WO2019096053A1 - 参比电极以及带有参比电极的锂离子电池的制备方法 - Google Patents

参比电极以及带有参比电极的锂离子电池的制备方法 Download PDF

Info

Publication number
WO2019096053A1
WO2019096053A1 PCT/CN2018/114516 CN2018114516W WO2019096053A1 WO 2019096053 A1 WO2019096053 A1 WO 2019096053A1 CN 2018114516 W CN2018114516 W CN 2018114516W WO 2019096053 A1 WO2019096053 A1 WO 2019096053A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference electrode
lithium
current collector
ion battery
lithium ion
Prior art date
Application number
PCT/CN2018/114516
Other languages
English (en)
French (fr)
Inventor
褚政宇
朴楠
冯旭宁
卢兰光
李建秋
欧阳明高
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US16/641,952 priority Critical patent/US11362323B2/en
Priority to EP18878895.4A priority patent/EP3713005A4/en
Publication of WO2019096053A1 publication Critical patent/WO2019096053A1/zh
Priority to US16/875,932 priority patent/US20200280051A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area

Definitions

  • the present application relates to a reference electrode and a method for preparing a lithium ion battery with a reference electrode, and belongs to the technical field of electrode potential detection and electrode fabrication.
  • Electrode potential is a very important parameter in electrochemical and battery research techniques.
  • the electrode potential in the thermodynamic equilibrium state is an open circuit potential.
  • the voltage-SOC curve obtained by charging and discharging a small current can be approximated as an open circuit voltage curve of the battery. If an electric current flows through the electrode, the electrode is polarized, and the electrode potential is shifted due to the occurrence of an overpotential.
  • Detailed information on the internal reaction of the electrode can be obtained by measuring the potential change curve of the single electrode.
  • overcharge or low temperature charging may cause a lithium side reaction of the graphite negative electrode, which is characterized in that the electrode potential of the negative electrode is lower than the equilibrium voltage of the lithium deposition reaction, so that the lithium side reaction can be detected by the electrode potential.
  • the batteries are composed of two electrodes, and the polarization characteristics of the single electrodes cannot be directly obtained. It is necessary to measure with a multi-electrode system, that is, one or more reference electrodes are added between the positive electrode and the negative electrode, and the measuring electrode and the reference electrode are measured. The relative voltage difference between them.
  • the preparation of the reference electrode mainly includes a chemical plating, a lithium foil, a lithium alloy, a lithium-containing metal oxide or a lithium-containing metal phosphate.
  • Lithium-based battery systems Development of reliable lithium Micro-reference electrodes for long-term in-situ studies of lithium-based electrodes (“Lithium-based battery systems”) was developed in 2004.
  • the work of systems) (DOI: 10.6100/IR624713) was obtained by double-sided plating after inserting a micron-sized copper wire into a battery to obtain a lithium reference electrode.
  • the method can reduce the barrier of lithium ion circulation as much as possible, but because the reference electrode used is too small, the lithium load on the reference electrode is less in the method, and the unevenness of the plating layer is prone to occur, which may occur after long time measurement.
  • the potential drift is difficult to apply to durability studies, and the input impedance of the measuring instrument is also high.
  • Another method is to insert a lithium metal foil directly into the battery.
  • Metal lithium is typically connected to the current collector by physical crimping.
  • a physical method namely crimping, to connect lithium to a current collector such as a copper mesh.
  • the copper mesh has a large aperture and is a mm-level aperture.
  • this physical connection method is difficult to ensure a firm connection between the lithium and the copper. If the contact is poor, the ohmic resistance of the reference electrode is extremely large, which affects the use of the reference electrode.
  • the reference electrode development dilemma is mainly caused by the lithium content of the electrode: in order to reduce the barrier effect of the reference on the lithium ion in the electrolyte, the reference electrode size must be minimized, but it will cause The material has a small amount of lithium, a weak signal, and is susceptible to electrode loss or potential drift due to measurement of microcurrent.
  • the purpose of the application is to provide a reference electrode and a preparation method of a lithium ion battery with a reference electrode to solve the instability of the reference electrode measurement, improve the life of the reference electrode, and realize the number of cycles for a long time. Single electrode potential measurement, while improving the accuracy of measurement results.
  • the application provides a method for preparing a reference electrode, comprising:
  • the reference electrode substrate is welded to a lower portion of the current collector metal sheet with the tip ear glue attached thereto;
  • the reference electrode soldered with the current collector metal piece is taken out from the liquid lithium and cooled, and a layer of a separator is wrapped on the lower part of the ear rubber by a winding method to obtain a wrap.
  • the reference electrode of the separator is attached.
  • the application provides a method for preparing a lithium ion battery with a reference electrode, comprising:
  • the reference electrode substrate is welded to a lower portion of the current collector metal sheet with the tip ear glue attached thereto;
  • the reference electrode soldered with the current collector metal piece is taken out from the liquid lithium and cooled, and a layer of a separator is wrapped on the lower part of the ear rubber by a winding method to obtain a wrap.
  • the application provides a method for preparing a lithium ion battery with a reference electrode, comprising:
  • the reference substrate material has a pore diameter of 50-500 ⁇ m
  • the reference electrode substrate The thickness is: 0.1-1 mm
  • the area of the reference electrode substrate is 1%-10% of the area of the pole piece of the lithium ion battery
  • the reference electrode substrate is washed with acetone or deionized water and dried for use;
  • the reference electrode substrate obtained in the step S110 is soldered to a lower portion of the upper collector metal sheet with the tab coat, and the upper portion of the reference electrode substrate and the current collector metal sheet are The lower portions overlap each other, the area of the current collector metal sheet is smaller than the area of the reference substrate; after drying and cooling in an anhydrous oxygen-free environment, it is transferred to an anhydrous oxygen-free environment, and the current collector metal piece is required for collecting current.
  • the material of the current collector metal sheet is nickel or aluminum, and the current collector metal sheet has a thickness of 0.1-1 mm and a length of 10-30 mm;
  • the metal lithium in the anhydrous oxygen-free environment, the metal lithium is melted to a liquid state, and the heating is continued to 200-500 degrees Celsius to remove the impurities on the surface of the metal lithium, and the upper portion of the step S120 is welded with the current collector metal sheet.
  • the lower portion of the reference electrode substrate is immersed in liquid lithium, and allowed to stand for 1-5 minutes, so that the lower portion of the reference electrode substrate is coated with a layer of the metal lithium, the thickness of the metal lithium is 10-100 ⁇ m;
  • the cooling is taken out, and a layer of a separator is covered on the lower portion of the tab ear rubber by a winding method, and the current collector metal sheet and the reference electrode substrate are all wrapped and pressed to obtain the ginseng wrapped with the separator.
  • the separator material being porous polypropylene or porous polyethylene, ceramic coated porous polypropylene or polyethylene or non-woven fabric;
  • the lithium ion battery in which the reference electrode has been implanted in the above step S200 is molded with an aluminum plastic film to obtain a lithium ion battery with the reference electrode.
  • the reference battery proposed in the present application and the preparation method of the lithium ion battery with the reference electrode can preserve the porous characteristics of the base material while growing the metallic lithium on the surface of the base material, so that small molecules in the electrolyte can be from the pores. Through, does not affect the battery work.
  • the growth thickness of the lithium layer on the substrate can be controlled to ensure that the porous property of the substrate material is retained, and at the same time, the material is loaded with sufficient lithium to meet the test requirements.
  • the reference electrode prepared by the method of the present application can have a long service life under the premise of ensuring sufficient microstructure, and the manufacturing process is simple, and meets the requirements of industrial production, so that the industrial production of the lithium ion battery with the reference electrode is achieved. And the application is possible.
  • FIG. 1 is a flow chart of a method for preparing a reference electrode in an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a lithium ion battery with a reference electrode in an embodiment of the present application.
  • FIG 3 is a front elevational view of a reference electrode in an embodiment of the present application.
  • FIG. 4 is a flow chart of another method for preparing a reference electrode in an embodiment of the present application.
  • Figure 5 is a side elevational view of the reference electrode of Figure 3 in an embodiment of the present application.
  • FIG. 6 is a flow chart of a method for preparing a lithium ion battery with a reference electrode according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a reference electrode inserted into a lithium ion battery cell in an embodiment of the present application.
  • FIG. 8 is a flow chart of another method for preparing a lithium ion battery with a reference electrode in an embodiment of the present application.
  • FIG. 9 is a flow chart of a method for preparing a lithium ion battery with a reference electrode in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a measurement circuit connection of a lithium ion battery with a reference electrode according to an embodiment of the present application.
  • FIG. 11 is a graph showing the results of a rate test of a lithium ion battery with a reference electrode in an embodiment of the present application.
  • Figure 12 is a graph showing the results of a capacity test of a lithium ion battery with a reference electrode in an embodiment of the present application.
  • Lithium-ion battery 1 reference electrode 2, positive electrode 3, negative electrode 4, tab rubber 5, current collector metal sheet 6, reference electrode substrate 7, solder joint 8, metal lithium layer 9, positive electrode tab 10, lithium ion
  • the present application provides a method for preparing a reference electrode.
  • the reference electrode preparation method includes S11, and the reference electrode substrate is washed and dried.
  • S12 the reference electrode substrate 7 is welded to the lower portion of the current collector metal sheet 6 to which the tab rubber 5 is adhered.
  • S13 the metal lithium is melted in a liquid state in an anhydrous oxygen-free environment, and heating is continued to remove impurities on the surface of the liquid metal lithium.
  • S14 the lower portion of the reference electrode substrate 7 to which the current collector metal piece 6 is welded is immersed in liquid lithium and allowed to stand, so that the lower portion of the reference electrode substrate 7 is coated with a layer of metallic lithium.
  • S15 the reference electrode 2 soldered with the current collector metal piece 6 is taken out from the liquid lithium for cooling, and a separator is wrapped around the lower portion of the ear rubber 5 by a winding method to obtain a reference electrode wrapped with a separator. 2.
  • a porous structure of foamed copper, nickel foam, mesh copper or mesh is selected as the reference electrode substrate 7.
  • the reference electrode substrate 7 is washed with acetone or deionized water and dried for use.
  • the material of the reference electrode substrate 7 may have a diameter of 50-500 ⁇ m, and the reference electrode substrate 7 may have a thickness of 0.1-1 mm.
  • the reference electrode substrate 7 is soldered to the lower portion of the current collector metal sheet 6 to which the tab rubber 5 is adhered, so that the upper portion of the reference electrode substrate 7 and the current collector metal sheet 6 are The lower portions overlap each other, and the area of the current collector metal piece 6 is smaller than the area of the reference electrode substrate 7.
  • the reference electrode 2 soldered to the current collector metal piece 6 is vacuum dried in an anhydrous oxygen-free environment at 60-90 degrees Celsius for 4-7 hours, dried and cooled, and then transferred to an anhydrous oxygen-free environment.
  • the current collector metal sheet 6 is held for collecting current, and the material of the current collector metal sheet 6 is nickel or aluminum.
  • the thickness of the current collector metal sheet 6 may be 0.1-1 mm, and the length may be determined according to the position of the reference electrode 2 relative to the battery, and the length may be 10-30 mm.
  • step S13 the metallic lithium is melted to a liquid state in an anhydrous oxygen-free environment, and heating is continued to 200-500 degrees Celsius to remove impurities on the surface of the liquid metal lithium.
  • step S14 the lower portion of the reference electrode substrate 7 on which the current collector metal piece 6 is soldered is immersed in liquid lithium and allowed to stand for 1-5 minutes.
  • a metal lithium layer 9 is coated on the lower portion of the electrode substrate 7.
