density of the free wheeling diode 202 is not 400 A / cm 2 or less as in the case of the current density of the free wheeling diode 200 having the Si-FRD structure, but is 1500 A / cm 2 or less. This is because the Schottky junction is not easily broken even when rush current rushes in the direction, and the IFFM tolerance is large.
  • the current density of the freewheeling diode 202 is more preferably in the range of 400 A / cm 2 to 1000 A / cm 2 .
  • the power conversion circuit according to the second embodiment differs from the power conversion circuit 1 according to the first embodiment in that the free wheel diode is SiC-SBD, but the power conversion circuit 1 according to the first embodiment Similarly to the above case, when the power conversion circuit 1 is operated at the rated maximum load or rated maximum regenerative current, the current value of the forward current at the peak of the free wheel diode 202 is activated.
  • the current density divided by the area is 400 A / cm 2 or more in the case of SiC-SBD, and the area of the active region AR of the free wheeling diode 202 is relatively small with respect to the flowing current.
  • the capacity Cj becomes smaller.
  • the turn-off loss can be reduced.
  • the current of the forward current at the peak of the forward current of the free wheeling diode 200 Since the current density obtained by dividing the value by the active area of the free wheeling diode 200 is 400 A / cm 2 or more in the case of SiC-SBD, the area of the active region AR of the free wheeling diode 202 is compared with the flowing current. And the junction capacitance Cj of the free wheeling diode 200 is reduced. Therefore, since the recovery current of the free wheeling diode 202 is reduced (see the area enclosed by the broken line B in FIG.
  • the recovery loss of the freewheeling diode 202 can be reduced.
  • the recovery current of the free wheeling diode 202 is reduced, the peak current of the drain current Id when the MOSFET is turned on is reduced (see the area surrounded by the broken line A in FIG. 6), and the MOSFET turn on loss is reduced. can do.
  • the current density is 1500 A / cm 2 or less in the case of SiC-SBD, so the area of the active region of the free wheeling diode 202 does not become too small. . Therefore, the heat generated from the semiconductor element or the like can be easily released to the outside, so that the free wheel diode 200 can be prevented from becoming high temperature, and the heat resistance when the heat generated from the semiconductor element or the like is discharged to the outside is compared Can be made smaller. As a result, the heat generated by the switching loss and the conduction loss can be efficiently discharged to the outside.
  • the free wheeling diode 202 is a SiC-SBD, high speed switching can be performed, and switching loss can be reduced.
  • the free wheeling diode 202 has a JBS structure in which the Schottky junction and the pn junction are combined, so it becomes a diode with low conduction loss and small leakage current. It is possible to make a power conversion circuit with less loss.
  • the free wheeling diode 202 since the free wheeling diode 202 has a JBS structure, it can flow current from the p-type high concentration region 218 when the rush current passes through the free wheeling diode, and reliably prevents the occurrence of the IFSM. it can.
  • the power conversion circuit according to the second embodiment has the same configuration as that of the power conversion circuit 1 according to the first embodiment except that the free wheel diode is SiC-SBD. Among the effects of the conversion circuit 1, the corresponding one is obtained.
  • the total amount of impurities in the n-type column region is larger than the total amount of impurities in the p-type column region (n excess), but the present invention is not limited to this.
  • the total amount of impurities in the n-type column region may be equal to the total amount of impurities in the p-type column region (Just), or the total amount of impurities in the p-type column region is slightly larger than the total amount of impurities in the n-type column region (p excess, for example
  • the total amount of impurities in the p-type column region may be greater than 1.00 times, equal to or less than 1.03 times the total amount of impurities in the n-type column region).
  • the drain current Id of the MOSFET operates so that a cobb waveform appears (although smaller than the case of n excess) (see FIGS. 9 and 10).
  • a SiC-SBD having a JBS structure (or MPS structure) is used as a free wheel diode, but the present invention is not limited to this.
  • a SiC-SBD having a structure other than the JBS structure or the MPS structure may be used.
  • the current density of the free wheeling diode is preferably in the range of 400 A / cm 2 to 1000 A / cm 2 because the IFSM resistance is slightly smaller than that of the JBS structure (or MPS structure).
  • the upper limit is more preferably smaller than 1000 A / cm 2 .
  • step-up chopper circuit was used as a power conversion circuit, this invention is not limited to this.
  • a step-down chopper circuit see FIG. 11
  • a full bridge circuit a half bridge circuit, a three-phase AC converter, a non-insulation full bridge circuit, a non isolation half bridge circuit, a push pull circuit, an RCC circuit, a forward Converters, flyback converters and other circuits may be used.
  • a trench gate type MOSFET is used as the MOSFET, but the present invention is not limited to this.
  • a MOSFET a semiconductor substrate 110 is formed on a portion of an n-type column region 114 and a p-type base region 118 formed on the entire surface of the p-type column region 116 and an n-type formed on the surface of the base region 118 Source region 120 and an n-type surface high concentration diffusion region 119 formed in a portion of the surface of n-type column region 114 where base region 118 is not formed;
  • a gate electrode 136 formed via a gate insulating film 134 on the base region 118 sandwiched between the source region 120 and the n-type column region 114 (n-type surface high concentration diffusion region 119)
  • a planar gate type MOSFET may be used (MOSFET 102 in the modification 2; see FIG. 12).
  • the width of the p-type column region on the source electrode side is made wider than the width of the p-type column region on the drain electrode side, and the width of the n-type column region on the source electrode side is Although narrower than the width of the n-type column region on the electrode side, the present invention is not limited to this.
  • the width of the p-type column region 116 may be fixed.
  • the impurity concentration of the p-type column region 116 is constant regardless of the depth, but the present invention is not limited to this.
  • the impurity concentration of the p-type column region is made higher than the impurity concentration of the n-type column region, and on the drain electrode side, the impurity concentration of the p-type column region is lower than the impurity concentration of the n-type column region.
  • the MOSFET 104 in Modification 3; see FIG. 13 see FIG. 13
  • the widths of the p-type column region and the n-type column region may be fixed along the depth direction of the p-type column region (see FIG.
  • the width of the n-type column region on the source electrode side may be smaller than the width of the n-type column region on the drain electrode side.
  • the n-type column region 114, the p-type column region 116, the trench 122, and the gate electrode 126 are formed in a stripe shape in plan view, but the present invention is limited thereto is not.
  • the n-type column region 114, the p-type column region 116, the trench 122, and the gate electrode 126 have a circular shape (pillar shape in a three-dimensional view), a rectangular frame shape, a circular frame shape or a lattice shape You may form.
  • a DC power supply is used as a power supply, but the present invention is not limited to this.
  • An alternating current power supply may be used as the power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Inverter Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本発明の電力変換回路1は、スーパージャンクション構造が構成されたMOSFETと、誘導性負荷と、フリーホイールダイオードとを備え、MOSFETのスイッチング周波数は、10kHz以上であり、MOSFETは、ターンオフしたときに、ドレイン電流が減少する第1期間と、ドレイン電流が増加する第2期間と、ドレイン電流が再び減少する第3期間とがこの順番に出現するように動作し、フリーホイールダイオードは、Si-FRD又はSiC-SBDであり、順方向電流の電流値をフリーホイールダイオードの活性領域の面積で割った電流密度は、Si-FRDの場合には200~400A/cm2、SiC-SBDの場合には400~1500A/cm2の範囲内にあることを特徴とする。 本発明の電力変換回路1によれば、ターンオフしたときのドレイン電流の波形にコブ波形を比較的小さくすることができ、ターンオフ損失が大きくなり難くなる。

