WO2007125767A1 - 浸炭窒化方法、機械部品の製造方法および機械部品 - Google Patents

浸炭窒化方法、機械部品の製造方法および機械部品 Download PDF

Info

Publication number
WO2007125767A1
WO2007125767A1 PCT/JP2007/058170 JP2007058170W WO2007125767A1 WO 2007125767 A1 WO2007125767 A1 WO 2007125767A1 JP 2007058170 W JP2007058170 W JP 2007058170W WO 2007125767 A1 WO2007125767 A1 WO 2007125767A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial pressure
carbonitriding
control step
heat treatment
treatment furnace
Prior art date
Application number
PCT/JP2007/058170
Other languages
English (en)
French (fr)
Inventor
Chikara Ohki
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to US12/297,752 priority Critical patent/US8128761B2/en
Publication of WO2007125767A1 publication Critical patent/WO2007125767A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Definitions

  • the present invention relates to a carbonitriding method, a machine part manufacturing method, and a machine part, and more specifically, carburizing for carbonitriding a workpiece having a steel strength containing 0.8% by mass or more of carbon.
  • the present invention relates to a machine part subjected to nitriding.
  • RX gas and ammonia (NH 2) gas are supplied at a constant flow rate (per unit time).
  • the atmosphere in the heat treatment furnace is controlled.
  • the flow rate of the ammonia gas is determined empirically based on the past production performance of each heat treatment furnace and taking into account the amount and shape of the object to be processed. If it is necessary to perform carbonitriding on an object with an amount or shape that does not exist, trial and error is required to determine the optimal ammonia gas flow rate in the carbonitriding process. As a result, until the optimum ammonia gas flow rate is determined, it is not only difficult to stabilize the quality of the workpiece, but the above trial and error must be carried out in the mass production line. There is a risk that unprocessed materials may be generated and this may cause an increase in production costs.
  • the undecomposed ammonia concentration that can be measured during carbonitriding is measured, and the undecomposed ammonia concentration that can be determined regardless of the shape of the heat treatment furnace, the amount and shape of the object to be treated, and the like.
  • the flow rate of ammonia gas is adjusted based on the relationship with the amount of nitrogen produced. This makes it possible to control the amount of nitrogen entering the workpiece without determining the optimal ammonia gas flow rate by trial and error, and to stabilize the quality of the workpiece.
  • Non-Patent Document 1 Yoshinori Tsunekawa and 2 others, “Void Generation and Nitrogen Diffusion Behavior in Gas Carbonitriding”, Heat Treatment, 1985, 25, 5, p.242-247
  • Patent Document 1 Japanese Patent Laid-Open No. 8-13125
  • the nitrogen penetration rate into the workpiece (unit area force unit on the surface of the workpiece) It was difficult to control the amount of nitrogen intruding per hour. Carbonitriding is a relatively expensive process in the manufacturing process of machine parts. For this reason, reduction of the processing cost is required for carbonitriding. Therefore, if the nitrogen penetration rate into the workpiece can be controlled to increase the nitrogen penetration rate and improve the efficiency of the carbonitriding process, it is possible to meet the above-mentioned demand for reducing the carbonitriding cost. .
  • an object of the present invention is to provide a carbonitriding method capable of improving the nitrogen penetration rate and improving the efficiency of carbonitriding.
  • another object of the present invention is to provide a machine part that can reduce the manufacturing cost by performing an efficient carbonitriding process. It is to provide a manufacturing method.
  • still another object of the present invention is to provide a machine part whose manufacturing cost is reduced by performing an efficient carbonitriding process.
  • an object to be treated made of steel containing 0.8% by mass or more of carbon is heated in an atmosphere containing ammonia, carbon monoxide, carbon dioxide and hydrogen.
  • the carbonitriding method includes an atmosphere control process in which the atmosphere in the heat treatment furnace is controlled, and a heating pattern control process in which the temperature history applied to the workpiece in the heat treatment furnace is controlled.
  • the atmosphere control step is performed in the undecomposed NH in which the partial pressure of undecomposed ammonia in the heat treatment furnace is controlled.
  • PCO Carbon monoxide partial pressure (atm)
  • PC0 2 Carbon dioxide partial pressure (atm)
  • the present inventor has studied in detail the relationship between the atmosphere in the heat treatment furnace in the carbonitriding process and the penetration behavior of nitrogen into the workpiece. Then, nitrogen penetration into the workpiece It was found that the hydrogen partial pressure and ⁇ defined by the above equation (1) have a large effect on the input speed, while the effects of the carbon monoxide partial pressure and nitrogen partial pressure in the atmosphere are small. It was.
  • the hydrogen partial pressure in the atmosphere decreases, the amount of nitrogen intrusion within a predetermined time (the amount of nitrogen entering the inside of the object to be processed from the unit area of the surface of the object to be processed) increases.
  • the hydrogen partial pressure is about 0.3 atm, the increase in the amount of nitrogen entering the steel material to be processed containing 0.8 mass% or more of carbon is almost saturated. Therefore, by setting the hydrogen partial pressure to 0.3 atm or less, the nitrogen penetration rate in the carbonitriding process can be improved to the maximum, and the efficiency of the carbonitriding process can be improved.
  • the hydrogen partial pressure in the atmosphere during carbonitriding is preferably 0.1 atm or more and 0.3 atm or less.
  • the hydrogen partial pressure is preferably set to 0.2 atm or less.
  • the hydrogen partial pressure is preferably set to 0.15 atm or more.
  • the amount of nitrogen penetration increases as the ⁇ value of the atmosphere decreases.
  • the ⁇ value is around 6.0
  • the increase in the amount of nitrogen intruding into the steel material to be processed containing 0.8 mass% or more of carbon is almost saturated. Therefore, by setting the ⁇ value to 6.0 or less, the nitrogen penetration rate in the carbonitriding process can be improved to the maximum, and the efficiency of the carbonitriding process can be improved.
  • the ⁇ value in the carbonitriding atmosphere is 2.0 or more and 6.0 or less is preferable.
  • the ⁇ value is preferably 5.0 or less.
  • the ⁇ value is preferably 3.0 or more.
  • the hydrogen partial pressure in the heat treatment furnace is 0.1 atmospheric pressure or higher and 0.3 atmospheric pressure or lower, and ⁇ is 2.0 or higher and 6.0 or lower. Since the workpiece is heated and carbonitriding is performed in such an atmosphere, the nitrogen penetration rate can be improved and the efficiency of the carbonitriding treatment can be improved.
  • undecomposed ammonia refers to the ammonia that remains in the gaseous ammonia state without being decomposed among the ammonia supplied into the heat treatment furnace.
  • an object to be treated made of steel containing 0.8% by mass or more of carbon is heated in an atmosphere containing ammonia, carbon monoxide, carbon dioxide and hydrogen.
  • This is a carbonitriding method in which carbonitriding is performed.
  • the carbonitriding method includes an atmosphere control process in which the atmosphere in the heat treatment furnace is controlled, and a heating pattern control process in which the temperature history applied to the workpiece in the heat treatment furnace is controlled.
  • the undecomposed ammonia partial pressure in the heat treatment furnace is controlled.
  • the soot defined by the following formula (3) is 7.5 or more.
  • the present inventor obtained the following knowledge as a result of further analyzing in detail the influence of the hydrogen partial pressure and ⁇ in the atmosphere on the nitrogen penetration rate into the workpiece. That is, the hydrogen partial pressure and ⁇ are controlled so that E defined by the above equation (3) becomes large.
  • the penetration rate of nitrogen into objects has been improved to near the maximum.
  • the degree is almost saturated. In other words, by setting the soot to 7.5 or more, 0.8% by mass or more of carbon is contained.
  • the object to be treated is heated and carbonitriding is carried out, the nitrogen penetration rate can be improved and the efficiency of the carbonitriding process can be improved.
  • the value of ⁇ is preferably 10.0 or less.
  • the soot is 8.0 or more.
  • a method for manufacturing a machine part according to the present invention comprises a steel member preparation comprising a steel member made of steel containing 0.8% by mass or more of carbon and formed into a schematic shape of a machine part. After the carbonitriding process is performed on the steel member prepared in the process and the steel member preparation step, the steel member is sintered by cooling from a temperature above the saddle point to a temperature below the M point.
  • the carbonitriding process in the quench hardening process is performed using the carbonitriding method of the present invention described above.
  • the carbonitriding method of the present invention suitable for a workpiece made of steel containing 0.8% by mass or more of carbon is used in the quench hardening step.
  • efficient carbonitriding will be implemented, and it will be possible to reduce the manufacturing cost of machine parts.
  • the point A means a point corresponding to a temperature at which the steel structure starts transformation from ferrite to austenite when the steel is heated.
  • a mechanical component according to the present invention is manufactured by the above-described method for manufacturing a mechanical component.
  • the mechanical component of the present invention is subjected to an efficient carbonitriding process, and the manufacturing cost is reduced.
  • the mechanical component of the present invention may be used as a component constituting a bearing.
  • the machine parts of the present invention whose surface layer is strengthened by carburizing and nitriding and whose manufacturing costs are reduced, are components that constitute bearings that are machine parts that require fatigue strength, wear resistance, etc. Is preferred.
  • a rolling bearing provided with a raceway ring and a rolling element that contacts the raceway ring and is disposed on an annular raceway may be configured using the above-described mechanical parts. That is, at least one of the bearing ring and the rolling element, preferably both forces are the above-described machine parts.
  • the carbonitriding method of the present invention it is possible to provide a carbonitriding method capable of improving the nitrogen penetration rate and improving the efficiency of the carbonitriding process. it can.
  • the method for manufacturing a machine component of the present invention it is possible to provide a method for manufacturing a machine component capable of reducing the manufacturing cost by performing an efficient carbonitriding process.
  • the mechanical component of the present invention it is possible to provide a mechanical component with reduced manufacturing costs by performing an efficient carbonitriding process.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a deep groove ball bearing as a rolling bearing provided with mechanical parts in Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a deep groove ball bearing as a rolling bearing provided with mechanical parts in Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a thrust-dollar roller bearing as a rolling bearing provided with mechanical parts that is a first modification of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a constant velocity joint including mechanical parts that is a second modified example of the first embodiment.
  • FIG. 4 is a schematic sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic sectional view showing a state where the constant velocity joint of FIG. 3 forms an angle.
  • FIG. 6 is a diagram showing an outline of a machine part and a method of manufacturing a machine element provided with the machine part in the first embodiment.
  • FIG. 7 is a diagram for illustrating the details of a quench hardening process included in the method for manufacturing a machine part in the first embodiment.
  • FIG. 8 For explaining the undecomposed NH partial pressure control process included in the atmosphere control process of FIG.
  • FIG. 1 A first figure.
  • FIG. 9 is a diagram for explaining an H partial pressure control step included in the atmosphere control step of FIG.
  • FIG. 10 is a diagram showing an example of a heating pattern (temperature history given to an object to be processed) in a heating pattern control step included in the carbonitriding step of FIG.
  • FIG. 11 is a graph showing the relationship between the ⁇ value and the amount of nitrogen intrusion when the carbonitriding time is 9000 seconds and the hydrogen partial pressure is 5 levels.
  • FIG. 12 is a graph showing the relationship between the ⁇ value, hydrogen partial pressure, and nitrogen intrusion amount at a carbonitriding time of 9000 seconds.
  • Partial pressure control process 53 CO / CO partial pressure control process, 60 Heating pattern control process.
  • deep groove ball bearing 1 includes an annular outer ring 11, an annular inner ring 12 disposed inside outer ring 11, and an annular ring disposed between outer ring 11 and inner ring 12. And a plurality of balls 13 as rolling elements held by the cage 14.
  • An outer ring rolling surface 11 A is formed on the inner peripheral surface of the outer ring 11, and an inner ring rolling surface 12 A is formed on the outer peripheral surface of the inner ring 12.
  • the outer ring 11 and the inner ring 12 are arranged so that the inner ring rolling surface 12A and the outer ring rolling surface 11A face each other.
