WO2019093290A1 - ガス浸炭装置及びガス浸炭方法 - Google Patents

ガス浸炭装置及びガス浸炭方法 Download PDF

Info

Publication number
WO2019093290A1
WO2019093290A1 PCT/JP2018/041085 JP2018041085W WO2019093290A1 WO 2019093290 A1 WO2019093290 A1 WO 2019093290A1 JP 2018041085 W JP2018041085 W JP 2018041085W WO 2019093290 A1 WO2019093290 A1 WO 2019093290A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carburizing
injection nozzle
inner peripheral
work
Prior art date
Application number
PCT/JP2018/041085
Other languages
English (en)
French (fr)
Inventor
拓也 北
朝岡 純也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880072033.3A priority Critical patent/CN111315913B/zh
Priority to EP18875773.6A priority patent/EP3708695A4/en
Publication of WO2019093290A1 publication Critical patent/WO2019093290A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0025Supports; Baskets; Containers; Covers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0043Muffle furnaces; Retort furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a gas carburizing apparatus and a gas carburizing method for performing gas carburizing on a work to be rotated.
  • Patent Document 1 a disk-shaped work placed on two shafts is rotated by the rotation of two shafts, and is heated by an induction heating coil and disposed in a heating furnace.
  • the carburizing gas is supplied from the upper side to the disk-shaped workpiece thus formed to carry out gas carburization.
  • the carburizing gas flows into the inside of the heating furnace through the supply hole provided in the supply flow passage, and the heating furnace through the discharge port provided in the discharge flow passage. Flow out of the That is, in this gas permeation heat treatment apparatus, it is not considered that the carburizing gas is made to collide with a portion of the work where the carburization is necessary.
  • the present disclosure is obtained in an attempt to provide a gas carburizing apparatus and a gas carburizing method capable of performing gas carburization on the inner peripheral surface and the outer peripheral surface of a cylindrical portion of a workpiece as uniformly as possible.
  • One aspect of the present disclosure relates to a carburizing container in which a work having a cylindrical portion is accommodated; A rotational support member for rotating the work about a central axis of the cylindrical portion; An induction heating coil for induction heating the work; An inner circumference injection nozzle which is disposed in the carburization container and injects and collides with a carburizing gas to the inner peripheral surface of the cylindrical portion; And an outer peripheral injection nozzle disposed in the carburizing container and injecting and colliding a carburizing gas to an outer peripheral surface of the cylindrical portion.
  • Another aspect of the present disclosure is to rotate a work having a cylindrically shaped part around a central axis of the cylindrically shaped part by means of a rotation support member, and to inductively heat the workd by an induction heating coil, And, the carburizing gas injected from the inner peripheral injection nozzle is made to collide with the inner peripheral surface of the cylindrical portion to perform gas carburizing on the inner peripheral surface, and the outer peripheral injection nozzle injects the outer peripheral surface to the outer peripheral surface of the cylindrical portion.
  • the carburizing gas is made to collide to perform gas carburizing on the outer peripheral surface.
  • the gas carburizing apparatus is equipped with a special nozzle specialized for performing gas carburizing of a work having a cylindrical portion. Specifically, the gas carburizing apparatus injects carburizing gas to the outer peripheral surface of the cylindrical portion, by injecting an inner peripheral injection nozzle for injecting and colliding carburizing gas to the inner peripheral surface of the cylindrical portion in the carburizing container. And an outer peripheral injection nozzle for colliding. Then, a carburizing component such as carbon in the carburizing gas mainly injected from the inner peripheral injection nozzle is made to permeate the inner peripheral surface of the cylindrical part, and the outer peripheral surface of the cylindrical part is mainly injected from the outer peripheral injection nozzle The carburizing components such as carbon in the carburized gas are permeated.
  • the work is rotated by the rotation support member and the work is heated by the induction heating coil. Then, the carburizing gas ejected from the inner peripheral injection nozzle collides with the entire circumference of the inner peripheral surface of the cylindrical portion of the rotating workpiece, and the outer peripheral injection nozzle is formed over the entire peripheral surface of the cylindrical portion of the rotating workpiece.
  • the carburizing gas jetted from the vehicle collides.
  • the carburized component in the carburized gas colliding with the appropriate injection flow rate can be properly diffused and permeated around the entire circumference of the inner circumferential surface of the cylindrical portion and the entire circumference of the outer circumferential surface of the cylindrical portion.
  • the gas carburizing apparatus of the one aspect can be performed as uniformly as possible on the inner peripheral surface and the outer peripheral surface of the cylindrical portion of the work.
  • gas carburizing can be performed as uniformly as possible on the inner peripheral surface and the outer peripheral surface of the cylindrical portion of the work.
  • FIG. 1 BRIEF DESCRIPTION OF THE DRAWINGS Sectional explanatory drawing which shows the gas carburizing apparatus concerning Embodiment 1.
  • the gas carburizing apparatus 1 of the present embodiment includes a carburizing container 2, a rotation support member 3, an induction heating coil 4, an inner peripheral injection nozzle 51A, and an outer peripheral injection nozzle 52.
  • the carburizing container 2 accommodates a work 7 having a cylindrical portion 71 for performing gas carburization.
  • the rotation support member 3 is for rotating the work 7 about the central axis O1 of the cylindrical portion 71.
  • the induction heating coil 4 is helically disposed on the outer peripheral side of the work 7 and is for induction heating the work 7.
  • the inner peripheral injection nozzle 51 ⁇ / b> A is disposed in the carburizing container 2, and injects the carburizing gas G onto the inner peripheral surface 711 of the cylindrical portion 71 to cause a collision.
  • the outer peripheral injection nozzle 52 is disposed in the carburizing container 2 and injects the carburizing gas G to the outer peripheral surface 712 of the cylindrical portion 71 to cause the outer peripheral surface 712 to collide with the outer peripheral surface 712.
  • the work 7 having the cylindrical portion 71 is rotated by the rotation support member 3 about the central axis O1 of the cylindrical portion 71, and the work 7 is induction heated by the induction heating coil 4. .
  • the carburizing gas G injected from the inner peripheral injection nozzle 51A is made to collide with the inner peripheral surface 711 of the cylindrical portion 71 to perform gas carburization on the inner peripheral surface 711
  • the carburizing gas G injected from the outer peripheral injection nozzle 52 collides with the outer peripheral surface 712 to perform gas carburization on the outer peripheral surface 712.
  • Gas carburizing apparatus 1 In the gas carburizing apparatus 1 and the gas carburizing method, carbon is diffused and permeated to the surface of the work 7 for the purpose of forming a carburized hardened layer having a predetermined hardness on the surface of the work 7 which is various steel materials. is there. Further, at this time, the work 7 is subjected to heat treatment, and the work 7 is carburized and quenched.
  • a carburizing process When performing gas carburization in the gas carburizing apparatus 1 and the gas carburizing method, a carburizing process, a diffusion process, and a cooling process are performed.
  • the carburizing step the work 7 is heated to a heat treatment temperature at which the metal structure of the work 7 becomes an austenite structure, and a chemical reaction is performed on the carburizing gas G and the surface of the work 7.
  • the diffusion step carbon as a carburized component in the carburized gas G diffuses from the surface of the workpiece 7 to the inside.
  • the cooling step the heated workpiece 7 is quenched, the metal structure of the workpiece 7 becomes a martensitic structure, and gas carburization is completed. After gas carburization is performed, the carbon concentration in the vicinity of the surface of the workpiece 7 becomes higher than the carbon concentration in the workpiece 7.
  • gas carburization indicates that carbon is diffused and permeated to the surface of the work 7.
  • gas carburizing may be configured to diffuse and permeate carbon and nitrogen to the surface of the work 7 as gas carbonitriding.
  • the work 7 of this embodiment has a cylindrical shape with a bottom.
  • the work 7 includes a cylindrically shaped portion 71, a cross portion 72 as a bottom portion or a node portion connected to the inner peripheral side of the other side end portion of the cylindrically shaped portion 71 in the axial direction L, and the other side in the axial direction L And a convex portion 73 protruding to L2.
  • a through hole 720 is formed at the center position of the intersection portion 72, and a plurality of (four in the present embodiment) convex portions 73 are formed at equal intervals around the central axis O1 of the cylindrical portion 71.
  • the convex part 73 has a cylindrical shape.
  • a tapered diameter-reduced portion 713 is formed which is reduced in diameter toward the other side L2 of the axial direction L.
  • the carburizing container 2 of the gas carburizing apparatus 1 is formed in a cylindrical shape, and a central axis O1 of the cylindrical carburizing container 2 is horizontally oriented.
  • a storage chamber 21 in which the work 7 is stored is formed in the carburizing container 2.
  • An inlet 211 of the work 7 is formed on one side in the horizontal direction of the storage chamber 21, and an outlet 212 of the work 7 is formed on the other side of the storage chamber 21 in the horizontal direction.
  • the rotation support member 3 is constituted by a pair of parallel rotation shaft members 31 on which the work 7 can be placed.
  • the pair of rotary shaft members 31 is disposed at a lower position of the storage chamber 21 of the carburizing container 2.
  • At least one of the rotating shaft members 31 is connected to a driving source such as a motor that applies a rotational force to the rotating shaft member 31.
  • the pair of rotary shaft members 31 rotate the workpiece 7 by being in rotational contact with the outer peripheral surface 712 of the cylindrical portion 71 from below.
  • the workpiece 7 is rotated by rolling contact of the cylindrical portion 71 with the rotary shaft member 31.
  • the pair of rotation shaft members 31 can slide in the axial direction L so that the work 7 can be carried into the storage chamber 21 and the work 7 can be carried out from the storage chamber 21.
  • the axial direction L is not only the axial direction L of the cylindrical portion 71 of the work 7, but also the axial direction L of the carburizing container 2, the pair of rotary shaft members 31, the induction heating coil 4 and the like in the gas carburizing apparatus 1. Also used as a word to indicate.
  • the induction heating coil 4 is configured by using a spiral conductor, and generates a magnetic flux at an inner position surrounded by the spiral conductor when the spiral conductor is energized. Further, the work 7 is heated by the eddy current generated when the magnetic flux from the induction heating coil 4 penetrates the work 7.
  • the induction heating coil 4 is disposed so as to face the outer circumferential surface 712 of the carburized container 2 so as to dispose the carburized container 2 on the inner circumferential side.
  • the inner peripheral injection nozzles 51A, 51B and the outer peripheral injection nozzle 52 of the present embodiment are disposed at the upper position in the storage chamber 21 of the carburizing container 2 and are directed downward or obliquely downward. It is configured to inject the carburizing gas G.
  • the outer peripheral injection nozzle 52 is configured to inject the carburizing gas G downward to cause the carburizing gas G to collide with the upper position of the outer peripheral surface 712 of the cylindrical portion 71 of the workpiece 7. Further, in the present embodiment, the carburized gas G injected from the outer peripheral injection nozzle 52 collides with the upper position of the outer peripheral surface 712 of the reduced diameter portion 713 of the cylindrical portion 71 of the workpiece 7.
  • the inner peripheral injection nozzles 51A and 51B are composed of a first inner peripheral injection nozzle 51A and a second inner peripheral injection nozzle 51B in order to inject the carburizing gas G to different parts on the inner peripheral side of the workpiece 7.
  • the first inner injection nozzle 51A injects the carburizing gas G in a state of being inclined from the one side L1 in the axial direction L of the cylindrical portion 71 to the center side.
  • the first inner injection nozzle 51A is disposed above the one side L1 in the axial direction L of the workpiece 7, and injects the carburizing gas G obliquely downward toward the workpiece 7.
  • the injection center axis O2 of the carburizing gas G injected from the first inner injection nozzle 51A is inclined toward the center of the axial direction L toward the workpiece 7. Then, the carburized gas G injected from the first inner peripheral injection nozzle 51A collides with a first concave corner portion 74A described below which is disposed on the lower side of the rotating work 7.
  • the second inner peripheral injection nozzle 51B injects the carburizing gas G in a state of being inclined from the other side L2 in the axial direction L of the cylindrical portion 71 to the center side.
  • the second inner injection nozzle 51 B is disposed above the other side L 2 in the axial direction L of the work 7 and injects the carburizing gas G obliquely downward toward the work 7.
  • the injection center axis O2 of the carburizing gas G injected from the second inner peripheral injection nozzle 51B is inclined toward the center of the axial direction L toward the workpiece 7.
  • the carburized gas G injected from the second inner peripheral injection nozzle 51B collides with a second concave corner portion 74B described below which is disposed on the lower side of the rotating workpiece 7.
  • the outer peripheral injection nozzle 52, the first inner peripheral injection nozzle 51A, and the second inner peripheral injection nozzle 51B are arranged on the upper side in the storage chamber 21 so that the injection flow rate can be set separately. It is provided in separate piping 61A, 61B, 62 arrange
  • the outer peripheral injection nozzle 52 is branched downward from the outer peripheral pipe 62 and provided.
  • the first inner injection nozzle 51A is branched from the first inner pipe 61A and inclined downward to the other side L2 in the axial direction L.
  • the second inner peripheral injection nozzle 51B is branched from the second inner peripheral pipe 61B and inclined downward to the one side L1 in the axial direction L.
  • the outer peripheral pipe 62, the first inner peripheral pipe 61 ⁇ / b> A and the second inner peripheral pipe 61 ⁇ / b> B are disposed in the storage chamber 21 along the axial direction L of the carburizing container 2.
  • the outer peripheral piping 62 and the outer peripheral injection nozzle 52 are disposed at the upper position in the storage chamber 21.
  • the first inner peripheral piping 61A and the first inner peripheral injection nozzle 51A are disposed at a position shifted from the upper position in the storage chamber 21 to one side in the circumferential direction C of the work 7.
  • the second inner peripheral pipe 61B and the second inner peripheral injection nozzle 51B are disposed at a position shifted from the upper position in the storage chamber 21 to the other side in the circumferential direction C of the work 7.
  • the outer peripheral pipe 62 and the respective inner peripheral pipes 61A and 62B can be disposed within the range of the upper half in the storage chamber 21.
  • the rotary support member 3 is disposed in the lower half of the storage chamber 21. Therefore, by arranging each of the pipes 61A, 61B, 62 in the range of the upper half in the storage chamber 21, the space in the storage chamber 21 can be effectively used.