Description

電力変換回路
 本発明は、電力変換回路に関する。
 従来、スーパージャンクション構造が構成されたMOSFETを備える電力変換回路が知られている(例えば特許文献1参照。)。
 従来の電力変換回路900は、スーパージャンクション構造が構成されたMOSFET910と、逆流阻止ダイオード920と、誘導性負荷(リアクトル)930とを備える昇圧チョッパ回路である(図14参照。)。
 従来の電力変換回路900によれば、スーパージャンクション構造が構成されたMOSFET910を備えるため、MOSFET910が高耐圧となるだけでなく、MOSFETのオン抵抗が低いためスイッチング周波数を上げても導通損失の増加を抑制することができる。
特開2012-143060号公報
 ところで、本発明の発明者らは、電力変換回路におけるMOSFETのスーパージャンクション構造のチャージバランスにバラツキが生じると、ターンオフしたときのMOSFETのドレイン電流の波形に比較的大きなコブ波形(ドレイン電流が減少し始めてからドレイン電流が最初に0となるまでの間に、ドレイン電流が減少する第1期間と、ドレイン電流が増加する第2期間と、ドレイン電流が再び減少する第3期間とがこの順番に出現する波形、図4及び図5参照)が出現する場合があり、このようなコブ波形によって(ドレイン・ソース間電圧のサージ電圧が小さくなるというメリットはあるものの)ターンオフ損失が大きくなってしまう場合がある、という問題があることを見出した。
 そこで、本発明は、上記した問題を解決するためになされたものであり、ターンオフしたときのドレイン電流のコブ波形を比較的小さくすることができ、ターンオフ損失が大きくなり難い電力変換回路を提供することを目的とする。
[1]本発明の電力変換回路は、n型コラム領域及びp型コラム領域を有し、前記n型コラム領域及び前記p型コラム領域でスーパージャンクション構造が構成された半導体基体を有するMOSFETと、フリーホイールダイオードと、誘導性負荷とを備え、前記MOSFETのスイッチング周波数は、10kHz以上であり、前記MOSFETは、ターンオフしたときに、ドレイン電流の波形が、前記ドレイン電流が減少し始めてから前記ドレイン電流が最初に0となるまでの間に、前記ドレイン電流が減少する第1期間と、前記ドレイン電流が増加する第2期間と、前記ドレイン電流が再び減少する第3期間とがこの順番に出現するように動作し、前記フリーホイールダイオードは、ライフタイムコントロールされたSi-FRD、又は、SiC-SBDであり、前記電力変換回路の定格最大負荷又は定格最大回生電流で前記電力変換回路を運転した場合において、前記フリーホイールダイオードの順方向電流のピーク時に、前記順方向電流の電流値を前記フリーホイールダイオードの活性領域の面積で割った電流密度は、前記フリーホイールダイオードが前記Si-FRDの場合には、200A/cm~400A/cmの範囲内にあり、前記フリーホイールダイオードが前記SiC-SBDの場合には、400A/cm~1500A/cmの範囲内にあることを特徴とする電力変換回路。
[2]本発明の電力変換回路においては、前記フリーホイールダイオードは、ライフタイムコントロールされたSi-FRDであることが好ましい。
[3]本発明の電力変換回路においては、前記フリーホイールダイオードは、SiC-SBDであることが好ましい。
[4]本発明の電力変換回路においては、前記フリーホイールダイオードは、MPS構造又はJBS構造を有することが好ましい。
[5]本発明の電力変換回路においては、前記電力変換回路における総合損失のうち、前記MOSFETをターンオンしたときのターンオフ損失、前記MOSFETをターンオフしたときのターンオン損失及び前記フリーホイールダイオードのリカバリ損失の3つの損失の和が占める割合が、前記フリーホイールダイオードの導通損失が占める割合よりも大きいことが好ましい。
[6]本発明の電力変換回路においては、前記MOSFETにおいて、前記n型コラム領域の不純物総量は、前記p型コラム領域の不純物総量よりも多いことが好ましい。
[7]本発明の電力変換回路においては、前記MOSFETにおいて、前記n型コラム領域の不純物総量は、前記p型コラム領域の不純物総量と等しいことが好ましい。
[8]本発明の電力変換回路においては、前記MOSFETにおいて、前記p型コラム領域の不純物総量は、前記n型コラム領域の不純物総量の1.00倍よりも多く、1.03倍と等しいかそれよりも少ないことが好ましい。
[9]本発明の電力変換回路においては、前記MOSFETにおいて、前記第3期間における単位時間当たりの前記ドレイン電流の減少量は、前記第1期間における単位時間当たりの前記ドレイン電流の減少量よりも小さいことが好ましい。
[10]本発明の電力変換回路においては、前記MOSFETにおいて、前記MOSFETをターンオフしたとき、ミラー期間終了後にゲート・ソース間電圧が一時的に上昇する期間が出現するように動作することが好ましい。
[11]本発明の電力変換回路においては、前記MOSFETにおける前記半導体基体は、前記n型コラム領域及び前記p型コラム領域の表面に形成されたp型のベース領域と、前記ベース領域の表面に形成されたn型のソース領域とをさらに有し、前記MOSFETは、平面的に見て前記n型コラム領域が位置する領域内に、前記ベース領域の最深部よりも深い深さ位置まで形成され、かつ、前記ソース領域の一部が内周面に露出するように形成されたトレンチと、前記トレンチの内周面に形成されたゲート絶縁膜を介して前記トレンチの内部に埋め込まれてなるゲート電極とをさらに有するトレンチゲート型のMOSFETであることが好ましい。
[12]本発明の電力変換回路においては、前記MOSFETにおける前記半導体基体は、前記n型コラム領域の一部及び前記p型コラム領域の全部の表面に形成されたp型のベース領域と、前記ベース領域の表面に形成されたn型のソース領域と、前記n型コラム領域の表面のうち前記ベース領域が形成されていない部分に形成されたn型の表面高濃度拡散領域とを有し、前記MOSFETは、前記MOSFETの第1主面側に、前記ソース領域と前記n型コラム領域とに挟まれた前記ベース領域上にゲート絶縁膜を介して形成されたゲート電極をさらに有するプレーナーゲート型のMOSFETであることが好ましい。
[13]本発明の電力変換回路においては、前記MOSFETにおいては、前記半導体基体の一方面にソース電極が形成されており、かつ、前記半導体基体の他方面にドレイン電極が形成されており、前記ソース電極側における前記p型コラム領域の幅は、前記ドレイン電極側における前記p型コラム領域の幅よりも広く、前記ソース電極側における前記n型コラム領域の幅は、前記ドレイン電極側における前記n型コラム領域の幅よりも狭いことが好ましい。
[14]本発明の電力変換回路においては、前記MOSFETにおいては、前記半導体基体の一方面にソース電極が形成され、かつ、前記半導体基体の他方面にドレイン電極が形成されており、前記ソース電極側においては、前記p型コラム領域の不純物濃度が、前記n型コラム領域の不純物濃度よりも高く、前記ドレイン電極側においては、前記p型コラム領域の不純物濃度が、前記n型コラム領域の不純物濃度よりも低いことが好ましい。
 本発明の電力変換回路によれば、電力変換回路の定格最大負荷又は定格最大回生電流で運転した場合において、フリーホイールダイオードの順方向電流のピーク時に、順方向電流の電流値をフリーホイールダイオードの活性面積で割った電流密度は、Si-FRDの場合には200A/cm以上、SiC-SBDの場合に400A/cm以上であり、流れる電流に対してフリーホイールダイオードの活性領域の面積が比較的小さいことから、フリーホイールダイオードの接合容量Cjが小さくなる。従って、MOSFETをターンオフしたときの第2期間にフリーホイールダイオードからMOSFETに向かって流れる電流成分が小さくなるため、MOSFETのドレイン電流のコブ波形を比較的小さくすることができ(図5(a)参照。)、その結果、ターンオフ損失を小さくすることができる。
 また、本発明の電力変換回路によれば、上記したように、フリーホイールダイオードの活性領域の面積が比較的小さいことから、フリーホイールダイオードの接合容量Cjが小さくなる。従って、フリーホイールダイオードのリカバリ電流が小さくなるため(図7の破線Bで囲まれた領域参照。)、フリーホイールダイオードのリカバリ損失を小さくすることができる。また、フリーホイールダイオードのリカバリ電流が小さくなるため、MOSFETをターンオンしたときのドレイン電流のピーク電流が小さくなり(図6の破線Aで囲まれた領域参照。)、MOSFETのターンオン損失を小さくすることができる。
 また、本発明の電力変換回路によれば、上記電流密度は、Si-FRDの場合には400A/cm以下であり、SiC-SBDの場合には1500A/cm以下であることから、フリーホイールダイオードの活性領域の面積が小さくなりすぎることがない。このため、半導体素子等から発する熱を外部に放出し易くなるため、フリーホイールダイオードが高温になることを防ぐことができ、半導体素子等から発する熱を外部へ放出する際の熱抵抗を比較的小さくすることができる。その結果、スイッチング損失や導通損失によって発生する熱を効率よく外部へ排出することができる。
 また、フリーホイールダイオードの活性領域の面積が小さくなりすぎることがないため、電源に接続されていない状態の電力変換回路を電源に接続したときなどに流れる、ピーク値が大きい電流(ラッシュ電流)が、フリーホイールダイオードを通過するときでも、IFSM破壊が起こることを防ぐことができる。
 また、本発明の電力変換回路によれば、MOSFETのスイッチング周波数は、10kHz以上であるため、総合損失(=導通損失+スイッチング損失)に対する導通損失の割合よりも、スイッチング損失(ターンオン損失、ターンオフ損失及びリカバリ損失を含む)の割合の方が大きくなる。このため、上記したような構成としてターンオン損失、ターンオフ損失及びリカバリ損失を小さくすることにより、総合損失を小さくすることができる。