  • the balls 13 are in contact with the inner ring rolling surface 12A and the outer ring rolling surface 11A, and are arranged at a predetermined pitch in the circumferential direction by the cage 14, so that they can roll on an annular track. Is held in. With the above configuration, the outer ring 11 and the inner ring 12 of the deep groove ball bearing 1 are rotatable relative to each other.
  • the outer ring 11, the inner ring 12, the ball 13 and the cage 14 which are mechanical parts
  • the outer ring 11, the inner ring 12 and the ball 13 are particularly required to have rolling fatigue strength and wear resistance. . Therefore, at least one of these is the mechanical component of the present invention, so that the life of the deep groove ball bearing 1 can be extended while reducing the manufacturing cost of the deep groove ball bearing 1.
  • thrust-single roller bearing 2 has a disk-like shape, and a pair of race rings 21 as rolling members arranged so that one main surface faces each other. And a plurality of one-dollar rollers 23 as rolling members and an annular retainer 24.
  • the plurality of needle rollers 23 are in contact with the raceway rolling surfaces 21A formed on the mutually opposing main surfaces of the pair of raceways 21 and are arranged at a predetermined pitch in the circumferential direction by the cage 24.
  • Rolled on an annular track With the above configuration, the pair of race rings 21 of the thrust-one dollar roller bearing 2 can be rotated relative to each other.
  • the race 21 and needle roller 23 are particularly required to have rolling fatigue strength and wear resistance. Therefore, at least one of these is the mechanical part of the present invention, so that it is possible to extend the life of the thrust-dollar roller bearing 2 while reducing the manufacturing cost of the thrust-dollar roller bearing 2. .
  • FIG. 3 corresponds to a schematic cross-sectional view taken along line III-III in FIG.
  • constant velocity joint 3 includes inner race 31 connected to shaft 35 and outer race connected to shaft 36 so as to surround the outer peripheral side of inner race 31.
  • a race 32, a torque transmission ball 33 disposed between the inner race 31 and the outer race 32, and a cage 34 for holding the ball 33 are provided.
  • the ball 33 is disposed in contact with the inner race ball groove 31A formed on the outer peripheral surface of the inner race 31 and the outer race ball groove 32A formed on the inner peripheral surface of the outer race 32. , So that it is held by cage 34!
  • the inner race ball groove 31A and the outer race ball groove 32A formed on each of the outer peripheral surface of the inner race 31 and the inner peripheral surface of the outer race 32 are a shaft 35 and a shaft 36, respectively.
  • each of them is formed in a curve (arc) shape having a curvature center at points A and B that are equidistant from the joint center O on the axis to the left and right on the axis. ing.
  • the locus of the center P of the ball 33 that rolls in contact with the inner race ball groove 31A and the outer race ball groove 32A is the center of curvature at point A (inner race center A) and point B (outer race center B).
  • Each of the inner race ball groove 31A and the outer race ball groove 32A is formed so as to form a curve (arc) having As a result, even when the constant velocity joint makes an angle (when the constant velocity joint operates so that the axes passing through the centers of the shaft 35 and the shaft 36 intersect), the ball 33 always has the Located on the bisector of the angle (AOB) formed by the axis passing through the center.
  • the inner race ball groove 31A and the outer race ball groove 32A are formed so that the distance from the joint center O force to the inner race center A is equal to the distance from the outer race center B.
  • the distances from the center P of 33 to the center A of the inner race and the center B of the outer race are equal.
  • ⁇ and ⁇ OBP are the same.
  • the distances L from the center P of the ball 33 to the shafts 35 and 36 are equal to each other, and when one of the shafts 35 and 36 rotates around the axis, the other also rotates at a constant speed.
  • the constant velocity joint 3 can ensure constant velocity even when the shafts 35 and 36 are angled.
  • the cage 34 together with the inner race ball groove 31A and the outer race ball groove 32A, prevents the ball 33 from jumping out of the inner race ball groove 31A and the outer race ball groove 32A when the shafts 35 and 36 rotate. It functions to determine the joint center O of the constant velocity joint 3.
  • the inner race 31, outer race 32, ball 33, and cage 34 which are mechanical parts
  • the inner race 31, outer race 32, and ball 33 have fatigue strength and wear resistance. Required. Therefore, at least one of these is the machine part of the present invention, so that the life of the constant velocity joint 3 can be extended while the manufacturing cost of the constant velocity joint 3 is reduced.
  • the machine component according to the first embodiment which is an embodiment of the method for producing a machine component of the present invention, and a method for producing machine elements such as a rolling bearing and the constant velocity joint provided with the machine component. I will explain.
  • a steel member preparation step is performed in which a steel member containing 0.8 mass% or more of carbon is prepared, and a steel member formed into a general shape of a machine part is prepared.
  • steel members formed into the general shape of mechanical parts such as the outer ring 11, the race 21 and the inner race 31 as mechanical parts are prepared.
  • the above-mentioned steel member prepared in advance is subjected to a carburizing and nitriding treatment, and then cooled from a temperature above the point A to a temperature below the point M.
  • a quench hardening process for quench hardening the steel member is performed. Details of this quench hardening process This will be described later.
  • a tempering step for improving the toughness and the like of the steel member is performed by heating the steel member that has been subjected to the quench hardening step to a temperature equal to or lower than the point.
  • the hardened steel member is heated to a temperature of 150 ° C or higher and 350 ° C or lower, which is the temperature below the point A, for example, 180 ° C, for a period of 30 minutes to 240 minutes. For example, it is held for 120 minutes and then cooled in air at room temperature (air cooling).
  • a finishing process in which finishing or the like is performed on the steel member that has been tempered is performed. Specifically, for example, the inner ring rolling surface 12A, the raceway rolling surface 21A, the outer race ball groove 32A and the like of the steel member that has been subjected to the tempering process are polished. Thereby, the machine part according to the first embodiment of the present invention is completed, and the method for manufacturing the machine part according to the first embodiment is completed.
  • an assembly process is performed in which the machine elements are assembled by combining the completed machine parts.
  • the deep groove ball bearing 1 is assembled by combining the outer ring 11, the inner ring 12, the ball 13 and the cage 14 which are the machine parts of the present invention manufactured by the above-described process. Thereby, the machine element provided with the machine part of the present invention is manufactured.
  • the horizontal direction indicates time, and the time goes to the right.
  • the vertical direction indicates the temperature, and the higher the temperature, the higher the temperature.
  • a carbonitriding process is performed in which a steel member as a workpiece is carbonitrided. It is done. After that, the steel member is cooled from the temperature above point A to the temperature below point M
  • a process is performed. Then, in the carbonitriding step, an object to be processed made of steel containing 0.8 mass% or more of carbon is heated in a carbonitriding atmosphere that is an atmosphere containing ammonia, carbon monoxide, carbon dioxide, and hydrogen.
  • the carbonitriding method according to the present invention is used to perform the carbonitriding process.
  • the carbonitriding process includes an atmosphere control process 50 in which the atmosphere in the heat treatment furnace is controlled, and a heating pattern control process in which the temperature history applied to the workpiece in the heat treatment furnace is controlled. About 60.
  • the atmosphere control process 50 and the heating pattern control process 60 can be performed independently and in parallel.
  • the atmosphere control step 50 includes an undecomposed NH partial pressure control step 51 in which the undecomposed ammonia partial pressure in the heat treatment furnace is controlled,
  • H partial pressure control step 52 in which the hydrogen partial pressure of the gas is controlled, carbon monoxide in the heat treatment furnace and
  • Cozco partial pressure control process in which the partial pressure of at least one of diacid carbon is controlled
  • the hydrogen partial pressure in the heat treatment furnace is 0.1 atmospheric pressure or higher and 0.3 atmospheric pressure or lower, and ⁇ defined by the formula (1) is 2.0 or higher and 6.0 or lower.
  • the undecomposed and partial pressure control process 51, the CO / CO partial pressure control process 53, and the H partial pressure control process 52 are
  • the atmosphere control step 50 can be performed as follows. First, considering the desired carbon concentration in the surface layer of the workpiece, the carbon potential (C
  • At least one of the partial pressures is controlled to adjust the a * of the atmosphere to the target value.
  • propane (C H) gas or butane gas (C H) as an enriched gas is used for the adjustment.
  • Equation (2) is measured. Based on the measured value, the supply amount of propan (CH 3) gas, butane gas (CH 3), etc. as an enriched gas is adjusted so that a * defined in Equation (2) becomes the target value. Is done.
  • the undecomposed ammonia partial pressure is controlled.
  • Adjusts the undecomposed ammonia concentration. Then, referring to equation (1), ⁇ is adjusted to 2.0 or more and 6.0 or less based on the relationship with a * adjusted to the target value as described above.
  • An undecomposed soot partial pressure measurement step (S11) is performed to measure the undecomposed ammonia partial pressure in the furnace.
  • An undecomposed NH partial pressure determination step (S12) is performed to determine whether or not 3) is necessary.
  • the judgment is made by comparing the target undecomposed ammonia partial pressure determined so that ⁇ is in the range of 2.0 or more and 6.0 or less with the measured undecomposed ammonia partial pressure. This is done by determining whether the ammonia partial pressure is at the target undecomposed ammonia partial pressure.
  • the comparison of the undecomposed ammonia partial pressure with the target undecomposed ammonia partial pressure is a value equivalent to the partial pressure, such as the concentration of undecomposed ammonia, which is not just a comparison of the actual partial pressure. As long as the partial pressures are compared as a result of the comparison of.
  • Step (S11) is performed again.
  • step (S13) for example, the amount of ammonia flowing into the heat treatment furnace per unit time (ammonia gas flow rate) from an ammonia gas cylinder connected to the heat treatment furnace via a pipe is attached to the pipe. It can be implemented by adjusting using a flow control device equipped with a mass flow controller.
  • step 13 should be performed by decreasing the flow rate, and if lower, increasing the flow rate. Can do.
  • step (S13) if there is a predetermined difference between the measured undecomposed ammonia partial pressure and the target undecomposed ammonia partial pressure, the degree to which the flow rate is increased or decreased in advance is experimentally determined. It can be determined based on the relationship between the increase / decrease in the ammonia gas flow rate and the increase / decrease in the partial pressure of undecomposed ammonia.
  • the hydrogen partial pressure is adjusted to 0.1 atm or more and 0.3 atm or less.
  • soot partial pressure control step 52 is the same as the undecomposed soot partial pressure control step 51 described above.
  • the partial pressure control step 52 first, heat treatment is performed.
  • the H partial pressure measurement step (S21) for measuring the hydrogen partial pressure in the furnace is performed. Measurement of hydrogen partial pressure
  • the judgment is based on comparing the measured hydrogen partial pressure with the target hydrogen partial pressure determined so that the hydrogen partial pressure is in the range of 0.1 atm or more and 0.3 atm or less. This is performed by determining whether the partial pressure is the target hydrogen partial pressure.
  • the step (S23) for increasing or decreasing the hydrogen partial pressure in the heat treatment furnace is performed, and then the step (S21) is performed again.
  • the degree of increase or decrease in the flow rate is determined in advance as in the case of ammonia. It can be determined based on the relationship between the increase / decrease in the flow rate of hydrogen gas and the increase / decrease in hydrogen partial pressure.
  • step (S21) without step (S23) is performed again.
  • the base gas in the atmosphere in the heat treatment furnace is RX gas or the like generated by reacting hydrocarbon or the like with oxygen (air), and the hydrogen gas is directly supplied to the cylinder with equal force.
  • RX gas or the like generated by reacting hydrocarbon or the like with oxygen (air)
  • the hydrogen gas is directly supplied to the cylinder with equal force.
  • the ratio of hydrogen contained in RX gas etc. is changed by changing the ratio of the flow rate of hydrocarbons such as propane and oxygen flowing into the shift furnace for producing RX gas etc. Can be made. Therefore, even when the base gas in the atmosphere is RX gas or the like, the flow rate of hydrogen gas flowing into the heat treatment furnace can be adjusted.