  • the solderless portion 8 of the base material may be entirely extended into the liquid lithium, and the metallic lithium completely wets the lower portion of the reference electrode substrate 7, so that a metal lithium is grown in the lower portion of the reference electrode substrate 7.
  • the metal lithium layer 9 may have a thickness of 10 to 100 ⁇ m.
  • step S15 the reference electrode 2 soldered with the current collector metal piece 6 is taken out from the liquid lithium and cooled, and a lower layer of the ear tip rubber 5 is covered with a separator by a winding method.
  • the separator wraps the current collector metal sheet 6 and the reference electrode substrate 7 together to obtain a reference electrode 2 coated with a separator.
  • the separator material is porous polypropylene or porous polyethylene, ceramic coated porous polypropylene. Or polyethylene or non-woven fabric.
  • a lithium ion battery preparation method with a reference electrode includes preparing a reference electrode 2 and preparing a lithium ion battery 1 in two parts.
  • S10 a reference electrode 2 is prepared.
  • Including S11 the reference electrode substrate 7 is cleaned and dried.
  • S12 the reference electrode substrate 7 is welded to the lower portion of the current collector metal sheet 6 to which the tab rubber 5 is adhered.
  • S13 the metal lithium is melted in a liquid state in an anhydrous oxygen-free environment, and heating is continued to remove impurities on the surface of the liquid metal lithium.
  • the lower portion of the reference electrode substrate 7 to which the current collector metal piece 6 is welded is immersed in liquid lithium and allowed to stand, so that the lower portion of the reference electrode substrate 7 is coated with a layer of metallic lithium.
  • the reference electrode 2 soldered with the current collector metal piece 6 is taken out from the liquid lithium for cooling, and a separator is wrapped around the lower portion of the ear rubber 5 by a winding method to obtain a reference electrode wrapped with a separator. 2.
  • the preparation of the lithium ion battery 1 with the reference electrode 2 is continued. Also included is S20.
  • the reference electrode 2 is inserted between the separator 11 of the lithium ion battery 1 cell and the negative electrode tab, so that the upper end portion of the reference electrode 2 is from the battery of the lithium ion battery 1.
  • a lithium ion battery 1 implanted with a reference electrode 2 is molded under anhydrous and anaerobic conditions to obtain a lithium ion battery 1 with a reference electrode 2.
  • a porous structure of foamed copper, nickel foam, mesh copper or mesh is selected as the reference electrode substrate 7.
  • the area of the reference electrode substrate 7 is 1%-10% of the area of the pole piece of the lithium ion battery.
  • the reference electrode substrate 7 is washed with acetone or deionized water, dried, and used.
  • the material of the reference electrode substrate 7 may have a diameter of 50-500 ⁇ m, and the reference electrode substrate 7 may have a thickness of 0.1-1 mm.
  • the reference electrode substrate 7 is soldered to the lower portion of the current collector metal sheet 6 to which the tab rubber 5 is adhered, so that the upper portion of the reference electrode substrate 7 and the current collector metal sheet 6 are The lower portions overlap each other, and the area of the current collector metal piece 6 is smaller than the area of the reference electrode substrate 7.
  • the reference electrode 2 soldered to the current collector metal piece 6 is vacuum dried in an anhydrous oxygen-free environment at 60-90 degrees Celsius for 4-7 hours, dried and cooled, and then transferred to an anhydrous oxygen-free environment.
  • the current collector metal sheet 6 is held for collecting current, and the material of the current collector metal sheet 6 is nickel or aluminum.
  • the thickness of the current collector metal sheet 6 may be 0.1-1 mm, and the length may be determined according to the position of the reference electrode 2 relative to the battery, and the length may be 10-30 mm.
  • step S13 the metallic lithium is melted to a liquid state in an anhydrous oxygen-free environment, and heating is continued to 200-500 degrees Celsius to remove impurities on the surface of the liquid metal lithium.
  • step S14 the lower portion of the reference electrode substrate 7 on which the current collector metal sheet 6 is soldered is immersed in liquid lithium and allowed to stand for 1-5 minutes to allow the lower portion of the reference electrode substrate 7.
  • a metal lithium layer 9 is coated.
  • the solderless portion 8 of the base material may be entirely extended into the liquid lithium, and the metallic lithium completely wets the lower portion of the reference electrode substrate 7, so that a metal lithium is grown in the lower portion of the reference electrode substrate 7.
  • the metal lithium layer 9 may have a thickness of 10 to 100 ⁇ m.
  • step S15 the reference electrode 2 soldered with the current collector metal piece 6 is taken out from the liquid lithium and cooled, and a lower layer of the ear tip rubber 5 is covered with a separator by a winding method.
  • the separator wraps the current collector metal sheet 6 and the reference electrode substrate 7 together to obtain a reference electrode 2 coated with a separator.
  • the separator material is porous polypropylene or porous polyethylene, ceramic coated porous polypropylene. Or polyethylene or non-woven fabric.
  • step S20 in the oxygen-free water environment, the reference electrode 2 is inserted between the separator 11 of the lithium ion battery 1 cell and the negative electrode tab, so that the upper end portion of the reference electrode 2 is The cell of the lithium ion battery 1 is exposed to 1-2 mm.
  • step S30 the lithium ion battery 1 implanted with the reference electrode 2 is molded with an aluminum plastic film under anhydrous anoxic conditions to obtain a lithium ion battery 1 with a reference electrode 2.
  • the present application provides a method for preparing a lithium ion battery with a reference electrode, comprising the following steps:
  • a porous structure of foamed copper, nickel foam, mesh copper or mesh is used as the reference electrode substrate 7.
  • the material of the reference electrode substrate 7 has a pore diameter of 50 to 500 ⁇ m, and the reference electrode substrate 7 has a thickness of 0.1 to 1 mm.
  • the area of the reference electrode substrate 7 is from 1% to 10% of the area of the pole piece of the lithium ion battery.
  • the reference electrode substrate 7 was washed with acetone or deionized water and dried for use.
  • the reference electrode substrate 7 obtained in the above step S110 is welded to the lower portion of the current collector metal sheet 6 on which the tab rubber 5 is adhered, so that the upper portion of the reference electrode substrate 7 and the lower portion of the current collector metal sheet 6 are mutually exchanged. overlapping. Dry in vacuum and oxygen-free environment at 60-90 ° C for 4-7 hours, dry and cool, and then transferred to an anhydrous oxygen-free environment for storage.
  • the current collector metal piece 6 is required to collect current, and the material of the current collector metal piece 6 is nickel or aluminum.
  • the thickness of the current collector metal sheet 6 is 0.1 to 1 mm, and the length is determined according to the position of the reference electrode 2 with respect to the battery, and the length may be 10 to 30 mm.
  • the tab rubber 5 on the upper portion of the current collector metal piece 6 is disposed such that the reference electrode 2 is relatively fixed when inserted into the battery of the lithium ion battery 1, as shown in FIGS. 3 and 5.
  • the metal lithium in the anhydrous oxygen-free environment, the metal lithium is melted to a liquid state, and the heating is continued to 200-500 degrees Celsius to remove impurities on the surface of the liquid metal lithium.
  • the lower portion of the reference electrode substrate 7 to which the current collector metal piece 6 is welded in the upper portion of the step S120 is immersed in liquid lithium, and allowed to stand for 1-5 minutes.
  • the solderless 8 segments of the base material should all be projected into the liquid lithium, and the metallic lithium completely wets the lower portion of the reference electrode substrate 7, so that a metal lithium layer 9 is grown on the lower portion of the reference electrode substrate 7.
  • the metal lithium layer 9 has a thickness of 10 to 100 ⁇ m.
  • the cooling is taken out, and a layer of a separator is covered in the lower portion of the ear rubber 5 by winding, and the current collector metal sheet 6 and the reference electrode substrate 7 are all wrapped and pressed to obtain a reference electrode 2 with a separator.
  • the separator material is porous polypropylene or polyethylene, ceramic coated porous polypropylene or polyethylene or non-woven fabric. The separator used can block the reference electrode 2 from directly contacting the positive electrode 3 and the negative electrode 4 of the lithium ion battery 1 while allowing lithium ions to permeate.
  • the reference electrode 2 prepared in the step S100 is inserted between the separator 11 of the lithium ion battery 1 cell and the negative electrode tab, as shown in FIG.
  • the negative electrode piece of the lithium ion battery 1 is not shown, and only the positive electrode piece 10 in the cell of the lithium ion battery 1 is drawn.
  • the upper end portion of the specific electrode 2 is exposed from the cell of the lithium ion battery 1 by 1-2 mm.
  • a lithium ion battery 1 having the reference electrode 2 implanted in the above step S200 is molded with an aluminum plastic film under anhydrous anaerobic conditions to obtain a lithium ion battery 1 with a reference electrode 2.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a porous structure of foamed copper is used as the reference electrode substrate 7, the reference electrode substrate 7 has a pore diameter of 50 ⁇ m, and the reference electrode substrate 7 has a thickness of 0.2 mm.
  • the area of the reference electrode substrate 7 is 2% of the area of the pole piece of the lithium ion battery, and a piece of rectangular material having a length of 10 mm and a width of 5 mm.
  • the reference electrode substrate 7 was washed with acetone or deionized water and dried for use.
  • the reference electrode substrate 7 obtained in the above step S110 is welded to the lower portion of the current collector metal sheet 6 on which the tab rubber 5 is adhered, so that the upper portion of the reference electrode substrate 7 and the lower portion of the current collector metal sheet 6 are mutually exchanged. overlapping.
  • a nickel metal current collector metal piece 6 having the same width as the reference electrode substrate 7 and having a length of 20 mm and having a tab ear 5 is preferably used for the welding. It was vacuum dried in an anhydrous and oxygen-free environment at 80 ° C for 5 hours, cooled and transferred to an anhydrous oxygen-free environment for storage.
  • the metal lithium is melted to a liquid state in an anhydrous oxygen-free environment, and heating is continued to 400 degrees Celsius to remove impurities on the surface of the liquid metal lithium.
  • the lower portion of the reference electrode substrate 7 on which the current collector metal piece 6 was welded in the upper portion of the step S120 was immersed in liquid lithium, and allowed to stand for 3 minutes.
  • the solderless spot 8 of the base material should be completely projected into the liquid lithium, and the metallic lithium completely wets the lower portion of the reference electrode substrate 7, so that the lower portion of the reference electrode substrate 7 is coated with a layer of metallic lithium.
  • the reference electrode 2 was taken out from the liquid lithium, and the surface was quickly purged with a high temperature of 400 degrees Celsius, and the lithium filled in the holes was blown off to expose the pore diameter.
  • the metal lithium layer 9 grown in this embodiment has a thickness of about 10 ⁇ m.
  • the cooling is taken out, and a layer of a separator is covered in the lower portion of the ear rubber 5 by winding, and the current collector metal sheet 6 and the reference electrode substrate 7 are all wrapped and pressed to obtain a reference electrode 2 with a separator.
  • the membrane material is a porous polypropylene material.
  • the separator used can block the reference electrode 2 from directly contacting the positive electrode 3 and the negative electrode 4 of the lithium ion battery 1 while allowing lithium ions to permeate.
  • the reference electrode 2 prepared in the above step S100 is inserted between the separator 11 and the negative electrode tab of the lithium ion battery 1 in an oxygen-free and anhydrous environment.
  • a soft pack battery is preferred as an experimental object.
  • the battery bare cell is transferred into an oxygen-free anhydrous environment, and the reference electrode 2 is implanted between the bare cell positive electrode tab 10 and the negative electrode tab, and the separator 11 and the negative electrode tab interface.
  • the reference electrode 2 can be inserted in any layer other than the outermost pole piece, and the position on the plane can be located at any point, including but not limited to the center, the corner, the long side, etc., depending on the specific needs.
  • the reference electrode 2 is inserted into the intermediate position of the battery side while the upper end portion of the reference electrode 2 is exposed 2 mm from the cell of the lithium ion battery 1.
  • a lithium ion battery 1 with a reference electrode 2 is obtained by plastically encapsulating the lithium ion battery 1 of the step S200 into which the reference electrode 2 is implanted under an anhydrous anaerobic condition.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a porous nickel foam is used as the reference electrode substrate 7, the reference electrode substrate 7 has a pore diameter of 100 ⁇ m, and the reference electrode substrate 7 has a thickness of 0.2 mm.