  • the arrangement direction and injection flow rate of the outer peripheral injection nozzle 52 and the respective inner peripheral injection nozzles 51A and 51B are set so that the carburizing gas G having a solid solution limit concentration is carburized on the entire surface of the work 7 according to the shape of the work 7 It is done.
  • the solid solution limit concentration refers to the limit of the concentration at which carbon in the carburizing gas G can diffuse and permeate into the surface of the workpiece 7 when the carburizing gas G contacts the surface of the workpiece 7.
  • the solid solution limit concentration is represented by the fact that when the carburizing gas G sufficiently contacts the surface of the work 7, the carbon concentration on the surface of the work 7 falls within a concentration range in which the carbon concentration is substantially constant.
  • the solid solution limit concentration is set to a value larger than the carbon concentration of the surface of the work 7 for obtaining the desired hardness on the surface of the work 7 in consideration of the heat treatment temperature and the like at the time of gas carburizing.
  • the injection openings of the injection nozzles 51A, 51B, 52 have a circular shape, and the injection openings of the injection nozzles 51A, 51B, 52 spread conically and the carburizing gas G is injected.
  • the carburized surface (carburized range) having a solid solution limit concentration in the work 7 has a solid solution limit surface area. It is formed as a circular surface.
  • the solid solution limit surface area is expressed as the surface area on the surface of the work 7 at the solid solution limit concentration.
  • the solid solution limit surface area is an injection of the carburizing gas G from each of the injection nozzles 51A, 51B, 52 when all of the carburized gas G injected from each of the injection nozzles 51A, 51B, 52 collides with the surface of the workpiece 7.
  • the flow velocity of the carburizing gas G injected from each of the injection nozzles 51A, 51B, 52 is a flow velocity at which almost all of them collide with the surface of the workpiece 7.
  • the carburizing range to be the solid solution limit concentration includes more range in which the carburizing gas G spreads on the surface of the workpiece 7 as the distance from each of the jet nozzles 51A, 51B, 52 to the surface of the workpiece 7 is shorter.
  • the solid solution limit surface area as the carburized range at the solid solution limit concentration is determined Indicates whether it has changed. Further, in the same figure, a change in the solid solution limit surface area is also shown when the injection distance, which is the distance from the tip of the injection nozzle (injection opening) to the surface of the workpiece 7, is appropriately changed.
  • the injection distance which is the distance from the tip of the injection nozzle (injection opening) to the surface of the workpiece 7.
  • the relationship between the injection flow rate and the solid solution limit surface area with the injection distance as a parameter is used as an index for setting the injection flow rate of each injection nozzle 51A, 51B, 52 in the gas carburizing apparatus 1 and the gas carburizing method. Use.
  • the injection distances D1, D2, D3 are distances from the tips of the injection nozzles 51A, 51B, 52 until the injection central axis O2 of the injection nozzles 51A, 51B, 52 comes in contact with the surface of the workpiece 7.
  • the injection flow rate of the carburizing gas G by the first inner injection nozzle 51A, the injection flow rate of the carburizing gas G by the second inner injection nozzle 51B, and the injection flow rate of the carburizing gas G by the outer injection nozzle 52 are respectively the first inner pipe It can change by adjusting the opening degree of the flow control valve arrange
  • the injection flow rate by each injection nozzle 51A, 51B, 52 can be set individually. Thereby, the concentration of the carburizing gas G injected from each of the injection nozzles 51A, 51B, 52 can be appropriately adjusted, and almost the entire surface of the workpiece 7 can be impregnated with carbon serving as the solid solution limit concentration.
  • each injection nozzle 51A, 51B, 52 of this form When determining the injection flow volume of each injection nozzle 51A, 51B, 52 of this form, the relationship between the injection flow volume of each injection nozzle 51A, 51B, 52 and the solid solution limit surface area is utilized. Specifically, in the gas carburizing apparatus 1, the injection flow rate of the carburizing gas G by the first inner injection nozzle 51A and carbon in the carburizing gas G injected from the first inner injection nozzle 51A are dissolved in the work 7 A first inner peripheral relationship with the first inner solid solution limit surface area capable of solid solution up to the limit concentration is defined.
  • the injection flow rate of the carburizing gas G by the second inner peripheral injection nozzle 51B and the carbon in the carburized gas G injected from the second inner peripheral injection nozzle 51B are up to the solid solution concentration in the work 7
  • a second inner circumferential relationship with the second inner solid solution limit surface area capable of solid solution is defined.
  • the periphery flow of the carburizing gas G by the periphery injection nozzle 52 and carbon in the carburization gas G injected from the periphery injection nozzle 52 can be solidly dissolved in the work 7 up to the solid solution limit concentration
  • An outer peripheral side relationship with the melting surface area is defined.
  • the first inner side relationship, the second inner side relationship, and the outer side relationship are all determined as the case where all of the carburizing gas G injected from each of the injection nozzles 51A, 51B, 52 collides with the work 7 It is done. And, in the gas carburizing apparatus 1, the respective injection nozzles 51A such that the total surface area of the work 7 is equal to or less than the total of the first inner solid solution limit surface area, the second inner solid solution limit surface area and the outer solid solution limit surface area. , 51B, 52, the injection flow rate of the carburizing gas G is set.
  • carbon in the carburizing gas G injected from each of the injection nozzles 51A, 51B, 52 can be diffused and permeated to each part on the surface of the work 7 to the solid solution limit concentration. And, it is possible to make the carbon concentration in each portion of the surface of the work 7 as non-uniform as possible.
  • the arrangement location, arrangement direction, and injection flow rate of each of the inner peripheral injection nozzles 51A and 51B and the outer peripheral injection nozzle 52 is a work 7 having a cylindrical portion 71, an intersection (bottom) 72 and a projection 73.
  • the carburizing gas G In order to contact the carburizing gas G with each site
  • the carburizing gas G hardly reaches the portion located on the inner peripheral side.
  • the injection direction of the carburizing gas G by each of the injection nozzles 51A, 51B, 52 is determined in order to facilitate the penetration of the carburizing gas G into the concave corner portions 74A, 74B, 74C.
  • the first concave corner portion 74A is included in the injection range R of the carburizing gas G by the first inner peripheral injection nozzle 51A
  • the second concave corner portion 74B is included in the injection range R of the carburizing gas G by the second inner peripheral injection nozzle 51B
  • the third concave corner portion 74C is the injection range R of the carburizing gas G by the outer peripheral injection nozzle 52. It is contained within.
  • the second concave corner portion 74 B includes the intersection portion 72 and an inner peripheral side surface 731 located on the inner peripheral side of each convex portion 73 (in the range of 180 ° close to the central axis O 1 of the work 7 It refers to the corner formed between it and the side surface).
  • the third concave corner portion 74C is formed between the intersection portion 72 and the outer peripheral side surface 732 located on the outer peripheral side of each convex portion 73 (side surface in the range of 180 ° far from the central axis O1 of the work 7). It refers to the corner that has been
  • the arrangement direction of the first inner injection nozzle 51A is set as a direction in which the carburizing gas G can collide with the portion of the work 7 located below the first concave corner portion 74A. Since the work 7 is rotating at a constant speed by the rotation support member 3, the entire circumference of the first concave corner portion 74A is the injection range of the carburizing gas G by the first inner circumference injection nozzle 51A when the work 7 makes one rotation. It will be included in R.
  • the arrangement direction of the second inner peripheral injection nozzle 51B is set as a direction in which the carburizing gas G can collide with the second concave corner portion 74B arranged on the lower side of the work 7. Since the work 7 is rotating at a constant speed by the rotation support member 3, when the work 7 makes one rotation, all the second concave corner portions 74B are the injection range R of the carburizing gas G by the second inner peripheral injection nozzle 51B. Will be included within.
  • the arrangement direction of the outer peripheral injection nozzle 52 is set as a direction in which the carburizing gas G can collide with the reduced diameter portion 713 and the third concave corner portion 74C arranged on the upper side of the work 7. Since the work 7 is rotating at a constant speed by the rotation support member 3, the entire circumference of the third concave corner portion 74 C falls within the injection range R of the carburizing gas G by the outer peripheral injection nozzle 52 when the work 7 makes one rotation. It will be included.
  • the area of the surface considered to be reached by the carburizing gas G is divided by the respective injection nozzles 51A, 51B, 52 for the entire surface of the workpiece 7. Specifically, as shown in FIGS. 4 to 6, in the work 7, the inner circumferential surface 711 of the cylindrical portion 71 and the one end surface 721 in the axial direction L of the intersection portion 72 are combined to form the first inner portion. It is assumed that the side surface 81A.
  • the first inner side surface 81A is a surface including the first concave corner portion 74A.
  • each convex portion 73 and the inner half 722A of the other side end surface 722 in the axial direction L of the intersection portion 72 are combined to form a second inner side surface 81B.
  • the second inner side surface 81B is a surface including the second concave corner 74B.
  • the outer peripheral surface 712 of the cylindrical portion 71, the outer peripheral side surface 732 of each convex portion 73, and the outer half 722B of the other side end surface 722 in the axial direction L of the intersection portion 72 are combined to form an outer side surface 82.
  • the outer side surface 82 is a surface including the third concave corner 74C.
  • the inner peripheral side surface 731 of each convex portion 73 refers to the side surface of each convex portion 73 in the range of 180 ° on the inner peripheral side close to the central axis O1.
  • the inner half 722 A of the other side end surface 722 in the axial direction L of the intersection portion 72 is the virtual circle C 1 passing through the boundary position between the inner peripheral side surface 731 and the outer peripheral side surface 732 in the other side end surface 722. It refers to the part located on the inner side.
  • each convex portion 73 refers to the side surface of each convex portion 73 in the range of 180 ° on the outer peripheral side far from the central axis O1.
  • the outer half 722B of the other side end surface 722 in the axial direction L of the intersection portion 72 is the remaining portion of the other side end surface 722 excluding the inner half 722A, and the outer side of the other side end surface 722 is more outward than the virtual circle C1. It refers to the part located in.
  • the first inner side surface 81A is carburized by the carburizing gas G injected from the first inner peripheral injection nozzle 51A.
  • the second inner side surface 81B is carburized by the carburizing gas G injected from the second inner peripheral injection nozzle 51B.
  • the outer surface 82 is carburized by the carburizing gas G injected from the outer peripheral injection nozzle 52.
  • one end face 714 in the axial direction L of the cylindrical portion 71 intersects There is a side wall surface 723 of the through hole 720 of the portion 72 and the other end surface 733 of the plurality of convex portions 73 in the axial direction L.
  • the one side end surface 714 may be gas carburized by either the carburizing gas G injected from the first inner peripheral injection nozzle 51A or the carburized gas G injected from the outer peripheral injection nozzle 52.
  • the side wall surface 723 of the through hole 720 may be gas carburized by either the carburizing gas G injected from the first inner peripheral injection nozzle 51A or the carburized gas G injected from the second inner peripheral injection nozzle 51B.
  • the other side end surface 733 may be gas carburized by any of the carburizing gas G injected from the second inner peripheral injection nozzle 51B or the carburized gas G injected from the outer peripheral injection nozzle 52.
  • the carburizing gas G injected from the second inner peripheral injection nozzle 51 B and the carburized gas G injected from the outer peripheral injection nozzle 52 It may be gas carburized. Further, the carburized gas G injected from each of the injection nozzles 51A, 51B, 52 spreads on the surface of the workpiece 7 after colliding with the surface of the workpiece 7.
  • each portion of the surface of the work 7 of the first inner side surface 81A, the second inner side surface 81B and the outer side surface 82 is a gas in a state where the carburizing gas G injected from the plurality of injection nozzles 51A, 51B, 52 is mixed. May be carburized.
  • the surface area of the first inner side surface 81A is a first inner surface area A1
  • the surface area of the second inner side surface 81B is a second inner surface area A2
  • the surface area of the outer side surface 82 is an outer surface area A3.
  • the injection flow rate Q1 of the carburizing gas G by the first inner injection nozzle 51A, the injection flow rate Q2 of the carburizing gas G by the second inner injection nozzle 51B, and the injection flow rate Q3 of the carburizing gas G by the outer injection nozzle 52 are (1)
  • the injection nozzles 51A, 51B, 52 corresponding to the larger ones of the inner surface area A1, the second inner surface area A2 and the outer surface area A3 are set in order of increasing size.
  • the surface area increases in the order of the outer surface area A3, the first inner surface area A1, and the second inner surface area A2.
  • the surface area is in the relationship of A3> A1> A2.
  • the injection flow rates Q1, Q2, and Q3 increase in the order of the outer peripheral injection nozzle 52, the first inner peripheral injection nozzle 51A, and the second inner peripheral injection nozzle 51B.
  • the injection flow rate is in the relationship of Q3> Q1> Q2.
  • the solid solution limit surface area also changes with the relation with the injection distance. As the injection distance increases, the solid solution limit surface area on the surface of the work 7 decreases. Therefore, as the injection distance increases, it is necessary to increase the injection flow rate to secure the required solid solution limit surface area.
  • spray nozzle 51A, 51B, 52 determines based on the solid solution limit surface area and the injection distance. However, in order to facilitate setting of the injection flow rates Q1, Q2, Q3, the injection distances D1, D2, D3 from the tip of each injection nozzle 51A, 51B, 52 to the surface of the workpiece 7 are determined first and determined The relationship between the injection flow rates Q1, Q2, and Q3 and the solid solution limit surface area at the determined injection distances D1, D2, and D3 is measured.
  • the distance of the injection center axis O2 from the tip of the first inner peripheral injection nozzle 51A to the first concave corner portion 74A is determined as the first inner peripheral injection distance D1.
  • the distance of the injection center axis O2 from the tip of the second inner injection nozzle 51B to the second concave corner 74B is determined as the second inner injection distance D2.