実施形態1に係る電力変換回路1を示す回路図である。 実施形態1におけるMOSFET100を示す断面図である。 実施形態1におけるフリーホイールダイオード200を示す断面図である。 実施形態1におけるMOSFET100のドレイン・ソース間電圧Vds及びドレイン電流Id、並びに、フリーホイールダイオード200の順方向電圧-Vf及び順方向電流Ifの時間変化を示すグラフの模式図である。図4(a)はMOSFET100のドレイン・ソース間電圧Vds及びドレイン電流Idの時間変化を示すグラフの模式図であり、図4(b)はフリーホイールダイオード200の順方向電圧-Vf及び順方向電流Ifの時間変化を示すグラフの模式図である。なお、図4(a)のドレイン電流Idのグラフの時刻t3近傍及び時刻t5近傍の破線は、フリーホイールダイオードの活性領域の面積が実施形態1のフリーホイールダイオードの活性領域の面積の4倍のときのドレイン電流Idのグラフを示し、図4(b)の順方向電流Ifのグラフの時刻t5近傍の破線はフリーホイールダイオードの活性領域の有効面積が実施形態1のフリーホイールダイオードの活性領域の面積4倍のときの順方向電流Ifのグラフを示す。また、図4においては、説明を容易にするために、ターンオフ期間(時刻t2~t3の間)及びターンオン期間(時刻t4~t5の間)の変化を強調して記載しているため、寸法、形状、リンギングの有無等は必ずしも実際の波形と一致しない。ちなみに、図4(b)において、電圧軸の採り方として、上向きを-Vfとしたのは、以下のような事情を考慮したからである。すなわち、電流については、順方向電流を正、逆方向電流を負としているのに対して、電圧については、接合に対する順方向電圧降下を負に、逆バイアスを正にとっており、ダイオードが順方向に電流を流しているとき、順方向電圧降下は、グラフでは負値で現れている。また、電源電圧がダイオードに対して逆バイアスで印加されるとき、逆耐圧Vrは正値で現れる。従って、これらの事情を考慮して、電圧軸の採り方として、上向きを-Vfで表している。 フリーホイールダイオードの活性領域の面積を変えた場合における、MOSFETをターンオフしたときのMOSFETのドレイン・ソース間電圧Vds、ゲート・ソース間電圧Vgs及びドレイン電流Idの時間変化の実測波形を示すグラフである。図5(a)は実施例に係る電力変換回路におけるMOSFETのドレイン・ソース間電圧Vds、ゲート・ソース間電圧Vgs及びドレイン電流Idの時間変化を示すグラフであり、図5(b)は比較例に係る電力変換回路におけるMOSFETのドレイン・ソース間電圧Vds、ゲート・ソース間電圧Vgs及びドレイン電流Idの時間変化を示すグラフである。なお、比較例に係る電力変換回路は、フリーホイールダイオードとして、活性領域の面積が実施形態1におけるフリーホイールダイオードの4倍の面積であるフリーホイールダイオードを備える電力変換回路である(図6及び図7において同じ。)。また、経過時間の単位「20nsec/div」は1目盛が20nsecであることを示し、ドレイン・ソース間電圧Vdsの単位「100V/div」は1目盛が100Vであることを示し、ゲート・ソース間電圧Vgsの単位「2V/div」は1目盛が2Vであることを示し、ドレイン電流Idの単位「1A/div」は1目盛が1Aであることを示す。 フリーホイールダイオードの活性領域の面積を変えた場合における、MOSFETをターンオンしたときのドレイン・ソース間電圧Vdsの時間変化のシミュレーション結果を示すグラフである。 フリーホイールダイオードの活性領域の面積を変えた場合における、MOSFETをターンオンしたときのフリーホイールダイオード200の順方向電圧-Vf及び順方向電流Ifの時間変化のシミュレーション結果を示すグラフ(リカバリ波形)である。 実施形態2におけるフリーホイールダイオード202を示す断面図である。 MOSFETをターンオフしたときのドレイン・ソース間電圧Vds、ゲート・ソース間電圧Vgs及びドレイン電流Idの時間変化を示すグラフである。なお、図9において、「n過多」は、n型コラム領域の不純物総量がp型コラム領域の不純物総量よりも10%多い場合を示し、「Just」は、n型コラム領域の不純物総量とp型コラム領域の不純物総量とが等しい場合を示し、「p過多」は、p型コラム領域の不純物総量がn型コラム領域の不純物総量よりも10%多い場合を示す。また、電源電圧は300Vである。 p型コラム領域の不純物総量がn型コラム領域の不純物総量よりもわずか(2%)に多い場合において、MOSFETをターンオフしたときのドレイン・ソース間電圧Vds、ゲート・ソース間電圧Vgs及びドレイン電流Idの時間変化を示すグラフである。 変形例1における電力変換回路2を示す回路図である。 変形例2におけるMOSFET102を示す断面図である。 変形例3におけるMOSFET104を示す断面図である。 従来の電力変換回路900を説明するために示す図である。なお、符号901はDC/AC変換部を示し、符号902はフィルタを示し、符号903はノイズフィルタを示し、符号904は系統を示し、符号940は電源を示し、符号950は平滑コンデンサを示す。
 以下、本発明の電力変換回路について、図に示す実施形態に基づいて説明する。なお、各図面は模式図であり、必ずしも実際の回路構成やグラフを厳密に反映したものではない。
[実施形態1]
1.実施形態1に係る電力変換回路1の構成について
 実施形態1に係る電力変換回路1は、DC-DCコンバータやインバータ等の構成要素であるチョッパ回路(昇圧チョッパ回路)である。実施形態1に係る電力変換回路1は、図1に示すように、MOSFET100、フリーホイールダイオード200と、誘導性負荷(リアクトル)300と、電源400と、平滑コンデンサ500とを備える。実施形態1に係る電力変換回路1の外部端子には負荷600が接続されている。
 MOSFET100は、電源400から誘導性負荷300に供給する電流及び電源400から供給される電流を制御する。具体的には、MOSFET100は、ドライブ回路(図示せず)からMOSFET100のゲート電極に印加されるクロック信号に応答してスイッチングし、オン状態になると、誘導性負荷300と電源400の負極との間を導通させる。MOSFET100の具体的な構成については、後述する。
 フリーホイールダイオード200は、電源400から誘導性負荷300に供給する電流の整流動作を行う。フリーホイールダイオード200の具体的な構成については後述する。
 誘導性負荷300は、流れる電流によって形成される磁場にエネルギーを蓄えることができる受動素子である。
 電源400の陽極(+)は、誘導性負荷300の一方端と電気的に接続されており、電源400の負極(-)は、MOSFET100のソース電極と電気的に接続されている。また、MOSFET100のドレイン電極は、誘導性負荷300の他方端及びフリーホイールダイオード200のアノード電極と電気的に接続されている。
2.実施形態1におけるMOSFET100の構成について
 実施形態1におけるMOSFET100は、図2に示すように、半導体基体110と、ゲート絶縁膜124と、ゲート電極126と、層間絶縁膜128と、ソース電極130と、ドレイン電極132とを備えるトレンチゲート型のMOSFETである。MOSFET100のドレイン・ソース間耐圧は、300V以上であり、例えば600Vである。MOSFET100のスイッチング周波数は、10kHz以上である。
 半導体基体110は、低抵抗半導体層112と、低抵抗半導体層112上に形成され低抵抗半導体層112よりも不純物濃度が低いn型のバッファ層113、バッファ層113上に水平方向に沿って交互に配列されたn型コラム領域114及びp型コラム領域116と、n型コラム領域114及びp型コラム領域116の表面(表面上)に形成されたp型のベース領域118と、ベース領域118の表面に選択的に形成されたn型のソース領域120を有し、n型コラム領域114及びp型コラム領域116でスーパージャンクション構造117が構成されている。なお、バッファ層113及びn型コラム領域114は一体的に形成されており、バッファ層113とn型コラム領域114とでn型半導体層115を構成している。
 半導体基体110において、n型コラム領域114の不純物総量は、p型コラム領域116の不純物総量よりも多く、具体的には、n型コラム領域114の不純物総量は、p型コラム領域116の不純物総量の1.05倍~1.15倍の範囲内にあり、例えば、1.10倍である。なお、n型コラム領域114の不純物総量をp型コラム領域116の不純物総量よりも多くするためには、n型コラム領域114の不純物濃度をp型コラム領域116の不純物濃度よりも高くしてもよいし、n型コラム領域114の幅をp型コラム領域116の幅よりも広くしてもよい。
 なお、「不純物総量」とは、MOSFET内の構成要素(n型コラム領域又はp型コラム領域)の不純物(n型不純物又はp型不純物)の総量をいう。
 ソース電極130側におけるp型コラム領域116の幅は、ドレイン電極132側におけるp型コラム領域116の幅よりも広く、ソース電極130側におけるn型コラム領域114の幅は、ドレイン電極132側におけるn型コラム領域114の幅よりも狭い。p型コラム領域の幅(断面積)をソース電極側に向かうに従って非線形的に大きくし、n型コラム領域の幅(断面積)をソース電極側に向かうに従って非線形的に小さくすることもできる。この場合には、(1)ゲート周辺がp過多になり、n型コラム領域114が空乏化されやすくなるため、ドレイン電圧が上昇してもゲート周辺のn型コラム領域114の電位が高くなり難くなる。また、(2)n型コラム領域114における空乏化されていない領域とゲート電極との間隔が比較的長くなり、帰還容量Crss(ゲート・ドレイン間容量Cgdと等しい)が比較的小さくなるため、MOSFETをターンオフしたときにドレイン電圧が上昇するのに伴ってn型コラム領域114(n型コラム領域のうちの空乏化されていない領域)の電位が上昇しても、ゲート電極がn型コラム領域の電位変化の影響を受け難くなる。その結果、ゲート周辺のチャージバランスのバラツキがあったとしても、ターンオフしたときのスイッチング特性のバラツキを従来よりも小さくすることができる、という効果を得ることができる。
 n型コラム領域114及びp型コラム領域116の不純物濃度はそれぞれ、深さによらず一定になっている。
 n型コラム領域114、p型コラム領域116、ソース領域120及びゲート電極126はいずれも、平面的に見てストライプ状に形成されている。
 低抵抗半導体層112の厚さは、例えば100μm~400μmの範囲内にあり、低抵抗半導体層112の不純物濃度は、例えば1×1019cm-3~1×1020cm-3の範囲内にある。n型半導体層115の厚さは、例えば5μm~120μmの範囲内にある。n型半導体層115の不純物濃度は例えば5×1013cm-3~1×1016cm-3の範囲内にある。p型コラム領域116の不純物濃度は例えば5×1013cm-3~1×1016cm-3の範囲内にある。ベース領域118の最深部の深さ位置は、例えば0.5μm~4.0μmの範囲内にあり、ベース領域118の不純物濃度は、例えば5×1016cm-3~1×1018cm-3の範囲内にある。ソース領域120の最深部の深さ位置は、例えば0.1μm~0.4μmの範囲内にあり、ソース領域120の不純物濃度は、例えば5×1019cm-3~2×1020cm-3の範囲内にある。
 トレンチ122は、平面的に見てn型コラム領域114が位置する領域内に、ベース領域118の最深部よりも深い深さ位置まで形成され、かつ、ソース領域120の一部が内周面に露出するように(露出する位置に)形成されている。トレンチ122の深さは、例えば3μmである。
 ゲート電極126は、トレンチ122の内周面に形成されたゲート絶縁膜124を介してトレンチ122の内部に埋め込まれてなる。ゲート絶縁膜124は、熱酸化法により形成された厚さが例えば100nmの二酸化珪素膜からなる。ゲート電極126は、CVD法及びイオン注入法により形成された低抵抗ポリシリコンからなる。
 層間絶縁膜128は、ソース領域120の一部、ゲート絶縁膜124及びゲート電極126を覆うように形成されている。層間絶縁膜128は、CVD法により形成された厚さが例えば1000nmのPSG膜からなる。
 ソース電極130は、ベース領域118、ソース領域120の一部、及び、層間絶縁膜128を覆うように形成され、ソース領域120と電気的に接続されている。ドレイン電極132は、低抵抗半導体層112の表面上に形成されている。ソース電極130は、スパッタ法により形成された厚さが例えば4μmのアルミニウム系の金属(例えば、Al-Cu系の合金)からなる。ドレイン電極132は、Ti-Ni-Auなどの多層金属膜により形成されている。多層金属膜全体の厚さは、例えば0.5μmである。
3.実施形態1におけるフリーホイールダイオード200の構成について
 実施形態1に係るフリーホイールダイオード200は、図3に示すように、半導体基体210と、層間絶縁膜220と、アノード電極230と、カソード電極240とを備える、ライフタイムコントロールされたSi-FRD(シリコン-ファスト・リカバリ・ダイオード)である。