  • the comparison between the hydrogen partial pressure and the target hydrogen partial pressure is to actually compare the partial pressure. If the partial pressure is compared as a result of comparing the equivalent value with the partial pressure, such as the concentration of hydrogen.
  • the amount of ammonia supplied to the heat treatment furnace per unit time is adjusted to adjust the concentration of undecomposed ammonia.
  • the heating pattern control step 60 the heating history applied to the steel member as the object to be processed is controlled. Specifically, as shown in FIG. 10, in the atmosphere in which the steel member is controlled by the atmosphere control step 50 described above, a temperature of 800 ° C. or higher and 1000 ° C. or lower, which is a temperature higher than the saddle point, for example, 850 Heated to ° C and held for 60 minutes to 300 minutes, for example 150 minutes. As the holding time elapses, the heating pattern control step 60 ends, and at the same time, the atmosphere control step 50 ends.
  • the steel member is hardened and hardened while the surface layer portion is carbonitrided.
  • the quench hardening process of the first embodiment is completed.
  • At least one of undecomposed ammonia partial pressure, hydrogen partial pressure, monoxide-carbon partial pressure, and diacid-carbon partial pressure is based on the measured values of partial pressure of undecomposed ammonia in the heat treatment furnace, hydrogen partial pressure, and carbon monoxide partial pressure and / or carbon dioxide partial pressure. Whether or not it is necessary to increase or decrease the amount of supply is controlled, and the target partial pressure is controlled. Therefore, it is possible to accurately control the undecomposed ammonia partial pressure, hydrogen partial pressure, and a * values in the atmosphere in the heat treatment furnace. As a result, the hydrogen partial pressure and ⁇ value in the heat treatment furnace in the above-described atmosphere control step 50 are controlled. It is easy.
  • the method of manufacturing a mechanical component of the first embodiment it is possible to manufacture a mechanical component that has been subjected to carbonitriding while reducing the manufacturing cost.
  • the mechanical component of Embodiment 1 is a mechanical component that has been subjected to carbonitriding while reducing manufacturing costs.
  • the value of ⁇ , the hydrogen partial pressure, and the pressure determined for each steel composition constituting the steel member as the object to be processed are as follows. Carburization based on the relationship between the carbonitriding time, which is the time during which the workpiece is kept at a temperature above the saddle point in the carbonitriding atmosphere, and the nitrogen concentration in the region of the surface force of the workpiece at a predetermined depth. Preferably, the nitriding time is determined.
  • the nitrogen penetration rate in the carbonitriding process is improved to a maximum. Then, the nitrogen penetration amount within a predetermined time is determined. Nitrogen that has entered the workpiece can be considered to diffuse and distribute according to the Gaussian error function, as shown in the following equation (4). Therefore, the depth at which the nitrogen concentration should be controlled is determined in consideration of the processing step after carbonitriding of the workpiece, the subsequent use state, etc., and the depth at which the nitrogen concentration should be controlled based on the above relationship.
  • the carbonitriding time can be determined so that the nitrogen concentration becomes a desired concentration.
  • N Nitrogen concentration in the region where the depth from the surface is X
  • N s Nitrogen concentration in the 3 ⁇ 4
  • X Depth from the surface
  • D Nitrogen diffusion coefficient in the workpiece
  • t During carbonitriding 1 ⁇ ]
  • the diffusion coefficient D can be obtained experimentally.
  • the following expression (5) is given.
  • the diffusion coefficient D can be used in the calculation of equation (4).
  • the relationship between the value of ⁇ , the hydrogen partial pressure and the carbonitriding time and the nitrogen concentration in a region at a predetermined depth from the surface of the object to be processed is determined by the composition of the steel constituting the object to be processed. Therefore, by determining the relationship in advance, for a workpiece having the same composition, the carbonitriding time can be determined based on the relationship even if the shape of the workpiece is changed. . This makes it possible to easily control the nitrogen content in a region having a desired depth that is important in the workpiece.
  • Embodiment 2 a carbonitriding method, a machine part manufacturing method, and a machine part in Embodiment 2 of the present invention will be described.
  • the carbonitriding method, machine part manufacturing method and machine part in Embodiment 2 and the carbonitriding method, machine part manufacturing method and machine part in Embodiment 1 described above have basically the same configuration. Have the same effect.
  • the second embodiment is different from the first embodiment in that the atmosphere control step included in the carbonitriding method is performed as follows.
  • hydrocarbon gas such as 3 8s and butane gas (C H) is adjusted.
  • the amount of ammonia and hydrogen supplied to the heat treatment furnace is adjusted so that the standard undecomposed ammonia concentration and hydrogen partial pressure are maintained, and the undecomposed NH partial pressure control step 51 and H component
  • the near concentration and the hydrogen partial pressure are adjusted.
  • the value of E is determined by referring to the equations (1) to (3), the undecomposed NH partial pressure control step 51, the H component
  • O / CO partial pressure control process 53 keeps the undecomposed ammonia concentration and a * constant.
  • undecomposed NH partial pressure control step 51 controls undecomposed ammonia concentration.
  • the hydrogen partial pressure can be adjusted by adjusting the hydrogen flow rate in the H partial pressure control process.
  • the value of E is controlled within an appropriate range.
  • the workpiece made of steel containing 0.8% by mass or more of carbon is heated to perform carbonitriding, improving the nitrogen penetration rate and improving the efficiency of carbonitriding. Can be achieved.
  • At least one of undecomposed ammonia partial pressure, hydrogen partial pressure, monoxide-carbon partial pressure, and diacid-carbon partial pressure is based on the measured values of partial pressure of undecomposed ammonia in the heat treatment furnace, hydrogen partial pressure, and carbon monoxide partial pressure and / or carbon dioxide partial pressure. Whether or not it is necessary to increase or decrease the amount of supply is controlled, and the target partial pressure is controlled. Therefore, it is possible to accurately control the undecomposed ammonia partial pressure, the value of a *, and the hydrogen partial pressure in the atmosphere in the heat treatment furnace. As a result, it is not easy to control the value of E in the heat treatment furnace in the atmosphere control process described above.
  • the carbonitriding method of the second embodiment similarly to the carbonitriding method of the first embodiment, it is determined for each composition of steel constituting the steel member as the object to be processed.
  • Y Value hydrogen partial pressure
  • the carbonitriding time is preferably determined based on the relationship.
  • a deep groove ball bearing, a thrust-single roller bearing, and a mechanical component constituting a constant velocity joint have been described.
  • the mechanical component of the invention is not limited to this, and may be a mechanical component that requires fatigue strength and wear resistance of the surface layer portion, for example, a mechanical component constituting a blade, a gear, a shaft, or the like.
  • the surface layer portion of the object to be processed is a region near the surface of the object to be processed, and the distance of the surface force when the object to be processed becomes a product after, for example, finishing is performed. 0. Area that should be less than 2 mm. In other words, the surface layer of the workpiece is manufactured by processing the workpiece.
  • the nitrogen concentration and carbon concentration should be controlled in a state where the workpiece is a product, and can be determined appropriately for each product.
  • Example 1 of the present invention will be described below.
  • An experiment was conducted to investigate the relationship between ⁇ and hydrogen partial pressure in the heat treatment furnace and the amount of nitrogen intrusion into the workpiece.
  • the experimental procedure is as follows.
  • the capacity of the heat treatment furnace used in the experiment is 120 L (liter).
  • Material to be processed ⁇ O IS SUJ2 carbon content 1% by mass
  • the heating pattern adopts the same pattern as in Fig. 10, the carbonitriding holding temperature is 850 ° C, the carbonitriding time is 9000 seconds, and the base gas supplied to the heat treatment furnace (other than the enriched gas and ammonia gas)
  • the flow rate of the atmospheric gas was 11.5 L / min at 20 ° C and 1.05 atm.
  • the horizontal axis is the value of ⁇
  • the vertical axis is the nitrogen penetration amount.
  • the solid line, dotted line, alternate long and short dash line, and broken line indicate the cases where the hydrogen partial pressure is 0.15, 0.2, 0.3, 0.4, and 0.5 atm, respectively.
  • the nitrogen penetration amount is increased.
  • the increase is small when the hydrogen partial pressure is 0.3 atm or less, and hardly increases at 0.2 atm or less. Therefore, in the carbonitriding process, by setting the hydrogen partial pressure in the heat treatment furnace to 0.3 atm or less, it becomes possible to improve the nitrogen infiltration rate to the maximum and 0.2 atm or less. As a result, it was possible to maximize the nitrogen penetration rate.
  • the value of ⁇ in the heat treatment furnace is 6.0 or less, preferably 5.0 or less, and the hydrogen partial pressure is 0.3 atmosphere or less, preferably It was confirmed that the nitrogen penetration rate can be improved and the carbonitriding efficiency can be improved by setting the pressure to less than 0.2 atm.
  • the relationship between the ⁇ value, the hydrogen partial pressure, and the nitrogen penetration amount is described.
  • the two axes on the bottom are the ⁇ value and hydrogen partial pressure, respectively, and the vertical axis (axis) is the nitrogen penetration amount.
  • the curved surface in the figure shows the relationship between the ⁇ value and hydrogen partial pressure obtained from the results of this experiment and the amount of nitrogen penetration.
  • the points in the figure are the measurement points in this experiment, and those with downward line segments connected are those with greater nitrogen penetration than the curved surface, and those with upward line segments are connected. This indicates that the amount of nitrogen intrusion was smaller than the aforementioned curved surface.
  • the curved surface in the figure is a curved surface showing the relationship between the ⁇ value and the hydrogen partial pressure obtained from the results of this experiment and the nitrogen penetration amount, where the nitrogen penetration amount is ⁇ . And expressed by equation (3)
  • the curved surface shows that the nitrogen penetration amount increases as the hydrogen partial pressure and ⁇ decrease. However, the hydrogen partial pressure and ⁇ are reduced, and ⁇ is 7
  • the curved surface force is nearly perpendicular to the 3 ⁇ 4 axis.
  • the saddle value is nearly perpendicular to the 3 ⁇ 4 axis.
  • the curved surface is almost perpendicular to the heel axis. This is achieved by adjusting the nitrogen infiltration rate by adjusting the soot of the atmosphere in the heat treatment furnace to be 7.5 or more.
  • the value of soot in the heat treatment furnace is preferably 7.5 or more.
  • steel containing 0.8% by mass or more of carbon that is, eutectoid steel and hypereutectoid steel
  • JIS SUJ2 which is a bearing steel and SAE52100 corresponding to this
  • DIN standard 100Cr6 JIS Examples
  • JIS Examples include SUJ3, JIS SUP3 and SUP4, which are spring steels, and JIS SK2 and SK3, which are tool steels.
  • Example 2 of the present invention will be described below.
  • An experiment was conducted to confirm whether or not the hydrogen partial pressure can be adjusted when the base gas introduced into the reactor is a modified gas that has been modified by mixing and reacting propane gas and air.
  • the experimental procedure is as follows.
  • the experimental conditions of “normal conditions” are the production conditions of RX gas as a general metamorphic gas.
  • the partial pressure of hydrogen in the metamorphic gas is 0.2846 atm.
  • the hydrogen partial pressure is in the range of 0.1091 to 0.3789 atmospheres. From this, in the carbonitriding method of the present invention, by adjusting the hydrogen partial pressure, E
  • the hydrogen partial pressure in the atmosphere is reduced to about 0.1 atmospheric pressure to increase the nitrogen infiltration rate, and sufficient a * is secured to sufficiently treat the workpiece. It was possible to introduce a large amount of carbon.
  • the carbonitriding method and the machine part manufacturing method of the present invention include a carbonitriding method for carbonitriding a steel material to be processed containing 0.8 mass% or more of carbon, and a carbon mass nitriding method of 0.8 mass% or more.
  • the present invention can be applied particularly advantageously to a method of manufacturing a machine part including a step of carbonitriding an object to be processed that contains steel and containing carbon.
  • the mechanical component of the present invention can be particularly advantageously applied to a mechanical component that requires fatigue strength and wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Rolling Contact Bearings (AREA)