  • the area of the reference electrode substrate 7 is 5% of the area of the pole piece of the lithium ion battery, and the size is a piece of rectangular material having a length of 12 mm and a width of 7 mm.
  • the reference electrode substrate 7 was washed with acetone or deionized water and dried for use.
  • the reference electrode substrate 7 obtained in step S110 is welded to the lower portion of the current collector metal sheet 6 to which the tab rubber 5 is adhered, so that the upper portion of the reference electrode substrate 7 and the lower portion of the current collector metal sheet 6 overlap each other.
  • a nickel metal current collector metal piece 6 having the same width as the reference electrode substrate 7 and having a length of 20 mm and having a tab ear 5 is preferably used for the welding. It was vacuum dried in an anhydrous and oxygen-free environment at 90 ° C for 5 hours, cooled and transferred to an anhydrous oxygen-free environment for storage.
  • the metal lithium is melted to a liquid state in an anhydrous oxygen-free environment, and heating is continued to 400 degrees Celsius to remove impurities on the surface of the liquid metal lithium.
  • the lower portion of the reference electrode substrate 7 to which the current collector metal piece 6 was welded in the upper portion of the step S120 was immersed in liquid lithium, and allowed to stand for 4 minutes.
  • the solderless spot 8 of the base material should be completely projected into the liquid lithium, and the metallic lithium completely wets the lower portion of the reference electrode substrate 7, so that the lower portion of the reference electrode substrate 7 is coated with a layer of metallic lithium.
  • the reference electrode 2 was taken out from the liquid lithium, and the surface was quickly purged with a high temperature of 400 degrees Celsius, and the lithium filled in the holes was blown off to expose the pore diameter.
  • the metal lithium layer 9 grown in this embodiment has a thickness of about 30 ⁇ m.
  • the cooling is taken out, and a layer of a separator is covered in the lower portion of the ear rubber 5 by winding, and the current collector metal sheet 6 and the reference electrode substrate 7 are all wrapped and pressed to obtain a reference electrode 2 with a separator.
  • the membrane material is a porous polypropylene material.
  • the separator used can block the reference electrode 2 from directly contacting the positive electrode 3 and the negative electrode 4 of the lithium ion battery 1 while allowing lithium ions to permeate.
  • the reference electrode 2 prepared in the above step S100 is inserted between the separator 11 of the lithium ion battery 1 cell and the negative electrode tab in an oxygen-free and anhydrous environment.
  • a soft pack battery is preferred as an experimental object.
  • the battery bare cell is transferred into an oxygen-free anhydrous environment, and the reference electrode 2 is implanted between the bare cell positive electrode tab 10 and the negative electrode tab, and the separator 11 and the negative electrode tab interface.
  • the reference electrode 2 can be inserted in any layer other than the outermost pole piece, and the position on the plane can be located at any point, including but not limited to the center, the corner, the long side, etc., depending on the specific needs.
  • the reference electrode 2 is inserted into the intermediate position of the battery side while the upper end portion of the reference electrode 2 is exposed 2 mm from the cell of the lithium ion battery 1.
  • a lithium ion battery 1 with a reference electrode 2 is obtained by plastically encapsulating the lithium ion battery 1 of the step S200 into which the reference electrode 2 is implanted under an anhydrous anaerobic condition.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a mesh copper having a porous structure is used as the reference electrode substrate 7.
  • the reference electrode substrate 7 has a pore diameter of 300 ⁇ m, and the reference electrode substrate 7 has a thickness of 0.2 mm.
  • the area of the reference electrode substrate 7 is 2% of the area of the pole piece of the lithium ion battery, and a piece of rectangular material having a length of 20 mm and a width of 10 mm.
  • the reference electrode substrate 7 was washed with acetone or deionized water and dried for use.
  • the reference electrode substrate 7 obtained in the above step S110 is welded to the lower portion of the current collector metal sheet 6 on which the tab rubber 5 is adhered, so that the upper portion of the reference electrode substrate 7 and the lower portion of the current collector metal sheet 6 are mutually exchanged. overlapping.
  • a nickel metal current collector metal piece 6 having the same width as the reference electrode substrate 7 and having a length of 20 mm and having a tab ear 5 is preferably used for the welding. It was vacuum dried in an anhydrous and oxygen-free environment at 80 ° C for 5 hours, cooled and transferred to an anhydrous oxygen-free environment for storage.
  • the metal lithium is melted to a liquid state in an anhydrous oxygen-free environment, and heating is continued to 400 degrees Celsius to remove impurities on the surface of the liquid metal lithium.
  • the lower portion of the reference electrode substrate 7 on which the current collector metal piece 6 was welded in the upper portion of the step S120 was immersed in liquid lithium, and allowed to stand for 3 minutes.
  • the solderless spot 8 of the base material should be completely projected into the liquid lithium, and the metallic lithium completely wets the lower portion of the reference electrode substrate 7, so that the lower portion of the reference electrode substrate 7 is coated with a layer of metallic lithium.
  • the reference electrode 2 was taken out from the liquid lithium, and the surface was quickly purged with a high temperature of 400 degrees Celsius, and the lithium filled in the holes was blown off to expose the pore diameter.
  • the metal lithium layer 9 grown in this embodiment has a thickness of about 100 ⁇ m.
  • the cooling is taken out, and a layer of a separator is covered in the lower portion of the ear rubber 5 by winding, and the current collector metal sheet 6 and the reference electrode substrate 7 are all wrapped and pressed to obtain a reference electrode 2 with a separator.
  • the membrane material is a porous polypropylene material.
  • the separator used can block the reference electrode 2 from directly contacting the positive electrode 3 and the negative electrode 4 of the lithium ion battery 1 while allowing lithium ions to permeate.
  • the reference electrode 2 prepared in the above step S100 is inserted between the separator 11 of the lithium ion battery 1 cell and the negative electrode tab in an oxygen-free and anhydrous environment.
  • a soft pack battery is preferred as an experimental object.
  • the battery bare cell is transferred into an oxygen-free anhydrous environment, and the reference electrode 2 is implanted between the bare cell positive electrode tab 10 and the negative electrode tab, and the separator 11 and the negative electrode tab interface.
  • the reference electrode 2 can be inserted in any layer other than the outermost pole piece, and the position on the plane can be located at any point, including but not limited to the center, the corner, the long side, etc., depending on the specific needs.
  • the reference electrode 2 is inserted into the intermediate position of the battery side while the upper end portion of the reference electrode 2 is exposed 2 mm from the cell of the lithium ion battery 1.
  • a lithium ion battery 1 having the reference electrode 2 implanted in the above step S200 is molded with an aluminum plastic film under anhydrous anaerobic conditions to obtain a lithium ion battery 1 with a reference electrode 2.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a reticulated nickel of a porous structure is used as the reference electrode substrate 7, the reference electrode substrate 7 has a pore diameter of 500 ⁇ m, and the reference electrode substrate 7 has a thickness of 0.2 mm.
  • the area of the reference electrode substrate 7 is 1% of the area of the pole piece of the lithium ion battery, and a piece of rectangular material having a length of 20 mm and a width of 8 mm.
  • the reference electrode substrate 7 was washed with acetone or deionized water and dried for use.
  • the reference electrode substrate 7 obtained in the above step S110 is welded to the lower portion of the current collector metal sheet 6 on which the tab rubber 5 is adhered, so that the upper portion of the reference electrode substrate 7 and the lower portion of the current collector metal sheet 6 are mutually exchanged. overlapping.
  • a nickel metal current collector metal piece 6 having the same width as the reference electrode substrate 7 and having a length of 20 mm and having a tab ear 5 is preferably used for the welding. It was vacuum dried in an anhydrous and oxygen-free environment at 80 ° C for 5 hours, cooled and transferred to an anhydrous oxygen-free environment for storage.
  • the metal lithium is melted to a liquid state in an anhydrous oxygen-free environment, and heating is continued to 400 degrees Celsius to remove impurities on the surface of the liquid metal lithium.
  • the lower portion of the reference electrode substrate 7 on which the current collector metal piece 6 was welded in the above step S120 was immersed in liquid lithium, and allowed to stand for 3 minutes.
  • the solderless spot 8 of the base material should be completely projected into the liquid lithium, and the metallic lithium completely wets the lower portion of the reference electrode substrate 7, so that the lower portion of the reference electrode substrate 7 is coated with a layer of metallic lithium.
  • the reference electrode 2 was taken out from the liquid lithium, and the surface was quickly purged with a high temperature of 400 degrees Celsius, and the lithium filled in the holes was blown off to expose the pore diameter.
  • the metal lithium layer 9 grown in this embodiment has a thickness of about 100 ⁇ m.
  • the cooling is taken out, and a layer of a separator is covered in the lower portion of the ear rubber 5 by winding, and the current collector metal sheet 6 and the reference electrode substrate 7 are all wrapped and pressed to obtain a reference electrode 2 with a separator.
  • the membrane material is a porous polypropylene material.
  • the separator used can block the reference electrode 2 from directly contacting the positive electrode 3 and the negative electrode 4 of the lithium ion battery 1 while allowing lithium ions to permeate.
  • the reference electrode 2 prepared in the above step S100 is inserted between the separator 11 of the lithium ion battery 1 cell and the negative electrode tab in an oxygen-free and anhydrous environment.
  • a soft pack battery is preferred as an experimental object.
  • the battery bare cell is transferred into an oxygen-free anhydrous environment, and the reference electrode 2 is implanted between the bare cell positive electrode tab 10 and the negative electrode tab, and the separator 11 and the negative electrode tab interface.
  • the reference electrode 2 can be inserted in any layer other than the outermost pole piece, and the position on the plane can be located at any point, including but not limited to the center, the corner, the long side, etc., depending on the specific needs.
  • the reference electrode 2 is inserted into the intermediate position of the battery side while the upper end portion of the reference electrode 2 is exposed 2 mm from the cell of the lithium ion battery 1.
  • a lithium ion battery 1 having the reference electrode 2 implanted in the above step S200 is molded with an aluminum plastic film under anhydrous anaerobic conditions to obtain a lithium ion battery 1 with a reference electrode 2.
  • the positive electrode 3 and the negative electrode 4 of the lithium ion battery 1 with the reference electrode 2 were respectively connected by a charge and discharge tester or other current source to perform a charge and discharge test.
  • the performance of the lithium ion battery 1 in the assembled measuring device with the reference electrode 2 is detected, and the connection diagram of the measuring circuit is as shown in FIG. 10: three test channels of the voltage collecting device are synchronized by the high input impedance, and a pair of channels are utilized.
  • the external circuit voltage U1 with the reference electrode 2 lithium ion battery 1, the channel two pair negative electrode-reference voltage U2 and the channel three pairs of positive electrode-reference voltage U3 are detected and recorded.
  • Fig. 11 is a graph showing the results of the charge and discharge rate test of the battery with the reference electrode 2.
  • the horizontal axis represents the test time and the vertical axis represents the test voltage.
  • the external circuit voltage of the battery represented by the solid line, and the broken line represents the negative electrode 4 single electrode measured by the reference electrode 2 in the battery.
  • the charge-discharge rate is gradually increased from 0.5C to 1.5C.
  • the first charge and discharge cycle uses 0.5C charge and discharge
  • the second cycle uses 1C charge and discharge
  • the third charge and discharge uses 1.5C charge and discharge, as shown in the figure. .
  • Fig. 12 is a graph showing the results of the capacity test of the battery with the reference electrode 2, in which the horizontal axis represents the test time and the vertical axis represents the test voltage.
  • the external circuit voltage of the battery represented by the solid line, and the broken line represents the negative electrode 4 single electrode measured by the reference electrode 2 in the battery.
  • the charge-and-discharge rate remains unchanged at 1C. It can be seen that the single-motor voltage of the negative electrode 4 remains stable with respect to the reference electrode in each charge-and-discharge cycle, and the overall voltage of the battery remains stable during each charge-and-discharge cycle. It is shown that the reference electrode 2 has a good life in the range required by the experiment, and the reference electrode 2 does not interfere with the operation of the battery.

