WO2019088152A1 - ジヒドロキシインドール類の製造方法 - Google Patents

ジヒドロキシインドール類の製造方法 Download PDF

Info

Publication number
WO2019088152A1
WO2019088152A1 PCT/JP2018/040458 JP2018040458W WO2019088152A1 WO 2019088152 A1 WO2019088152 A1 WO 2019088152A1 JP 2018040458 W JP2018040458 W JP 2018040458W WO 2019088152 A1 WO2019088152 A1 WO 2019088152A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
less
water
tank
extractant
Prior art date
Application number
PCT/JP2018/040458
Other languages
English (en)
French (fr)
Inventor
真義 中本
徳祐 伊藤
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to BR112020008675-4A priority Critical patent/BR112020008675A2/pt
Priority to EP18874431.2A priority patent/EP3705473B1/en
Priority to JP2019550444A priority patent/JPWO2019088152A1/ja
Priority to US16/761,142 priority patent/US10947195B2/en
Priority to CN201880067423.1A priority patent/CN111225902A/zh
Priority to SG11202004021RA priority patent/SG11202004021RA/en
Publication of WO2019088152A1 publication Critical patent/WO2019088152A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring

Definitions

  • the present invention relates to a process for the preparation of dihydroxy indoles.
  • Melanin is a yellow to black pigment formed in animals and plants, and is known to have an ultraviolet absorbing function, a radical trapping function, an antioxidant function, and the like.
  • melanin is a highly safe substance derived from living bodies, it is widely used to be contained in cosmetics, foods, plastic products, etc. For example, it is used as a UV absorber in sun protection creams, sunglasses, etc.
  • it is used as an antioxidant in food and plastic products, etc., and is further used as a pigment in gray hair dyeing and the like.
  • melanin is oxidized by catalytic action of a substrate compound 3- (3,4-dihydroxyphenyl) alanine (DOPA) by tyrosinase which is a melanin-forming enzyme, and passes through dopa quinone to be a melanin precursor dihydroxyindole.
  • DOPA 3,4-dihydroxyphenyl) alanine
  • tyrosinase which is a melanin-forming enzyme, and passes through dopa quinone to be a melanin precursor dihydroxyindole.
  • the dihydroxyindoles are biosynthesized by producing the group (5,6-dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, etc.).
  • the melanin biosynthesized in this way is present in small particles in melanin-producing cells such as skin and hair, and is stable and insoluble in water and organic solvents that do not dissolve unless hot concentrated sulfuric acid or strong alkali is used. It is a molecular compound. Therefore, for example, when melanin is used as a dye for fibers and leather, even if melanin is used as an additive as it is, melanin insoluble in water or organic solvents can not be permeated into the tissue of the object to be dyed. Water-soluble dihydroxy indoles are used as additives to form melanin in the object to be dyed.
  • Patent Document 1 discloses a reaction by adding hexacyanoferrate (III) to an aqueous solution containing 3- (3,4-dihydroxyphenyl) alanine It is disclosed that dihydroxyindoles are produced by carrying out the reaction and the hexacyanoferrate (II) is complexed and removed from the resulting aqueous solution containing dihydroxyindoles. Further, in Non-Patent Documents 1 and 2, dihydroxyindoles are obtained by adding a hexacyanoferrate (III) salt to an aqueous solution containing 3- (3,4-dihydroxyphenyl) alanine and reacting the resulting solution. It is disclosed to extract dihydroxyindoles by adding the extractant ethyl acetate to an aqueous solution containing the dihydroxyindoles.
  • the present invention relates to an aqueous first liquid in which one or more selected from the group of 3- (3,4-dihydroxyphenyl) alanine and derivatives thereof are reacted with an oxidizing agent to form dihydroxyindoles.
  • a dihydroxyindoles comprising: obtaining step 1; and step 2 of mixing the first solution obtained in step 1 and an extractant to obtain an oily second solution in which the dihydroxyindoles are extracted into the extractant.
  • the first liquid obtained in the step 1 is subjected to an operation of removing a water-insoluble by-product before being mixed with the extractant in the step 2.