Description

明 細 書
浸炭窒化方法、機械部品の製造方法および機械部品
技術分野
[0001] 本発明は浸炭窒化方法、機械部品の製造方法および機械部品に関し、より特定的 には、 0. 8質量%以上の炭素を含有する鋼力 なる被処理物を浸炭窒化するための 浸炭窒化方法、 0. 8質量%以上の炭素を含有する鋼からなる被処理物を浸炭窒化 する工程を含む機械部品の製造方法および 0. 8質量%以上の炭素を含有する鋼か らなり、浸炭窒化が実施された機械部品に関するものである。
背景技術
[0002] 一般に、浸炭窒化処理、特に鋼からなる被処理物に対して実施されるガス浸炭窒 化処理においては、 RXガスおよびアンモニア(NH )ガスを一定の流量(単位時間あ
3
たりの供給量)で熱処理炉内に流入させるとともに、熱処理炉内のカーボンポテンシ ャル (c M直を熱処理炉内の二酸化炭素(co )の分圧に基づいて制御することによ
P 2
り、当該熱処理炉内の雰囲気が制御されている。ここで、被処理物の表層部に侵入 する窒素量を、浸炭窒化処理中に直接測定することは困難である。そのため、熱処 理炉ごとに、アンモニアガスの流量と被処理物の表層部に侵入する窒素量との関係 を過去の生産実績等から経験的に決定し、浸炭窒化処理中に直接測定することが 可能なアンモニアガスの流量を調節することにより被処理物の表層部に侵入する窒 素量が制御される場合が多 、。
[0003] そして、このアンモニアガスの流量は、各熱処理炉の過去の生産実績等に基づき、 被処理物の量や形状などを考慮して経験的に決定されているが、過去の生産実績 が無いような量や形状の被処理物を浸炭窒化処理する必要が生じた場合、当該浸 炭窒化処理における最適なアンモニアガスの流量を決定するための試行錯誤が必 要となる。その結果、最適なアンモニアガスの流量が決定されるまでは被処理物の品 質を安定させることが困難なだけでなぐ上記試行錯誤を量産ラインにおいて実施す る必要があるため、要求品質を満たさない被処理物が発生し、生産コスト上昇の要因 となるおそれもある。 [0004] これに対し、熱処理炉ごとに、また被処理物の量や形状ごとに変化させる必要のあ るアンモニアガスの流量ではなぐ熱処理炉内に残留している気体アンモニアの濃度 である未分解アンモニア濃度 (アンモニアの残留ガス濃度)を調節することにより、被 処理物に侵入する窒素量を制御する方法が提案されている(恒川好榭、外 2名、「ガ ス浸炭窒化処理におけるボイドの発生と窒素の拡散挙動」、熱処理、 1985年、 25卷 、 5号、 P.242— 247 (非特許文献 1)、および特開平 8— 13125号公報 (特許文献 1 ) )。すなわち、浸炭窒化処理中に測定が可能な未分解アンモニア濃度を測定し、熱 処理炉の形状や被処理物の量および形状等に関係なく決定可能な未分解アンモニ ァ濃度と被処理物に侵入する窒素量との関係に基づき、アンモニアガスの流量が調 節される。これにより、最適なアンモニアガスの流量を試行錯誤により決定することな ぐ被処理物に侵入する窒素量を制御することが可能となり、被処理物の品質を安定 させることがでさる。
非特許文献 1 :恒川好榭、外 2名、「ガス浸炭窒化処理におけるボイドの発生と窒素の 拡散挙動」、熱処理、 1985年、 25卷、 5号、 p.242- 247
特許文献 1:特開平 8— 13125号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、上述の未分解アンモニア濃度をパラメータとする浸炭窒化処理方法を含め て、従来の浸炭窒化処理方法では、被処理物への窒素侵入速度 (被処理物の表面 の単位面積力 単位時間あたりに侵入する窒素量)をコントロールすることは困難で あった。浸炭窒化処理は、機械部品の製造工程等において、比較的コストの高いェ 程である。そのため、浸炭窒化処理に対しては、その処理コストの低減が求められて いる。したがって、被処理物への窒素侵入速度をコントロールして窒素侵入速度を向 上させ、浸炭窒化処理の効率ィ匕を図ることができれば、上記浸炭窒化処理コストの低 減の要求に応えることができる。
[0006] そこで、本発明の目的は、窒素侵入速度を向上させ、浸炭窒化処理の効率化を図 ることが可能な浸炭窒化方法を提供することである。また、本発明の他の目的は、効 率的な浸炭窒化処理が実施されることにより、製造コストの低減が可能な機械部品の 製造方法を提供することである。また、本発明のさらに他の目的は、効率的な浸炭窒 化処理が実施されることにより、製造コストが低減された機械部品を提供することであ る。
課題を解決するための手段
[0007] 本発明に従った浸炭窒化方法は、 0. 8質量%以上の炭素を含有する鋼からなる被 処理物を、アンモニア、一酸化炭素、二酸化炭素および水素を含む雰囲気中で加熱 することにより浸炭窒化する浸炭窒化方法である。当該浸炭窒化方法は、熱処理炉 内の雰囲気が制御される雰囲気制御工程と、熱処理炉内において被処理物に付与 される温度履歴が制御される加熱パターン制御工程とを備えている。
[0008] 雰囲気制御工程は、熱処理炉内の未分解アンモニア分圧が制御される未分解 NH
3分圧制御工程と、熱処理炉内の一酸化炭素および二酸化炭素の少なくともいずれ か一方の分圧が制御される cozco 2分圧制御工程と、熱処理炉内の水素分圧が 制御される H 2分圧制御工程とを含んでいる。そして、雰囲気制御工程においては、 熱処理炉内の水素分圧が 0. 1気圧 (atm)以上 0. 3気圧以下となり、以下の式(1)で 定義される γが 2. 0以上 6. 0以下となるように、未分解 ΝΗ 3分圧制御工程、 CO/C
Ο 2分圧制御工程および Η 2分圧制御工程が実施される。なお、以下の式(1)および(
2)において、 a *は、 1. 0以下の値となる場合、炭素の活量に該当する。
[0009] [数 1] 氺
γ = ^- …( し ΝΗ3 ここで、 a * = i^)l_ …
X PcO",
PCO:一酸化炭素の分圧 (atm)、 PC02:二酸化炭素の分圧 (atm)
:< C > +C07 ^ 2COの平衡定数
:未分解アンモニア濃度 (体積%)
[0010] 本発明者は、浸炭窒化処理における熱処理炉内の雰囲気と被処理物への窒素の 侵入挙動との関係について詳細に検討を行なった。そして、被処理物への窒素の侵 入速度に対して、雰囲気中の一酸ィ匕炭素分圧および窒素分圧の影響は小さいのに 対し、水素分圧および上記式(1)で定義される γが大きな影響を及ぼすことを見出し た。
[0011] すなわち、雰囲気中の水素分圧が低下するに従って所定時間内の窒素侵入量 (被 処理物の表面の単位面積から被処理物の内部に侵入する窒素の量)は増加する。 そして、水素分圧が 0. 3気圧付近において、 0. 8質量%以上の炭素を含有する鋼 力 なる被処理物への窒素侵入量の増加は、ほぼ飽和する。そのため、水素分圧を 0. 3気圧以下とすることにより、浸炭窒化処理における窒素侵入速度を最大近くにま で向上させ、浸炭窒化処理の効率ィ匕を図ることができる。
[0012] 一方、水素分圧を 0. 1気圧未満に低下させても、窒素侵入量の増加が小さいだけ でなぐ浸炭窒化処理における被処理物への炭素の侵入速度が低下して、被処理 物の表層部の炭素濃度を所望の値とすることが困難になるおそれがある。そのため、 浸炭窒化における雰囲気中の水素分圧は、 0. 1気圧以上 0. 3気圧以下とすることが 好ましい。なお、浸炭窒化処理を一層効率ィ匕するためには、水素分圧は 0. 2気圧以 下とすることが好ましい。また、上記炭素の浸入速度の低下に起因する問題を一層 確実に回避するためには、水素分圧は 0. 15気圧以上とすることが好ましい。
[0013] また、雰囲気の γ値が低下するに従って窒素侵入量は増加する。そして、 γ値が 6 . 0付近において、 0. 8質量%以上の炭素を含有する鋼力 なる被処理物への窒素 侵入量の増加は、ほぼ飽和する。そのため、 γ値を 6. 0以下とすることにより、浸炭 窒化処理における窒素侵入速度を最大近くにまで向上させ、浸炭窒化処理の効率 ィ匕を図ることができる。
[0014] 一方、 γ値を 2. 0未満に低下させても、窒素侵入量の増加が小さい。さらに、 γの 値を 2. 0未満とするためには、熱処理炉に供給されるアンモニアの流量を大きくする 必要がある。これに伴い、熱処理炉内における一酸ィ匕炭素の分圧が低下するため、 カーボンポテンシャルを保持するためには、熱処理炉内へのエンリッチガスの導入量 を増加させる必要が生じる。これにより、スーティング (熱処理炉内にすすが発生し、 被処理物に付着する現象)が発生しやすくなり、被処理物に表面浸炭などの品質上 の不具合が発生するおそれがある。そのため、浸炭窒化における雰囲気中の γ値は 、 2. 0以上 6. 0以下とすることが好ましい。なお、浸炭窒化処理を一層効率化するた めには、 γ値は 5. 0以下とすることが好ましい。また、上記スーティングの問題を一層 確実に回避するためには、 γ値は、 3. 0以上とすることが好ましい。
[0015] 以上のように、本発明の浸炭窒化方法によれば、熱処理炉内の水素分圧が 0. 1気 圧以上 0. 3気圧以下となり、かつ γが 2. 0以上 6. 0以下となるような雰囲気中で被 処理物が加熱されて浸炭窒化が実施されるため、窒素侵入速度を向上させ、浸炭窒 化処理の効率ィ匕を図ることができる。
[0016] なお、未分解アンモニアとは、熱処理炉内に供給されたアンモニアのうち、分解さ れることなく気体アンモニアの状態で残存して 、るアンモニアを!、う。
[0017] 本発明に従った浸炭窒化方法は、 0. 8質量%以上の炭素を含有する鋼からなる被 処理物を、アンモニア、一酸化炭素、二酸化炭素および水素を含む雰囲気中で加熱 することにより浸炭窒化する浸炭窒化方法である。当該浸炭窒化方法は、熱処理炉 内の雰囲気が制御される雰囲気制御工程と、熱処理炉内において被処理物に付与 される温度履歴が制御される加熱パターン制御工程とを備えている。
[0018] 雰囲気制御工程は、熱処理炉内の未分解アンモニア分圧が制御される未分解 ΝΗ
3分圧制御工程と、熱処理炉内の一酸化炭素および二酸化炭素の少なくともいずれ か一方の分圧が制御される cozco分圧制御工程と、熱処理炉内の水素分圧が
2
制御される Η分圧制御工程とを含んでいる。
2
[0019] そして、雰囲気制御工程においては、以下の式(3)で定義される Εが 7. 5以上と
Ν
なるように、未分解 ΝΗ分圧制御工程、 CO/CO分圧制御工程および H分圧制
3 2 2 御工程が実施される。
[0020] [数 2]
EN = 15 + 0.46 χ χ - 0.063 χ 2— 99 x PIl2 + 530 χ (ΡΗ: )2
— 1200 χ (Ρ„,)3 + 940 χ (ΡΗ, )4 … (3) ここで、 ΡΗ, :水素の分圧(aUn)
[0021] 本発明者は、上述の被処理物への窒素の侵入速度に及ぼす雰囲気中の水素分 圧および γの影響をさらに詳細に分析した結果、以下のような知見を得た。 [0022] すなわち、上記式(3)で定義される Eが大きくなるように水素分圧および γを制御
Ν
すると、浸炭窒化処理における窒素浸入速度が大きくなる。そして、 0. 8質量%以上 の炭素を含有する鋼力 なる被処理物においては、 Εが 7. 5となったとき、被処理
Ν
物への窒素の侵入速度が最大近くにまで向上し、 Εが 7. 5以上では、窒素侵入速
Ν
度はほぼ飽和する。つまり、 Εを 7. 5以上とすることで、 0. 8質量%以上の炭素を含
Ν
有する鋼力 なる被処理物への窒素の侵入速度を最大近くにまで向上させることが できる。
[0023] したがって、本発明の浸炭窒化方法によれば、 Εが 7. 5以上となるような雰囲気中
Ν
で被処理物が加熱されて浸炭窒化が実施されるため、窒素侵入速度を向上させ、浸 炭窒化処理の効率ィ匕を図ることができる。
[0024] なお、 Εの値を大きくするためには、水素分圧や γを小さくする必要がある。上述
Ν
のように、水素分圧や γを小さくすると、炭素の浸入速度の低下ゃスーティングの発 生の問題を生じるおそれがある。したがって、 Εの値は、 10. 0以下とすることが好ま
Ν
しぐ 9. 5以下とすることがより好ましい。また、一層浸炭窒化処理を効率化するため には、 Ε は 8. 0以上とすることが好ましい。
Ν
[0025] 本発明に従った機械部品の製造方法は、 0. 8質量%以上の炭素を含有する鋼か らなり、機械部品の概略形状に成形された鋼製部材を準備する鋼製部材準備工程と 、鋼製部材準備工程において準備された鋼製部材に対して、浸炭窒化処理を実施 した後、 Α点以上の温度から M点以下の温度に冷却することにより、鋼製部材を焼
1 S
入硬化する焼入硬化工程とを備えている。そして、焼入硬化工程における浸炭窒化 処理は、上述の本発明の浸炭窒化方法を用いて実施される。
[0026] 本発明の機械部品の製造方法によれば、 0. 8質量%以上の炭素を含有する鋼か らなる被処理物に適した上述の本発明の浸炭窒化方法が焼入硬化工程において採 用されることにより、効率的な浸炭窒化処理が実施され、機械部品の製造コストを低 減することが可能となる。
[0027] ここで、 A点とは鋼を加熱した場合に、鋼の組織がフェライトからオーステナイトに 変態を開始する温度に相当する点をいう。また、 M