Abstract

一种参比电极以及带有参比电极的锂离子电池的制备方法,该方法包括,将参比电极基片(7)焊接到上部粘有极耳胶(5)的集流体金属片(6)下部;使金属锂熔化呈现液态;将焊接有集流体金属片(6)的参比电极基片(7)的下部浸润液态锂使其包覆一层金属锂;在极耳胶(5)的下部覆盖包裹一层隔膜,得到裹附有隔膜的参比电极(2);将参比电极(2)插入锂离子电池(1)电芯的隔膜(11)与负极极片之间,使参比电极(2)的上端部从锂离子电池(1)的电芯中露出;塑封植入了参比电极(2)的锂离子电池(1),得到带有参比电极(2)的锂离子电池(1)。通过该方法得到的参比电极具有较长使用寿命,工艺简单,满足工业生产要求,使得带有参比电极的锂离子电池的工业生产及应用成为可能。

Description

参比电极以及带有参比电极的锂离子电池的制备方法
相关申请
本申请要求2017年11月17日申请的,申请号为201711143955.2,名称为“一种带有参比电极的锂离子电池的浸润制备方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及一种参比电极以及带有参比电极的锂离子电池的制备方法,属于电极电位检测以及电极制作技术领域。
背景技术
在电化学及电池的研究技术中,电极电位是非常重要的参数。处于热力学平衡状态的电极电位为开路电位,实际应用中,可以近似地认为小电流充放电得到的电压-SOC曲线为电池的开路电压曲线。若电极有电流流过,则电极发生极化,电极电位由于过电位的产生而发生偏移。通过测量单电极的电位变化曲线,可以得到电极内部反应的详细信息。比如对石墨负极锂离子电池,过充或低温充电可能会导致石墨负极的析锂副反应,其特征是负极的电极电位低于析锂反应的均衡电压,因此可以通过电极电位检测析锂副反应。但是,电池均由两个电极构成,无法直接得到单电极的极化特性,必须利用多电极体系进行测量,即在正极和负极间加入一个或多个参比电极,并测量电极与参比电极之间的相对电压差。相关技术中,参比电极的制备主要有化学电镀、锂箔、锂合金、含锂金属氧化物或含锂金属磷酸盐等方案。
2004年在电化学会志上报道了题为“基于锂电池系统的长期原位观测用锂微参比电极开发(Development of reliable lithium Micro-reference electrodes for long-term in-situ studies of lithium-based battery systems)”(DOI:10.6100/IR624713)的工作,通过使用微米级铜线插入电池后双面电镀从而得到锂参比电极。该方法能够尽可能减小对锂离子流通的阻隔,但由于使用的参比电极过小,该方法中参比电极上锂负载较少,且容易出现镀层不均匀现象,长时间测量后可能出现电位漂移,因而难以应用于耐久性研究,同时也对测量仪器输入阻抗要求较高。
另一种方法是在电池中直接插入锂金属箔。一般通过物理压接的方式将金属锂同集流体相连。根据文献调研,一篇题为“锰酸锂正极锂离子电池在空电状态下的自放电现象(Self-Discharge of LiMn2O4/C Li-Ion Cells in Their Discharged State)”的研究中(J.Electrochem.Soc.,Vol.145,No.1,1998),研究人员采用物理方法,即压接等方式将锂与集流体如铜网连接。该方法中,铜网孔径较大,为mm级别孔径。但这种物理连接方式很难保证锂与铜连接处连接牢固,若接触不良容易导致参比电极的欧姆电阻极大,影响参比电极的使用。
综上所述,相关技术中,参比电极开发困境主要是由电极含锂量引起:为了降低参比对电解液中锂离子的阻隔效应,必须尽可能减小参比电极尺寸,但会造成材料整体含锂量较少,信号弱,且易由于测量微电流造成电极损耗或电位漂移。
发明内容
本申请的目的是提出一种参比电极以及带有参比电极的锂离子电池的制备方法,以解决参比电极测量时的不稳定性,提升参比电极寿命,实现长时间多循环次数的单电极电位测量,同时提高测量结果准确性。
本申请提供一种参比电极制备方法,包括:
S11,清洗晾干参比电极基片;
S12,将所述参比电极基片焊接到上部粘有极耳胶的集流体金属片下部;
S13,在无水无氧环境中使金属锂熔化呈现液态,继续加热去除液体所述金属锂表面的杂质;
S14,将焊接有所述集流体金属片的所述参比电极基片的下部浸润液态锂中并静置,使所述参比电极基片的下部包覆一层所述金属锂;
S15,将所述焊接有所述集流体金属片的所述参比电极从所述液态锂中取出冷却,采用卷绕的方法,在所述极耳胶的下部覆盖包裹一层隔膜,得到裹附有所述隔膜的所述参比电极。
本申请提供一种带有参比电极的锂离子电池的制备方法,包括:
S10,制备参比电极,包括:
S11,清洗晾干参比电极基片;
S12,将所述参比电极基片焊接到上部粘有极耳胶的集流体金属片下部;
S13,在无水无氧环境中使金属锂熔化呈现液态,继续加热去除液体所述金属锂表面的杂质;
S14,将焊接有所述集流体金属片的所述参比电极基片的下部浸润液态锂中并静置,使所述参比电极基片的下部包覆一层所述金属锂;
S15,将所述焊接有所述集流体金属片的所述参比电极从所述液态锂中取出冷却,采用卷绕的方法,在所述极耳胶的下部覆盖包裹一层隔膜,得到裹附有所述隔膜的所述参比电极;
S20,在无氧无水环境中,将所述参比电极插入锂离子电池电芯的隔膜与负极极片之间,使所述参比电极的上端部从所述锂离子电池的电芯中露出;
S30,在无水无氧条件下,封装植入了所述参比电极的所述锂离子电池,得到带有所述参比电极的锂离子电池。
本申请提供一种带有参比电极的锂离子电池的制备方法,包括:
S100,制备参比电极,包括:
S110,以多孔结构的泡沫铜、泡沫镍、网状铜或网状镍作为参比电极的基片,所述参 比基片材料的孔径为:50-500μm,所述参比电极基片的厚度为:0.1-1mm,所述参比电极基片的面积为锂离子电池极片面积的1%-10%,将所述参比电极基片用丙酮或去离子水清洗晾干后备用;
S120,将所述步骤S110得到的所述参比电极基片焊接到上部粘有极耳胶的集流体金属片的下部,使所述参比电极基片的上部与所述集流体金属片的下部相互重叠,所述集流体金属片的面积小于所述参比基片面积;在无水无氧环境中干燥冷却后移入无水无氧环境保存,所述集流体金属片为汇集电流所需,所述集流体金属片的材料为镍或铝,所述集流体金属片的厚度为0.1-1mm,长度为10-30mm;
S130,在无水无氧环境中使金属锂熔化呈现液态,继续加热至200-500摄氏度,去除液体所述金属锂表面的杂质,将上述步骤S120中上部焊接有所述集流体金属片的所述参比电极基片的下部浸润液态锂中,静置1-5分钟,使所述参比电极基片的下部包覆一层所述金属锂,所述金属锂的厚度为10-100μm;取出冷却,采用卷绕的方法,在所述极耳胶的下部覆盖包裹一层隔膜,将集流体金属片与参比电极基片全部包裹压紧,得到裹附有所述隔膜的所述参比电极,所述隔膜材料为多孔聚丙烯或多孔聚乙烯、带有陶瓷涂覆的多孔聚丙烯或聚乙烯或无纺布;
S200,在无氧无水环境中,将所述步骤S100制备的所述参比电极插入所述锂离子电池电芯的隔膜与负极极片之间,使参比电极的上端部从所述锂离子电池的电芯中露出1-2mm;
S300,在无水无氧条件下,用铝塑膜,塑封上述步骤S200的已植入所述参比电极的所述锂离子电池,得到带有所述参比电极的锂离子电池。
本申请提出的参比电池以及带有参比电极的锂离子电池的制备方法,可在将金属锂生长在基底材料表面的同时,保留基底材料的多孔特性,使得电解液中小分子可从孔隙中透过,不影响电池工作。同时,通过控制制备过程中的工艺参数,可以控制基片上锂层的生长厚度,保证基片材料多孔性质得到保留,同时材料上负载足够多的锂,满足测试需求。因此,该本申请方法制备得到的参比电极能够在保证足够微结构前提下具有较长的使用寿命,同时制作工艺简单,满足工业生产要求,使得带有参比电极的锂离子电池的工业生产及应用成为可能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1是本申请一实施例中一种参比电极制备方法流程图。
图2是本申请一实施例中一种带有参比电极的锂离子电池的结构示意图。
图3是本申请一实施例中一种参比电极的正视图。
图4是本申请一实施例中另一种参比电极制备方法流程图。
图5是本申请一实施例中图3所示的参比电极的侧视图。
图6是本申请一实施例中一种带有参比电极的锂离子电池制备方法流程图。
图7是本申请一实施例中一种参比电极插入锂离子电池电芯的示意图。
图8是本申请一实施例中另一种带有参比电极的锂离子电池制备方法流程图。
图9是本申请一实施例中再一种带有参比电极的锂离子电池制备方法流程图。
图10是本申请一实施例中一种带有参比电极的锂离子电池的测量电路连接示意图。
图11是本申请一实施例中一种带有参比电极的锂离子电池的倍率测试结果图。
图12是本申请一实施例中一种带有参比电极的锂离子电池的容量测试结果图。
附图标记说明
锂离子电池1,参比电极2,正极3,负极4,极耳胶5,集流体金属片6,参比电极基片7,焊点8,金属锂层9,正极极片10,锂离子电池的正极极片与负极极片之间的隔膜11。
具体实施方式
请参见图1-图3,本申请提供一种参比电极制备方法。参比电极制备方法包括S11,清洗晾干参比电极基片。S12,将参比电极基片7焊接到上部粘有极耳胶5的集流体金属片6下部。S13,在无水无氧环境中使金属锂熔化呈现液态,继续加热去除液体金属锂表面的杂质。S14,将焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中并静置,使参比电极基片7的下部包覆一层金属锂。S15,将焊接有集流体金属片6的参比电极2从液态锂中取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,得到裹附有隔膜的参比电极2。