  • the method for producing dihydroxyindoles includes a reaction step (step 1), a purification step (step 2), and a solvent substitution step (step 3) as an optional step.
  • a reaction step step 1
  • a purification step step 2
  • a solvent substitution step step 3
  • DOPA 3- (3,4-dihydroxyphenyl) alanine
  • DOPA 5,6-dihydroxyindole
  • DHI dihydroxyindoles
  • ⁇ Reaction step (step 1)> DOPAs are reacted with an oxidizing agent to obtain an aqueous first liquid L1 in which DHIs are formed. At this time, it is preferable to mix DOPA liquid D of an aqueous solution or aqueous suspension of DOPAs with oxidizing solution O of an aqueous solution or aqueous suspension of an oxidizing agent.
  • the reaction between DOPAs and an oxidizing agent is a redox reaction.
  • FIG. 1 shows an example of the reaction apparatus 10 used in the reaction step (step 1).
  • the reactor 10 has a reaction tank 11 and an oxidant tank 12.
  • An oxidizing agent supply pipe 13 extending from the bottom of the oxidizing agent tank 12 is introduced at the top of the reaction tank 11.
  • a discharge pipe 14 extends from the bottom of the reaction tank 11.
  • stirrers 151 and 152 are provided, respectively.
  • the stirring blades 151a and 152a of the stirrers 151 and 152 may be any ones capable of sufficiently stirring the low viscosity liquid, and examples thereof include a paddle blade, a disk turbine, an inclined paddle blade, and an anchor blade.
  • the reaction vessel 11 is provided with a jacket 16 for controlling the temperature in the vessel.
  • the reaction vessel 11 is charged with water.
  • water for example, ion exchange water or distilled water is preferably used.
  • inert gas such as nitrogen gas and argon gas.
  • the dissolved oxygen concentration of water is preferably 1.0 mg / L or less, more preferably 0.5 mg / L or less.
  • the dissolved oxygen concentration of this water is measured using a commercially available dissolved oxygen meter (the same applies hereinafter).
  • the reaction tank 11 it is preferable to reduce the oxygen concentration by supplying an inert gas such as nitrogen gas or argon gas before or after charging water.
  • the oxygen concentration in the gas phase in the reaction vessel 11 is preferably 1.0% by volume or less, and most preferably 0% by volume.
  • the oxygen concentration in the gas phase in the reaction tank 11 is measured by a commercially available oximeter (the same applies hereinafter). It is preferable to continuously supply the inert gas to the gas phase in the reaction tank 11 in the operation of this reaction step.
  • the stirrer 151 provided in the reaction tank 11 is activated to charge DOPAs while stirring water, thereby dissolving or dispersing the DOPAs, thereby obtaining DOPA liquid D.
  • the preparation method of this DOPA class liquid D is a suitable example, first, DOPAs may be charged to the reaction tank 11, and then water may be supplied to the reaction tank 11, or water and DOPAs are simultaneously processed. It may be supplied to the reaction tank 11, or water and DOPAs may be divided and supplied to the reaction tank 11 alternately.
  • DOPA includes D-DOPA (3,4-dihydroxy-D-phenylalanine) and L-DOPA (3,4-dihydroxy-L-phenylalanine).
  • DOPA derivatives among DOPAs for example, 2-3 ′, 4′-dihydroxyphenylethylamine derivative (N-octanoyl-4- (2-aminoethyl) benzene-1,2-diol, N-octanoyl-4 , 2- (3,4-dihydrophenyl) ethylamine etc., 4- (2-aminoethyl) benzene-1,2-diol (dopamine), salts of D-DOPA (potassium salts, sodium salts etc.), L- Salts of DOPA (potassium salts, sodium salts and the like), lower (C1-C4) alkyl esters of DOPA, ⁇ -lower (C1-C4) alkyl DOPA, and iso
  • the content of DOPAs in DOPA liquid D is preferably 0.10 mass% or more, more preferably 0.20 mass% or more, and still more preferably 0.30 mass% or more from the viewpoint of obtaining high productivity. Also, from the viewpoint of suppressing the progress of side reactions and increasing the yield of DHIs, it is preferably at most 1.0 mass%, more preferably at most 0.70 mass%, still more preferably at most 0.50 mass% is there.