 アノード電極230は、半導体基体210の第1主面(図3の上方の主面)上に形成されており、活性領域ARにおいて、半導体基体210(p型高濃度領域218及びp型半導体層216)と接している。周辺領域においては、半導体基体210の表面上に層間絶縁膜220が形成されている。カソード電極240は、半導体基体210の第2主面(図3の下方の主面)上に形成されている。
 半導体基体210は、低抵抗半導体層212と、低抵抗半導体層212上に形成され低抵抗半導体層212よりも不純物濃度が低いn型半導体層214と、n型半導体層214の表面に形成されたp型半導体層216と、p型半導体層216の表面に選択的に形成され、かつ、p型半導体層216を貫通してn型半導体層214に達する深さで形成されたp型高濃度領域218とを有し、n型半導体層214とp型半導体層216の間、及び、n型半導体層214とp型高濃度領域218との間でPN接合が形成されている。
 フリーホイールダイオード200は、電子線照射、重金属の拡散、局所ライフタイム制御(Heやプロトン照射)等によりライフタイムコントロールされている。
 電力変換回路1の定格最大負荷で電力変換回路1を運転した場合において、フリーホイールダイオード200の順方向電流のピーク時に、順方向電流の電流値をフリーホイールダイオード200の活性領域ARの面積(有効面積)で割った電流密度は、200A/cm~400A/cmの範囲内にある。
 なお、フリーホイールダイオード200の活性領域ARは、平面的に見て実質的にダイオードとして有効な領域(アノード電極と半導体基体とが接している領域)のことをいう。また、定格最大負荷とは、電力変換回路が外部に電力を供給できるときの最大の負荷のことをいう。
 なお、電力変換回路が、回生運転を行う回路の場合には、電力変換回路の定格最大負荷又は定格最大回生電流で電力変換回路を運転した場合において、フリーホイールダイオードの順方向電流のピーク時に、順方向電流の電流値をフリーホイールダイオードの活性領域ARの面積で割った電流密度は、200A/cm~400A/cmの範囲内にある。
 なお、定格最大回生電流とは、回生運転(負荷がブレーキをかけるなどした場合において、負荷で発電し、発電された電力を電源側に逆潮流として戻す運転)をしたときに、負荷から電源に向かって電力が供給できるときの最大の電流のことをいう。
 上記したような回生運転を行う電力変換回路の場合において、同一の電力変換回路を用いて通常運転から回生運転に入る場合、(降圧チョッパ又は昇圧チョッパとなるように)結線を変更して使用する(例えば、従来の電力変換回路900において、通常運転時においては、図12の左から右に向かって電力が供給され、回生運転時においては、図12の右から左に向かって電力が供給される。)。
 この場合であっても、MOSFETとフリーホイールダイオードの役割は、通常運転の場合とほとんど変わらないため、MOSFETのターンオフ時に、電流波形にコブ波形が出現することや、そのコブ波形の大きさがフリーホイールダイオードの接合容量によって影響を受ける点も、通常運転の場合とほとんど同様である。また、ダイオードの面積が大きければ、リカバリ電流も大きくなることも通常運転の場合と同様である。
 従って、回生運転を行うことを前提にした回路においては、回生運転時の定格最大電流におけるフリーホイールダイオードの電流密度の条件は、通常運転時における電流密度の条件と同じになる。
4.実施形態1に係る電力変換回路1の動作について
(1)オン状態(図4の時刻t1~t2、t5~t6参照)
 電力変換回路1(図1参照。)のMOSFET100がオン状態のとき、電源400の正極(+)から誘導性負荷300及びMOSFET100を経由して負極(-)に至る電流経路が形成され、当該電流経路に電流が流れる。MOSFET100においては、ベース領域118にチャネルが形成され、ドレイン電極132とソース電極130とが導通し、ドレイン電流Idは徐々に大きくなっていく(図4(a)参照。)。一方、ドレイン・ソース間電圧Vdsは0のままである。
 フリーホイールダイオード200においては、アノード電極側のp型領域とカソード電極側のn型領域とのpn接合面から生じる空乏層が広がっている。従って、順方向電流Ifは流れておらず(0になっている)、順方向電圧-Vfが所定の電圧値となっている(図4(b)参照。)。このとき、誘導性負荷300には電源400の電気エネルギーが蓄積される。
(2)ターンオフ期間(図4の時刻t2~t3参照)
 電力変換回路1(図1参照。)のMOSFET100をターンオフしたとき、電源400の正極(+)から誘導性負荷300及びMOSFET100を経由して負極(-)に至る電流経路を流れる電流が減少し、やがて0になる。一方、誘導性負荷300は、自己を流れる電流を維持するために起電力を発生する。発生した起電力はフリーホイールダイオード200に印加している逆バイアスを順バイアスに変化させるため、順方向電圧-Vfが低下し、フリーホイールダイオード200に順方向電流が流れる。詳細は以下のとおりである。
(2-1)第1期間
 MOSFET100においては、ゲート電位が大きく低下し、ベース領域118に形成されていたチャネルが狭くなる。従って、ソース電極130から半導体基体110中に電子が流入し難くなりドレイン電流Idが低下する(図4(a)の第1期間参照。)。一方、ドレイン・ソース間電圧Vdsは急激に大きくなる。
 フリーホイールダイオード200においては、逆バイアスが減少し、pn接合面から広がっていた空乏層に向かってキャリアが移動する(アノード電極側のホールが空乏層に向かい、カソード電極側の電子が空乏層に向かう)。これにより、空乏層が徐々に狭くなっていくことから、フリーホイールダイオード200に変位電流が流れ、順方向電流Ifが増加する(図4(b)参照。)。
 第1期間においては、MOSFET100のドレイン電位が時間経過とともに高くなっており、ゲート周辺のn型コラム領域114の電位(静電ポテンシャル)も時間経過とともに高くなる。そして、低下したゲート電極126の電位がゲート・ドレイン間容量Cgdを介して高くなり、チャネルが広くなるとドレイン電流Idが増加し、第2期間に移行する。
(2-2)第2期間
 電力変換回路1においては、電源400の正極(+)から誘導性負荷300及びMOSFET100を経由して負極(-)に至る電流経路を流れる電流が一時的に大きくなる。一方、誘導性負荷300からフリーホイールダイオード200へ流れる電流成分が一時的に小さくなる。
 MOSFET100においては、ゲート電極の電位が高くなり、ひいては、ゲート・ソース間電圧Vgsが高くなることにより、ベース領域118のチャネルが一時的に広くなる。これにより、ソース電極130から電子が流入し、一時的にドレイン電極132からソース電極130へと流れる電流が増加する(図4(a)の第2期間参照。)。一方、ドレイン・ソース間電圧Vdsは増加する割合が減少し、緩やかに増加する。
 フリーホイールダイオード200においては、アノード電極から空乏層に向けて流入し、 空乏層の縮小に寄与していたホールの移動が一時的に止まるとともに、 カソード電極から空乏層に向けて流入し、空乏層の縮小に寄与していた電子の移動が一時的に止まる。 従って、フリーホイールダイオード200の内部(空乏層中)を、変位電流が流れなくなり、 フリーホイールダイオード200を通過する電流量が減少する(順方向電流Ifが減少する(図4(b)参照。))。
(2-3)第3期間
 電力変換回路1(図1参照。)においては、電源400の正極(+)から誘導性負荷300及びMOSFET100を経由して負極(-)に至る電流経路に流れる電流が小さくなる。一方、誘導性負荷300は、自己を流れる電流を維持するために起電力を発生する。発生した起電力はフリーホイールダイオード200に印加している逆バイアスを減少させる。
 MOSFET100においては、ゲート・ソース間電圧Vgsが再び低下し始め、第1期間の場合と同様に、ベース領域118に形成されていたチャネルが狭くなり、ドレイン電流Idが減少する(図4(a)の第3期間参照。)。このため、第2期間と第3期間とが切り替わる時点をピークとしたコブ波形が形成される。一方、ドレイン・ソース間電圧Vdsは再び増加する割合(傾き)が増加し、定格電圧を超える電圧になった後に定格電圧へと減少する。
 フリーホイールダイオード200においては、空乏層が再び狭くなっていき変位電流が流れるため、順方向電流Ifが再び増加する(図4(b)参照。)。
 そして、ゲート・ソース間電圧Vgsがゲート閾値電圧未満になるとチャネルが消滅しドレイン電流Idが0になる(オフ状態へ移行)。
 なお、MOSFET100において、第3期間における単位時間当たりのドレイン電流Idの減少量は、第1期間における単位時間当たりのドレイン電流の減少量よりも小さい(図4、図5及び図9参照。)。また、MOSFET100は、MOSFETをターンオフしたとき、ミラー期間終了後にゲート・ソース間電圧が一時的に上昇する期間が出現するように動作する(図5及び図9参照。)。
(3)オフ状態(図4の時刻t3~t4参照)
 電力変換回路1(図1参照。)においては、電源400の正極(+)から誘導性負荷300及びMOSFET100を経由して負極(-)に至る電流経路に流れる電流が0になる。
 MOSFET100においては、ゲート・ソース間電圧Vgsがゲート閾値電圧未満になるため、チャネルが消滅しておりドレイン電流Idが0になる。一方、ドレイン・ソース間電圧Vdsは定格電圧を超える電圧になった後に定格電圧へと減少し、定格電圧が維持される(図4(a)参照。)。
 フリーホイールダイオード200においては、pn接合面から広がる空乏層がなくなり、電子及びホールがそれぞれ直接流れるため、順方向電流Ifが流れ、時間が経過するに従って徐々に減少する(図4(b)参照。)。また、順方向電圧-Vfが、負値になり(逆方向電圧が発生する)、導通損失が発生する。
(4)ターンオン期間(図4の時刻t4~t5参照)
 MOSFETをターンオンすると、電力変換回路1においては、電源400の正極(+)から誘導性負荷300及びMOSFET100を経由して負極(-)に至る電流経路が形成され、当該電流経路に電流が流れ始める。このとき、フリーホイールダイオード200に流れる順方向電流が減少し始める。
 MOSFET100においては、電子がソース電極130からソース領域120を経由してn型コラム領域114へと流入するため、ドレイン電流Idが一時的に急激に増加した後、急速に減少する(図4(a)参照。)。また、ドレイン・ソース間電圧Vgsは急激に減少する。
 フリーホイールダイオード200においては、pn接合を介して順方向に電流が流れていたが、アノード電極からカソード電極に拡散したホールの一部が、アノード電極に戻りはじめる。一方、カソード電極からアノード電極に拡散した電子の一部が、カソード電極に戻りはじめる。これらのキャリア(電子およびホール)の動きにより、順方向電流が減少し、やがて、pn接合面から空乏層が広がり始め、ホールがアノード電極からカソード電極へ移動できなくなるとともに電子がカソード電極からアノード電極へ移動できなくなる。このとき、ホールがアノード電極側に移動するとともに電子がカソード電極側に移動し、逆回復電流が発生する(順方向電流Ifが負値になっている)が、これらのホール・電子の回収が終わると順方向電流Ifが0になる(図4(b)参照。)。また、順方向電圧-Vfは急激に上昇し、定格電圧を超える値(サージ電圧)まで増加した後、定格電圧まで減少する。
5.実施形態1に係る電力変換回路1の波形について
 実施形態1に係る電力変換回路1を説明するために、まず比較例に係る電力変換回路を説明する。