请一并参见图4,在一个实施例中,在步骤S11之前,S011,选取多孔结构的泡沫铜、泡沫镍、网状铜或网状作为参比电极基片7。在步骤S11中参比电极基片7采用丙酮或去离子水进行清洗晾干后备用。在本实施例中,参比电极基片7材料的孔径可以为:50-500μm,参比电极基片7的厚度可以为:0.1-1mm。
在一个实施例中,在步骤S12中,将参比电极基片7焊接于上部粘有极耳胶5的集流体金属片6下部,使参比电极基片7的上部与集流体金属片6的下部相互重叠,集流体金属片6的面积小于参比电极基片7面积。在步骤S12之后,S012,将焊接于集流体金属片6的参比电极2在无水无氧环境中于60-90摄氏度下,真空干燥4-7小时,干燥冷却后移入无水无氧环境保存,的集流体金属片6为汇集电流所需,集流体金属片6的材料为镍或铝。在本实施例中,集流体金属片6的厚度可以为0.1-1mm,长度根据参比电极2相对电池位置决定,长度可以为10-30mm。
在一个实施例中,在步骤S13中,在无水无氧环境中使金属锂熔化呈现液态,继续加热至200-500摄氏度,去除液体金属锂表面的杂质。
请一并参见图5,在一个实施例中,在步骤S14中,将上部焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中并静置1-5分钟,使参比电极基片7的下部包覆一金属锂层9。在本实施例中,可以将基底材料的无焊点8片段全部伸入液态锂中,金属锂完全浸润参比电极基片7的下部,使参比电极基片7的下部生长一层金属锂层9。金属锂层9的厚度可以为10-100μm。
在一个实施例中,在步骤S15中,将焊接有集流体金属片6的参比电极2从液态锂中取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,隔膜将集流体金属片6与参比电极基片7全部包裹压紧,得到裹附有隔膜的参比电极2,隔膜材料为多孔聚丙烯或多孔聚乙烯、带有陶瓷涂覆的多孔聚丙烯或聚乙烯或无纺布。
请一并参见图6-图7,本申请提供一种带有参比电极的锂离子电池的制备方法。带有参比电极的锂离子电池制备方法包括制备参比电极2和制备锂离子电池1两部分。其中,S10,制备参比电极2。包括S11,清洗晾干参比电极基片7。S12,将参比电极基片7焊接到上部粘有极耳胶5的集流体金属片6下部。S13,在无水无氧环境中使金属锂熔化呈现液态,继续加热去除液体金属锂表面的杂质。S14,将焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中并静置,使参比电极基片7的下部包覆一层金属锂。S15,将焊接有集流体金属片6的参比电极2从液态锂中取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,得到裹附有隔膜的参比电极2。继续制备带有参比电极2的锂离子电池1。还包括S20,在无氧无水环境中,将参比电极2插入锂离子电池1电芯的隔膜11与负极极片之间,使参比电极2的上端部从锂离子电池1的电芯中露出。S30,在无水无氧条件下,塑封植入了参比电极2的锂离子电池1,得到带有参比电极2的锂离子电池1。
请一并参见图8,在一个实施例中,在步骤S11之前,S011,选取多孔结构的泡沫铜、泡沫镍、网状铜或网状作为参比电极基片7。其中,参比电极基片7的面积为锂离子电池1极片面积的1%-10%。在步骤S11中,参比电极基片7采用丙酮或去离子水进行清洗晾干后备用。在本实施例中,参比电极基片7材料的孔径可以为:50-500μm,参比电极基片7的厚度可以为:0.1-1mm。
在一个实施例中,在步骤S12中,将参比电极基片7焊接于上部粘有极耳胶5的集流体金属片6下部,使参比电极基片7的上部与集流体金属片6的下部相互重叠,集流体金属片6的面积小于参比电极基片7面积。在步骤S12之后,S012,将焊接于集流体金属片6的参比电极2在无水无氧环境中于60-90摄氏度下,真空干燥4-7小时,干燥冷却后移入无水无氧环境保存,的集流体金属片6为汇集电流所需,集流体金属片6的材料为镍或铝。在本实施例中,集流体金属片6的厚度可以为0.1-1mm,长度根据参比电极2相对电池位置决定,长度可以为10-30mm。
在一个实施例中,在步骤S13中,在无水无氧环境中使金属锂熔化呈现液态,继续加热至200-500摄氏度,去除液体金属锂表面的杂质。
在一个实施例中,在步骤S14中,将上部焊接有集流体金属片6的参比电极基片7的 下部浸润液态锂中并静置1-5分钟,使参比电极基片7的下部包覆一金属锂层9。在本实施例中,可以将基底材料的无焊点8片段全部伸入液态锂中,金属锂完全浸润参比电极基片7的下部,使参比电极基片7的下部生长一层金属锂层9。金属锂层9的厚度可以为10-100μm。
在一个实施例中,在步骤S15中,将焊接有集流体金属片6的参比电极2从液态锂中取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,隔膜将集流体金属片6与参比电极基片7全部包裹压紧,得到裹附有隔膜的参比电极2,隔膜材料为多孔聚丙烯或多孔聚乙烯、带有陶瓷涂覆的多孔聚丙烯或聚乙烯或无纺布。
在一个实施例中,在步骤S20中,在无氧无水环境中,将参比电极2插入锂离子电池1电芯的隔膜11与负极极片之间,使参比电极2的上端部从锂离子电池1的电芯中露出1-2mm。
在一个实施例中,在步骤S30中,在无水无氧条件下,采用铝塑膜塑封植入了参比电极2的锂离子电池1,得到带有参比电极2的锂离子电池1。
请一并参见图9,本申请提供一种带有参比电极的锂离子电池的制备方法,包括以下步骤:
S100,制备参比电极2,具体过程如下:
S110,以多孔结构的泡沫铜、泡沫镍、网状铜或网状作为参比电极基片7。参比电极基片7材料的孔径为:50-500μm,参比电极基片7的厚度为:0.1-1mm。参比电极基片7的面积为锂离子电池1极片面积的1%-10%。将参比电极基片7用丙酮或去离子水清洗晾干后备用。
S120,将上述步骤S110得到的参比电极基片7焊接到上部粘有极耳胶5的集流体金属片6的下部,使参比电极基片7的上部与集流体金属片6的下部相互重叠。在无水无氧环境中于60-90℃下,真空干燥4-7小时,干燥冷却后移入无水无氧环境保存。集流体金属片6为汇集电流所需,集流体金属片6的材料为镍或铝。集流体金属片6的厚度为0.1-1mm,长度根据参比电极2相对电池位置决定,长度可以为10-30mm。集流体金属片6上部的极耳胶5设置为将参比电极2插入锂离子电池1电芯时两者相对固定,如图3和图5所示。
S130,在无水无氧环境中使金属锂熔化呈现液态,继续加热至200-500摄氏度,去除液体金属锂表面的杂质。将步骤S120中上部焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中,静置1-5分钟。应将基底材料的无焊点8片段全部伸入液态锂中,金属锂完全浸润参比电极基片7的下部,使参比电极基片7的下部生长一层金属锂层9。金属锂层9的厚度为10-100μm。取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,将集流体金属片6与参比电极基片7全部包裹压紧,得到裹附有隔膜的参比电极2。隔膜材料为多孔聚丙烯或聚乙烯、带有陶瓷涂覆的多孔聚丙烯或聚乙烯或无纺布。使用的隔膜,能够阻隔参比电极2与锂离子电池1的正极3、负极4直接接触而又能允许锂离子透过。
S200,在无氧无水环境中,将步骤S100制备的参比电极2插入锂离子电池1电芯的 隔膜11与负极极片之间,如图7所示。为了显示参比电极2在锂离子电池1电芯中的位置,图中未示出锂离子电池1的负极极片,只画出了锂离子电池1电芯中的正极极片10,使参比电极2的上端部从锂离子电池1的电芯中露出1-2mm。
S300,在无水无氧条件下,用铝塑膜,塑封上述步骤S200的已植入参比电极2的锂离子电池1,得到带有参比电极2的锂离子电池1。
以下介绍本申请带有参比电极2的锂离子电池1的两个制作实施例:
实施例一:
S100,制备参比电极2,具体过程如下:
S110,以多孔结构的泡沫铜作为参比电极基片7,参比电极基片7材料的孔径为:50μm,参比电极基片7的厚度为:0.2mm。参比电极基片7的面积为锂离子电池1极片面积的2%,长10mm,宽5mm的长方形材料片。将参比电极基片7用丙酮或去离子水清洗晾干后备用。
S120,将上述步骤S110得到的参比电极基片7焊接到上部粘有极耳胶5的集流体金属片6的下部,使参比电极基片7的上部与集流体金属片6的下部相互重叠。本实施例中优选与参比电极基片7宽度相同,长为20mm并带有极耳胶5的镍金属集流体金属片6用于焊接。在无水无氧环境中80摄氏度条件真空干燥5小时,冷却后移入无水无氧环境保存。
S130,在无水无氧环境中使金属锂熔化呈现液态,继续加热至400摄氏度,去除液体金属锂表面的杂质。将步骤S120中上部焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中,静置3分钟。应将基底材料的无焊点8片段全部伸入液态锂中,金属锂完全浸润参比电极基片7的下部,使参比电极基片7的下部包覆一层金属锂。将该参比电极2由液态锂中取出,迅速使用400摄氏度高温风吹扫表面,将填充在孔内的锂吹除,露出孔径。本实施例中生长出金属锂层9厚度约为10μm。取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,将集流体金属片6与参比电极基片7全部包裹压紧,得到裹附有隔膜的参比电极2。隔膜材料为多孔聚丙烯材料。使用的隔膜,能够阻隔参比电极2与锂离子电池1的正极3、负极4直接接触而又能允许锂离子透过。