S点とはオーステナイトィ匕した鋼が 冷却される際に、マルテンサイトイ匕を開始する温度に相当する点をいう。 [0028] 本発明に従った機械部品は、上述の機械部品の製造方法により製造されている。 上述した本発明の機械部品の製造方法により製造されていることにより、本発明の機 械部品は、効率的な浸炭窒化処理が実施されており、製造コストが低減されている。
[0029] 上記本発明の機械部品は、軸受を構成する部品として用いられてもよい。浸炭窒 化が実施されることにより表面層が強化され、かつ製造コストが低減された本発明の 機械部品は、疲労強度、耐摩耗性等が要求される機械部品である軸受を構成する 部品として好適である。
[0030] なお、上述の機械部品を用いて、軌道輪と、軌道輪に接触し、円環状の軌道上に 配置される転動体とを備えた転がり軸受を構成してもよい。すなわち、軌道輪および 転動体の少なくともいずれか一方、好ましくは両方力 上述の機械部品である。浸炭 窒化が実施されることにより表面層が強化され、かつ製造コストが低減された本発明 の機械部品を備えていることにより、当該転がり軸受によれば、製造コストが低減され るとともに、長寿命な転がり軸受を提供することができる。
発明の効果
[0031] 以上の説明から明らかなように、本発明の浸炭窒化方法によれば、窒素侵入速度 を向上させ、浸炭窒化処理の効率化を図ることが可能な浸炭窒化方法を提供するこ とができる。また、本発明の機械部品の製造方法によれば、効率的な浸炭窒化処理 が実施されることにより、製造コストの低減が可能な機械部品の製造方法を提供する ことができる。また、本発明の機械部品によれば、効率的な浸炭窒化処理が実施され ることにより、製造コストが低減された機械部品を提供することができる。
図面の簡単な説明
[0032] [図 1]実施の形態 1における機械部品を備えた転がり軸受としての深溝玉軸受の構成 を示す概略断面図である。
[図 2]実施の形態 1における第 1の変形例である機械部品を備えた転がり軸受として のスラスト-一ドルころ軸受の構成を示す概略断面図である。
[図 3]実施の形態 1における第 2の変形例である機械部品を備えた等速ジョイントの構 成を示す概略断面図である。
[図 4]図 3の線分 IV— IVに沿う概略断面図である。 [図 5]図 3の等速ジョイントが角度をなした状態を示す概略断面図である。
[図 6]実施の形態 1における機械部品および当該機械部品を備えた機械要素の製造 方法の概略を示す図である。
[図 7]実施の形態 1における機械部品の製造方法に含まれる焼入硬化工程の詳細を 説明するための図である。
[図 8]図 7の雰囲気制御工程に含まれる未分解 NH分圧制御工程を説明するための
3
図である。
[図 9]図 7の雰囲気制御工程に含まれる H分圧制御工程を説明するための図である
2
[図 10]図 7の浸炭窒化工程に含まれる加熱パターン制御工程における加熱パターン (被処理物に与えられる温度履歴)の一例を示す図である。
[図 11]浸炭窒化時間 9000秒、 5水準の水素分圧における γ値と窒素侵入量との関 係を示す図である。
[図 12]浸炭窒化時間 9000秒における γ値および水素分圧と窒素侵入量との関係を 示す図である。
符号の説明
[0033] 1 深溝玉軸受、 2 スラスト-一ドルころ軸受、 3 等速ジョイント、 11 外輪、 11A 外輪転走面、 12 内輪、 12A 内輪転走面、 13 玉、 14, 24 保持器、 21 軌道輪 、 21A 軌道輪転走面、 23 ニードルころ、 31 インナーレース、 31A インナーレ一 スボール溝、 32 アウターレース、 32Α アウターレースボール溝、 33 ボール、 34 ケージ、 35, 36 軸、 50 雰囲気制御工程、 51 未分解 ΝΗ分圧制御工程、 52 Η
3
分圧制御工程、 53 CO/CO分圧制御工程、 60 加熱パターン制御工程。
2 2
発明を実施するための最良の形態
[0034] 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面におい て同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
[0035] (実施の形態 1)
以下、図 1を参照して、本発明の実施の形態 1における転がり軸受としての深溝玉 軸受について説明する。 [0036] 図 1を参照して、深溝玉軸受 1は、環状の外輪 11と、外輪 11の内側に配置された 環状の内輪 12と、外輪 11と内輪 12との間に配置され、円環状の保持器 14に保持さ れた転動体としての複数の玉 13とを備えている。外輪 11の内周面には外輪転走面 1 1Aが形成されており、内輪 12の外周面には内輪転走面 12Aが形成されている。そ して、内輪転走面 12Aと外輪転走面 11Aとが互いに対向するように、外輪 11と内輪 12とは配置されている。さらに、複数の玉 13は、内輪転走面 12Aおよび外輪転走面 11Aに接触し、かつ保持器 14により周方向に所定のピッチで配置されることにより、 円環状の軌道上に転動自在に保持されている。以上の構成により、深溝玉軸受 1の 外輪 11および内輪 12は、互いに相対的に回転可能となっている。
[0037] ここで、機械部品である外輪 11、内輪 12、玉 13および保持器 14のうち、特に、外 輪 11、内輪 12および玉 13には転動疲労強度ゃ耐摩耗性が要求される。そのため、 これらのうち少なくとも 1つは本発明の機械部品であることにより、深溝玉軸受 1の製 造コストを低減しつつ、深溝玉軸受 1を長寿命化することができる。
[0038] 次に、図 2を参照して、実施の形態 1における第 1の変形例であるスラスト-一ドルこ ろ軸受について説明する。
[0039] 図 2を参照して、スラスト-一ドルころ軸受 2は、円盤状の形状を有し、互いに一方 の主面が対向するように配置された転動部材としての一対の軌道輪 21と、転動部材 としての複数の-一ドルころ 23と、円環状の保持器 24とを備えている。複数のニード ルころ 23は、一対の軌道輪 21の互いに対向する主面に形成された軌道輪転走面 2 1Aに接触し、かつ保持器 24により周方向に所定のピッチで配置されることにより円 環状の軌道上に転動自在に保持されている。以上の構成により、スラスト-一ドルこ ろ軸受 2の一対の軌道輪 21は、互いに相対的に回転可能となっている。
[0040] ここで、機械部品である軌道輪 21、ニードルころ 23および保持器 24のうち、特に、 軌道輪 21、ニードルころ 23には転動疲労強度ゃ耐摩耗性が要求される。そのため、 これらのうち少なくとも 1つは本発明の機械部品であることにより、スラスト-一ドルころ 軸受 2の製造コストを低減しつつ、スラスト-一ドルころ軸受 2を長寿命化することがで きる。
[0041] 次に、図 3〜図 5を参照して、実施の形態 1における第 2の変形例である等速ジョイ ントについて説明する。なお、図 3は、図 4の線分 III— IIIに沿う概略断面図に対応す る。
[0042] 図 3〜図 5を参照して、等速ジョイント 3は、軸 35に連結されたインナーレース 31と、 インナーレース 31の外周側を囲むように配置され、軸 36に連結されたアウターレー ス 32と、インナーレース 31とアウターレース 32との間に配置されたトルク伝達用のボ ール 33と、ボール 33を保持するケージ 34とを備えている。ボール 33は、インナーレ ース 31の外周面に形成されたインナーレースボール溝 31Aと、アウターレース 32の 内周面に形成されたアウターレースボール溝 32Aとに接触して配置され、脱落しな V、ようにケージ 34によって保持されて!、る。
[0043] インナーレース 31の外周面およびアウターレース 32の内周面のそれぞれに形成さ れたインナーレースボール溝 31Aとアウターレースボール溝 32Aとは、図 3に示すよ うに、軸 35および軸 36の中央を通る軸が一直線上にある状態において、それぞれ 当該軸上のジョイント中心 Oから当該軸上の左右に等距離離れた点 Aおよび点 Bを 曲率中心とする曲線(円弧)状に形成されている。すなわち、インナーレースボール 溝 31Aおよびアウターレースボール溝 32Aに接触して転動するボール 33の中心 P の軌跡が、点 A (インナーレース中心 A)および点 B (アウターレース中心 B)に曲率中 心を有する曲線(円弧)となるように、インナーレースボール溝 31Aおよびアウターレ ースボール溝 32Aのそれぞれは形成されている。これにより、等速ジョイントが角度を なした場合 (軸 35および軸 36の中央を通る軸が交差するように等速ジョイントが動作 した場合)においても、ボール 33は、常に軸 35および軸 36の中央を通る軸のなす角 ( AOB)の 2等分線上に位置する。
[0044] 次に、等速ジョイント 3の動作について説明する。図 3および図 4を参照して、等速 ジョイント 3においては、軸 35、 36の一方に軸まわりの回転が伝達されると、インナー レースボール溝 31Aおよびアウターレースボール溝 32Aに嵌め込まれたボール 33 を介して、軸 35、 36の他方の軸に当該回転が伝達される。ここで、図 5に示すように 軸 35、 36が角度 Θをなした場合、ボール 33は、前述のインナーレース中心 Aおよび アウターレース中心 Bに曲率中心を有するインナーレースボール溝 31Aおよびァウタ 一レースボール溝 32Aに案内されて、中心 Pが ZAOBの二等分線上となる位置に 保持される。ここで、ジョイント中心 O力もインナーレース中心 Aまでの距離と、ァウタ 一レース中心 Bまでの距離とが等しくなるように、インナーレースボール溝 31Aおよび アウターレースボール溝 32Aが形成されているため、ボール 33の中心 Pからインナ 一レース中心 Aおよびアウターレース中心 Bまでの距離はそれぞれ等しぐ ΔΟΑΡと △OBPとは合同である。その結果、ボール 33の中心 Pから軸 35、 36までの距離 Lは 互いに等しくなり、軸 35、 36の一方が軸まわりに回転した場合、他方も等速で回転 する。このように、等速ジョイント 3は、軸 35、 36が角度をなした場合でも、等速性を確 保することができる。なお、ケージ 34は、軸 35、 36が回転した場合に、インナーレ一 スボール溝 31Aおよびアウターレースボール溝 32Aからボール 33が飛び出すことを インナーレースボール溝 31Aおよびアウターレースボール溝 32Aとともに防止すると 同時に、等速ジョイント 3のジョイント中心 Oを決定する機能を果たしている。
[0045] ここで、機械部品であるインナーレース 31、アウターレース 32、ボール 33およびケ ージ 34のうち、特に、インナーレース 31、アウターレース 32およびボール 33には疲 労強度ゃ耐摩耗性が要求される。そのため、これらのうち少なくとも 1つは本発明の 機械部品であることにより、等速ジョイント 3の製造コストを低減しつつ、等速ジョイント 3を長寿命化することができる。
[0046] 次に、本発明の機械部品の製造方法の一実施の形態である実施の形態 1における 機械部品、および上記機械部品を備えた転がり軸受、等速ジョイントなどの機械要素 の製造方法にっ 、て説明する。
[0047] 図 6を参照して、まず、 0. 8質量%以上の炭素を含有する鋼力 なり、機械部品の 概略形状に成形された鋼製部材を準備する鋼製部材準備工程が実施される。具体 的には、たとえば、 0. 8質量%以上の炭素を含有する棒鋼、鋼線などを素材とし、当 該棒鋼、鋼線などに対して切断、鍛造、旋削などの加工が実施されることにより、機 械部品としての外輪 11、軌道輪 21、インナーレース 31などの機械部品の概略形状 に成形された鋼製部材が準備される。
[0048] 次に、鋼製部材準備工程にお!、て準備された上述の鋼製部材に対して、浸炭窒 化処理を実施した後、 A点以上の温度から M点以下の温度へ冷却することにより、
1 S
鋼製部材を焼入硬化する焼入硬化工程が実施される。この焼入硬化工程の詳細に ついては後述する。
[0049] 次に、焼入硬化工程が実施された鋼製部材に対して、へ点以下の温度に加熱す ることにより鋼製部材の靭性等を向上させる焼戻工程が実施される。具体的には、焼 入硬化された鋼製部材が A点以下の温度である 150°C以上 350°C以下の温度、た とえば 180°Cに加熱され、 30分間以上 240分間以下の時間、たとえば 120分間保持 されて、その後室温の空気中で冷却される(空冷)。
[0050] さらに、焼戻工程が実施された鋼製部材に対して、仕上げ加工などが施される仕上 げ工程が実施される。具体的には、たとえば、焼戻工程が実施された鋼製部材の内 輪転走面 12A、軌道輪転走面 21A、アウターレースボール溝 32Aなどに対する研 削加工が実施される。これにより、本発明の実施の形態 1における機械部品は完成し 、実施の形態 1における機械部品の製造方法は完了する。
[0051] さらに、完成した機械部品が組合わされて機械要素が組立てられる組立て工程が 実施される。具体的には、上述の工程により製造された本発明の機械部品である、た とえば外輪 11、内輪 12、玉 13と保持器 14とが組合わされて、深溝玉軸受 1が組立 てられる。これにより、本発明の機械部品を備えた機械要素が製造される。
[0052] 次に、図 7〜図 10を参照して、上述の焼入硬化工程の詳細について説明する。な お、図 10において、横方向は時間を示しており右に行くほど時間が経過していること を示している。また、図 10において、縦方向は温度を示しており上に行くほど温度が 高いことを示している。