 比較例に係る電力変換回路は、基本的には実施形態1に係る電力変換回路1と同様の構成を有するが、フリーホイールダイオードとして、活性領域の面積が実施形態1におけるフリーホイールダイオードの活性領域の面積の4倍の面積であるフリーホイールダイオードを用いた電力変換回路である。比較例に係る電力変換回路において、MOSFETは、MOSFETをターンオフしたときに、ドレイン電流Idが減少する第1期間と、ドレイン電流Idが増加する第2期間と、ドレイン電流Idが再び減少する第3期間とがこの順番に出現するように動作する(図5(b)参照。)。比較例に係る電力変換回路においては、MOSFETをターンオフしたときにドレイン電流Idが急激に低下した後に、ドレイン電流の低下前の1/2程度まで急激に増加している。その後上下に振動を繰り返した後0になっている。
 これに対して、実施例に係る電力変換回路(実施形態1に係る電力変換回路1)において、MOSFET100は、比較例に係る電力変換回路と同様に、MOSFETをターンオフしたときに、ドレイン電流Idが減少し始めてからドレイン電流Idが最初に0となるまでの間に、ドレイン電流Idが減少する第1期間と、ドレイン電流Idが増加する第2期間と、ドレイン電流Idが再び減少する第3期間とがこの順番に出現するように動作するが、MOSFETをターンオフしたときにドレイン電流Idが低下した後に、ドレイン電流の低下前の1/3程度まで増加し、その後上下に振動を繰り返したのち0になっている(図5(a)参照。)。すなわち、比較例に係る電力変換回路の場合よりもコブ波形が小さくなっている。従って、比較例の場合よりもターンオフ損失が小さくなっている。
 次に、実施形態1に係る電力変換回路1におけるターンオン損失について説明する。
 比較例に係る電力変換回路において、MOSFETは、MOSFETをターンオンしたときに、ドレイン電流Idは、定常電流を超える値となるまで増加した後(ピーク電流)、リンギングをしながら定常値に近づいていく(図6の細実線参照。)。
 また、ドレイン・ソース間電圧Vdsは、単調に、かつ急激に減少する(図6の細破線参照。)。
 これに対して、実施例に係る電力変換回路1において、MOSFET100は、MOSFETをターンオンしたときに、比較例に係る電力変換回路の場合よりもピーク電流が小さく、かつ、リンギングも小さく、かつ、早くリンギングが終了する(図6の太実線参照。)。従って、実施例に係る電力変換回路は、比較例に係る電力変換回路よりもターンオン損失が小さくなっている。
 次に、実施形態1に係る電力変換回路1におけるリカバリ損失について説明する。
 比較例に係る電力変換回路において、フリーホイールダイオードは、MOSFETをターンオンしたときに、順方向電流Ifが急減に負値になるまで低下した後、リンギングをしながら0に回復する(図7の細実線参照。)。
 また、順方向電圧-Vfは、定常値を超える電圧まで上昇した後、リンギングしながら定常値に収束していく(図7の細破線参照。)。
 これに対して、実施例に係る電力変換回路において、フリーホイールダイオードは、逆回復電流(ピーク)値Irpが比較例の場合よりも小さく、逆回復時間trrも比較例の場合よりも短く、逆回復容量Qrrが小さくなっている(図7の太実線参照。)従って、実施例に係る電力変換回路は、比較例に係る電力変換回路よりもリカバリ損失が小さくなっている。
 また、順方向電圧-Vfは、定常値に達する前に一度急激に減少し、再び定常値付近まで増加する。このとき、比較例の場合よりもリンギングの振幅が小さくなっている(図7の太破線参照。)。
6.実施形態1に係る電力変換回路1の効果について
 実施形態1に係る電力変換回路1によれば、電力変換回路1の定格最大負荷又は定格最大回生電流で運転した場合において、フリーホイールダイオード200の順方向電流のピーク時に、順方向電流の電流値をフリーホイールダイオード200の活性面積で割った電流密度は、Si-FRDの場合には200A/cm以上であり、流れる電流に対してフリーホイールダイオード200の活性領域ARの面積が比較的小さいことから、フリーホイールダイオード200の接合容量Cjが小さくなる。従って、MOSFETをターンオフしたとき(ターンオフしたときの第2期間)にフリーホイールダイオード200からMOSFET100に向かって流れる電流成分が小さくなるため、MOSFET100のドレイン電流Idのコブ波形を比較的小さくすることができ(図5(a)参照。)、その結果、ターンオフ損失を小さくすることができる。
 なお、フリーホイールダイオード200の順方向電流のピーク時に、順方向電流の電流値をフリーホイールダイオード200の活性面積で割った電流密度を200A/cm以上としたのは、当該電流密度が200A/cm未満である場合には、フリーホイールダイオード200の活性領域ARの面積が比較的大きくなり、フリーホイールダイオード200の接合容量Cjが大きくなり、MOSFETをターンオフしたとき(ターンオフしたときの第2期間)にフリーホイールダイオード200からMOSFET100に向かって流れる電流成分が小さくなるため、コブ波形を小さくすることが難しいからである。
 また、実施形態1に係る電力変換回路1によれば、電力変換回路1の定格最大負荷又は定格最大回生電流で運転したときに、フリーホイールダイオード200の順方向電流のピーク時に、順方向電流の電流値をフリーホイールダイオード200の活性面積で割った電流密度は、Si-FRDの場合には200A/cm以上であり、フリーホイールダイオード200の活性領域ARの面積が比較的小さいことから、フリーホイールダイオード200の接合容量Cjが小さくなる。従って、フリーホイールダイオード200のリカバリ電流が小さくなるため(図7の破線Bで囲まれた領域参照。)、フリーホイールダイオード200のリカバリ損失を小さくすることができる。また、フリーホイールダイオード200のリカバリ電流が小さくなるため、MOSFET100をターンオンしたときのドレイン電流Idのピーク電流が小さくなり(図6の破線Aで囲まれた領域参照。)、MOSFET100のターンオン損失を小さくすることができる。
 また、実施形態1に係る電力変換回路1によれば、上記電流密度は、Si-FRDの場合に400A/cm以下であることから、フリーホイールダイオード200の活性領域の面積が小さくなりすぎることがない。このため、半導体素子等から発する熱を外部に放出し易くなるため、フリーホイールダイオード200が高温になることを防ぐことができ、半導体素子等から発する熱を外部へ放出する際の熱抵抗を比較的小さくすることができる。その結果、スイッチング損失や導通損失によって発生する熱を効率よく外部へ排出することができる。
 また、フリーホイールダイオード200の活性領域の面積が小さくなりすぎることがないため、電源に接続されていない状態の電力変換回路を電源に接続したときなどに流れる、ピーク値が大きい電流(ラッシュ電流。電力変換回路に内蔵された平滑コンデンサをいきなり電源電圧の最大値に対応する電荷量で充電する場合に流れる電流)が、フリーホイールダイオード200を通過するときでも、IFSM破壊が起こることを防ぐことができる。
 また、実施形態1に係る電力変換回路1によれば、MOSFETのスイッチング周波数は、10kHz以上であるため、総合損失(=導通損失+スイッチング損失)に対する導通損失の割合よりも、スイッチング損失(ターンオン損失、ターンオフ損失及びリカバリ損失を含む)の割合の方が大きくなる。このため、上記した構成にしてターンオン損失、ターンオフ損失及びリカバリ損失を小さくすることにより、総合損失を小さくすることができる。
 また、実施形態1に係る電力変換回路1によれば、フリーホイールダイオード200は、ライフタイムコントロールされたSi-FRDであるため、順方向電圧-Vfが大きくなり難くなる。このため、Si-SBDを用いた場合よりも導通損失が大きくなり難くなる。
 また、実施形態1に係る電力変換回路1によれば、電力変換回路における総合損失のうち、MOSFETをターンオフしたときのターンオフ損失、MOSFETをターンオンしたときのターンオン損失及びフリーホイールダイオード200のリカバリ損失の3つの損失の和が占める割合が、フリーホイールダイオード200の導通損失が占める割合よりも大きいため、上記した構成とすることにより、ターンオン損失、ターンオフ損失及びリカバリ損失を小さくすることができ、総合損失を小さくすることができる。
 また、実施形態1に係る電力変換回路1によれば、MOSFET100において、n型コラム領域114の不純物総量は、p型コラム領域116よりも多いため、MOSFET100をターンオフしたときに、ゲート周辺のn型コラム領域114が空乏化され難くなる。従って、ドレイン・ソース間耐圧を高くすることができる。また、ターンオフ時にコブ波形が発生することとなり、ドレイン電流Idの電流値が0になるまでの時間を長くすることができる。従って、MOSFETのサージ電圧が大きくなり難くなる。
 また、実施形態1に係る電力変換回路1によれば、MOSFET100において、n型コラム領域114の不純物総量は、p型コラム領域116の不純物総量よりも多いため、ドレイン・ソース間電圧Vdsが最大になるまでの時間を長くでき、かつ、ドレイン・ソース間電圧Vdsが最大になるまでのドレイン・ソース間電圧Vdsの単位時間当たりの増加量を小さくすることができるため、発振が起こり難くなる。
 また、実施形態1に係る電力変換回路1によれば、MOSFETにおいて、第3期間における単位時間当たりのドレイン電流の減少量は、第1期間における単位時間当たりのドレイン電流の減少量よりも小さいため、MOSFET100をターンオフしたとき、MOSFET100のサージ電圧をより一層小さくすることができる。
 また、実施形態1に係る電力変換回路1によれば、MOSFETにおいて、MOSFETをターンオフしたとき、ミラー期間終了後にゲート・ソース間電圧が一時的に上昇する期間が出現するように動作するため、ドレイン電流Idの電流値が0になるまでの時間を確実に長くでき、かつ、第3期間における単位時間当たりのドレイン電流Idの減少量を確実に小さくすることができる。従って、MOSFET100のサージ電圧を確実に小さくすることができる。
 また、実施形態1に係る電力変換回路1によれば、MOSFET100においては、ソース電極130側におけるp型コラム領域の幅は、ドレイン電極132側におけるp型コラム領域116の幅よりも広く、ソース電極130側におけるn型コラム領域114の幅は、ドレイン電極132側におけるn型コラム領域114の幅よりも狭いため、ゲート周辺がp過多になるため、ターンオフ時に空乏層を広げやすく、L負荷アバランシェ破壊耐量を大きくすることができる
[実施形態2]
 実施形態2に係る電力変換回路(図示せず。)は、基本的には実施形態1に係る電力変換回路1と同様の構成を有するが、フリーホイールダイオードがSiC-SBD(シリコンカーバイド-ショットキー・バリア・ダイオード)である点で実施形態1に係る電力変換回路1の場合とは異なる。すなわち、実施形態2に係る電力変換回路において、図8に示すように、フリーホイールダイオード202は、半導体基体210aがSiC(シリコンカーバイド)からなり、かつ、アノード電極232における少なくとも半導体基体210aと接する位置にはショットキーバリアメタルが配置されており、当該ショットキーバリアメタルと半導体基体210aとがショットキー接合されたショットキー・バリア・ダイオードである。
 フリーホイールダイオード202は、ショットキー接合とpn接合とを組み合わせたJBS構造(又はMPS構造)を有する。すなわち、半導体基体210aには、実施形態1におけるフリーホイールダイオード200の場合のようなp型半導体層216は形成されていない。