  • the distance of the injection center axis O2 from the tip of the outer peripheral injection nozzle 52 to the third concave corner 74C is determined as the outer peripheral injection distance D3.
  • the size of the injection distance is smaller in the order of the outer peripheral injection distance D3, the second inner peripheral injection distance D2, and the first inner peripheral injection distance D1.
  • the injection distances are in the relationship of D3 ⁇ D2 ⁇ D1.
  • the injection distance is set to the first inner injection distance D1, and the solid when the injection flow rate is changed
  • the injection flow rate Q1 of the first inner peripheral injection nozzle 51A is determined by substituting the first inner surface area A1 into the relation between the injection flow rate and the solid solution limit surface area (relational graph) obtained by finding the melting limit surface area.
  • the injection distance is set to the second inner peripheral injection distance D2 and the solid when the injection flow rate is changed
  • the injection flow rate Q2 of the second inner peripheral injection nozzle 51B is determined by substituting the second inner surface area A2 into the relationship between the injection flow rate and the solid solution limit surface area (relational graph) obtained by finding the melting limit surface area.
  • the injection distance is set to the outer peripheral injection distance D3, and the solid solution limit surface area when the injection flow rate is changed
  • the outer surface area A3 is substituted for the relational expression (relational graph) of the injection flow rate and the solid solution limit surface area obtained by obtaining the injection flow rate Q3 of the outer peripheral injection nozzle 52.
  • the first inner peripheral injection nozzle 51A is obliquely opposed from above at one side L1 in the axial direction L of the work 7, and the second inner peripheral injection nozzle 51B is at the other side L2 in the axial direction L of the work 7.
  • the outer peripheral spray nozzle 52 is opposed to the outer peripheral surface 712 of the cylindrical portion 71 of the workpiece 7 from above.
  • the pair of rotary shaft members 31 is rotated by the motor, and in response to this rotation, the work 7 rotates about its central axis O1.
  • the induction heating coil 4 is energized to heat the work 7, and the carburizing gas G is injected from the injection nozzles 51A, 51B, 52.
  • the carburizing gas G injected from the first inner peripheral injection nozzle 51A collides with the first concave corner portion 74A located below the cylindrical portion 71 of the rotating workpiece 7.
  • the carburizing gas G injected from the second inner peripheral injection nozzle 51B collides with the second concave corner portion 74B located on the lower side of the rotating workpiece 7 or the other side end surface of the intersection portion 72.
  • the carburizing gas G injected from the outer peripheral injection nozzle 52 collides with the outer peripheral surface 712 located on the upper side of the cylindrical portion 71 of the rotating workpiece 7.
  • the work 7 is rotated a plurality of times by the pair of rotary shaft members 31 so that the carburizing gas G contacts the respective portions in the circumferential direction C of the work 7 as uniformly as possible.
  • a carburizing gas G is injected from each of the injection nozzles 51A, 51B, 52, when a predetermined time has elapsed, the rotation of the work 7 by the pair of rotary shaft members 31, the heating of the work 7 by the induction heating coil 4, The injection of the carburizing gas G by the injection nozzles 51A, 51B, 52 is stopped.
  • the pair of rotary shaft members 31 is slid in the axial direction L by the actuator, and the workpiece 7 placed on the pair of rotary shaft members 31 is taken out of the storage chamber 21 from the outlet 212 of the carburizing container 2 Together with the cooling chamber. Then, in the cooling chamber, the workpiece 7 is immersed in oil and quenched, and the workpiece 7 is carburized and quenched. Thereafter, the work 7 is taken out of the cooling chamber, and the gas carburization of the work 7 is completed. Thus, a steel product in which carburization has been performed on the entire surface of the work 7 is manufactured.
  • the gas carburizing apparatus 1 of the present embodiment includes special injection nozzles 51A, 51B, 52 specialized for performing gas carburization of a work 7 having a cylindrical portion 71 and a plurality of convex portions 73.
  • the gas carburizing apparatus 1 is disposed on the inner peripheral side of the first inner injection nozzle 51A for injecting the carburizing gas G to the inner peripheral side of the cylindrical portion 71 of the workpiece 7 and the plurality of convex portions 73 of the workpiece 7
  • a second inner injection nozzle 51B for injecting the carburizing gas G, and an outer injection nozzle 52 for injecting the carburizing gas G on the outer peripheral side of the cylindrical portion 71 of the workpiece 7 and the outer peripheral side of the plurality of projections 73 are provided.
  • the carburizing gas G injected from the first inner peripheral injection nozzle 51A can be made to collide with the first concave corner portion 74A of the cylindrical portion 71 and the intersection portion 72. Further, when carburizing gas G collides with rotating work 7, carbon in carburizing gas G injected from first inner peripheral injection nozzle 51A is located on the entire circumference of work 7 in the circumferential direction C. 1 Carburize the concave corner portion 74A.
  • the carburizing gas G injected from the second inner peripheral injection nozzle 51B can collide with the intersection 72 and the second concave corner 74B of the projection 73.
  • carbon in the carburizing gas G injected from the second inner peripheral injection nozzle 51B by collision of the carburizing gas G with the rotating work 7 is a plurality of convex portions 73 aligned in the circumferential direction C of the work 7
  • the second concave corner 74B is carburized.
  • the carburizing gas G injected from the outer peripheral injection nozzle 52 can be made to collide with the intersection portion 72 and the third concave corner portion 74C of the convex portion 73.
  • carbon in the carburized gas G injected from the outer peripheral injection nozzle 52 by collision of the carburized gas G with the rotating work 7 is an outer peripheral surface 712 located on the entire circumference of the work 7 in the circumferential direction C and The third concave corner portion 74C of the plurality of convex portions 73 aligned in the circumferential direction C of the work 7 is carburized.
  • gas carburizing apparatus 1 and the gas carburizing method of the present embodiment gas carburizing can be performed as uniformly as possible on the entire surface of the workpiece 7.
  • the workpiece 7 includes a cylindrical portion 71 and a crossing portion (node portion) 72 provided on the inner peripheral side of the intermediate portion in the axial direction L of the cylindrical portion 71.
  • the intersection portion 72 is provided in a state of being connected to the entire circumference of the inner peripheral surface 711 of the cylindrical portion 71.
  • a through hole 720 is formed at the central position of the intersection 72.
  • the inner circumferential surface 711 of the cylindrical portion 71 is divided into the one side portion 711A and the other side portion 711B in the axial direction L by the formation of the intersection portion 72.
  • the first concave corner portion 74A of the present embodiment is formed as an inner circumferential boundary portion (corner portion) located on the one side L1 of the axial direction L between the cylindrical portion 71 and the intersection portion 72.
  • the second concave corner portion 74B of the present embodiment is formed as an inner circumferential boundary portion (corner portion) located on the other side L2 of the axial direction L between the cylindrical portion 71 and the intersection portion 72. It is done.
  • the third concave corner portion 74 ⁇ / b> C of the present embodiment is formed as a step portion on the outer peripheral surface 712 of the cylindrical portion 71.
  • the inner peripheral injection nozzles 51A and 51B of the present embodiment are composed of the first inner peripheral injection nozzle 51A and the second inner peripheral injection nozzle 51B as in the case of the first embodiment.
  • the outer peripheral injection nozzle 52 is similar to that of the first embodiment.
  • the first concave corner portion 74A is included in the injection range R of the carburizing gas G by the first inner peripheral spray nozzle 51A
  • the second concave corner portion 74B is
  • the third concave corner portion 74C is included in the injection range R of the carburizing gas G by the outer peripheral injection nozzle 52, and is included in the injection range R of the carburizing gas G by the second inner peripheral injection nozzle 51B.
  • the one side portion 711A of the inner circumferential surface 711 of the cylindrical portion 71 in the axial direction L and the one end surface 721 of the axial direction L of the intersection 72 are mainly ejected from the first inner peripheral injection nozzle 51A. Is carburized by the carburizing gas G. Further, the other side portion 711B in the axial direction L of the inner peripheral surface 711 of the cylindrical portion 71 and the other side end surface 722 in the axial direction L of the intersection 72 are mainly carburized injected from the second inner peripheral injection nozzle 51B. Carburized by gas G. Further, the outer peripheral surface 712 of the cylindrical portion 71 is carburized by the carburizing gas G mainly injected from the outer peripheral injection nozzle 52.
  • the carburizing gas G is made to collide with the first to third concave corner portions 74A, 74B, 74C, which are the places where the carburizing gas G is hard to contact and hard to be carburized. Carbon in G can be diffused and permeated appropriately. Therefore, also in the present embodiment, gas carburization can be performed as uniformly as possible on the entire surface of the workpiece 7.
  • Embodiment 3 In the present embodiment, the arrangement of the inner peripheral injection nozzle 51 and the outer peripheral injection nozzle 52 in the gas carburizing apparatus 1 will be described for the case where the shape of the workpiece 7 is different from that of the first and second embodiments.
  • the work 7 according to this embodiment as shown in FIGS. 12 to 14, has a cylindrical portion 71 and an intersection portion (bottom portion) 72 connected to the inner peripheral side of the end portion in the axial direction L of the cylindrical portion 71.
  • the workpiece 7 in this embodiment has a bottomed cylindrical shape.
  • the intersection portion 72 is provided in a state of being connected to the entire circumference of the inner peripheral surface 711 of the cylindrical portion 71.
  • a through hole 720 is formed at the central position of the intersection 72.
  • a concave corner portion 74A is formed at a boundary portion (corner portion) located on the inner peripheral side between the cylindrical portion 71 and the intersection portion 72.
  • the inner peripheral injection nozzle 51 of the present embodiment is configured to inject the carburizing gas G toward the concave corner portion 74A
  • the outer peripheral injection nozzle 52 of the present embodiment is an outer corner portion of the cylindrical portion 71 and the intersection portion 72.
  • the carburizing gas G is injected toward 715.
  • the concave corner portion 74A is included in the injection range R of the carburizing gas G by the inner peripheral injection nozzle 51, and the outer corner portion 715 is carburized by the outer peripheral injection nozzle 52. It is included in the injection range R of the gas G.
  • the inner peripheral surface 711 of the cylindrical portion 71 and the end surface 721 inside the intersection portion 72 are carburized mainly by the carburizing gas G injected from the inner peripheral injection nozzle 51.
  • the outer peripheral surface 712 of the cylindrical portion 71 and the end surface 722 outside the intersection 72 are carburized mainly by the carburizing gas G injected from the outer peripheral injection nozzle 52.
  • the carburizing gas G is made to collide with the concave corner portion 74A, which is a portion where the carburizing gas G is hard to contact and hard to carburize, to diffuse the carbon in the carburizing gas G appropriately. It can be penetrated. Therefore, also in the present embodiment, gas carburization can be performed as uniformly as possible on the entire surface of the workpiece 7.
  • the reduced diameter portion 713 is included in the injection range R of the outer peripheral injection nozzle 52, while the third concave corner portion 74C is not included in the injection range R of the outer peripheral injection nozzle 52. You may do so. Also in this case, the third concave corner portion 74C is positioned in the vicinity of the injection range R of the outer peripheral spray nozzle 52, so that the carbon in the carburizing gas G can be appropriately diffused and permeated into the third concave corner portion 74C. it can.
  • the rotation support member 3 may be configured to support the central position of the work 7 and directly rotate the work 7. Also in this case, the workpiece 7 can be transported by the rotational support member 3 sliding in the axial direction L.
  • the gas carburizing apparatus 1 can be configured to perform gas carburizing simultaneously on a plurality of works 7.
  • a plurality of first inner injection nozzles 51A, second inner injection nozzles 51B, and outer injection nozzles 52 are arranged in the carburizing container 2.
  • the plurality of first inner injection nozzles 51A can be branched from a plurality of locations in the axial direction L of the first inner piping 61A.
  • the plurality of second inner peripheral injection nozzles 51B can be branched from a plurality of locations in the axial direction L of the second inner peripheral piping 61B.
  • the plurality of outer peripheral injection nozzles 52 can be branched from a plurality of locations in the axial direction L of the outer peripheral pipe 62.
  • the carburizing gas G is injected from each of the three injection nozzles 51 A, 51 B, 52 to each work 7.
  • the productivity of the steel product in which carburization has been performed on the entire surface of the work 7 can be enhanced.
  • a workpiece by a gas carburizing apparatus in which the carburizing gas G injected from the injection nozzle 52Z is caused to collide with the outer peripheral surface 712 of the cylindrical portion 71 of the workpiece 7
  • the carburized state to the surface of 7 was also confirmed.
  • the injection flow rate of the carburizing gas G by the injection nozzle 52Z of the comparative product was substantially the same as the sum of the injection flow rates of the injection nozzles 51A, 51B, 52 in the implemented product.
  • the workpiece 7 was subjected to gas carburizing for the product and the comparative product, and the carburized state on the surface of the workpiece 7 was confirmed.
  • the carburized state of the surface of the work 7 was confirmed by measuring the hardness of the surface of the work 7. The higher the carbon concentration at the surface of the work 7, the higher the hardness of the surface of the work 7.
  • gas carburizing was performed on the work 7, and the hardness of the surface of the work 7 was measured. The result is shown in the graph of FIG. Moreover, gas carburizing was performed to the workpiece
  • the horizontal axis in each graph indicates the distance (depth) (mm) from the surface of the work 7 and the vertical axis indicates the Vickers hardness HV 0.1 (kgf / mm 2 ) as the hardness on the surface of the work 7 .
  • the Vickers hardness HV0.1 is shown as a value when the test force is 0.1 kgf.
  • the hardness of the surface of the work 7 is, as shown in FIG. 4, the second concave corner portion 74 B of the convex portion 73 and the cross portion 72 as the portion P 1, the convex portion 73 and the cross portion 72.
  • the third concave corner portion 74C is a portion P2
  • the first concave corner portion 74A of the cylindrical portion 71 and the crossing portion 72 is a portion P3
  • the outer peripheral surface 712 of the cylindrical portion 71 is a portion P4
  • the inner circumferential surface of the cylindrical portion 71 711 was measured for the portion P5
  • the outer peripheral side surface 732 of the convex portion 73 was for the portion P6
  • one side end face 721 of the intersection portion 72 in the axial direction L was measured for the portion P7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