[0053] 図 7を参照して、実施の形態 1における機械部品の製造方法の焼入硬化工程にお いては、まず、被処理物としての鋼製部材が浸炭窒化される浸炭窒化工程が実施さ れる。その後、鋼製部材が A点以上の温度から M点以下の温度に冷却される冷却
1 S
工程が実施される。そして、浸炭窒化工程においては、 0. 8質量%以上の炭素を含 有する鋼からなる被処理物を、アンモニア、一酸化炭素、二酸化炭素および水素を 含む雰囲気である浸炭窒化雰囲気中で加熱することにより浸炭窒化する本発明の浸 炭窒化方法が用いられて、浸炭窒化処理が実施される。
[0054] 浸炭窒化工程は、熱処理炉内の雰囲気が制御される雰囲気制御工程 50と、熱処 理炉内において被処理物に付与される温度履歴が制御される加熱パターン制御ェ 程 60とを備えている。この雰囲気制御工程 50と加熱パターン制御工程 60とは、独立 に、かつ並行して実施することができる。そして、雰囲気制御工程 50は、熱処理炉内 の未分解アンモニア分圧が制御される未分解 NH分圧制御工程 51と、熱処理炉内
3
の水素分圧が制御される H分圧制御工程 52と、熱処理炉内の一酸化炭素および
2
二酸ィ匕炭素の少なくともいずれか一方の分圧が制御される cozco分圧制御工程
2
53とを含んで!/ヽる。
[0055] そして、雰囲気制御工程 50においては、熱処理炉内の水素分圧が 0. 1気圧以上 0. 3気圧以下となり、式(1)で定義される γが 2. 0以上 6. 0以下となるように、未分 解 ΝΗ分圧制御工程 51、 CO/CO分圧制御工程 53および H分圧制御工程 52が
3 2 2
実施される。
[0056] すなわち、たとえば、雰囲気制御工程 50は以下のように実施することができる。ま ず、被処理物の表層部における所望の炭素濃度を考慮して、雰囲気のカーボンポテ ンシャル (C
P M直と一対一の関係にある a *の目標値が決定される。そして、式 (2)を c
参照して、 CO/CO分圧制御工程 53では、一酸化炭素および二酸化炭素の少な
2
くともいずれか一方の分圧が制御されて、雰囲気の a *が目標値に調整される。当該 調整は、たとえばエンリッチガスとしてのプロパン(C H )ガス、ブタンガス(C H )な
3 8 4 10 どの炭化水素ガスの供給量を調節することにより、実施することができる。
[0057] 具体的には、たとえば、赤外線ガス濃度測定装置を用いて雰囲気中の一酸化炭素 の分圧 P
COおよび二酸化炭素の分圧 P
C02が測定される。そして、当該測定値に基づ いて、式(2)で定義される a *が目標の値となるように、エンリッチガスとしてのプロパ ン (C H )ガス、ブタンガス (C H )などの供給量が調節される。
3 8 4 10
[0058] 一方、未分解 NH分圧制御工程 51では、未分解アンモニア分圧が制御されること
3
により、未分解アンモニア濃度が調節される。そして、式(1)を参照して、上述のよう に目標値に調整された a *との関係に基づいて γが 2. 0以上 6. 0以下に調整される
[0059] より具体的には、図 8を参照して、未分解 ΝΗ分圧制御工程 51では、まず、熱処理
3
炉内の未分解アンモニア分圧を測定する未分解 ΝΗ分圧測定工程 (S11)が実施さ
3
れる。未分解アンモニア分圧の測定は、たとえばガスクロマトグラフを用いて実施する ことができる。そして、工程 (SI 1)において測定された未分解アンモニア分圧に基づ いて、熱処理炉へのアンモニアガスの供給量を増減させる NH供給量調節工程 (S1
3
3)の実施の要否を判断する、未分解 NH分圧判断工程 (S12)が実施される。当該
3
判断は、 γが 2. 0以上 6. 0以下の範囲になるように決定された目標の未分解アンモ ユア分圧と、測定された未分解アンモニア分圧とを比較し、測定された未分解アンモ ユア分圧が目標の未分解アンモニア分圧になっているかどうかを判定することにより 実施される。
[0060] ここで、上記未分解アンモニア分圧と目標の未分解アンモニア分圧との比較は、実 際に分圧を比較するものだけでなぐ未分解アンモニアの濃度など、分圧と等価な値 を比較することにより結果的に分圧が比較されるものであればよい。
[0061] 未分解アンモニア分圧が目標の未分解アンモニア分圧になって 、な 、場合には、 熱処理炉内の未分解アンモニア分圧を増減させるための工程 (S13)が実施された 後、工程 (S11)が再度実施される。工程 (S13)は、たとえば、熱処理炉に配管を介 して連結されたアンモニアガスのボンベから単位時間に熱処理炉に流入するアンモ ユアの量(アンモニアガスの流量)を、当該配管に取り付けられたマスフローコント口 ーラなどを備えた流量制御装置を用いて調節することにより実施することができる。す なわち、測定された未分解アンモニア分圧が目標の未分解アンモニア分圧よりも高 い場合、上記流量を低下させ、低い場合、上記流量を増加させることにより、工程 13)を実施することができる。この工程 (S 13)において、測定された未分解アンモ- ァ分圧と目標の未分解アンモニア分圧との間に所定の差がある場合、どの程度流量 を増減させるかについては、予め実験的に決定したアンモニアガスの流量の増減と 未分解アンモニア分圧の増減との関係に基づいて決定することができる。
[0062] 一方、未分解アンモニア分圧が目標の未分解アンモニア分圧になっている場合に は、工程 (S13)が実施されることなぐ工程 (S11)が再度実施される。
[0063] さらに、 Η分圧制御工程 52では、熱処理炉内の水素分圧が制御されることにより、
2
水素分圧が 0. 1気圧以上 0. 3気圧以下に調整される。
[0064] より具体的には、 Η分圧制御工程 52は、上述の未分解 ΝΗ分圧制御工程 51と同
2 3
様に実施される。すなわち、図 9を参照して、 Η分圧制御工程 52では、まず、熱処理 炉内の水素分圧を測定する H分圧測定工程 (S21)が実施される。水素分圧の測定
2
は、たとえば熱伝導ガス分析計を用いて実施することができる。そして、工程 (S21) において測定された水素分圧に基づいて、熱処理炉への水素ガスの供給量を増減 させる H供給量調節工程 (S23)の実施の要否を判断する、水素分圧判断工程 (S2
2
2)が実施される。当該判断は、水素分圧が 0. 1気圧以上 0. 3気圧以下の範囲にな るように決定された目標の水素分圧と、測定された水素分圧とを比較し、測定された 水素分圧が目標の水素分圧になっているかどうかを判定することにより実施される。
[0065] 水素分圧が目標の水素分圧になっていない場合には、熱処理炉内の水素分圧を 増減させるための工程 (S23)が実施された後、工程 (S21)が再度実施される。工程 (S23)は、たとえば、熱処理炉に配管を介して連結された水素ガスのボンべ力 単 位時間に熱処理炉に流入する水素の量 (水素ガスの単位時間当りの供給量)を当該 配管に取り付けられたマスフローコントローラなどを備えた流量制御装置により調節 すること〖こより実施することができる。すなわち、測定された水素分圧が目標の水素 分圧よりも高い場合、上記流量を低下させ、低い場合、上記流量を増カロさせること〖こ より、工程(S23)を実施することができる。この工程(S23)において、測定された水 素分圧と目標の水素分圧との間に所定の差がある場合、どの程度流量を増減させる かについては、アンモニアの場合と同様に、予め実験的に決定した水素ガスの流量 の増減と水素分圧の増減との関係に基づいて決定することができる。
[0066] 一方、水素分圧が目標の水素分圧になっている場合には、工程 (S23)が実施され ることなぐ工程 (S21)が再度実施される。
[0067] なお、熱処理炉内の雰囲気のベースガスが炭化水素等と酸素 (空気)とを反応させ て生成させた RXガス等であり、水素ガスが直接ボンべ等力 供給されて 、な 、場合 、水素ガスの流量を直接調節することは難しい。しかし、この場合でも、 RXガス等を 生成するための変成炉に流入するプロパンなどの炭化水素の流量と酸素の流量との 比率を変化させることにより、 RXガス等に含まれる水素の比率を変化させることがで きる。そのため、雰囲気のベースガスが RXガス等である場合であっても、熱処理炉内 に流入する水素ガスの流量を調節することができる。
[0068] また、上記水素分圧と目標の水素分圧との比較は、実際に分圧を比較するものだ けでなぐ水素の濃度など、分圧と等価な値を比較することにより結果的に分圧が比 較されるものであればょ 、。
[0069] さらに、 γの値を所望の値とするためには、式(1)に示すように熱処理炉へのアン モニァの単位時間あたりの供給量 (流量)を調節して未分解アンモニア濃度を制御し てもよいが、エンリッチガスの流量を調節して一酸ィ匕炭素および二酸ィ匕炭素の少なく とも ヽずれか一方の分圧を制御してもよ 、。
[0070] 一方、図 7を参照して、加熱パターン制御工程 60では、被処理物としての鋼製部材 に付与される加熱履歴が制御される。具体的には、図 10に示すように、鋼製部材が 上述の雰囲気制御工程 50によって制御された雰囲気中で、 Α点以上の温度である 800°C以上 1000°C以下の温度、たとえば 850°Cに加熱され、 60分間以上 300分間 以下の時間、たとえば 150分間保持される。当該保持時間が経過するとともに加熱 パターン制御工程 60は終了し、同時に雰囲気制御工程 50も終了する。
[0071] その後、図 7を参照して、鋼製部材が油中に浸漬 (油冷)されることにより、 A点以 上の温度から M点以下の温度に冷却される冷却工程が実施される。以上の工程に
S
より、鋼製部材は表層部が浸炭窒化されるとともに焼入硬化される。これにより、実施 の形態 1の焼入硬化工程は完了する。
[0072] 以上のように、実施の形態 1の浸炭窒化方法によれば、水素分圧および γの値が 適正な範囲に制御された雰囲気中で、 0. 8質量%以上の炭素を含有する鋼からな る被処理物が加熱されて浸炭窒化が行なわれるため、窒素侵入速度を向上させ、浸 炭窒化処理の効率ィ匕を図ることができる。
[0073] さらに、実施の形態 1の浸炭窒化方法によれば、未分解アンモニア分圧と、水素分 圧と、一酸ィ匕炭素分圧および二酸ィ匕炭素分圧の少なくともいずれか一方とは、熱処 理炉内の未分解アンモニア分圧と、水素分圧と、一酸化炭素分圧および二酸化炭 素分圧の少なくともいずれか一方との測定値に基づいて、アンモニア、水素およびェ ンリッチガスの供給量の増減が必要力否かが検討されて、目標の分圧になるように制 御されている。そのため、熱処理炉内における雰囲気中の未分解アンモニア分圧、 水素分圧、および a *の値を精度良くコントロールすることが可能となっている。その 結果、上述の雰囲気制御工程 50における熱処理炉内の水素分圧および γ値の制 御が容易となっている。
[0074] また、実施の形態 1の機械部品の製造方法によれば、製造コストが低減されつつ、 浸炭窒化処理が実施された機械部品を製造することができる。また、実施の形態 1の 機械部品は、製造コストが低減されつつ、浸炭窒化処理が実施された機械部品とな つている。
[0075] ここで、実施の形態 1の浸炭窒化方法にお!、ては、被処理物としての鋼製部材を構 成する鋼の組成ごとに決定される、 γの値、水素分圧および被処理物が浸炭窒化雰 囲気中で Α点以上の温度に保持されている時間である浸炭窒化時間と、被処理物 の表面力 所定の深さの領域における窒素濃度との関係に基づき、浸炭窒化時間 が決定されることが好まし 、。
[0076] 具体的には、実施の形態 1の浸炭窒化方法においては、上述のように γおよび水 素分圧が適切な値に決まれば、浸炭窒化処理における窒素侵入速度が最大近くに まで向上し、所定時間内の窒素侵入量が決定される。そして、被処理物に侵入した 窒素は、以下の式 (4)に示すように、ガウスのエラー関数に従って拡散、分布すると 考えることができる。したがって、被処理物の浸炭窒化後の加工工程、その後の使用 状態等を考慮して窒素濃度を制御すべき深さを決定し、上述の関係に基づいて窒 素濃度を制御すべき深さにおける窒素濃度が所望の濃度となるように、浸炭窒化時 間を決定することができる。
[0077] [数 3]
Figure imgf000019_0001
N :表面からの深さが Xである領域における窒 *濃度、 Ns : ¾ における窒素濃度 X:表面からの深さ、 D :被処理物内での窒素の拡散係数、 t :浸炭窒化時 1Ή]
[0078] ここで、拡散係数 Dは、実験的に求めることが可能で、被処理物中の窒素濃度が拡 散係数に及ぼす影響を考慮した拡散係数として、たとえば以下の式 (5)に示す拡散 係数 Dを式 (4)の計算に採用することができる。
[0079] D=6. 5 X 10"7exp (149 X N) · · · · (5) N:窒素濃度
上記 γの値、水素分圧および浸炭窒化時間と、被処理物の表面から所定の深さの 領域における窒素濃度との関係は、被処理物を構成する鋼の組成により決定される 。そのため、当該関係を予め決定しておくことにより、同一組成の被処理物に対して は、被処理物の形状等が変化した場合でも、当該関係に基づいて浸炭窒化時間を 決定することができる。これにより、被処理物において重要な所望の深さの領域にお ける窒素含有量を容易に制御することが可能となる。
[0080] (実施の形態 2)