S200,在无氧无水环境中,将上述步骤S100制备的参比电极2插入锂离子电池1电芯的隔膜11与负极极片之间,此实施例中优选一软包电池作为实验对象。将该电池裸电芯转移入无氧无水环境中,将参比电极2植入裸电芯正极极片10和负极极片之间,隔膜11和负极极片界面处。参比电极2可插入于除了最外层极片的任意一层,平面上的位置可位于任意点,包括但不限于中心、转角、长边等,取决于具体需求。本实施例中,参比电极2插入电池侧边中间位置,同时参比电极2的上端部从锂离子电池1的电芯中露出2mm。
S300,在无水无氧条件下,用铝塑膜,塑封步骤S200的已植入参比电极2的锂离子电池1,得到带有参比电极2的锂离子电池1。
实施例二:
S100,制备参比电极2,具体过程如下:
S110,以多孔结构的泡沫镍作为参比电极基片7,参比电极基片7材料的孔径为:100μm,参比电极基片7的厚度为:0.2mm。参比电极基片7的面积为锂离子电池1极片面积的5%,尺寸大小为:长12mm,宽7mm的长方形材料片。将参比电极基片7用丙酮或去离子水清洗晾干后备用。
S120,将步骤S110得到的参比电极基片7焊接到上部粘有极耳胶5的集流体金属片6的下部,使参比电极基片7的上部与集流体金属片6的下部相互重叠。本实施例中优选与参比电极基片7宽度相同,长为20mm并带有极耳胶5的镍金属集流体金属片6用于焊接。在无水无氧环境中90摄氏度条件真空干燥5小时,冷却后移入无水无氧环境保存。
S130,在无水无氧环境中使金属锂熔化呈现液态,继续加热至400摄氏度,去除液体金属锂表面的杂质。将步骤S120中上部焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中,静置4分钟。应将基底材料的无焊点8片段全部伸入液态锂中,金属锂完全浸润参比电极基片7的下部,使参比电极基片7的下部包覆一层金属锂。将该参比电极2由液态锂中取出,迅速使用400摄氏度高温风吹扫表面,将填充在孔内的锂吹除,露出孔径。本实施例中生长出金属锂层9厚度约为30μm。取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,将集流体金属片6与参比电极基片7全部包裹压紧,得到裹附有隔膜的参比电极2。隔膜材料为多孔聚丙烯材料。使用的隔膜,能够阻隔参比电极2与锂离子电池1的正极3、负极4直接接触而又能允许锂离子透过。
S200,在无氧无水环境中,将上述步骤S100制备的参比电极2插入锂离子电池1电芯的隔膜11与负极极片之间。此实施例中优选一软包电池作为实验对象。将该电池裸电芯转移入无氧无水环境中,将参比电极2植入裸电芯正极极片10和负极极片之间,隔膜11和负极极片界面处。参比电极2可插入于除了最外层极片的任意一层,平面上的位置可位于任意点,包括但不限于中心、转角、长边等,取决于具体需求。本实施例中,参比电极2插入电池侧边中间位置,同时参比电极2的上端部从锂离子电池1的电芯中露出2mm。
S300,在无水无氧条件下,用铝塑膜,塑封步骤S200的已植入参比电极2的锂离子电池1,得到带有参比电极2的锂离子电池1。
实施例三:
S100,制备参比电极2,具体过程如下:
S110,以多孔结构的网状铜作为参比电极基片7。参比电极基片7材料的孔径为300μm,参比电极基片7的厚度为:0.2mm。参比电极基片7的面积为锂离子电池1极片面积的2%,长20mm,宽10mm的长方形材料片。将参比电极基片7用丙酮或去离子水清洗晾干后备用。
S120,将上述步骤S110得到的参比电极基片7焊接到上部粘有极耳胶5的集流体金属片6的下部,使参比电极基片7的上部与集流体金属片6的下部相互重叠。本实施例中优选与参比电极基片7宽度相同,长为20mm并带有极耳胶5的镍金属集流体金属片6用于焊接。在无水无氧环境中80摄氏度条件真空干燥5小时,冷却后移入无水无氧环境保存。
S130,在无水无氧环境中使金属锂熔化呈现液态,继续加热至400摄氏度,去除液体金属锂表面的杂质。将步骤S120中上部焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中,静置3分钟。应将基底材料的无焊点8片段全部伸入液态锂中,金属锂完全浸润参比电极基片7的下部,使参比电极基片7的下部包覆一层金属锂。将该参比电极2由液态锂中取出,迅速使用400摄氏度高温风吹扫表面,将填充在孔内的锂吹除,露出孔径。本实施例中生长出金属锂层9厚度约为100μm。取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,将集流体金属片6与参比电极基片7全部包裹压紧,得到裹附有隔膜的参比电极2。隔膜材料为多孔聚丙烯材料。使用的隔膜,能够阻隔参比电极2与锂离子电池1的正极3、负极4直接接触而又能允许锂离子透过。
S200,在无氧无水环境中,将上述步骤S100制备的参比电极2插入锂离子电池1电芯的隔膜11与负极极片之间。此实施例中优选一软包电池作为实验对象。将该电池裸电芯转移入无氧无水环境中,将参比电极2植入裸电芯正极极片10和负极极片之间,隔膜11和负极极片界面处。参比电极2可插入于除了最外层极片的任意一层,平面上的位置可位于任意点,包括但不限于中心、转角、长边等,取决于具体需求。本实施例中,参比电极2插入电池侧边中间位置,同时参比电极2的上端部从锂离子电池1的电芯中露出2mm。
S300,在无水无氧条件下,用铝塑膜,塑封上述步骤S200的已植入参比电极2的锂离子电池1,得到带有参比电极2的锂离子电池1。
实施例四:
S100,制备参比电极2,具体过程如下:
S110,以多孔结构的网状镍作为参比电极基片7,参比电极基片7材料的孔径为500μm,参比电极基片7的厚度为:0.2mm。参比电极基片7的面积为锂离子电池1极片面积的1%,长20mm,宽8mm的长方形材料片。将参比电极基片7用丙酮或去离子水清洗晾干后备用。
S120,将上述步骤S110得到的参比电极基片7焊接到上部粘有极耳胶5的集流体金属片6的下部,使参比电极基片7的上部与集流体金属片6的下部相互重叠。本实施例中优选与参比电极基片7宽度相同,长为20mm并带有极耳胶5的镍金属集流体金属片6用于焊接。在无水无氧环境中80摄氏度条件真空干燥5小时,冷却后移入无水无氧环境保存。
S130,在无水无氧环境中使金属锂熔化呈现液态,继续加热至400摄氏度,去除液体金属锂表面的杂质。将上述步骤S120中上部焊接有集流体金属片6的参比电极基片7的下部浸润液态锂中,静置3分钟。应将基底材料的无焊点8片段全部伸入液态锂中,金属锂完全浸润参比电极基片7的下部,使参比电极基片7的下部包覆一层金属锂。将该参比电极2由液态锂中取出,迅速使用400摄氏度高温风吹扫表面,将填充在孔内的锂吹除,露出孔径。本实施例中生长出金属锂层9厚度约为100μm。取出冷却,采用卷绕的方法,在极耳胶5的下部覆盖包裹一层隔膜,将集流体金属片6与参比电极基片7全部包裹压紧,得到裹附有隔膜的参比电极2。隔膜材料为多孔聚丙烯材料。使用的隔膜,能够阻隔参比 电极2与锂离子电池1的正极3、负极4直接接触而又能允许锂离子透过。
S200,在无氧无水环境中,将上述步骤S100制备的参比电极2插入锂离子电池1电芯的隔膜11与负极极片之间。此实施例中优选一软包电池作为实验对象。将该电池裸电芯转移入无氧无水环境中,将参比电极2植入裸电芯正极极片10和负极极片之间,隔膜11和负极极片界面处。参比电极2可插入于除了最外层极片的任意一层,平面上的位置可位于任意点,包括但不限于中心、转角、长边等,取决于具体需求。本实施例中,参比电极2插入电池侧边中间位置,同时参比电极2的上端部从锂离子电池1的电芯中露出2mm。
S300,在无水无氧条件下,用铝塑膜,塑封上述步骤S200的已植入参比电极2的锂离子电池1,得到带有参比电极2的锂离子电池1。
采用充放电测试仪或其他电流源等设备分别连接带有参比电极2的锂离子电池1的正极3和负极4,进行充放电测试。对组装的带有参比电极2的测量装置中锂离子电池1的性能进行检测,测量电路连接示意图如图10所示:通过高输入阻抗同步电压采集设备的三个测试通道,利用通道一对带有参比电极2锂离子电池1的外电路电压U1,通道二对负极-参比电压U2以及通道三对正极-参比电压U3进行检测与记录。同时,利用通道一对带有参比电极2的锂离子电池1进行多种不同的充放电循环测试,上下截止电压分别设置为4.2V及2.5V,同时记录充放电时电流大小。以下列举两种不同充放电循环测试的结果分析。
图11为带有参比电极2的电池充放倍率测试结果图。该图像中,横轴代表测试时间,纵轴表示测试电压。实线代表的电池的外电路电压,虚线代表电池中参比电极2测定的负极4单电极。实验中充放电倍率由0.5C逐渐增加至1.5C,第一次充放循环使用0.5C充放,第二次循环使用1C充放,第三次充放使用1.5C充放,如图所示。根据该测试,可以发现,在充放电倍率发生变化时,外电路电压变化幅度在三次不同充放循环下一致,而参比电极2测得的负极4电压变化幅度在逐渐增大的充放电倍率下有明显增大的趋势。这一负极4电压随变化充放倍率而变化的特性仅通过测量外电路电压无法测得,而使用参比电极2可以直观简便的测得该单电极电压变化特性,因此可以体现出使用参比电极2测试的优势。
图12是带有参比电极2的电池的容量测试结果图,该图像中,横轴代表测试时间,纵轴表示测试电压。实线代表的电池的外电路电压,虚线代表电池中参比电极2测定的负极4单电极。实验中,充放倍率保持1C不变,可以看出,负极4的单电机电压相对参比电极在每次充放循环中保持稳定,同时电池整体的电压在每次充放循环中保持稳定,表明参比电极2在实验要求的范围内具有较好的寿命,同时参比电极2不会干扰电池的工作。