ガス浸炭装置(1)は、浸炭容器(2)、回転支持部材(3)、誘導加熱コイル(4)、内周噴射ノズル(51A)及び外周噴射ノズル(52)を備える。浸炭容器(2)は、円筒形状部(71)を有するワーク(7)を収容するものである。回転支持部材(3)は、円筒形状部(71)の中心軸線(O1)を中心にワーク(7)を回転させるためのものである。誘導加熱コイル(4)は、ワーク(7)を誘導加熱するためのものである。内周噴射ノズル(51A)は、浸炭容器(2)内に配置されており、円筒形状部(71)の内周面(711)へ浸炭ガス(G)を噴射して衝突させるものである。外周噴射ノズル(52)は、浸炭容器(2)内に配置されており、円筒形状部(71)の外周面(712)へ浸炭ガス(G)を噴射して衝突させるものである。

Description

ガス浸炭装置及びガス浸炭方法 関連出願の相互参照
 本出願は、2017年11月8日に出願された日本の特許出願番号2017-215743号に基づくものであり、その記載内容を援用する。
 本開示は、回転させるワークにガス浸炭を行うガス浸炭装置及びガス浸炭方法に関する。
 鋼材であるワークの表面に炭素等を固溶させるガス浸炭法においては、雰囲気ガスを生成する変成炉、雰囲気ガスが供給される浸炭炉等を備えた大型の浸炭設備を用いることが多い。そして、浸炭炉内の雰囲気ガス中にワークを配置するとともにこのワークを加熱し、ワークの表面に炭素等を拡散・浸透させている。また、例えば、特許文献1に記載されたガス浸透熱処理装置においては、小型の加熱炉を用い、加熱炉内のワークに向けて浸炭ガスを供給することが行われている。より具体的には、特許文献1においては、2本のシャフトに載置された円盤形状のワークを、2本のシャフトの回転によって回転させるとともに誘導加熱コイルによって加熱し、かつ加熱炉内に配置された円盤形状のワークへ上側から浸炭ガスを供給して、ガス浸炭を行っている。
特開2015-160990号公報
 しかしながら、小型の加熱炉を用いて、円筒形状部を有するワークにガス浸炭を行う場合には、更なる工夫が必要とされる。円筒形状部を有するワークに、特許文献1のガス浸透熱処理装置を用いてガス浸炭を行う場合には、次の課題が想定される。すなわち、円筒形状部の外周面には、浸炭ガスが十分に供給される一方、円筒形状部の内周面には、浸炭ガスが十分に供給されず、この内周面のガス浸炭が不十分になると考えられる。
 また、特許文献1のガス浸透熱処理装置においては、浸炭ガスは、供給流路に設けられた供給孔を介して加熱炉の内部へ流れ、排出流路に設けられた排出口を介して加熱炉の外部へ流れる。つまり、このガス浸透熱処理装置においては、ワークにおける、浸炭が必要な箇所に浸炭ガスを衝突させることは考慮されていない。
 本開示は、ワークの円筒形状部の内周面及び外周面に極力均一にガス浸炭を行うことができるガス浸炭装置及びガス浸炭方法を提供しようとして得られたものである。
 本開示の一態様は、円筒形状部を有するワークが収容される浸炭容器と、
 前記円筒形状部の中心軸線を中心に前記ワークを回転させるための回転支持部材と、
 前記ワークを誘導加熱するための誘導加熱コイルと、
 前記浸炭容器内に配置され、前記円筒形状部の内周面へ浸炭ガスを噴射して衝突させる内周噴射ノズルと、
 前記浸炭容器内に配置され、前記円筒形状部の外周面へ浸炭ガスを噴射して衝突させる外周噴射ノズルと、を備えるガス浸炭装置にある。
 本開示の他の態様は、円筒形状部を有するワークを、回転支持部材によって前記円筒形状部の中心軸線を中心に回転させるとともに、前記ワークを誘導加熱コイルによって誘導加熱し、
 かつ、前記円筒形状部の内周面へ内周噴射ノズルから噴射される浸炭ガスを衝突させて、前記内周面にガス浸炭を行うとともに、前記円筒形状部の外周面へ外周噴射ノズルから噴射される浸炭ガスを衝突させて、前記外周面にガス浸炭を行う、ガス浸炭方法にある。
 前記一態様のガス浸炭装置は、円筒形状部を有するワークのガス浸炭を行うために特化した特殊なノズルを備える。具体的には、ガス浸炭装置は、浸炭容器内に、円筒形状部の内周面へ浸炭ガスを噴射して衝突させる内周噴射ノズルと、円筒形状部の外周面へ浸炭ガスを噴射して衝突させる外周噴射ノズルとを備える。そして、円筒形状部の内周面には、主に内周噴射ノズルから噴射された浸炭ガスにおける炭素等の浸炭成分を浸透させ、円筒形状部の外周面には、主に外周噴射ノズルから噴射された浸炭ガスにおける炭素等の浸炭成分を浸透させる。
 また、ガス浸炭を行う際には、回転支持部材によってワークを回転させるとともに誘導加熱コイルによってワークを加熱する。そして、回転するワークの円筒形状部の内周面の全周に、内周噴射ノズルから噴射される浸炭ガスが衝突し、回転するワークの円筒形状部の外周面の全周に、外周噴射ノズルから噴射される浸炭ガスが衝突する。これにより、円筒形状部の内周面の全周及び円筒形状部の外周面の全周に、適切な噴射流量で衝突する浸炭ガスにおける浸炭成分を、適切に拡散・浸透させることができる。
 それ故、前記一態様のガス浸炭装置によれば、ワークの円筒形状部の内周面及び外周面に極力均一にガス浸炭を行うことができる。
 前記他の態様のガス浸炭方法においても、ガス浸炭装置において説明した効果を同様に得ることができる。それ故、前記他の態様のガス浸炭方法によれば、ワークの円筒形状部の内周面及び外周面に極力均一にガス浸炭を行うことができる。
 なお、本開示の一態様及び他の態様において示す各構成要素のカッコ書きの符号は、実施形態における図中の符号との対応関係を示すが、各構成要素を実施形態の内容のみに限定するものではない。
 本開示についての目的、特徴、利点等は、添付の図面を参照する後記の詳細な記述によって、より明確になる。本開示の図面を以下に示す。
実施形態1にかかる、ガス浸炭装置を示す断面説明図。 実施形態1にかかる、ガス浸炭装置を軸線方向の一方側から見た状態で示す断面説明図。 実施形態1にかかる、ガス浸炭装置を軸線方向の他方側から見た状態で示す断面説明図。 実施形態1にかかる、ワークを示す断面説明図。 実施形態1にかかる、ワークを軸線方向の一方側から見た状態で示す説明図。 実施形態1にかかる、ワークを軸線方向の他方側から見た状態で示す説明図。 実施形態1にかかる、ガス浸炭を行ったワークの表面の炭素濃度を測定した結果を示すグラフ。 実施形態1にかかる、各噴射ノズルからの噴射流量と固溶限表面積との関係を示すグラフ。 実施形態2にかかる、ワークを示す断面説明図。 実施形態2にかかる、ワークを軸線方向の一方側から見た状態で示す説明図。 実施形態2にかかる、ワークを軸線方向の他方側から見た状態で示す説明図。 実施形態3にかかる、ワークを示す断面説明図。 実施形態3にかかる、ワークを軸線方向の一方側から見た状態で示す説明図。 実施形態3にかかる、ワークを軸線方向の他方側から見た状態で示す説明図。 その他の実施形態にかかる、ガス浸炭装置を示す断面説明図。 確認試験にかかる、従来のガス浸炭装置(比較品)を示す断面説明図。 確認試験にかかる、実施形態1のガス浸炭装置(実施品)によってガス浸炭を行ったワークの表面の硬度を測定した結果を示すグラフ。 確認試験にかかる、従来のガス浸炭装置(比較品)によってガス浸炭を行ったワークの表面の硬度を測定した結果を示すグラフ。
 前述したガス浸炭装置及びガス浸炭方法にかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
 本形態のガス浸炭装置1は、図1~図3に示すように、浸炭容器2、回転支持部材3、誘導加熱コイル4、内周噴射ノズル51A及び外周噴射ノズル52を備える。浸炭容器2は、ガス浸炭を行うための、円筒形状部71を有するワーク7を収容するものである。回転支持部材3は、円筒形状部71の中心軸線O1を中心にワーク7を回転させるためのものである。誘導加熱コイル4は、ワーク7の外周側に螺旋状に配置され、ワーク7を誘導加熱するためのものである。内周噴射ノズル51Aは、浸炭容器2内に配置されており、円筒形状部71の内周面711へ浸炭ガスGを噴射して衝突させるものである。外周噴射ノズル52は、浸炭容器2内に配置されており、円筒形状部71の外周面712へ浸炭ガスGを噴射して衝突させるものである。
 本形態のガス浸炭方法においては、円筒形状部71を有するワーク7を、回転支持部材3によって円筒形状部71の中心軸線O1を中心に回転させるとともに、ワーク7を誘導加熱コイル4によって誘導加熱する。また、この際には、円筒形状部71の内周面711へ内周噴射ノズル51Aから噴射される浸炭ガスGを衝突させて、内周面711にガス浸炭を行うとともに、円筒形状部71の外周面712へ外周噴射ノズル52から噴射される浸炭ガスGを衝突させて、外周面712にガス浸炭を行う。
 以下に、本形態のガス浸炭装置1及びガス浸炭方法について詳説する。
(ガス浸炭装置1)
 ガス浸炭装置1及びガス浸炭方法は、種々の鋼材であるワーク7の表面に、所定の硬度を有する浸炭硬化層を形成することを目的として、ワーク7の表面に炭素を拡散・浸透させるものである。また、この際には、ワーク7が加熱処理され、ワーク7が浸炭焼入れされる。
 ガス浸炭装置1及びガス浸炭方法においてガス浸炭を行う際には、浸炭工程、拡散工程及び冷却工程が行われる。浸炭工程においては、ワーク7の金属組織がオーステナイト組織になる熱処理温度にワーク7が加熱され、浸炭ガスGとワーク7の表面とにおいて化学反応が行われる。拡散工程においては、浸炭ガスG中の浸炭成分としての炭素がワーク7の表面から内部へ拡散する。冷却工程においては、加熱されたワーク7が急冷されて、ワーク7の金属組織がマルテンサイト組織になり、ガス浸炭が完了する。ガス浸炭が行われた後には、ワーク7の表面付近の炭素濃度が、ワーク7の内部の炭素濃度に比べて高くなる。
 なお、本形態においては、ガス浸炭は、ワーク7の表面に炭素を拡散・浸透させることを示す。これ以外にも、ガス浸炭は、ガス浸炭窒化として、ワーク7の表面に炭素及び窒素を拡散・浸透させる構成としてもよい。
(ワーク7)
 図4~図6に示すように、本形態のワーク7は、有底の円筒形状を有するものである。ワーク7は、円筒形状部71と、円筒形状部71の軸線方向Lの他方側端部の内周側に繋がる底部又は節部としての交差部72と、交差部72から軸線方向Lの他方側L2へ突出する凸部73とを有する。交差部72の中心位置には貫通穴720が形成されており、凸部73は、円筒形状部71の中心軸線O1の周りに等間隔に複数(本形態においては4つ)形成されている。また、凸部73は、円柱形状を有するものである。また、円筒形状部71の軸線方向Lの他方側端部には、軸線方向Lの他方側L2に向かうに連れて縮径するテーパ状の縮径部713が形成されている。
(浸炭容器2,回転支持部材3,誘導加熱コイル4)
 図1に示すように、ガス浸炭装置1の浸炭容器2は、円筒形状に形成されており、円筒形状の浸炭容器2の中心軸線O1は水平方向に向けられている。浸炭容器2内には、ワーク7が収容される収容室21が形成されている。収容室21における水平方向の一方側には、ワーク7の入口211が形成されており、収容室21における水平方向の他方側には、ワーク7の出口212が形成されている。
 図2及び図3に示すように、回転支持部材3は、ワーク7を載置可能である互いに平行な一対の回転軸部材31によって構成されている。一対の回転軸部材31は、浸炭容器2の収容室21の下側の位置に配置されている。回転軸部材31の少なくとも一方には、回転軸部材31に回転力を与えるモータ等の駆動源が接続されている。一対の回転軸部材31が同じ方向に回転することにより、一対の回転軸部材31の上に載置されたワーク7が一方向へ回転する。
 一対の回転軸部材31は、円筒形状部71の外周面712に下方から回転接触することによって、ワーク7を回転させる。ワーク7は、円筒形状部71が回転軸部材31と転がり接触して回転する。また、一対の回転軸部材31は、収容室21へワーク7を搬入するとともに収容室21からワーク7を搬出することができるよう、その軸線方向Lにスライド可能である。一対の回転軸部材31によって回転支持部材3を構成することにより、ワーク7の回転及び搬送を、簡単な装置構成によって行うことができる。