次に、本発明の実施の形態 2における浸炭窒化方法、機械部品の製造方法および 機械部品について説明する。実施の形態 2における浸炭窒化方法、機械部品の製 造方法および機械部品と、上述の実施の形態 1における浸炭窒化方法、機械部品の 製造方法および機械部品とは、基本的に同様の構成を有しており、同様の効果を奏 する。しかし、実施の形態 2においては、浸炭窒化方法に含まれる雰囲気制御工程 5 0力 以下のように実施される点において、実施の形態 1とは異なっている。
[0081] すなわち、図 7を参照して、雰囲気制御工程 50においては、式(3)で定義される Ε
Ν
が 7. 5以上となるように、未分解 ΝΗ分圧制御工程 51、 CO/CO分圧制御工程 5
3 2
3および H分圧制御工程 52が実施される。
2
[0082] より具体的には、実施の形態 1と同様に、 CO/CO分圧制御工程 53では、式(2)
2
で定義される a *が目標の値となるように、エンリッチガスとしてのプロパン (C H )ガ
3 8 ス、ブタンガス (C H )などの炭化水素ガスの供給量が調節される。そして、実施の
4 10
形態 1と同様の手順で、式 (3)で定義される Eが 7. 5以上となるように決定された目
N
標の未分解アンモニア濃度および水素分圧となるように、熱処理炉に供給されるアン モ-ァおよび水素の供給量が調節されて未分解 NH分圧制御工程 51および H分
3 2 圧制御工程 52が実施される。これにより、 Eが 7. 5以上となるように、未分解アンモ
N
ニァ濃度および水素分圧が調節される。
[0083] ここで、 Eの値は、式(1)〜(3)を参照して、未分解 NH分圧制御工程 51、 H分
N 3 2 圧制御工程 52および CO/CO分圧制御工程 53により、それぞれ未分解アンモ-
2
ァ濃度、水素分圧および a *の少なくともいずれか 1つを変化させることにより制御す ることができる。すなわち、 E の値は、たとえば未分解 NH分圧制御工程 51および C
N 3
O/CO分圧制御工程 53により、未分解アンモニア濃度および a *を一定に保持し
2
た状態で、 H分圧制御工程 52により水素分圧を変化させて制御してもよいし、 H分
2 2 圧制御工程 52および COZCO分圧制御工程 53により、水素分圧および a *値を一
2 c 定に保持した状態で、未分解 NH分圧制御工程 51により未分解アンモニア濃度を
3
変化させて制御してもよい。
[0084] なお、被処理物の形状や量と熱処理炉の特性との組み合わせによっては、アンモ ユアの流量の調節のみにより Eの値を 7. 5以上に制御することが困難な場合もある
N
。このような場合、 H分圧制御工程において水素の流量を調節することにより水素分
2
圧を制御し、 E の値を 7. 5とすることが特に好ましい。
N
[0085] 以上のように、実施の形態 2の浸炭窒化方法によれば、 Eの値が適正な範囲に制
N
御された雰囲気中で、 0. 8質量%以上の炭素を含有する鋼からなる被処理物が加 熱されて浸炭窒化が行なわれるため、窒素侵入速度を向上させ、浸炭窒化処理の 効率ィ匕を図ることができる。
[0086] さらに、実施の形態 2の浸炭窒化方法によれば、未分解アンモニア分圧と、水素分 圧と、一酸ィ匕炭素分圧および二酸ィ匕炭素分圧の少なくともいずれか一方とは、熱処 理炉内の未分解アンモニア分圧と、水素分圧と、一酸化炭素分圧および二酸化炭 素分圧の少なくともいずれか一方との測定値に基づいて、アンモニア、水素およびェ ンリッチガスの供給量の増減が必要力否かが検討されて、目標の分圧になるように制 御されている。そのため、熱処理炉内における雰囲気中の未分解アンモニア分圧、 a *の値、および水素分圧を精度良くコントロールすることが可能となっている。その結 果、上述の雰囲気制御工程における熱処理炉内の Eの値の制御が容易となってい
N
る。
[0087] ここで、実施の形態 2の浸炭窒化方法においても、実施の形態 1の浸炭窒化方法と 同様に、被処理物としての鋼製部材を構成する鋼の組成ごとに決定される、 yの値、 水素分圧および被処理物が浸炭窒化雰囲気中で A点以上の温度に保持されてい る時間である浸炭窒化時間と、被処理物の表面力 所定の深さの領域における窒素 濃度との関係に基づき、浸炭窒化時間が決定されることが好ましい。 [0088] なお、上記実施の形態にお!、ては、本発明の機械部品の一例として、深溝玉軸受 、スラスト-一ドルころ軸受、等速ジョイントを構成する機械部品について説明したが 、本発明の機械部品はこれに限られず、表層部の疲労強度、耐摩耗性が要求される 機械部品、たとえばノ、ブ、ギア、シャフト等を構成する機械部品であってもよい。
[0089] また、被処理物の表層部とは、被処理物の表面付近の領域を 、 、、たとえば仕上 げ加工等が実施され、被処理物が製品となった状態における表面力 の距離が 0. 2 mm以下の領域となるべき領域をいう。つまり、被処理物の表層部とは、被処理物が 加工等されて製
造される製品に対する要求特性に鑑み、被処理物が製品となった状態において、窒 素濃度や炭素濃度を制御すべき領域であって、製品ごとに適宜決定することができ る。
[0090] (実施例 1)
以下、本発明の実施例 1について説明する。熱処理炉内における γおよび水素分 圧と被処理物への窒素侵入量との関係を調査する実験を行なった。実験の手順は 以下のとおりである。
[0091] 実験に用いた熱処理炉の容量は 120L (リットル)である。被処理物 ίお IS SUJ2 ( 炭素含有量 1質量%)製の外径 Φ 38mm、内径 φ 30mm、幅 10mmのリングとし、熱 処理炉内に lOlg (グラム)挿入した。加熱パタ—ンは図 10と同様のパターンを採用 して浸炭窒化の保持温度は 850°C、浸炭窒化時間は 9000秒間、熱処理炉内に供 給されるベースガス(エンリッチガスおよびアンモニアガス以外の雰囲気ガス)の流量 は 20°C、 1. 05気圧の下で 11.5L/分とした。そして、 a *、未分解アンモニア量、雰 囲気のベースガスの組成を変化させ、被処理物への窒素侵入量を測定した。なお、 被処理物に侵入した窒素の量は、 EPMA (Electron Probe Micro Analysis) により測定した。表 1に、実施例 1における実験条件を示す。
[0092] [表 1] * 未分解アンモニア量 浸庾窒化時間
ベースガス
(体積 %) (秒)
R ガス
または
C0、 H2、 N2の混合ガス
0. 78〜卜 27 0. 050〜0. 398 9000 C0 : 10~40体積%
: 10~60体積¾ N2 : 0〜80体積 ¾
[0093] 次に、図 11を参照して、各水素分圧における γ値と窒素侵入量との関係について 説明する。図 11において、横軸は γの値、縦軸は窒素侵入量である。そして、実線、 点線、一点鎖線、二点鎖線および破線はそれぞれ、水素分圧が 0. 15、 0. 2、 0. 3、 0. 4、 0. 5気圧の場合を示している。
[0094] 図 11を参照して、全ての水素分圧の条件において、 γ値と窒素侵入量との関係は 上に凸な曲線となっており、 γの値が小さいほど窒素侵入量が増加している。しかし 、 γの値が 6. 0以下になると、当該増加は小さくなり、 5. 0以下においてはほとんど 増加していない。このこと力ら、浸炭窒化処理において、熱処理炉内の γの値を 6. 0 以下とすることで、窒素浸入速度を最大近くにまで向上させることが可能となるととも に、 5. 0以下とすることにより、窒素浸入速度をほぼ最大にすることができることが分 かった。
[0095] 一方、図 11を参照して、水素分圧が低いほど窒素侵入量が増加している。しかし、 水素分圧が 0. 3気圧以下においては、当該増加は小さくなり、 0. 2気圧以下におい てはほとんど増加していない。このことから、浸炭窒化処理において、熱処理炉内の 水素分圧を 0. 3気圧以下とすることで、窒素浸入速度を最大近くにまで向上させるこ とが可能となるとともに、 0. 2気圧以下とすることにより、窒素浸入速度をほぼ最大に することができることが分力つた。
[0096] 以上の結果より、浸炭窒化処理において、熱処理炉内の γの値を 6. 0以下、好ま しくは 5. 0以下とすること、および水素分圧を 0. 3気圧以下、好ましくは 0. 2気圧以 下とすることにより、窒素侵入速度を向上させ、浸炭窒化処理の効率ィヒを図ることが 可能であることが確認された。
[0097] 次に、図 12を参照して、 γ値および水素分圧と窒素侵入量との関係について説明 する。図 12において、底面の 2つの軸は、それぞれ γ値および水素分圧であり、縦 軸 (Ζ軸)は窒素侵入量である。そして、図中の曲面は、本実験の結果から求められ た γ値および水素分圧と窒素侵入量との関係を示している。また、図中の点は本実 験の測定点であり、下向きの線分が連結されているものは前述の曲面よりも窒素侵入 量が大き力つたもの、上向きの線分が連結されているものは前述の曲面よりも窒素侵 入量が小さかったものを示して 、る。
[0098] 図 12を参照して、図中の曲面は、本実験の結果から求められた γ値および水素分 圧と窒素侵入量との関係を示す曲面であって、窒素侵入量を Εとして、式 (3)で表さ
Ν
れる。そして、図 12より、当該曲面は、水素分圧および γが小さくなるほど、窒素侵入 量 )が増加することを示している。しかし、水素分圧および γが小さくなり、 Εが 7
Ν Ν
. 5以上の領域では、当該曲面力 ¾軸に対して垂直に近くなつている。さらに、 Ε値
Ν
が 8. 0以上の領域では、当該曲面が Ζ軸に対してほぼ垂直となっている。これは、熱 処理炉内の雰囲気の Ε が 7. 5以上となるように調整されることで、窒素浸入速度を
Ν
最大近くにまで向上させることが可能となるとともに、 8. 0以上とすることにより、窒素 浸入速度をほぼ最大にすることができることを示している。
[0099] 以上の結果より、浸炭窒化処理において、熱処理炉内の Εの値を 7. 5以上、好ま
Ν
しくは 8. 0以上とすることにより、窒素侵入速度を向上させ、浸炭窒化処理の効率ィ匕 を図ることが可能であることが確認された。
[0100] さらに、種々の組成の鋼力 なる被処理物に対する上述と同様の実験の結果より、 上述の窒素の侵入挙動は、 0. 8質量%以上の炭素を含有する鋼からなる被処理物 に顕著に表れることが分力つた。したがって、上述の窒素の侵入挙動を利用した本発 明の浸炭窒化方法は、 0. 8質量%以上の炭素を含有する鋼からなる被処理物に有 効に適用することができる。ここで、 0. 8質量%以上の炭素を含有する鋼、すなわち 共析鋼および過共析鋼としては、たとえば軸受鋼である JIS SUJ2およびこれに相 当する SAE52100、 DIN規格 100Cr6の他、 JIS SUJ3、ばね鋼である JIS SUP3 、 SUP4、工具鋼である JIS SK2、 SK3などが挙げられる。
[0101] (実施例 2)
以下、本発明の実施例 2について説明する。浸炭窒化処理において、熱処理炉内 に導入されるベースガスがプロパンガスと空気とを混合して反応させることにより変成 させた変成ガスである場合における、水素分圧の調整の可否を確認する実験を行な つた。実験の手順は以下のとおりである。
[0102] プロパンガスと空気とを種々の流量でベースガス変成炉に流入させ、 1050°Cで両 者を反応させることにより、一酸化炭素、二酸化炭素および水素を発生させて変成ガ スを生成させた。そして、生成した変成ガスにおける一酸ィ匕炭素、二酸化炭素および 水素の分圧を調査した。実験の条件および結果を表 2に示す。
[0103] [表 2]
Figure imgf000025_0001
[0104] 表 2を参照して、「通常条件」の実験条件は、一般的な変成ガスとしての RXガスの 生成条件である。このとき、変成ガス中の水素の分圧は 0. 2846気圧となっている。 これに対し、空気の流量とプロパンの流量との比を変更した「条件 1」〜「条件 3」では 、水素の分圧は 0. 1091〜0. 3789気圧の範囲となっている。このことから、本発明 の浸炭窒化方法において、水素分圧を調節することにより、 E
N値を制御することは十 分可能であることが分かる。また、水素分圧は、プロパンの流量を空気の流量に対し て低減することにより、容易に 0. 1091気圧まで低下させることが可能であることが分 かった。そして、このときの二酸ィ匕炭素分圧の上昇は 0. 0242気圧程度までである。 したがって、 a *は、エンリッチガスの導入量の調整により所望の値に十分調節可能 である。以上より、本発明の浸炭窒化方法において、雰囲気中の水素分圧を 0. 1気 圧程度まで低下させて窒素浸入速度を上昇させるとともに、十分な a *を確保して、 被処理物に十分な量の炭素を導入できることが分力つた。
[0105] 今回開示された実施の形態および実施例はすべての点で例示であって、制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更 が含まれることが意図される。
産業上の利用可能性
本発明の浸炭窒化方法および機械部品の製造方法は、 0. 8質量%以上の炭素を 含有する鋼力 なる被処理物を浸炭窒化するための浸炭窒化方法、および 0. 8質 量%以上の炭素を含有する鋼力 なる被処理物を浸炭窒化する工程を含む機械部 品の製造方法に特に有利に適用され得る。また、本発明の機械部品は、疲労強度 および耐摩耗性が要求される機械部品に特に有利に適用され得る。