Claims (19)

  1. 一种参比电极制备方法,其特征在于,包括:
    S11,清洗晾干参比电极基片(7);
    S12,将所述参比电极基片(7)焊接到上部粘有极耳胶(5)的集流体金属片(6)下部;
    S13,在无水无氧环境中使金属锂熔化呈现液态,继续加热去除液体所述金属锂表面的杂质;
    S14,将焊接有所述集流体金属片(6)的所述参比电极基片(7)的下部浸润液态锂中并静置,使所述参比电极基片(7)的下部包覆一层所述金属锂;
    S15,将所述焊接有所述集流体金属片(6)的所述参比电极(2)从所述液态锂中取出冷却,采用卷绕的方法,在所述极耳胶(5)的下部覆盖包裹一层隔膜,得到裹附有所述隔膜的所述参比电极(2)。
  2. 根据权利要求1所述的参比电极制备方法,其特征在于,在所述步骤S11之前:
    S011,选取多孔结构的泡沫铜、泡沫镍、网状铜或网状作为所述参比电极基片(7)。
  3. 根据权利要求1所述的参比电极制备方法,其特征在于,在所述步骤S11中,所述参比电极基片(7)采用丙酮或去离子水进行清洗晾干后备用。
  4. 根据权利要求1所述的参比电极制备方法,其特征在于,在所述步骤S12中,将所述参比电极基片(7)焊接于上部粘有所述极耳胶(5)的所述集流体金属片(6)下部,使所述参比电极基片(7)的上部与所述集流体金属片(6)的下部相互重叠,所述集流体金属片(6)的面积小于所述参比电极基片(7)面积。
  5. 根据权利要求1所述的参比电极制备方法,其特征在于,在所述步骤S12之后:
    S012,将焊接于所述集流体金属片(6)的所述参比电极(2)在无水无氧环境中于60-90摄氏度下,真空干燥4-7小时,干燥冷却后移入无水无氧环境保存,所述的集流体金属片(6)为汇集电流所需,所述集流体金属片(6)的材料为镍或铝。
  6. 根据权利要求1所述的参比电极制备方法,其特征在于,在所述步骤S13中,在无水无氧环境中使所述金属锂熔化呈现液态,继续加热至200-500摄氏度,去除液体所述金属锂表面的杂质。
  7. 根据权利要求1所述的参比电极制备方法,其特征在于,在所述步骤S14中,将上部焊接有所述集流体金属片(6)的所述参比电极基片(7)的下部浸润所述液态锂中并静置1-5分钟,使所述参比电极基片(7)的下部包覆一金属锂层(9)。
  8. 根据权利要求1所述的参比电极制备方法,其特征在于,在所述步骤S15中,将焊接有所述集流体金属片(6)的所述参比电极(2)从所述液态锂中取出冷却,采用卷绕的方法,在所述极耳胶(5)的下部覆盖包裹一层所述隔膜,所述隔膜将集流体金属片(6)与所述参比电极基片(7)全部包裹压紧,得到裹附有所述隔膜的所述参比电极(2),所述隔膜材料为多孔聚丙烯或多孔聚乙烯、带有陶瓷涂覆的多孔聚丙烯或聚乙烯或无纺布。
  9. 一种带有参比电极的锂离子电池的制备方法,其特征在于,包括:
    S10,制备参比电极(2),包括:
    S11,清洗晾干参比电极基片(7);
    S12,将所述参比电极基片(7)焊接到上部粘有极耳胶(5)的集流体金属片(6)下部;
    S13,在无水无氧环境中使金属锂熔化呈现液态,继续加热去除液体所述金属锂表面的杂质;
    S14,将焊接有所述集流体金属片(6)的所述参比电极基片(7)的下部浸润液态锂中并静置,使所述参比电极基片(7)的下部包覆一层所述金属锂;
    S15,将所述焊接有所述集流体金属片(6)的所述参比电极(2)从所述液态锂中取出冷却,采用卷绕的方法,在所述极耳胶(5)的下部覆盖包裹一层隔膜,得到裹附有所述隔膜的所述参比电极(2);
    S20,在无氧无水环境中,将所述参比电极(2)插入锂离子电池(1)电芯的隔膜(11)与负极极片之间,使所述参比电极(2)的上端部从所述锂离子电池(1)的电芯中露出;
    S30,在无水无氧条件下,塑封植入了所述参比电极(2)的所述锂离子电池(1),得到带有所述参比电极(2)的锂离子电池(1)。
  10. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S11之前:
    S011,选取多孔结构的泡沫铜、泡沫镍、网状铜或网状作为所述参比电极基片(7);
    其中,所述参比电极基片(7)的面积为所述锂离子电池(1)极片面积的1%-10%。
  11. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S11中,所述参比电极基片(7)采用丙酮或去离子水进行清洗晾干后备用。
  12. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S12中,将所述参比电极基片(7)焊接于上部粘有所述极耳胶(5)的所述集流体金属片(6)下部,使所述参比电极基片(7)的上部与所述集流体金属片(6)的下部相互重叠,所述集流体金属片(6)的面积小于所述参比电极基片(7)面积。
  13. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S12之后:
    S012,将焊接于所述集流体金属片(6)的所述参比电极(2)在无水无氧环境中于60-90摄氏度下,真空干燥4-7小时,干燥冷却后移入无水无氧环境保存,所述的集流体金属片(6)为汇集电流所需,所述集流体金属片(6)的材料为镍或铝。
  14. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S13中,在无水无氧环境中使所述金属锂熔化呈现液态,继续加热至200-500摄氏度,去除液体所述金属锂表面的杂质。
  15. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S14中,将上部焊接有所述集流体金属片(6)的所述参比电极基片(7)的下部 浸润所述液态锂中并静置1-5分钟,使所述参比电极基片(7)的下部包覆一金属锂层(9)。
  16. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S15中,将焊接有所述集流体金属片(6)的所述参比电极(2)从所述液态锂中取出冷却,采用卷绕的方法,在所述极耳胶(5)的下部覆盖包裹一层所述隔膜,所述隔膜将集流体金属片(6)与所述参比电极基片(7)全部包裹压紧,得到裹附有所述隔膜的所述参比电极(2),所述隔膜材料为多孔聚丙烯或多孔聚乙烯、带有陶瓷涂覆的多孔聚丙烯或聚乙烯或无纺布。
  17. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S20中,在无氧无水环境中,将所述参比电极(2)插入所述锂离子电池(1)电芯的隔膜(11)与负极极片之间,使所述参比电极(2)的上端部从所述锂离子电池(1)的电芯中露出1-2mm。
  18. 根据权利要求9所述的带有参比电极的锂离子电池的制备方法,其特征在于,在所述步骤S30中,在无水无氧条件下,采用铝塑膜塑封植入了所述参比电极(2)的所述锂离子电池(1),得到带有所述参比电极(2)的锂离子电池(1)。
  19. 一种带有参比电极的锂离子电池的制备方法,其特征在于,包括:
    S100,制备参比电极(2),包括:
    S110,以多孔结构的泡沫铜、泡沫镍、网状铜或网状作为参比电极基片(7),所述参比基片材料的孔径为:50-500μm,所述参比电极基片(7)的厚度为:0.1-1mm,所述参比电极基片(7)的面积为锂离子电池(1)极片面积的1%-10%,将所述参比电极基片(7)用丙酮或去离子水清洗晾干后备用;
    S120,将所述步骤S110得到的所述参比电极基片(7)焊接到上部粘有极耳胶(5)的集流体金属片(6)的下部,使所述参比电极基片(7)的上部与所述集流体金属片(6)的下部相互重叠,所述集流体金属片(6)的面积小于所述参比基片面积;在无水无氧环境中于60-90摄氏度下,真空干燥4-7小时,干燥冷却后移入无水无氧环境保存,所述集流体金属片(6)为汇集电流所需,所述集流体金属片(6)的材料为镍或铝,所述集流体金属片(6)的厚度为0.1-1mm,长度为10-30mm;
    S130,在无水无氧环境中使金属锂熔化呈现液态,继续加热至200-500摄氏度,去除液体所述金属锂表面的杂质,将上述步骤S120中上部焊接有所述集流体金属片(6)的所述参比电极基片(7)的下部浸润液态锂中,静置1-5分钟,使所述参比电极基片(7)的下部包覆一金属锂层(9),所述金属锂层(9)的厚度为10-100μm;取出冷却,采用卷绕的方法,在所述极耳胶(5)的下部覆盖包裹一层隔膜,将集流体金属片(6)与参比电极基片(7)全部包裹压紧,得到裹附有所述隔膜的所述参比电极(2),所述隔膜材料为多孔聚丙烯或多孔聚乙烯、带有陶瓷涂覆的多孔聚丙烯或聚乙烯或无纺布;
    S200,在无氧无水环境中,将所述步骤S100制备的所述参比电极(2)插入所述锂离子电池(1)电芯的隔膜(11)与负极极片之间,使参比电极(2)的上端部从所述锂离子电池(1)的电芯中露出1-2mm;
    S300,在无水无氧条件下,用铝塑膜,塑封上述步骤S200的已植入所述参比电极(2)的所述锂离子电池(1),得到带有所述参比电极(2)的锂离子电池(1)。
PCT/CN2018/114516 2017-11-17 2018-11-08 参比电极以及带有参比电极的锂离子电池的制备方法 WO2019096053A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/641,952 US11362323B2 (en) 2017-11-17 2018-11-08 Method for preparing reference electrode and lithium ion battery with reference electrode
EP18878895.4A EP3713005A4 (en) 2017-11-17 2018-11-08 REFERENCE ELECTRODE AND PROCESS FOR PREPARING A LITHIUM-ION BATTERY HAVING A REFERENCE ELECTRODE
US16/875,932 US20200280051A1 (en) 2017-11-17 2020-05-15 Methods for making reference electrode and lithium ion battery having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711143955.2A CN108107092B (zh) 2017-11-17 2017-11-17 一种带有参比电极的锂离子电池的浸润制备方法
CN201711143955.2 2017-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/875,932 Continuation US20200280051A1 (en) 2017-11-17 2020-05-15 Methods for making reference electrode and lithium ion battery having the same