 ここで、軸線方向Lは、ワーク7の円筒形状部71の軸線方向Lのことだけでなく、ガス浸炭装置1における浸炭容器2、一対の回転軸部材31、誘導加熱コイル4等における軸線方向Lも示す文言として用いる。
 誘導加熱コイル4は、螺旋状の導体を用いて構成されており、螺旋状の導体に通電を行う際に、螺旋状の導体に囲まれた内側位置に磁束を生じさせるものである。また、ワーク7は、誘導加熱コイル4による磁束がワーク7を貫通するときに生じる渦電流によって加熱される。誘導加熱コイル4は、浸炭容器2を内周側に配置するよう、浸炭容器2の外周面712に対向する状態で配置されている。
(内周噴射ノズル51A,51B、外周噴射ノズル52)
 図1~図3に示すように、本形態の内周噴射ノズル51A,51B及び外周噴射ノズル52は、浸炭容器2の収容室21内の上側位置に配置されており、下方又は斜め下方に向けて浸炭ガスGを噴射するよう構成されている。外周噴射ノズル52は、浸炭ガスGを下方へ噴射し、ワーク7の円筒形状部71の外周面712の上側位置に浸炭ガスGを衝突させるよう構成されている。また、本形態においては、外周噴射ノズル52から噴射される浸炭ガスGは、ワーク7の円筒形状部71の縮径部713における外周面712の上側位置に衝突する。
 内周噴射ノズル51A,51Bは、ワーク7における内周側の異なる部位に浸炭ガスGを噴射するために、第1内周噴射ノズル51Aと第2内周噴射ノズル51Bとから構成されている。第1内周噴射ノズル51Aは、円筒形状部71の軸線方向Lの一方側L1から中心側へ、傾斜する状態で浸炭ガスGを噴射するものである。第1内周噴射ノズル51Aは、ワーク7の軸線方向Lの一方側L1の上方に配置されており、ワーク7に向けた斜め下方へ浸炭ガスGを噴射するものである。言い換えれば、第1内周噴射ノズル51Aから噴射される浸炭ガスGの噴射中心軸線O2は、ワーク7に向かって軸線方向Lの中心側へ傾斜している。そして、第1内周噴射ノズル51Aから噴射される浸炭ガスGは、回転するワーク7における下側に配置された、後述する第1凹状角部74Aに衝突する。
 第2内周噴射ノズル51Bは、円筒形状部71の軸線方向Lの他方側L2から中心側へ、傾斜する状態で浸炭ガスGを噴射するものである。第2内周噴射ノズル51Bは、ワーク7の軸線方向Lの他方側L2の上方に配置されており、ワーク7に向けた斜め下方へ浸炭ガスGを噴射するものである。言い換えれば、第2内周噴射ノズル51Bから噴射される浸炭ガスGの噴射中心軸線O2は、ワーク7に向かって軸線方向Lの中心側に傾斜している。そして、第2内周噴射ノズル51Bから噴射される浸炭ガスGは、回転するワーク7における下側に配置された、後述する第2凹状角部74Bに衝突する。
 図1~図3に示すように、外周噴射ノズル52、第1内周噴射ノズル51A及び第2内周噴射ノズル51Bは、噴射流量を別々に設定することができるよう、収容室21内の上側位置に配置された別々の配管61A,61B,62に設けられている。外周噴射ノズル52は、外周配管62から下方に分岐して設けられている。第1内周噴射ノズル51Aは、第1内周配管61Aから分岐して軸線方向Lの他方側L2へ下方傾斜して設けられている。第2内周噴射ノズル51Bは、第2内周配管61Bから分岐して軸線方向Lの一方側L1へ下方傾斜して設けられている。外周配管62、第1内周配管61A及び第2内周配管61Bは、浸炭容器2の軸線方向Lに沿って収容室21内に配置されている。
 外周配管62及び外周噴射ノズル52は、収容室21内の上側位置に配置されている。第1内周配管61A及び第1内周噴射ノズル51Aは、収容室21内の上側位置からワーク7の周方向Cの一方側にずれた位置に配置されている。第2内周配管61B及び第2内周噴射ノズル51Bは、収容室21内の上側位置からワーク7の周方向Cの他方側にずれた位置に配置されている。外周配管62及び各内周配管61A,62Bは、収容室21内の上側半分の範囲内に配置することができる。
 収容室21内の下側半分の範囲には、回転支持部材3が配置されている。そのため、各配管61A,61B,62を収容室21内の上側半分の範囲に配置することにより、収容室21内のスペースを有効に活用することができる。
 外周噴射ノズル52及び各内周噴射ノズル51A,51Bの配置方向及び噴射流量は、ワーク7の形状に応じて、ワーク7の表面の全体に固溶限濃度の浸炭ガスGが浸炭されるよう設定されている。固溶限濃度とは、浸炭ガスGがワーク7の表面に接触する際に、ワーク7の表面に浸炭ガスG中の炭素が拡散・浸透することができる濃度の限界のことをいう。固溶限濃度は、浸炭ガスGがワーク7の表面に十分に接触したときに、ワーク7の表面における炭素濃度が、ほぼ一定となる濃度範囲内に納まることによって表される。
 固溶限濃度は、ガス浸炭時の熱処理温度等を考慮し、ワーク7の表面における所望の硬度を得るためのワーク7の表面の炭素濃度よりも大きな値となるようにする。各噴射ノズル51A,51B,52の噴射開口部は円形状を有しており、各噴射ノズル51A,51B,52の噴射開口部からは、円錐状に広がって浸炭ガスGが噴射される。そして、各噴射ノズル51A,51B,52からワークの表面に垂直に浸炭ガスGが噴射されるときには、ワーク7における、固溶限濃度を有する浸炭表面(浸炭範囲)は、固溶限表面積を有する円形状の表面として形成される。
 固溶限表面積は、ワーク7の表面における、固溶限濃度にある表面積として表される。固溶限表面積は、各噴射ノズル51A,51B,52から噴射された浸炭ガスGの全てがワーク7の表面に衝突するとした場合に、各噴射ノズル51A,51B,52からの浸炭ガスGの噴射流量が大きくなるほど大きくなる関係を有する。各噴射ノズル51A,51B,52から噴射される浸炭ガスGの流速は、そのほぼ全てがワーク7の表面に衝突する流速とする。
 固溶限濃度となる浸炭範囲には、ワーク7の表面に浸炭ガスGが直接衝突した範囲だけでなく、ワーク7の表面に衝突した後の浸炭ガスGがワーク7の表面において広がった範囲も含まれる。固溶限濃度となる浸炭範囲は、各噴射ノズル51A,51B,52からワーク7の表面までの距離が短いほど、浸炭ガスGがワーク7の表面において広がった範囲を多く含むことになる。
 図7には、実験用の噴射ノズルから、実験用のワーク7の表面に浸炭ガスGを噴射して、ワーク7の表面にガス浸炭を行った後、このワーク7の表面の炭素濃度を測定した結果を示す。同図においては、ワーク7の表面に浸炭ガスGが衝突した中心位置の断面において、浸炭される炭素濃度の限界としての固溶限濃度を有する浸炭範囲が形成された状態を示す。ワーク7の表面の位置は、断面における幅を示し、浸炭範囲は、固溶限濃度にある浸炭範囲の直径として表される。
 同図に示すように、浸炭ガスGが接触したワーク7の表面においては、ワーク7の表面の位置において、炭素濃度が所定の変動幅を有する濃度範囲内にある長さの範囲がある。この長さの範囲を、固溶限濃度を有する浸炭範囲とした。なお、測定誤差等により、固溶限濃度を有する浸炭範囲内においても、炭素濃度が所定の変動幅を有する濃度範囲から外れた位置も存在する。
 図8には、実験用の噴射ノズルから実験用のワーク7の表面へ噴射させる浸炭ガスGの噴射流量を適宜変更したときにおいて、固溶限濃度にある浸炭範囲としての固溶限表面積がどれだけ変化したかを示す。また、同図においては、噴射ノズルの先端(噴射開口部)からワーク7の表面までの距離である噴射距離も適宜変更したときの固溶限表面積の変化も示す。この実験を行った結果、噴射流量が大きくなるほど固溶限表面積が大きくなり、噴射距離が小さくなるほど固溶限表面積が大きくなることが分かった。この実験結果に基づき、噴射流量と固溶限表面積との関係は、噴射流量が大きくなるほど固溶限表面積が大きくなる比例関係にあるとした。同図においては、実験結果は省略して示す。
 本形態においては、噴射距離をパラメータとした噴射流量と固溶限表面積との関係を、ガス浸炭装置1及びガス浸炭方法における各噴射ノズル51A,51B,52の噴射流量を設定する際の指標として用いる。ガス浸炭装置1においては、第1内周噴射ノズル51Aの先端からワーク7の表面(第1凹状角部74A)までの噴射距離D1、第2内周噴射ノズル51Bの先端からワーク7の表面(第2凹状角部74B)までの噴射距離D2、及び外周噴射ノズル52の先端からワーク7の表面(第3凹状角部74C又は縮径部713の外周面712)までの噴射距離D3のそれぞれが決められている。各噴射距離D1,D2,D3は、各噴射ノズル51A,51B,52の先端から、各噴射ノズル51A,51B,52の噴射中心軸線O2がワーク7の表面に接触するまでの距離としている。
 第1内周噴射ノズル51Aによる浸炭ガスGの噴射流量、第2内周噴射ノズル51Bによる浸炭ガスGの噴射流量、及び外周噴射ノズル52による浸炭ガスGの噴射流量は、それぞれ第1内周配管61A、第2内周配管61B又は外周配管62に配置された流量調整弁の開度を調整することによって変更可能である。各噴射ノズル51A,51B,52による噴射流量は、個別に設定可能である。これにより、各噴射ノズル51A,51B,52から噴射される浸炭ガスGの濃度を適切に調整して、ワーク7の表面のほぼ全体に、固溶限濃度となる炭素を含浸させることができる。
 本形態の各噴射ノズル51A,51B,52の噴射流量を決定する際には、各噴射ノズル51A,51B,52の噴射流量と固溶限表面積との関係を利用する。具体的には、ガス浸炭装置1においては、第1内周噴射ノズル51Aによる浸炭ガスGの噴射流量と、第1内周噴射ノズル51Aから噴射された浸炭ガスGにおける炭素がワーク7に固溶限濃度まで固溶可能な第1内周固溶限表面積との第1内周側関係が定められている。
 また、ガス浸炭装置1においては、第2内周噴射ノズル51Bによる浸炭ガスGの噴射流量と、第2内周噴射ノズル51Bから噴射された浸炭ガスGにおける炭素がワーク7に固溶限濃度まで固溶可能な第2内周固溶限表面積との第2内周側関係が定められている。また、ガス浸炭装置1においては、外周噴射ノズル52による浸炭ガスGの噴射流量と、外周噴射ノズル52から噴射された浸炭ガスGにおける炭素がワーク7に固溶限濃度まで固溶可能な外周固溶限表面積との外周側関係が定められている。
 第1内周側関係、第2内周側関係及び外周側関係は、いずれも各噴射ノズル51A,51B,52から噴射される浸炭ガスGの全てがワーク7に衝突するとした場合の関係として定められている。そして、ガス浸炭装置1においては、ワーク7の全表面積が、第1内周固溶限表面積、第2内周固溶限表面積及び外周固溶限表面積の合計以下になるよう、各噴射ノズル51A,51B,52による浸炭ガスGの噴射流量が設定されている。
 これにより、各噴射ノズル51A,51B,52から噴射される浸炭ガスG中の炭素を、ワーク7の表面における各部位に固溶限濃度まで拡散・浸透させることができる。そして、ワーク7の表面の各部位における炭素濃度に極力ばらつきが生じないようにすることができる。
 図4に示すように、各内周噴射ノズル51A,51B及び外周噴射ノズル52の配置箇所、配置方向及び噴射流量は、円筒形状部71、交差部(底部)72及び凸部73を有するワーク7の形状に合わせて、ワーク7の内周側及び外周側の各部位に浸炭ガスGが接触することを目的として設定されている。円筒形状部71を有するワーク7においては、内周側に位置する部位に浸炭ガスGが到達しにくい。また、円筒形状部71、交差部(底部)72及び凸部73を有するワーク7においては、円筒形状部71と交差部72との内周側に位置する角部(境界部)である第1凹状角部74A、交差部72と凸部73との内周側に位置する角部(境界部)である第2凹状角部74B、及び交差部72と凸部73との外周側に位置する角部(境界部)である第3凹状角部74Cに浸炭ガスGが到達しにくいことが分かっている。
 そこで、各凹状角部74A,74B,74Cへ浸炭ガスGが浸透しやすくするために、各噴射ノズル51A,51B,52による浸炭ガスGの噴射方向を決定している。図1に示すように、ワーク7の軸線方向Lに沿った切断面において、第1凹状角部74Aは、第1内周噴射ノズル51Aによる浸炭ガスGの噴射範囲R内に含まれており、第2凹状角部74Bは、第2内周噴射ノズル51Bによる浸炭ガスGの噴射範囲R内に含まれており、第3凹状角部74Cは、外周噴射ノズル52による浸炭ガスGの噴射範囲R内に含まれている。