 JBS構造(又はMPS構造)は、順方向にラッシュ電流が突入した時、ショットキー接合だけでなく、PN接合を使って電流を流すことで、ショットキー接合が破壊しにくく、IFSM破壊を回避する構造となっている(IFSM耐量が大きい)。
 フリーホイールダイオード202の電流密度は、400A/cm~1500A/cmの範囲内にある。フリーホイールダイオード202の電流密度が、Si-FRD構造を有するフリーホイールダイオード200の電流密度の場合のように200A/cm以上ではなく、400A/cm以上となっているのは、以下の理由による。すなわち、SiCの場合には一般的に絶縁破壊電界強度が高く、高耐圧のSBD(ショットキーバリアダイオード)を、耐圧層(ドリフト層)の厚さが薄く、かつ、不純物濃度が濃い状態で作製することができる(一般的である)ため、順方向電圧降下をSiの場合よりも小さくすることができ、その結果、活性面積をSi-FRDの場合よりも小さくすることが可能(すなわち、電流密度をSi-FRDの場合よりも高くすることが可能)だからである。
 また、フリーホイールダイオード202の電流密度が、Si-FRD構造を有するフリーホイールダイオード200の電流密度の場合のように400A/cm以下ではなく、1500A/cm以下となっているのは、順方向にラッシュ電流が突入した時でもショットキー接合が破壊しにくく、IFSM耐量が大きいからである。
 なお、電流密度が高い場合、SiC半導体は破壊され難いが、電極で使用されるメタルや半田、ボンディングワイヤ等が発熱して溶断するおそれがあり、周辺の部材の物性限界により、許容電流密度が制限されてしまう。従って、フリーホイールダイオード202の電流密度は、400A/cm~1000A/cmの範囲内にあることがより一層好ましい。
 このように、実施形態2に係る電力変換回路は、フリーホイールダイオードがSiC-SBDである点で実施形態1に係る電力変換回路1の場合とは異なるが、実施形態1に係る電力変換回路1の場合と同様に、電力変換回路1の定格最大負荷又は定格最大回生電流で運転した場合において、フリーホイールダイオード202の順方向電流のピーク時に、順方向電流の電流値をフリーホイールダイオード202の活性面積で割った電流密度は、SiC-SBDの場合に400A/cm以上であり、流れる電流に対してフリーホイールダイオード202の活性領域ARの面積が比較的小さいことから、フリーホイールダイオード202の接合容量Cjが小さくなる。従って、MOSFETをターンオフしたとき(ターンオフしたときの第2期間)にフリーホイールダイオード202からMOSFETに向かって流れる電流成分が小さくなるため、MOSFETのドレイン電流Idのコブ波形を比較的小さくすることができ、その結果、ターンオフ損失を小さくすることができる。
 また、実施形態2に係る電力変換回路によれば、電力変換回路の定格最大負荷又は定格最大回生電流で運転したときに、フリーホイールダイオード200の順方向電流のピーク時において、順方向電流の電流値をフリーホイールダイオード200の活性面積で割った電流密度は、SiC-SBDの場合には400A/cm以上であることから、流れる電流に対してフリーホイールダイオード202の活性領域ARの面積が比較的小さくなり、フリーホイールダイオード200の接合容量Cjが小さくなる。従って、フリーホイールダイオード202のリカバリ電流が小さくなるため(図7の破線Bで囲まれた領域参照。)、フリーホイールダイオード202のリカバリ損失を小さくすることができる。また、フリーホイールダイオード202のリカバリ電流が小さくなるため、MOSFETをターンオンしたときのドレイン電流Idのピーク電流が小さくなり(図6の破線Aで囲まれた領域参照。)、MOSFETのターンオン損失を小さくすることができる。
 また、実施形態2に係る電力変換回路によれば、電流密度は、SiC-SBDの場合に1500A/cm以下であることから、フリーホイールダイオード202の活性領域の面積が小さくなりすぎることがない。このため、半導体素子等から発する熱を外部に放出し易くなるため、フリーホイールダイオード200が高温になることを防ぐことができ、半導体素子等から発する熱を外部へ放出する際の熱抵抗を比較的小さくすることができる。その結果、スイッチング損失や導通損失によって発生する熱を効率よく外部へ排出することができる。
 また、フリーホイールダイオード202の活性領域の面積が小さくなりすぎることがないため、電源に接続されていない状態の電力変換回路を電源に接続したときなどに流れる、ピーク値が大きい電流(ラッシュ電流)が、フリーホイールダイオード200を通過するときでも、IFSM破壊が起こることを防ぐことができる。
 また、実施形態2に係る電力変換回路によれば、フリーホイールダイオード202は、SiC-SBDであるため、高速スイッチングが可能となり、スイッチング損失を低減することができる。
 また、実施形態2に係る電力変換回路によれば、フリーホイールダイオード202は、ショットキー接合とpn接合とを組み合わせたJBS構造を有するため、低導通損失であるとともに漏れ電流の少ないダイオードとなり、総合損失の少ない電力変換回路とすることができる。
 また、フリーホイールダイオード202は、JBS構造を有するため、ラッシュ電流がフリーホイールダイオードを通過するときにp型高濃度領域218から電流を流すことができ、IFSM破壊が起こることを確実に防ぐことができる。
 なお、実施形態2に係る電力変換回路は、フリーホイールダイオードがSiC-SBDである点以外の点においては実施形態1に係る電力変換回路1と同様の構成を有するため、実施形態1に係る電力変換回路1が有する効果のうち該当する効果を有する。
 以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
(1)上記実施形態において記載した構成要素の数、材質、形状、位置、大きさ等は例示であり、本発明の効果を損なわない範囲において変更することが可能である。
(2)上記各実施形態においては、MOSFETにおいて、n型コラム領域の不純物総量をp型コラム領域の不純物総量よりも多く(n過多)したが、本発明はこれに限定されるものではない。n型コラム領域の不純物総量をp型コラム領域の不純物総量と等しくてもよいし(Just)、p型コラム領域の不純物総量をn型コラム領域の不純物総量よりもわずかに多い(p過多。例えば、p型コラム領域の不純物総量をn型コラム領域の不純物総量の1.00倍よりも多く、1.03倍と等しいかそれよりも少ない)こととしてもよい。この場合においても、MOSFETのドレイン電流Idには(n過多の場合よりも小さいものの)コブ波形が出現するように動作する(図9及び図10参照。)。
(3)上記実施形態2においては、フリーホイールダイオードとして、JBS構造(又はMPS構造)を有するSiC-SBDを用いたが、本発明はこれに限定されるものではない。JBS構造又はMPS構造以外の構造を有するSiC-SBDを用いてもよい。この場合には、JBS構造(又はMPS構造)の場合と比べるとIFSM耐量がやや小さいため、フリーホイールダイオードの電流密度は、400A/cm~1000A/cmの範囲内にあることが好ましく、電極で使用されるメタルや半田、ボンディングワイヤ等が発熱して溶断することを防ぐ観点からは、上限は1000A/cmよりも小さくすることがさらに好ましい。
(4)上記各実施形態においては、電力変換回路として、昇圧チョッパ回路を用いたが、本発明はこれに限定されるものではない。電力変換回路として、降圧チョッパ回路(図11参照。)、フルブリッジ回路、ハーフブリッジ回路、三相交流コンバータ、非絶縁型フルブリッジ回路、非絶縁型ハーフブリッジ回路、プッシュプル回路、RCC回路、フォワードコンバータ、フライバックコンバータその他の回路を用いてもよい。
(5)上記各実施形態においては、MOSFETとして、トレンチゲート型のMOSFETを用いたが、本発明はこれに限定されるものではない。MOSFETとして、半導体基体110が、n型コラム領域114の一部及びp型コラム領域116の全部の表面に形成されたp型のベース領域118と、ベース領域118の表面に形成されたn型のソース領域120と、n型コラム領域114の表面のうちベース領域118が形成されていない部分に形成されたn型の表面高濃度拡散領域119とを有し、MOSFETの第1主面側(ソース電極側)には、ソース領域120とn型コラム領域114(n型の表面高濃度拡散領域119)とに挟まれたベース領域118上にゲート絶縁膜134を介して形成されたゲート電極136をさらに有するプレーナーゲート型のMOSFETを用いてもよい(変形例2におけるMOSFET102、図12参照。)。
(6)上記各実施形態においては、ソース電極側におけるp型コラム領域の幅をドレイン電極側におけるp型コラム領域の幅よりも広くし、かつ、ソース電極側におけるn型コラム領域の幅をドレイン電極側におけるn型コラム領域の幅よりも狭くしたが、本発明はこれに限定されるものではない。p型コラム領域116の深さ方向に沿って、p型コラム領域116の幅を一定にしてもよい。
(7)上記各実施形態においては、p型コラム領域116の不純物濃度を深さによらず一定としたが、本発明はこれに限定されるものではない。ソース電極側において、p型コラム領域の不純物濃度をn型コラム領域の不純物濃度よりも高くし、ドレイン電極側において、p型コラム領域の不純物濃度をn型コラム領域の不純物濃度よりも低くしてもよい(変形例3におけるMOSFET104、図13参照。)。この場合、p型コラム領域の深さ方向に沿って、p型コラム領域及びn型コラム領域の幅を一定にしてもよいし(図13参照。)、ソース電極側におけるp型コラム領域の幅をドレイン電極側におけるp型コラム領域の幅よりも広くし、かつ、ソース電極側におけるn型コラム領域の幅をドレイン電極側におけるn型コラム領域の幅よりも狭くしてもよい。このような構成とすることにより、L負荷アバランシェ破壊耐量をより一層大きくすることができる、という効果を得ることができる。
(8)上記各実施形態においては、n型コラム領域114、p型コラム領域116、トレンチ122、ゲート電極126を平面的に見てストライプ状に形成したが、本発明はこれに限定されるものではない。n型コラム領域114、p型コラム領域116、トレンチ122、ゲート電極126を平面的に見て、円状(立体的に見て柱状)、四角形の枠状、円形の枠状又は格子状等に形成してもよい。
(9)上記各実施形態においては、電源として、直流電源を用いたが、本発明はこれに限定されるものではない。電源として、交流電源を用いてもよい。
 1,2,900…電力変換回路、100,102,104…MOSFET、110,210,210a…半導体基体、112,212…低抵抗半導体層、113…バッファ層、114…n型コラム領域、115…n型半導体層、116…p型コラム領域、117…スーパージャンクション構造、118…ベース領域、119…表面高濃度拡散領域、120…ソース領域、122…トレンチ、124,134…ゲート絶縁膜、126,136…ゲート電極、128,138…層間絶縁膜、130…ソース領域、132…ドレイン電極、200…フリーホイールダイオード、214、214a…n型半導体層、216…p型半導体層、218、218a…p型高濃度領域、220…層間絶縁膜、230,232…アノード電極、240…カソード電極、300,930…誘導性負荷、400…電源、500…平滑コンデンサ、600…負荷、920…逆流阻止ダイオード