  • the content of DOPAs in DOPA liquid D is preferably 0.10% by mass or more and 1.0% by mass or less, more preferably 0.20% by mass or more and 0.70% by mass or less, still more preferably 0.30% by mass % Or more and 0.50 mass% or less.
  • water is charged into the oxidant tank 12.
  • water for example, ion exchange water or distilled water is preferably used.
  • inert gas such as nitrogen gas and argon gas.
  • the dissolved oxygen concentration of water is preferably 1.0 mg / L or less, more preferably 0.5 mg / L or less.
  • the agitator 152 provided in the oxidizing agent tank 12 is activated to charge the oxidizing agent while stirring the water to dissolve or disperse it, thereby obtaining the oxidizing agent liquid O.
  • the method of preparing the oxidizing agent solution O is a preferred example, and the oxidizing agent may be charged into the oxidizing agent tank 12 first, and then water may be supplied to the oxidizing agent tank 12, or the water and the oxidizing agent May be supplied to the oxidizing agent tank 12 simultaneously or alternately, or water and an oxidizing agent may be separately supplied to the oxidizing agent tank 12 separately.
  • alkali metal salts of hexacyanoferrate (III) such as potassium hexacyanoferrate (III), sodium hexacyanoferrate (III), lithium hexacyanoferrate (III), and hexacyanoferrate (III) Acid salts; metal oxides such as manganese dioxide, silver oxide, palladium dioxide and potassium permanganate; and metal salts such as iron chloride, vanadium trichloride oxide (V), cerium (IV) sulfate and the like.
  • the oxidizing agent it is preferable to use one or more of these, and from the viewpoint of productivity, it is preferable to use a hexacyanoferrate (III) salt, and an alkali metal salt of hexacyanoferrate (III). It is more preferable to use, and from the viewpoint of versatility, it is further preferable to use potassium hexacyanoferrate (III).
  • a metal catalyst such as copper, manganese or nickel, oxygen can be used as an oxidant.
  • hexacyanoferrate (III) such as alkali metal salt of hexacyanoferrate (III)
  • hexacyanoferrate (III) such as an alkali metal salt of hexacyanoferrate (III) in the oxidant solution O
  • the content of the acid salt is preferably 2.0 equivalents or more, more preferably 2. equivalents or more, with respect to the number of moles of DOPAs in DOPA liquid D, from the viewpoint of promoting the reaction to increase the yield of DHIs.
  • hexacyanoferrate (III) such as an alkali metal salt of hexacyanoferrate (III) as the oxidant in the oxidant solution O is preferably 2.% with respect to the number of moles of DOPA in the DOPA solution D. It is 0 equivalent or more and 6.0 equivalents or less, more preferably 2.6 equivalents or more and 5.5 equivalents or less, still more preferably 3.5 equivalents or more and 4.6 equivalents or less.
  • the oxidizing agent solution O preferably contains a basic agent from the viewpoint of promoting the reaction by maintaining the pH during the reaction weakly basic.
  • the base agent include alkali metal salts of hydrogen carbonate ions such as potassium hydrogen carbonate and sodium hydrogen carbonate, and alkali metal salts of carbonate ions such as potassium carbonate and sodium carbonate. It is preferable to use one or two or more of these as the basic agent.
  • the oxidant solution O may additionally contain a chemical substance inert to an oxidant such as benzoates.
  • the content of the basic agent in the oxidant liquid O is preferably 3.% with respect to the number of moles of DOPA in the DOPA liquid D from the viewpoint of promoting the reaction by maintaining the pH at the time of reaction moderately weakly basic. 9 equivalents or more, more preferably 5.1 equivalents or more, further preferably 5.9 equivalents or more, and from the same viewpoint, preferably 9.0 equivalents or less, more preferably 7.8 equivalents or less, more preferably Is less than 6.3 equivalents.