 各凹状角部74A,74B,74Cが各噴射ノズル51A,51B,52の噴射範囲R内に含まれることにより、各凹状角部74A,74B,74Cへのガス浸炭を効果的に行うことができる。
 図6に示すように、第2凹状角部74Bとは、交差部72と、各凸部73における内周側に位置する内周側面731(ワーク7の中心軸線O1に近い180°の範囲の側面)との間に形成された角部のことをいう。また、第3凹状角部74Cとは、交差部72と、各凸部73における外周側に位置する外周側面732(ワーク7の中心軸線O1から遠い180°の範囲の側面)との間に形成された角部のことをいう。
 図2に示すように、第1内周噴射ノズル51Aの配置方向は、ワーク7における第1凹状角部74Aの下側に位置する部分へ浸炭ガスGが衝突できる方向として設定されている。ワーク7は回転支持部材3によって一定速度で回転しているため、ワーク7が1回転するときに、第1凹状角部74Aの全周が第1内周噴射ノズル51Aによる浸炭ガスGの噴射範囲R内に含まれることになる。
 図3に示すように、第2内周噴射ノズル51Bの配置方向は、ワーク7における、下側に配置された第2凹状角部74Bに浸炭ガスGが衝突できる方向として設定されている。ワーク7は回転支持部材3によって一定速度で回転しているため、ワーク7が1回転するときに、全ての第2凹状角部74Bが第2内周噴射ノズル51Bによる浸炭ガスGの噴射範囲R内に含まれることになる。
 図3に示すように、外周噴射ノズル52の配置方向は、ワーク7における、上側に配置された縮径部713及び第3凹状角部74Cに浸炭ガスGが衝突できる方向として設定されている。ワーク7は回転支持部材3によって一定速度で回転しているため、ワーク7が1回転するときに、第3凹状角部74Cの全周が外周噴射ノズル52による浸炭ガスGの噴射範囲R内に含まれることになる。
 ガス浸炭装置1及びガス浸炭方法においては、ワーク7の表面の全体について、各噴射ノズル51A,51B,52によって浸炭ガスGが到達すると考える表面の領域を区分けする。具体的には、図4~図6に示すように、ワーク7において、円筒形状部71の内周面711と、交差部72の軸線方向Lの一方側端面721とを合わせて、第1内側面81Aとする。第1内側面81Aは、第1凹状角部74Aを含む表面である。また、各凸部73の内周側面731と、交差部72の軸線方向Lの他方側端面722の内側半分722Aとを合わせて、第2内側面81Bとする。第2内側面81Bは、第2凹状角部74Bを含む表面である。さらに、円筒形状部71の外周面712と、各凸部73の外周側面732と、交差部72の軸線方向Lの他方側端面722の外側半分722Bとを合わせて、外側面82とする。外側面82は、第3凹状角部74Cを含む表面である。
 ここで、図6に示すように、各凸部73の内周側面731とは、各凸部73における、中心軸線O1に近い内周側の180°の範囲における側面のことをいう。交差部72の軸線方向Lの他方側端面722の内側半分722Aとは、この他方側端面722において、各凸部73の内周側面731と外周側面732との境界位置を通る仮想円C1よりも内周側に位置する部分のことをいう。
 また、同図に示すように、各凸部73の外周側面732とは、各凸部73における、中心軸線O1から遠い外周側の180°の範囲における側面のことをいう。交差部72の軸線方向Lの他方側端面722の外側半分722Bとは、内側半分722Aを除く他方側端面722の残部のことであって、この他方側端面722において、仮想円C1よりも外周側に位置する部分のことをいう。
 本形態のガス浸炭装置1及びガス浸炭方法においては、第1内周噴射ノズル51Aから噴射される浸炭ガスGによって第1内側面81Aをガス浸炭すると仮定する。また、第2内周噴射ノズル51Bから噴射される浸炭ガスGによって第2内側面81Bをガス浸炭すると仮定する。また、外周噴射ノズル52から噴射される浸炭ガスGによって外側面82をガス浸炭すると仮定する。これらの仮定は、各噴射ノズル51A,51B,52によってガス浸炭する表面積を特定し、各噴射ノズル51A,51B,52から噴射させる浸炭ガスGの噴射流量を決定するために行う。
 図4に示すように、ワーク7の表面の全体においては、第1内側面81A、第2内側面81B及び外側面82の他に、円筒形状部71の軸線方向Lの一方側端面714、交差部72の貫通穴720の側壁面723、及び複数の凸部73の軸線方向Lの他方側端面733がある。一方側端面714は、第1内周噴射ノズル51Aから噴射される浸炭ガスG又は外周噴射ノズル52から噴射される浸炭ガスGのいずれによってガス浸炭されてもよい。また、貫通穴720の側壁面723は、第1内周噴射ノズル51Aから噴射される浸炭ガスG又は第2内周噴射ノズル51Bから噴射される浸炭ガスGのいずれによってガス浸炭されてもよい。また、他方側端面733は、第2内周噴射ノズル51Bから噴射される浸炭ガスG又は外周噴射ノズル52から噴射される浸炭ガスGのいずれによってガス浸炭されてもよい。
 また、図6に示すように、第2内側面81Bにおける、交差部72の軸線方向Lの他方側端面722の内側半分722Aと、外側面82における、交差部72の軸線方向Lの他方側端面722の外側半分722Bとの境界部付近(仮想円C1の付近)は、第2内周噴射ノズル51Bから噴射される浸炭ガスGと、外周噴射ノズル52から噴射される浸炭ガスGとのいずれによってガス浸炭されてもよい。また、各噴射ノズル51A,51B,52から噴射される浸炭ガスGは、ワーク7の表面に衝突した後にワーク7の表面に広がる。そのため、第1内側面81A、第2内側面81B及び外側面82のワーク7の表面の各部位は、複数の噴射ノズル51A,51B,52から噴射された浸炭ガスGが混ざり合った状態でガス浸炭されることがある。
 また、図4に示すように、第1内側面81Aの表面積を第1内側表面積A1、第2内側面81Bの表面積を第2内側表面積A2、及び外側面82の表面積を外側表面積A3とする。そして、第1内周噴射ノズル51Aによる浸炭ガスGの噴射流量Q1、第2内周噴射ノズル51Bによる浸炭ガスGの噴射流量Q2、及び外周噴射ノズル52による浸炭ガスGの噴射流量Q3は、第1内側表面積A1、第2内側表面積A2及び外側表面積A3のうちの表面積が大きなものに対応する噴射ノズル51A,51B,52から順に、大きく設定する。
 本形態においては、外側表面積A3、第1内側表面積A1、第2内側表面積A2の順に表面積が大きい。換言すれば、表面積は、A3>A1>A2の関係にある。そして、外周噴射ノズル52、第1内周噴射ノズル51A、第2内周噴射ノズル51Bの順に噴射流量Q1,Q2,Q3が大きい。換言すれば、噴射流量は、Q3>Q1>Q2の関係にある。
 各噴射ノズル51A,51B,52によってガス浸炭を行うワーク7の各部の表面積A1,A2,A3に応じて、各噴射ノズル51A,51B,52の噴射流量Q1,Q2,Q3を設定することにより、必要な箇所に必要な流量の浸炭ガスGを供給することができる。そのため、ワーク7の表面における各部位の炭素濃度をより均一にすることができる。
 また、固溶限表面積は、噴射流量との関係の他に、噴射距離との関係によっても変化する。噴射距離が大きくなるほど、ワーク7の表面における固溶限表面積は小さくなる。そのため、噴射距離が大きくなるほど、噴射流量を大きくして、必要とする固溶限表面積を確保する必要がある。
 各噴射ノズル51A,51B,52の各噴射流量Q1,Q2,Q3を決定する際には、固溶限表面積と噴射距離とに基づいて決定する。ただし、各噴射流量Q1,Q2,Q3の設定を容易にするために、各噴射ノズル51A,51B,52の先端からワーク7の表面までの噴射距離D1,D2,D3を先に決定し、決められた噴射距離D1,D2,D3における、噴射流量Q1,Q2,Q3と固溶限表面積との関係を測定している。
 より具体的には、図1~図3に示すように、第1内周噴射ノズル51Aの先端から第1凹状角部74Aまでの噴射中心軸線O2の距離を第1内周噴射距離D1として決定する。また、第2内周噴射ノズル51Bの先端から第2凹状角部74Bまでの噴射中心軸線O2の距離を第2内周噴射距離D2として決定する。また、外周噴射ノズル52の先端から第3凹状角部74Cまでの噴射中心軸線O2の距離を外周噴射距離D3として決定する。本形態においては、噴射距離の大きさは、外周噴射距離D3、第2内周噴射距離D2、第1内周噴射距離D1の順に小さい。換言すれば、噴射距離は、D3<D2<D1の関係にある。
 そして、図8に示すように、実験用の噴射ノズル及び実験用のワーク7を用いた測定実験において、噴射距離を第1内周噴射距離D1に設定し、噴射流量を変化させたときの固溶限表面積を求めて得られた、噴射流量-固溶限表面積の関係式(関係グラフ)に第1内側表面積A1を代入して、第1内周噴射ノズル51Aの噴射流量Q1を決定する。
 また、同図に示すように、実験用の噴射ノズル及び実験用のワーク7を用いた測定実験において、噴射距離を第2内周噴射距離D2に設定し、噴射流量を変化させたときの固溶限表面積を求めて得られた、噴射流量-固溶限表面積の関係式(関係グラフ)に第2内側表面積A2を代入して、第2内周噴射ノズル51Bの噴射流量Q2を決定する。
 また、同図に示すように、実験用の噴射ノズル及び実験用のワーク7を用いた測定実験において、噴射距離を外周噴射距離D3に設定し、噴射流量を変化させたときの固溶限表面積を求めて得られた、噴射流量-固溶限表面積の関係式(関係グラフ)に外側表面積A3を代入して、外周噴射ノズル52の噴射流量Q3を決定する。
(製造方法)
 次に、ガス浸炭装置1を用いてガス浸炭する方法について説明する。
 まず、回転支持部材3における、浸炭容器2の外部に位置する部分に、ワーク7を載置する。このとき、回転支持部材3における一対の回転軸部材31に跨って、ワーク7の円筒形状部71が載置される。次いで、アクチュエータによって一対の回転軸部材31が軸線方向Lにスライドし、一対の回転軸部材31に載置された状態のワーク7が、浸炭容器2の入口211から収容室21内に配置される。そして、ワーク7の軸線方向Lの一方側L1には、第1内周噴射ノズル51Aが斜め上方から対向し、ワーク7の軸線方向Lの他方側L2には、第2内周噴射ノズル51Bが斜め上方から対向し、さらに、ワーク7の円筒形状部71の外周面712には、外周噴射ノズル52が上方から対向する。
 次いで、モータによって一対の回転軸部材31が回転し、この回転を受けてワーク7がその中心軸線O1の回りに回転する。また、ワーク7を回転させるときには、誘導加熱コイル4に通電してワーク7を加熱するとともに、各噴射ノズル51A,51B,52から浸炭ガスGを噴射させる。このとき、第1内周噴射ノズル51Aから噴射される浸炭ガスGが、回転するワーク7の円筒形状部71の下側に位置する第1凹状角部74Aに衝突する。また、第2内周噴射ノズル51Bから噴射される浸炭ガスGが、回転するワーク7の下側に位置する第2凹状角部74B又は交差部72の他方側端面に衝突する。さらに、外周噴射ノズル52から噴射される浸炭ガスGが、回転するワーク7の円筒形状部71の上側に位置する外周面712に衝突する。
 そして、一対の回転軸部材31によってワーク7を複数回回転させて、ワーク7の周方向Cの各部にできるだけ均一に浸炭ガスGが接触するようにする。次いで、各噴射ノズル51A,51B,52から浸炭ガスGを噴射させた後、所定時間が経過したときには、一対の回転軸部材31によるワーク7の回転、誘導加熱コイル4によるワーク7の加熱、及び各噴射ノズル51A,51B,52による浸炭ガスGの噴射を停止させる。
 次いで、アクチュエータによって一対の回転軸部材31が軸線方向Lにスライドし、一対の回転軸部材31に載置された状態のワーク7が、浸炭容器2の出口212から収容室21の外部に出されるとともに、冷却室内に配置される。そして、冷却室においては、ワーク7を油中に浸漬させて急冷し、ワーク7に浸炭焼入れを行う。その後、ワーク7を冷却室から取り出して、ワーク7に対するガス浸炭が終了する。こうして、ワーク7の表面の全体に浸炭が行われた鋼材製品が製造される。