Publications (1)

Publication Number Publication Date
WO2019096053A1 true WO2019096053A1 (zh) 2019-05-23

Family

ID=62206964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114516 WO2019096053A1 (zh) 2017-11-17 2018-11-08 参比电极以及带有参比电极的锂离子电池的制备方法

Country Status (4)

Country Link
US (2) US11362323B2 (zh)
EP (1) EP3713005A4 (zh)
CN (1) CN108107092B (zh)
WO (1) WO2019096053A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702751A (zh) * 2019-09-18 2020-01-17 清华大学 锂离子电池参比电极制备方法及锂离子电池参比电极
CN114361606A (zh) * 2020-09-28 2022-04-15 比亚迪股份有限公司 极芯、电池以及电池模组

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107092B (zh) * 2017-11-17 2019-09-27 清华大学 一种带有参比电极的锂离子电池的浸润制备方法
CN108987836A (zh) * 2018-06-15 2018-12-11 桑顿新能源科技有限公司 一种锂离子电池三电极体系及其制备方法
CN108987659A (zh) * 2018-06-26 2018-12-11 桑顿新能源科技有限公司 一种锂离子软包电池四电极体系及其制备方法
KR102412587B1 (ko) * 2018-11-29 2022-06-23 주식회사 엘지에너지솔루션 셀 성능 측정방법
CN110988068B (zh) * 2019-12-19 2021-04-06 清华大学 一种锂电池用长效金属锂参比电极的制备方法
CN111600077B (zh) * 2020-05-29 2021-07-06 重庆金康新能源汽车有限公司 具有涂覆的锂参比电极的电池电芯和提供方法
CN112084627B (zh) * 2020-08-07 2022-09-30 合肥国轩高科动力能源有限公司 一种定性表征电解液浸润性的方法
CN112054162B (zh) * 2020-09-16 2022-02-25 北京理工大学 一种锂电池用金属锂参比电极的封装方法
CN114335920A (zh) * 2020-09-30 2022-04-12 宝武炭材料科技有限公司 一种锂离子电池参比电极、三电极电池及其制备方法
FR3115162A1 (fr) * 2020-10-08 2022-04-15 Renault S.A.S. Electrode pour cellule de batterie solide et procédé de fabrication d’une cellule de batterie utilisant une telle électrode.
CN112510208B (zh) * 2020-11-27 2022-04-19 浙江南都电源动力股份有限公司 一种折叠式石墨烯集流体及制备方法与锂离子电池
CN113514520B (zh) * 2021-04-16 2022-11-15 清华大学 薄膜参比电极及其制备方法
CN113178612B (zh) * 2021-04-27 2023-12-15 Oppo广东移动通信有限公司 电池组件及其控制方法和电子设备
FR3128584B1 (fr) * 2021-10-26 2023-10-27 Commissariat Energie Atomique Collecteur de courant d’un élément d’instrumentation d’un système électrochimique avec jonction obtenue par scellage thermique d’un polymère thermofusible à une bande électriquement conductrice supportée par le séparateur électriquement isolant du système.
CN115360437B (zh) * 2022-08-23 2023-04-14 楚能新能源股份有限公司 预锂化方法、制造锂二次电池的方法及锂二次电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201904414U (zh) * 2010-12-16 2011-07-20 天津力神电池股份有限公司 三电极电池
US20120027926A1 (en) * 2010-07-30 2012-02-02 Honjo Metal Co., Ltd. Reference electrode, its manufacturing method, and an electrochemical cell
CN203150666U (zh) * 2013-02-25 2013-08-21 东莞新能源科技有限公司 一种新型锂离子电池的参比电极
JP2013191532A (ja) * 2012-02-14 2013-09-26 Nippon Soken Inc リチウムイオン二次電池およびその製造方法
CN105308786A (zh) * 2013-06-20 2016-02-03 Hrl实验室有限责任公司 具有用于电压监测的参比电极的电池
US20160308260A1 (en) * 2013-12-13 2016-10-20 GM Global Technology Operations LLC Incorporating reference electrodes into battery pouch cells
CN106785068A (zh) * 2017-01-08 2017-05-31 合肥国轩高科动力能源有限公司 一种三电极软包电池及其制备方法
CN108107092A (zh) * 2017-11-17 2018-06-01 清华大学 一种带有参比电极的锂离子电池的浸润制备方法
CN207530063U (zh) * 2017-11-17 2018-06-22 清华大学 一种带有参比电极的锂离子电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581080B1 (fr) * 1985-04-24 1987-06-19 Metaux Speciaux Sa Procede et dispositif de purification du lithium
WO2004059672A1 (ja) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha 蓄電装置および蓄電装置の製造方法
US8679677B1 (en) * 2009-12-21 2014-03-25 Quallion Llc Incorportation of reference electrode into electrodes of electrochemical device
KR101710655B1 (ko) 2013-07-04 2017-02-27 주식회사 엘지화학 기준전극을 구비하는 이차전지
KR101484042B1 (ko) * 2014-07-23 2015-01-19 국방과학연구소 박막형 메탈폼 및 컵을 적용한 열활성화 방식 비축형전지 음극 제조방법
CN105470577A (zh) * 2015-02-16 2016-04-06 万向A一二三系统有限公司 一种软包装锂离子电池三电极组装方法
KR101999773B1 (ko) * 2015-08-24 2019-07-12 주식회사 엘지화학 상대 전극전위의 측정을 위한 기준 전극을 포함하고 있는 전지셀의 제조 방법 및 이로 제조된 전지셀
CN106784635B (zh) 2017-01-13 2019-04-09 北京科技大学 一种固态电池用复合锂负极的制备方法
CN107026282A (zh) * 2017-06-02 2017-08-08 中天储能科技有限公司 一种锂离子电池三电极体系及其测试方法
WO2020226241A1 (ko) * 2019-05-07 2020-11-12 국방과학연구소 열전지용 음극, 열전지용 음극의 제조 장치 및 열전지용 음극의 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027926A1 (en) * 2010-07-30 2012-02-02 Honjo Metal Co., Ltd. Reference electrode, its manufacturing method, and an electrochemical cell
CN201904414U (zh) * 2010-12-16 2011-07-20 天津力神电池股份有限公司 三电极电池
JP2013191532A (ja) * 2012-02-14 2013-09-26 Nippon Soken Inc リチウムイオン二次電池およびその製造方法
CN203150666U (zh) * 2013-02-25 2013-08-21 东莞新能源科技有限公司 一种新型锂离子电池的参比电极
CN105308786A (zh) * 2013-06-20 2016-02-03 Hrl实验室有限责任公司 具有用于电压监测的参比电极的电池
US20160308260A1 (en) * 2013-12-13 2016-10-20 GM Global Technology Operations LLC Incorporating reference electrodes into battery pouch cells
CN106785068A (zh) * 2017-01-08 2017-05-31 合肥国轩高科动力能源有限公司 一种三电极软包电池及其制备方法
CN108107092A (zh) * 2017-11-17 2018-06-01 清华大学 一种带有参比电极的锂离子电池的浸润制备方法
CN207530063U (zh) * 2017-11-17 2018-06-22 清华大学 一种带有参比电极的锂离子电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Development of reliable lithium micro-reference electrodes for long-term in-situ studies of lithium-based battery systems", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004
"Self-Discharge of LiMn 0 lC Li-Ion Cells in Their Discharged State", J. ELECTROCHEM.SOC., vol. 145, no. 1, 1998
See also references of EP3713005A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702751A (zh) * 2019-09-18 2020-01-17 清华大学 锂离子电池参比电极制备方法及锂离子电池参比电极
CN114361606A (zh) * 2020-09-28 2022-04-15 比亚迪股份有限公司 极芯、电池以及电池模组
CN114361606B (zh) * 2020-09-28 2023-08-08 比亚迪股份有限公司 极芯、电池以及电池模组

Also Published As

Publication number Publication date
US20210135322A1 (en) 2021-05-06
US11362323B2 (en) 2022-06-14
EP3713005A4 (en) 2021-01-06
EP3713005A1 (en) 2020-09-23
US20200280051A1 (en) 2020-09-03
CN108107092B (zh) 2019-09-27
CN108107092A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
WO2019096053A1 (zh) 参比电极以及带有参比电极的锂离子电池的制备方法
CN207530063U (zh) 一种带有参比电极的锂离子电池
JP6050797B2 (ja) セパレータ及びリチウムイオン二次電池
CN108427077A (zh) 一种利用参比电极监测负极析锂的实验方法
WO2022143210A1 (zh) 极片及电池
CN108039514B (zh) 一种带有参比电极的锂离子电池的电镀制备方法
Chen et al. Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode
CN111009679A (zh) 一种三电极电芯、三电极软包电池及其制备方法
US20080066297A1 (en) Forming Solid Electrolyte Interface Layer on Lithium-Ion Polymer Battery Electrode
CN109494349B (zh) 负极极片及二次电池
CN112151764A (zh) 一种电极极片及其制备方法和应用
JPWO2018207530A1 (ja) 非水電解質二次電池
US20210218113A1 (en) Polymer separator and preparation method and use thereof, lithium-ion battery and preparation method thereof
CN112151777A (zh) 一种负极极片及其制备方法
CN110702751B (zh) 锂离子电池参比电极制备方法及锂离子电池参比电极
WO2023078043A1 (zh) 用于制备参比电极的方法、参比电极、用于制备三电极电池的方法、三电极电池
CN109428054B (zh) 阳极极片、锂离子二次电池及制备方法
US20080070103A1 (en) Activation of Anode and Cathode in Lithium-Ion Polymer Battery
JP2015210848A (ja) 非水電解質二次電池
JP7052697B2 (ja) リチウムイオン二次電池の製造方法
CN113097650A (zh) 复合隔膜在锂锰扣式电池中的应用、复合隔膜的制备方法和锂锰扣式电池
CN111366852A (zh) 一种石墨电极充电状态的原位观测的方法及其装置
JP2015032572A (ja) 電池の劣化分析方法
JPH09219185A (ja) 電池用隔膜及びその製造方法
CN110231569A (zh) 全固体电池的检查方法、全固体电池的制造方法和电池组的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878895

Country of ref document: EP

Effective date: 20200617