Claims (14)

  1.  n型コラム領域及びp型コラム領域を有し、前記n型コラム領域及び前記p型コラム領域でスーパージャンクション構造が構成された半導体基体を有するMOSFETと、
     フリーホイールダイオードと、
     誘導性負荷とを備え、
     前記MOSFETのスイッチング周波数は、10kHz以上であり、
     前記MOSFETは、ターンオフしたときに、ドレイン電流の波形が、前記ドレイン電流が減少し始めてから前記ドレイン電流が最初に0となるまでの間に、前記ドレイン電流が減少する第1期間と、前記ドレイン電流が増加する第2期間と、前記ドレイン電流が再び減少する第3期間とがこの順番に出現するように動作し、
     前記フリーホイールダイオードは、ライフタイムコントロールされたSi-FRD、又は、SiC-SBDであり、
     前記電力変換回路の定格最大負荷又は定格最大回生電流で前記電力変換回路を運転した場合において、前記フリーホイールダイオードの順方向電流のピーク時に、前記順方向電流の電流値を前記フリーホイールダイオードの活性領域の面積で割った電流密度は、
     前記フリーホイールダイオードが前記Si-FRDの場合には、200A/cm~400A/cmの範囲内にあり、
     前記フリーホイールダイオードが前記SiC-SBDの場合には、400A/cm~1500A/cmの範囲内にあることを特徴とする電力変換回路。
  2.  前記フリーホイールダイオードは、ライフタイムコントロールされたSi-FRDであることを特徴とする請求項1に記載の電力変換回路。
  3.  前記フリーホイールダイオードは、SiC-SBDであることを特徴とする請求項1に記載の電力変換回路。
  4.  前記フリーホイールダイオードは、MPS構造又はJBS構造を有することを特徴とする請求項3に記載の電力変換回路。
  5.  前記電力変換回路における総合損失のうち、前記MOSFETをターンオフしたときのターンオフ損失、前記MOSFETをターンオンしたときのターンオン損失及び前記フリーホイールダイオードのリカバリ損失の3つの損失の和が占める割合が、前記フリーホイールダイオードの導通損失が占める割合よりも大きいことを特徴とする請求項1~4のいずれかに記載の電力変換回路。
  6.  前記MOSFETにおいて、前記n型コラム領域の不純物総量は、前記p型コラム領域の不純物総量よりも多いことを特徴とする請求項1~5のいずれかに記載の電力変換回路。
  7.  前記MOSFETにおいて、前記n型コラム領域の不純物総量は、前記p型コラム領域の不純物総量と等しいことを特徴とする請求項1~5のいずれかに記載の電力変換回路。
  8.  前記MOSFETにおいて、前記p型コラム領域の不純物総量は、前記n型コラム領域の不純物総量の1.00倍よりも多く、1.03倍と等しいかそれよりも少ないことを特徴とする請求項1~5のいずれかに記載の電力変換回路。
  9.  前記MOSFETにおいて、前記第3期間における単位時間当たりの前記ドレイン電流の減少量は、前記第1期間における単位時間当たりの前記ドレイン電流の減少量よりも小さいことを特徴とする請求項1~8のいずれかに記載の電力変換回路。
  10.  前記MOSFETにおいて、前記MOSFETをターンオフしたとき、ミラー期間終了後にゲート・ソース間電圧が一時的に上昇する期間が出現するように動作することを特徴とする請求項1~9のいずれかに記載の電力変換回路。
  11.  前記MOSFETにおける前記半導体基体は、前記n型コラム領域及び前記p型コラム領域の表面に形成されたp型のベース領域と、前記ベース領域の表面に形成されたn型のソース領域とをさらに有し、
     前記MOSFETは、
     平面的に見て前記n型コラム領域が位置する領域内に、前記ベース領域の最深部よりも深い深さ位置まで形成され、かつ、前記ソース領域の一部が内周面に露出するように形成されたトレンチと、
     前記トレンチの内周面に形成されたゲート絶縁膜を介して前記トレンチの内部に埋め込まれてなるゲート電極とをさらに有するトレンチゲート型のMOSFETであることを特徴とする請求項1~10のいずれかに記載の電力変換回路。
  12.  前記MOSFETにおける前記半導体基体は、前記n型コラム領域の一部及び前記p型コラム領域の全部の表面に形成されたp型のベース領域と、前記ベース領域の表面に形成されたn型のソース領域と、前記n型コラム領域の表面のうち前記ベース領域が形成されていない部分に形成されたn型の表面高濃度拡散領域とを有し、
     前記MOSFETは、
     前記MOSFETの第1主面側に、前記ソース領域と前記n型コラム領域とに挟まれた前記ベース領域上にゲート絶縁膜を介して形成されたゲート電極をさらに有するプレーナーゲート型のMOSFETであることを特徴とする請求項1~10のいずれかに記載の電力変換回路。
  13.  前記MOSFETにおいては、前記半導体基体の一方面にソース電極が形成されており、かつ、前記半導体基体の他方面にドレイン電極が形成されており、
     前記ソース電極側における前記p型コラム領域の幅は、前記ドレイン電極側における前記p型コラム領域の幅よりも広く、
     前記ソース電極側における前記n型コラム領域の幅は、前記ドレイン電極側における前記n型コラム領域の幅よりも狭いことを特徴とする請求項1~12のいずれかに記載の電力変換回路。
  14.  前記MOSFETにおいては、前記半導体基体の一方面にソース電極が形成され、かつ、前記半導体基体の他方面にドレイン電極が形成されており、
     前記ソース電極側においては、前記p型コラム領域の不純物濃度が、前記n型コラム領域の不純物濃度よりも高く、
     前記ドレイン電極側においては、前記p型コラム領域の不純物濃度が、前記n型コラム領域の不純物濃度よりも低いことを特徴とする請求項1~12のいずれかに記載の電力変換回路。
PCT/JP2017/041402 2017-11-17 2017-11-17 電力変換回路 WO2019097662A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/041402 WO2019097662A1 (ja) 2017-11-17 2017-11-17 電力変換回路
US16/490,558 US11005354B2 (en) 2017-11-17 2017-11-17 Power conversion circuit
JP2018519988A JP6556948B1 (ja) 2017-11-17 2017-11-17 電力変換回路
TW107115481A TWI692924B (zh) 2017-11-17 2018-05-07 電力轉換電路
NL2021932A NL2021932B1 (en) 2017-11-17 2018-11-05 Power conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041402 WO2019097662A1 (ja) 2017-11-17 2017-11-17 電力変換回路