(作用効果)
 本形態のガス浸炭装置1は、円筒形状部71及び複数の凸部73を有するワーク7のガス浸炭を行うために特化した特殊な噴射ノズル51A,51B,52を備える。具体的には、ガス浸炭装置1は、ワーク7の円筒形状部71の内周側に浸炭ガスGを噴射する第1内周噴射ノズル51A、ワーク7の複数の凸部73の内周側に浸炭ガスGを噴射する第2内周噴射ノズル51B、及びワーク7の円筒形状部71の外周側及び複数の凸部73の外周側に浸炭ガスGを噴射する外周噴射ノズル52を備える。
 そして、円筒形状部71と交差部72との第1凹状角部74Aには、第1内周噴射ノズル51Aから噴射された浸炭ガスGを衝突させることができる。また、回転するワーク7に対して浸炭ガスGが衝突することにより、第1内周噴射ノズル51Aから噴射される浸炭ガスG中の炭素は、ワーク7の周方向Cの全周に位置する第1凹状角部74Aに浸炭される。
 また、交差部72と凸部73の第2凹状角部74Bには、第2内周噴射ノズル51Bから噴射された浸炭ガスGを衝突させることができる。また、回転するワーク7に対して浸炭ガスGが衝突することにより、第2内周噴射ノズル51Bから噴射される浸炭ガスG中の炭素は、ワーク7の周方向Cに並ぶ複数の凸部73による第2凹状角部74Bに浸炭される。
 さらに、交差部72と凸部73の第3凹状角部74Cには、外周噴射ノズル52から噴射された浸炭ガスGを衝突させることができる。また、回転するワーク7に対して浸炭ガスGが衝突することにより、外周噴射ノズル52から噴射される浸炭ガスG中の炭素は、ワーク7の周方向Cの全周に位置する外周面712及びワーク7の周方向Cに並ぶ複数の凸部73による第3凹状角部74Cに浸炭される。
 これにより、特に、浸炭ガスGが接触しにくく、浸炭されにくい箇所である第1~第3凹状角部74A,74B,74Cに、適切な噴射流量で浸炭ガスGを衝突させることができる。そして、浸炭ガスG中の炭素を第1~第3凹状角部74A,74B,74Cに適切に拡散・浸透させることができる。
 それ故、本形態のガス浸炭装置1及びガス浸炭方法によれば、ワーク7の表面の全体に、極力均一にガス浸炭を行うことができる。
<実施形態2>
 本形態においては、ワーク7の形状が実施形態1と異なる場合について、ガス浸炭装置1における各内周噴射ノズル51A,51B及び外周噴射ノズル52の配置について示す。
 本形態のワーク7は、図9~図11に示すように、円筒形状部71と、円筒形状部71の軸線方向Lの中間部の内周側に設けられた交差部(節部)72とを有する。交差部72は、円筒形状部71の内周面711の全周に繋がる状態で設けられている。交差部72の中心位置には、貫通穴720が形成されている。円筒形状部71の内周面711は、交差部72が形成されたことにより、軸線方向Lの一方側部分711Aと他方側部分711Bとに分かれている。
 本形態の第1凹状角部74Aは、円筒形状部71と交差部72との間であって、軸線方向Lの一方側L1に位置する内周側の境界部(角部)として形成されている。また、本形態の第2凹状角部74Bは、円筒形状部71と交差部72との間であって、軸線方向Lの他方側L2に位置する内周側の境界部(角部)として形成されている。また、本形態の第3凹状角部74Cは、円筒形状部71の外周面712における段差部として形成されている。
 図9に示すように、本形態の内周噴射ノズル51A,51Bは、実施形態1の場合と同様の、第1内周噴射ノズル51Aと第2内周噴射ノズル51Bとからなる。また、外周噴射ノズル52は、実施形態1の場合と同様である。ワーク7の軸線方向Lに沿った切断面において、第1凹状角部74Aは、第1内周噴射ノズル51Aによる浸炭ガスGの噴射範囲R内に含まれており、第2凹状角部74Bは、第2内周噴射ノズル51Bによる浸炭ガスGの噴射範囲R内に含まれており、第3凹状角部74Cは、外周噴射ノズル52による浸炭ガスGの噴射範囲R内に含まれている。
 本形態においては、円筒形状部71の内周面711における軸線方向Lの一方側部分711A、及び交差部72の軸線方向Lの一方側端面721は、主に第1内周噴射ノズル51Aから噴射される浸炭ガスGによって浸炭される。また、円筒形状部71の内周面711における軸線方向Lの他方側部分711B、及び交差部72の軸線方向Lの他方側端面722は、主に第2内周噴射ノズル51Bから噴射される浸炭ガスGによって浸炭される。また、円筒形状部71の外周面712は、主に外周噴射ノズル52から噴射される浸炭ガスGによって浸炭される。
 本形態においても、特に、浸炭ガスGが接触しにくく、浸炭されにくい箇所である第1~第3凹状角部74A,74B,74Cに、適切な噴射流量で浸炭ガスGを衝突させ、浸炭ガスG中の炭素を適切に拡散・浸透させることができる。それ故、本形態においても、ワーク7の表面の全体に、極力均一にガス浸炭を行うことができる。
 本形態のガス浸炭装置1及びガス浸炭方法におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。
<実施形態3>
 本形態においては、ワーク7の形状が実施形態1,2と異なる場合について、ガス浸炭装置1における内周噴射ノズル51及び外周噴射ノズル52の配置について示す。
 本形態のワーク7は、図12~図14に示すように、円筒形状部71と、円筒形状部71の軸線方向Lの端部の内周側に繋がる交差部(底部)72とを有する。本形態のワーク7は有底円筒形状を有する。交差部72は、円筒形状部71の内周面711の全周に繋がる状態で設けられている。交差部72の中心位置には、貫通穴720が形成されている。
 図12に示すように、本形態のワーク7においては、円筒形状部71と交差部72との間の内周側に位置する境界部(角部)に凹状角部74Aが形成されている。本形態の内周噴射ノズル51は、凹状角部74Aに向けて浸炭ガスGを噴射するよう構成されており、本形態の外周噴射ノズル52は、円筒形状部71と交差部72との外角部715に向けて浸炭ガスGを噴射するよう構成されている。
 ワーク7の軸線方向Lに沿った切断面において、凹状角部74Aは、内周噴射ノズル51による浸炭ガスGの噴射範囲R内に含まれており、外角部715は、外周噴射ノズル52による浸炭ガスGの噴射範囲R内に含まれている。
 本形態においては、円筒形状部71の内周面711及び交差部72の内側の端面721は、主に内周噴射ノズル51から噴射される浸炭ガスGによって浸炭される。また、円筒形状部71の外周面712及び交差部72の外側の端面722は、主に外周噴射ノズル52から噴射される浸炭ガスGによって浸炭される。
 本形態においては、特に、浸炭ガスGが接触しにくく、浸炭されにくい箇所である凹状角部74Aに、適切な噴射流量で浸炭ガスGを衝突させ、浸炭ガスG中の炭素を適切に拡散・浸透させることができる。それ故、本形態においても、ワーク7の表面の全体に、極力均一にガス浸炭を行うことができる。
 本形態のガス浸炭装置1及びガス浸炭方法におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。
<その他の実施形態>
 実施形態1のガス浸炭装置1においては、外周噴射ノズル52の噴射範囲R内に縮径部713が含まれる一方、外周噴射ノズル52の噴射範囲R内に第3凹状角部74Cは含まれないようにしてもよい。この場合にも、第3凹状角部74Cが外周噴射ノズル52の噴射範囲Rの近傍に位置することにより、第3凹状角部74Cに浸炭ガスG中の炭素を適切に拡散・浸透させることができる。
 また、回転支持部材3は、ワーク7の中心位置を支持し、ワーク7を直接回転させる構成としてもよい。この場合にも、回転支持部材3が軸線方向Lにスライドすることによってワーク7の搬送を行うことができる。
 また、ガス浸炭装置1は、図15に示すように、複数のワーク7に対して同時にガス浸炭を行うよう構成することができる。この場合には、浸炭容器2内には、第1内周噴射ノズル51A、第2内周噴射ノズル51B及び外周噴射ノズル52のそれぞれを複数配置する。複数の第1内周噴射ノズル51Aは、第1内周配管61Aの軸線方向Lの複数箇所から分岐させて形成することができる。複数の第2内周噴射ノズル51Bは、第2内周配管61Bの軸線方向Lの複数箇所から分岐させて形成することができる。複数の外周噴射ノズル52は、外周配管62の軸線方向Lの複数箇所から分岐させて形成することができる。
 そして、回転支持部材3における一対の回転軸部材31によって複数のワーク7を同時に回転させながら、各ワーク7に対して3つの噴射ノズル51A,51B,52から浸炭ガスGを噴射する。この場合には、ワーク7の表面の全体に浸炭が行われた鋼材製品の生産性を高めることができる。
 本形態のガス浸炭装置1及びガス浸炭方法におけるその他の構成、作用効果等については、実施形態1の場合と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の場合と同様である。
<確認試験>
 本確認試験においては、実施形態1に示したガス浸炭装置1(実施品)による、ワーク7の表面への浸炭状態を確認した。実施品における各噴射ノズル51A,51B,52による浸炭ガスGの噴射流量は、実施形態1に示したそれぞれの噴射距離D1,D2,D3における噴射流量-固溶限表面積の関係式に基づいて決定した。また、比較のために、図16に示すように、噴射ノズル52Zから噴射される浸炭ガスGを、ワーク7の円筒形状部71の外周面712に衝突させるガス浸炭装置(比較品)による、ワーク7の表面への浸炭状態も確認した。比較品の噴射ノズル52Zによる浸炭ガスGの噴射流量は、実施品における各噴射ノズル51A,51B,52の噴射流量の合計とほぼ同じとした。
 実施品及び比較品について、ワーク7にガス浸炭を行い、ワーク7の表面における浸炭状態を確認した。ワーク7の表面における浸炭状態は、ワーク7の表面の硬度を測定することによって確認した。ワーク7の表面における炭素濃度が高いほど、ワーク7の表面の硬度は高くなる。
 実施品について、ワーク7にガス浸炭を行い、ワーク7の表面における硬度を測定した結果を図17のグラフに示す。また、比較品について、ワーク7にガス浸炭を行い、ワーク7の表面における硬度を測定した結果を図18のグラフに示す。各グラフにおける横軸は、ワーク7の表面からの距離(深さ)(mm)を示し、縦軸は、ワーク7の表面における硬度としてのビッカース硬さHV0.1(kgf/mm2)を示す。ビッカース硬さHV0.1は、試験力を0.1kgfとしたときの値として示す。
 ワーク7の表面における硬度は、図4に示すように、ワーク7の各部位として、凸部73と交差部72との第2凹状角部74Bを部位P1、凸部73と交差部72との第3凹状角部74Cを部位P2、円筒形状部71と交差部72との第1凹状角部74Aを部位P3、円筒形状部71の外周面712を部位P4、円筒形状部71の内周面711を部位P5、凸部73の外周側面732を部位P6、及び交差部72の軸線方向Lの一方側端面721を部位P7について測定した。
 図18の比較品においては、円筒形状部71の外周面712を示す部位P4及び凸部73の外周側面732を示す部位P6についての表面の硬度は高くなったものの、それ以外の部位P1~P3、P5、P7についての表面の硬度はほとんど高くならなかった。このことより、噴射ノズル52Zのみによっては、ワーク7の円筒形状部71の内周側及び各凹状角部74A,74B,74Cにガス浸炭を行うことは不可能であることが分かった。
 図17の実施品においては、ワーク7の各部位P1~P7についての表面の硬度が高くなり、ワーク7の表面の全体にガス浸炭を極力均一に行うことが可能であることが分かった。以上の結果より、実施形態1に示したガス浸炭装置1及びガス浸炭方法によれば、ワーク7の表面の全体に極力均一にガス浸炭を行う効果が得られることが確認できた。
 本開示は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本開示は、様々な変形例、均等範囲内の変形例等を含む。さらに、本開示から想定される様々な構成要素の組み合わせ、形態等も本開示の技術思想に含まれる。