Claims

請求の範囲
[1] 0. 8質量%以上の炭素を含有する鋼からなる被処理物を、アンモニア、一酸化炭 素、二酸化炭素および水素を含む雰囲気中で加熱することにより浸炭窒化する浸炭 窒化方法であって、
熱処理炉内の雰囲気が制御される雰囲気制御工程(50)と、
前記熱処理炉内において前記被処理物に付与される温度履歴が制御される加熱 パターン制御工程 (60)とを備え、
前記雰囲気制御工程 (50)は、
前記熱処理炉内の未分解アンモニア分圧が制御される未分解 NH分圧制御工程
3
(51)と、
前記熱処理炉内の一酸化炭素および二酸化炭素の少なくともいずれか一方の分 圧が制御される COZCO分圧制御工程(53)と、
2
前記熱処理炉内の水素分圧が制御される H分圧制御工程 (52)とを含み、
2
前記雰囲気制御工程 (50)においては、前記熱処理炉内の水素分圧が 0. 1気圧 以上 0. 3気圧以下となり、以下の式(1)で定義される γが 2. 0以上 6. 0以下となるよ うに、前記未分解 ΝΗ分圧制御工程 (51)、前記 COZCO分圧制御工程 (53)およ
3 2
び前記 Η分圧制御工程 (52)が実施される、浸炭窒化方法。
2
[数 1] r = - - d ) ここで、 ac* = ^ - …
K X Pco2
PCO:一酸化炭素の分圧 (atm)、 PC02:二酸化炭素の分圧 (atm)
:< C > +C02 2C0の平衡定数
cm :来分解ァンモニァ濃庶 本稍%)
[2] 0. 8質量%以上の炭素を含有する鋼からなる被処理物を、アンモニア、一酸化炭 素、二酸化炭素および水素を含む雰囲気中で加熱することにより浸炭窒化する浸炭 窒化方法であって、
熱処理炉内の雰囲気が制御される雰囲気制御工程(50)と、
前記熱処理炉内において前記被処理物に付与される温度履歴が制御される加熱 パターン制御工程 (60)とを備え、
前記雰囲気制御工程 (50)は、
前記熱処理炉内の未分解アンモニア分圧が制御される未分解 NH分圧制御工程
3
(51)と、
前記熱処理炉内の一酸化炭素および二酸化炭素の少なくともいずれか一方の分 圧が制御される COZCO分圧制御工程(53)と、
2
前記熱処理炉内の水素分圧が制御される H分圧制御工程 (52)とを含み、
2
前記雰囲気制御工程(50)においては、以下の式(3)で定義される Eが 7. 5以上
N
となるように、前記未分解 NH分圧制御工程 (51)、前記 COZCO分圧制御工程(
3 2
53)および前記 H分圧制御工程 (52)が実施される、浸炭窒化方法。
2
[数 2]
EN = 15 + 0.46 ^ - 0.063 X 2 - 99 χ Ρ¾ + 530 x (P[l2 )2
- 1200 x (PHJ3 + 940 (P„2 )4 〜(3) ここで、 PH,:水素の分圧(atm)
[3] 0. 8質量%以上の炭素を含有する鋼力 なり、機械部品の概略形状に成形された 鋼製部材を準備する鋼製部材準備工程と、
前記鋼製部材準備工程にお!ヽて準備された前記鋼製部材に対して、浸炭窒化処 理を実施した後、 A点以上の温度から M点以下の温度へ冷却することにより、前記
1 S
鋼製部材を焼入硬化する焼入硬化工程とを備え、
前記焼入硬化工程における前記浸炭窒化処理は、請求の範囲第 1項に記載の浸 炭窒化方法を用いて実施される、機械部品の製造方法。
[4] 請求の範囲第 3項に記載の機械部品の製造方法により製造された、機械部品(11
〜13, 21, 23, 31〜33)。
[5] 軸受(1, 2)を構成する部品として用いられる、請求の範囲第 4項に記載の機械部 品(11〜13, 21, 23) o
[6] 0. 8質量%以上の炭素を含有する鋼力 なり、機械部品の概略形状に成形された 鋼製部材を準備する鋼製部材準備工程と、
前記鋼製部材準備工程にお!ヽて準備された前記鋼製部材に対して、浸炭窒化処 理を実施した後、 A点以上の温度から M点以下の温度へ冷却することにより、前記
1 S
鋼製部材を焼入硬化する焼入硬化工程とを備え、
前記焼入硬化工程における前記浸炭窒化処理は、請求の範囲第 2項に記載の浸 炭窒化方法を用いて実施される、機械部品の製造方法。
[7] 請求の範囲第 6項に記載の機械部品の製造方法により製造された、機械部品(11
〜13, 21, 23, 31〜33)。
[8] 軸受(1, 2)を構成する部品として用いられる、請求の範囲第 7項に記載の機械部 品(11〜13, 21, 23) o
PCT/JP2007/058170 2006-04-28 2007-04-13 浸炭窒化方法、機械部品の製造方法および機械部品 WO2007125767A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/297,752 US8128761B2 (en) 2006-04-28 2007-04-13 Carbonitriding method, machinery component fabrication method, and machinery component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-125581 2006-04-28
JP2006125581A JP4885606B2 (ja) 2006-04-28 2006-04-28 浸炭窒化方法および機械部品の製造方法

Publications (1)

Publication Number Publication Date
WO2007125767A1 true WO2007125767A1 (ja) 2007-11-08

Family

ID=38655298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058170 WO2007125767A1 (ja) 2006-04-28 2007-04-13 浸炭窒化方法、機械部品の製造方法および機械部品

Country Status (3)

Country Link
US (1) US8128761B2 (ja)
JP (1) JP4885606B2 (ja)
WO (1) WO2007125767A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249524A (ja) * 2012-06-01 2013-12-12 Nippon Techno:Kk ガス窒化及びガス軟窒化方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5629436B2 (ja) * 2009-07-21 2014-11-19 オリエンタルエンヂニアリング株式会社 表面硬化処理装置及び表面硬化処理方法
JP5744610B2 (ja) 2011-04-19 2015-07-08 Ntn株式会社 ガス軟窒化方法
US9314547B2 (en) 2011-09-09 2016-04-19 Abyrx Inc. Absorbable multi-putty bone cements and hemostatic compositions and methods of use
JP2014152867A (ja) * 2013-02-08 2014-08-25 Ntn Corp 軸受部品および転がり軸受
RU2600612C1 (ru) * 2015-05-05 2016-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курский государственный университет" Способ нитроцементации деталей из конструкционных и инструментальных сталей
EP3771341A1 (en) * 2019-07-31 2021-02-03 Federal University of Santa Maria Dynamic controlled atmosphere method and apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174572A (ja) * 1982-04-02 1983-10-13 Oriental Eng Kk ガス軟窒化法
JPS60251265A (ja) * 1984-05-29 1985-12-11 Daido Steel Co Ltd 雰囲気熱処理制御装置
JPS62170469A (ja) * 1986-01-24 1987-07-27 Mitsubishi Heavy Ind Ltd 鋼表面硬化用ガスの製造方法
JPH06158268A (ja) * 1992-11-30 1994-06-07 Kawasaki Steel Corp 金属帯の連続浸炭及び板温制御方法
JPH06192814A (ja) * 1992-12-24 1994-07-12 Kawasaki Steel Corp 金属帯の連続浸炭方法
JP2002069609A (ja) * 2000-08-28 2002-03-08 Dowa Mining Co Ltd ガス軟窒化法
JP2004278781A (ja) * 2003-02-28 2004-10-07 Ntn Corp ころがり軸受およびその製造方法
JP2004332075A (ja) * 2003-05-09 2004-11-25 Toho Gas Co Ltd 浸炭処理制御方法及びその方法を用いた浸炭処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057505B2 (ja) * 1980-06-30 1985-12-16 オリエンタルエンヂニアリング株式会社 窒素と有機液剤と炭化水素とによるガス浸炭方法
NL9300901A (nl) * 1993-05-26 1994-12-16 Skf Ind Trading & Dev Werkwijze voor het carbonitreren van staal.
JP3326972B2 (ja) 1994-06-30 2002-09-24 アイシン精機株式会社 ガス浸炭窒化処理の炉気制御方法および装置
JP2005114148A (ja) * 2003-10-10 2005-04-28 Ntn Corp 転がり軸受
JP2006045591A (ja) * 2004-07-30 2006-02-16 Nsk Ltd 円すいころ軸受

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174572A (ja) * 1982-04-02 1983-10-13 Oriental Eng Kk ガス軟窒化法
JPS60251265A (ja) * 1984-05-29 1985-12-11 Daido Steel Co Ltd 雰囲気熱処理制御装置
JPS62170469A (ja) * 1986-01-24 1987-07-27 Mitsubishi Heavy Ind Ltd 鋼表面硬化用ガスの製造方法
JPH06158268A (ja) * 1992-11-30 1994-06-07 Kawasaki Steel Corp 金属帯の連続浸炭及び板温制御方法
JPH06192814A (ja) * 1992-12-24 1994-07-12 Kawasaki Steel Corp 金属帯の連続浸炭方法
JP2002069609A (ja) * 2000-08-28 2002-03-08 Dowa Mining Co Ltd ガス軟窒化法
JP2004278781A (ja) * 2003-02-28 2004-10-07 Ntn Corp ころがり軸受およびその製造方法
JP2004332075A (ja) * 2003-05-09 2004-11-25 Toho Gas Co Ltd 浸炭処理制御方法及びその方法を用いた浸炭処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249524A (ja) * 2012-06-01 2013-12-12 Nippon Techno:Kk ガス窒化及びガス軟窒化方法

Also Published As

Publication number Publication date
US8128761B2 (en) 2012-03-06
JP4885606B2 (ja) 2012-02-29
JP2007297663A (ja) 2007-11-15
US20090101240A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4191745B2 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
JP5489111B2 (ja) 軸受部品、転がり軸受および軸受部品の製造方法
JP4264082B2 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
WO2007125767A1 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
EP2966311A1 (en) Bearing component and rolling bearing
KR20150067358A (ko) 베어링 부품, 구름베어링 및 베어링 부품의 제조 방법
JP2010285642A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
JP2008001967A (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
WO2014196431A1 (ja) 軸受部品および転がり軸受
EP1964940B1 (en) Method of carbonitriding, process for producing machine part, and machine part
JP5477846B2 (ja) 鋼の熱処理方法および機械部品の製造方法
JP5397928B2 (ja) 機械部品
JP2011074420A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
JP5196395B2 (ja) 浸炭窒化方法、機械部品の製造方法および熱処理炉
JP4368849B2 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
JP2011074412A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
WO2014196430A1 (ja) 軸受部品および転がり軸受
JP2007162048A (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
JP5429730B2 (ja) 機械部品の製造方法および機械部品
JP2014152928A (ja) 軸受部品および転がり軸受
JP2014152927A (ja) 軸受部品および転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12297752

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07741606

Country of ref document: EP

Kind code of ref document: A1