Publications (1)

Publication Number Publication Date
WO2019097662A1 true WO2019097662A1 (ja) 2019-05-23

Family

ID=66538730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041402 WO2019097662A1 (ja) 2017-11-17 2017-11-17 電力変換回路

Country Status (5)

Country Link
US (1) US11005354B2 (ja)
JP (1) JP6556948B1 (ja)
NL (1) NL2021932B1 (ja)
TW (1) TWI692924B (ja)
WO (1) WO2019097662A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628007B (zh) * 2020-04-29 2023-09-05 株洲中车时代半导体有限公司 功率二极管及其制造方法
US20230008858A1 (en) * 2021-07-08 2023-01-12 Applied Materials, Inc. Gradient doping epitaxy in superjunction to improve breakdown voltage
CN117040514A (zh) * 2023-07-03 2023-11-10 上海格州微电子技术有限公司 一种mosfet管开关电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003841A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp 縦型のショットキーダイオード
JP2014530484A (ja) * 2011-09-11 2014-11-17 クリー インコーポレイテッドCree Inc. ショットキー・ダイオード
JP6215510B1 (ja) * 2016-11-11 2017-10-18 新電元工業株式会社 Mosfet及び電力変換回路
JP6254301B1 (ja) * 2016-09-02 2017-12-27 新電元工業株式会社 Mosfet及び電力変換回路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1189634A (en) * 1981-09-11 1985-06-25 Yoshihito Amemiya Low-loss and high-speed diodes
JP3321185B2 (ja) * 1990-09-28 2002-09-03 株式会社東芝 高耐圧半導体装置
JP4470454B2 (ja) * 2003-11-04 2010-06-02 株式会社豊田中央研究所 半導体装置とその製造方法
JP2005175220A (ja) * 2003-12-11 2005-06-30 Toyota Central Res & Dev Lab Inc 半導体装置とその製造方法
JP5217257B2 (ja) * 2007-06-06 2013-06-19 株式会社デンソー 半導体装置およびその製造方法
US7915879B2 (en) * 2008-06-30 2011-03-29 Infineon Technologies Austria Ag Switching converter including a rectifier element with nonlinear capacitance
JP5484741B2 (ja) * 2009-01-23 2014-05-07 株式会社東芝 半導体装置
JP5557581B2 (ja) * 2010-04-08 2014-07-23 株式会社日立製作所 半導体装置および電力変換装置
JP2012120362A (ja) * 2010-12-02 2012-06-21 Sanken Electric Co Ltd Dc−dcコンバータ
JP5701595B2 (ja) 2010-12-28 2015-04-15 三洋電機株式会社 系統連係装置
JP2012234848A (ja) * 2011-04-28 2012-11-29 Sanken Electric Co Ltd 半導体装置
JP2013093444A (ja) * 2011-10-26 2013-05-16 Rohm Co Ltd 高速スイッチング動作回路
DE102013204701A1 (de) * 2013-03-18 2014-10-02 Robert Bosch Gmbh Pseudo-Schottky-Diode
JP5719407B2 (ja) * 2013-05-31 2015-05-20 ローム株式会社 半導体装置
JP6033199B2 (ja) * 2013-10-16 2016-11-30 三菱電機株式会社 降圧チョッパ回路
JP6237902B2 (ja) * 2014-07-17 2017-11-29 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2017011060A (ja) * 2015-06-19 2017-01-12 住友電気工業株式会社 ショットキーバリアダイオード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003841A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp 縦型のショットキーダイオード
JP2014530484A (ja) * 2011-09-11 2014-11-17 クリー インコーポレイテッドCree Inc. ショットキー・ダイオード
JP6254301B1 (ja) * 2016-09-02 2017-12-27 新電元工業株式会社 Mosfet及び電力変換回路
JP6215510B1 (ja) * 2016-11-11 2017-10-18 新電元工業株式会社 Mosfet及び電力変換回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARAI, DAISUKE ET AL.: "Dependence of Switching Waveform on Charge Imbalance in Superjunction MOSFET used in Inductive Load Circuit", PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & ICS(ISPSD 2017, 28 May 2017 (2017-05-28), pages 487 - 490, XP033128595, DOI: doi:10.23919/ISPSD.2017.7988885 *

Also Published As

Publication number Publication date
TWI692924B (zh) 2020-05-01
JP6556948B1 (ja) 2019-08-07
JPWO2019097662A1 (ja) 2019-11-21
TW201924204A (zh) 2019-06-16
NL2021932B1 (en) 2019-10-04
NL2021932A (en) 2019-05-20
US11005354B2 (en) 2021-05-11
US20200076290A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP5044065B2 (ja) コンバータ
JP4843253B2 (ja) 電力用半導体装置
JP6215510B1 (ja) Mosfet及び電力変換回路
KR100726901B1 (ko) 반도체 장치
JP5875680B2 (ja) 絶縁ゲート型バイポーラトランジスタ
JP2012142537A (ja) 絶縁ゲート型バイポーラトランジスタとその製造方法
JP3616258B2 (ja) ショットキーダイオードおよびそれを用いた電力変換器
JPWO2018084020A1 (ja) 炭化珪素半導体装置および電力変換装置
WO2019097662A1 (ja) 電力変換回路
JP5135666B2 (ja) 電力変換装置
JP6601086B2 (ja) 半導体装置及びその製造方法
US10475917B2 (en) Mosfet
JP6254301B1 (ja) Mosfet及び電力変換回路
JP6246979B1 (ja) Mosfet及び電力変換回路
JP6002387B2 (ja) ダイオードおよびそれを用いた電力変換システム
JP2000349304A (ja) ショットキーダイオード
JPH06140642A (ja) 電力用ダイオード

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519988

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932027

Country of ref document: EP

Kind code of ref document: A1