Claims (13)

  1.  円筒形状部(71)を有するワーク(7)が収容される浸炭容器(2)と、
     前記円筒形状部の中心軸線(O1)を中心に前記ワークを回転させるための回転支持部材(3)と、
     前記ワークを誘導加熱するための誘導加熱コイル(4)と、
     前記浸炭容器内に配置され、前記円筒形状部の内周面(711)へ浸炭ガス(G)を噴射して衝突させる内周噴射ノズル(51,51A,51B)と、
     前記浸炭容器内に配置され、前記円筒形状部の外周面(712)へ浸炭ガスを噴射して衝突させる外周噴射ノズル(52)と、を備えるガス浸炭装置(1)。
  2.  前記内周噴射ノズルから噴射される浸炭ガスの全て及び前記外周噴射ノズルから噴射される浸炭ガスの全てが前記ワークに衝突するとした場合に、前記内周噴射ノズルによる浸炭ガスの噴射流量と、前記内周噴射ノズルから噴射された浸炭ガスにおける炭素が前記ワークに固溶限濃度まで固溶可能な内周固溶限表面積との関係、及び前記外周噴射ノズルによる浸炭ガスの噴射流量と、前記外周噴射ノズルから噴射された浸炭ガスにおける炭素が前記ワークに固溶限濃度まで固溶可能な外周固溶限表面積との関係に基づき、
     前記ワークの全表面積が、前記内周固溶限表面積と前記外周固溶限表面積との合計以下になるよう、前記内周噴射ノズルによる浸炭ガスの噴射流量及び前記外周噴射ノズルによる浸炭ガスの噴射流量が設定されている、請求項1に記載のガス浸炭装置。
  3.  前記ワークは、前記円筒形状部の軸線方向(L)に沿った切断面において少なくとも1つの凹状角部(74A,74B,74C)を有しており、
     前記切断面において、前記凹状角部の全ては、前記内周噴射ノズル又は前記外周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれている、請求項1又は2に記載のガス浸炭装置。
  4.  前記内周噴射ノズルは、前記円筒形状部の軸線方向(L)の一方側(L1)から中心側へ傾斜する状態で浸炭ガスを噴射する第1内周噴射ノズル(51A)と、前記軸線方向の他方側(L2)から中心側へ傾斜する状態で浸炭ガスを噴射する第2内周噴射ノズル(51B)とからなり、
     前記ワークは、前記円筒形状部の他に、前記円筒形状部の前記軸線方向の他方側端部の内周側に繋がる交差部(72)と、前記交差部から前記軸線方向の他方側へ突出する凸部(73)とを有しており、
     前記ワークの前記軸線方向に沿った切断面において、前記円筒形状部と前記交差部との内周側に位置する境界部である第1凹状角部(74A)は、前記第1内周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれており、かつ、前記交差部と前記凸部との内周側に位置する境界部である第2凹状角部(74B)は、前記第2内周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれている、請求項1又は2に記載のガス浸炭装置。
  5.  前記ワークの前記軸線方向に沿った切断面において、前記交差部と前記凸部との外周側に位置する境界部である第3凹状角部(74C)は、前記外周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれている、請求項4に記載のガス浸炭装置。
  6.  前記回転支持部材は、前記ワークを載置可能である互いに平行な一対の回転軸部材(31)によって構成され、一対の前記回転軸部材が前記円筒形状部の前記外周面に下方から回転接触することによって前記ワークを回転させるよう構成されており、
     前記内周噴射ノズル及び前記外周噴射ノズルは、下方又は斜め下方に向けて浸炭ガスを噴射するよう構成されている、請求項1~5のいずれか1項に記載のガス浸炭装置。
  7.  円筒形状部(71)を有するワーク(7)を、回転支持部材(3)によって前記円筒形状部の中心軸線(O1)を中心に回転させるとともに、前記ワークを誘導加熱コイル(4)によって誘導加熱し、
     かつ、前記円筒形状部の内周面(711)へ内周噴射ノズル(51,51A,51B)から噴射される浸炭ガス(G)を衝突させて、前記内周面にガス浸炭を行うとともに、前記円筒形状部の外周面(712)へ外周噴射ノズル(52)から噴射される浸炭ガスを衝突させて、前記外周面にガス浸炭を行う、ガス浸炭方法。
  8.  前記内周噴射ノズルから噴射される浸炭ガスの全て及び前記外周噴射ノズルから噴射される浸炭ガスの全てが前記ワークに衝突するとした場合に、前記内周噴射ノズルによる浸炭ガスの噴射流量と、前記内周噴射ノズルから噴射された浸炭ガスにおける炭素が前記ワークに固溶限濃度まで固溶可能な内周固溶限表面積との関係、及び前記外周噴射ノズルによる浸炭ガスの噴射流量と、前記外周噴射ノズルから噴射された浸炭ガスにおける炭素が前記ワークに固溶限濃度まで固溶可能な外周固溶限表面積との関係に基づき、
     前記ワークの全表面積が、前記内周固溶限表面積と前記外周固溶限表面積との合計以下になるよう、前記内周噴射ノズルによる浸炭ガスの噴射流量及び前記外周噴射ノズルによる浸炭ガスの噴射流量を設定する、請求項7に記載のガス浸炭方法。
  9.  前記ワークは、前記円筒形状部の軸線方向(L)に沿った切断面において少なくとも1つの凹状角部(74A,74B,74C)を有しており、
     前記切断面において、前記凹状角部の全ては、前記内周噴射ノズル又は前記外周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれている、請求項7又は8に記載のガス浸炭方法。
  10.  前記内周噴射ノズルは、前記円筒形状部の軸線方向(L)の一方側(L1)から中心側へ傾斜する状態で浸炭ガスを噴射する第1内周噴射ノズル(51A)と、前記軸線方向の他方側(L2)から中心側へ傾斜する状態で浸炭ガスを噴射する第2内周噴射ノズル(51B)とからなり、
     前記ワークは、前記円筒形状部の他に、前記円筒形状部の前記軸線方向の他方側端部の内周側に繋がる交差部(72)と、前記交差部から前記軸線方向の他方側へ突出する凸部(73)とを有しており、
     前記ワークの前記軸線方向に沿った切断面において、前記円筒形状部と前記交差部との内周側に位置する境界部である第1凹状角部(74A)は、前記第1内周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれており、かつ、前記交差部と前記凸部との内周側に位置する境界部である第2凹状角部(74B)は、前記第2内周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれている、請求項7又は8に記載のガス浸炭方法。
  11.  前記ワークの前記軸線方向に沿った切断面において、前記交差部と前記凸部との外周側に位置する境界部である第3凹状角部(74C)は、前記外周噴射ノズルによる浸炭ガスの噴射範囲(R)内に含まれている、請求項10に記載のガス浸炭方法。
  12.  前記円筒形状部の前記内周面と前記交差部の前記軸線方向の一方側端面(721)とが合わさった第1内側面(81A)を、前記第1内周噴射ノズルから噴射される浸炭ガスによってガス浸炭すると仮定し、
     前記凸部の内周側面(731)と前記交差部の前記軸線方向の他方側端面(722)の内側半分(722A)とが合わさった第2内側面(81B)を、前記第2内周噴射ノズルから噴射される浸炭ガスによってガス浸炭すると仮定し、
     前記円筒形状部の前記外周面と前記凸部の外周側面(732)と前記交差部の前記軸線方向の他方側端面の外側半分(722B)とが合わさった外側面(82)を、前記外周噴射ノズルから噴射される浸炭ガスによってガス浸炭すると仮定し、
     かつ、前記第1内側面の表面積を第1内側表面積(A1)、前記第2内側面の表面積を第2内側表面積(A2)、及び前記外側面の表面積を外側表面積(A3)としたとき、
     前記第1内周噴射ノズル、前記第2内周噴射ノズル及び前記外周噴射ノズルによる浸炭ガスの噴射流量(Q1,Q2,Q3)は、第1内側表面積、第2内側表面積及び前記外側表面積のうちの表面積が大きなものに対応する噴射ノズルから順に、大きく設定する、請求項10又は11に記載のガス浸炭方法。
  13.  前記回転支持部材は、前記ワークを載置可能である互いに平行な一対の回転軸部材(31)によって構成し、一対の前記回転軸部材が前記円筒形状部の前記外周面に下方から回転接触することによって前記ワークを回転させ、
     前記内周噴射ノズル及び前記外周噴射ノズルは、下方又は斜め下方に向けて浸炭ガスを噴射する、請求項7~12のいずれか1項に記載のガス浸炭方法。
PCT/JP2018/041085 2017-11-08 2018-11-06 ガス浸炭装置及びガス浸炭方法 WO2019093290A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880072033.3A CN111315913B (zh) 2017-11-08 2018-11-06 气体渗碳装置及气体渗碳方法
EP18875773.6A EP3708695A4 (en) 2017-11-08 2018-11-06 GAS CARBURIZING DEVICE AND GAS CARBURIZING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-215743 2017-11-08
JP2017215743A JP6863238B2 (ja) 2017-11-08 2017-11-08 ガス浸炭装置及びガス浸炭方法

Publications (1)

Publication Number Publication Date
WO2019093290A1 true WO2019093290A1 (ja) 2019-05-16

Family

ID=66437871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041085 WO2019093290A1 (ja) 2017-11-08 2018-11-06 ガス浸炭装置及びガス浸炭方法

Country Status (4)

Country Link
EP (1) EP3708695A4 (ja)
JP (1) JP6863238B2 (ja)
CN (1) CN111315913B (ja)
WO (1) WO2019093290A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832428A (zh) * 2021-08-24 2021-12-24 江艺东 在淬火加热维持碳稳定的设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116623121B (zh) * 2023-07-21 2024-02-23 南通市中吕齿轮有限公司 一种齿轮的渗碳淬火热处理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060810A (ja) * 2003-08-20 2005-03-10 Riken Corp 被覆材及びその製造方法
JP2011026651A (ja) * 2009-07-23 2011-02-10 Toyota Motor Corp 浸炭方法および浸炭装置
JP2014055343A (ja) * 2012-09-14 2014-03-27 Nhk Spring Co Ltd 圧縮コイルばねおよびその製造方法
JP2015160990A (ja) 2014-02-27 2015-09-07 株式会社デンソー ガス浸透熱処理装置
JP2016148091A (ja) * 2015-02-13 2016-08-18 ジヤトコ株式会社 真空浸炭方法及び真空浸炭装置
JP2017008348A (ja) * 2015-06-18 2017-01-12 トヨタ自動車株式会社 浸炭装置
JP2017025350A (ja) * 2015-07-15 2017-02-02 トヨタ自動車株式会社 鋼材表面の硬化処理方法および装置
JP2017106062A (ja) * 2015-12-08 2017-06-15 トヨタ自動車株式会社 表面処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118469B2 (ja) * 1999-08-23 2008-07-16 本田技研工業株式会社 浸炭材料製造装置
JP2003183807A (ja) * 2001-12-14 2003-07-03 Daido Steel Co Ltd 熱処理炉
JP2004085126A (ja) * 2002-08-28 2004-03-18 Daido Steel Co Ltd 真空熱処理炉
JP4158905B2 (ja) * 2003-06-09 2008-10-01 光洋サーモシステム株式会社 ガス浸炭処理装置
US20070068601A1 (en) * 2005-09-26 2007-03-29 Jones William R Process for treating steel alloys
US20150275346A1 (en) * 2014-03-28 2015-10-01 Dowa Thermotech Co., Ltd. Heat treatment apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060810A (ja) * 2003-08-20 2005-03-10 Riken Corp 被覆材及びその製造方法
JP2011026651A (ja) * 2009-07-23 2011-02-10 Toyota Motor Corp 浸炭方法および浸炭装置
JP2014055343A (ja) * 2012-09-14 2014-03-27 Nhk Spring Co Ltd 圧縮コイルばねおよびその製造方法
JP2015160990A (ja) 2014-02-27 2015-09-07 株式会社デンソー ガス浸透熱処理装置
JP2016148091A (ja) * 2015-02-13 2016-08-18 ジヤトコ株式会社 真空浸炭方法及び真空浸炭装置
JP2017008348A (ja) * 2015-06-18 2017-01-12 トヨタ自動車株式会社 浸炭装置
JP2017025350A (ja) * 2015-07-15 2017-02-02 トヨタ自動車株式会社 鋼材表面の硬化処理方法および装置
JP2017106062A (ja) * 2015-12-08 2017-06-15 トヨタ自動車株式会社 表面処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3708695A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832428A (zh) * 2021-08-24 2021-12-24 江艺东 在淬火加热维持碳稳定的设备

Also Published As

Publication number Publication date
CN111315913A (zh) 2020-06-19
CN111315913B (zh) 2022-03-11
JP2019085623A (ja) 2019-06-06
EP3708695A4 (en) 2020-12-23
EP3708695A1 (en) 2020-09-16
JP6863238B2 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2019093290A1 (ja) ガス浸炭装置及びガス浸炭方法
WO2007116875A1 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
JP6241839B2 (ja) 低合金鋼の硬化処理方法
US10246756B2 (en) Heat treatment system and heat treatment method
JP6819108B2 (ja) 熱処理方法及び熱処理装置
CN108884872B (zh) 滚子轴承用轴承圈及其制造方法和滚子轴承
WO2007125767A1 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
JP2015168861A (ja) 成膜装置
CN105296914A (zh) 其中溶解并扩散有处理气体的元素的钢的制造方法
US20130098512A1 (en) Mechanical component and method of surface hardening
JP2011026651A (ja) 浸炭方法および浸炭装置
JPWO2017170608A1 (ja) 熱処理装置、鋼材の熱処理方法及び鋼材の熱間曲げ加工方法
JP6436000B2 (ja) 浸炭装置
TWI580807B (zh) 蒸鍍設備與利用此設備之蒸鍍方法
JP3486054B2 (ja) 内周面に歯形形状を有する部材の浸炭方法および前記浸炭方法に用いられるワーク保持機構
JP2017197829A (ja) 転がり接触用軸部材
JP5196395B2 (ja) 浸炭窒化方法、機械部品の製造方法および熱処理炉
JP6732335B2 (ja) レーザ焼入れシステム及びレーザ焼入れ方法
JP4322741B2 (ja) 誘導加熱による針状ころ軸受外輪の軌道面の表面焼入方法及び焼入装置
WO2007066441A1 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
JP4858071B2 (ja) 鋼材の表面処理方法及び表面処理された鋼材
KR100959749B1 (ko) 가스 분배장치
KR20160126530A (ko) 열처리로 버너
JP2015160990A (ja) ガス浸透熱処理装置
JPS61174319A (ja) 歯形部材の焼入れ冷却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875773

Country of ref document: EP

Effective date: 20200608