  • the content of the basic agent in the oxidizing agent solution O is preferably 3.9 equivalents or more and 9.0 equivalents or less, more preferably 5.1 equivalents or more based on the number of moles of DOPAs in the DOPAs solution D. It is the equivalent or less, more preferably 5.9 or more and 6.3 or less.
  • the dripping time of the oxidant liquid O is preferably 1 minute or more, more preferably 3 minutes or more, still more preferably 5 minutes or more, from the viewpoint of the applicability to mass production, and also suppresses the progress of the side reaction In order to increase the yield of DHIs, it is preferably 1 hour or less, more preferably 30 minutes or less, and still more preferably 10 minutes or less.
  • the dropping time of the oxidizing agent solution O is preferably 1 minute to 1 hour, more preferably 3 minutes to 30 minutes, and still more preferably 5 minutes to 10 minutes.
  • the oxidizing agent solution O from the oxidizing agent tank 12 is added to the DOPAs solution D in the reaction tank 11, but the configuration is such that the DOPA liquids D and the oxidizing agent solution O are mixed. It is not particularly limited thereto, for example, it may be configured that DOPAs solution D is added to oxidant solution O, and DOPAs solution D and oxidant solution O may be added to the liquid tank. May be supplied simultaneously or alternately.
  • the reaction temperature of the DOPAs with the oxidizing agent is preferably 10 ° C. or more, more preferably 25 ° C. or more, still more preferably 30 ° C. or more, from the viewpoint of increasing the reaction rate and shortening the reaction time.
  • the temperature is 50 ° C. or less, more preferably 45 ° C. or less, and still more preferably 40 ° C. or less from the viewpoint of suppressing the progress of DHI and increasing the yield of DHI.
  • the reaction temperature of the DOPA with the oxidizing agent is preferably 10 ° C. to 50 ° C., more preferably 25 ° C. to 45 ° C., and still more preferably 30 ° C. to 40 ° C.
  • the reaction temperature can be controlled by setting the liquid temperature by the jacket 16 provided in the reaction tank 11, and when the DOPA liquid D is prepared in the reaction tank 11, the liquid temperature of the DOPA liquid D is adjusted. It is preferable to set to this reaction temperature.
  • the reaction time (aging time) of the DOPAs with the oxidizing agent is preferably 2 hours or more, more preferably 3 hours or more, more preferably from the start of dropwise addition of the oxidizing agent solution O from the viewpoint of increasing the yield of DHIs. Is 4 hours or more, and preferably 22 hours or less, more preferably 6 hours or less, and still more preferably 5 hours or less from the viewpoint of enhancing the productivity.
  • the reaction time of the DOPA with the oxidizing agent is preferably 2 hours or more and 22 hours or less, more preferably 3 hours or more and 6 hours or less, and still more preferably 4 hours or more and 5 hours or less.
  • the resulting DHIs correspond to the starting DOPAs, for example DHI and its salts (potassium salts, sodium salts etc.), 5,6-dihydroxyindole-2-carboxylic acid and its salts (potassium salts, sodium salts) Etc.). It is preferable that DHIs contain one or more of them.
  • the aqueous first liquid L1 containing DHIs is obtained.
  • the pH of the first liquid L1 after pH adjustment is preferably 3.0 or more, more preferably 3.3 or more, and still more preferably 3.5 or more from the viewpoint of stabilizing the DHIs and increasing the yield thereof. In addition, it is preferably 5.5 or less, more preferably 5.3 or less, and still more preferably 5.0 or less, from the viewpoint of increasing the filtration rate during filtration described later and obtaining good phase separation during extraction.
  • the pH of the first liquid L1 after pH adjustment is preferably 3.0 to 5.5, more preferably 3.3 to 5.3, and still more preferably 3.5 to 5.0.
  • the first liquid L1 obtained in this reaction step is subjected to the removal operation of the water-insoluble by-product before the extraction agent is mixed in the purification step of the next step.
  • the "water-insoluble by-product” refers to a by-product of the oxidation-reduction reaction of DOPAs with an oxidizing agent and having a solubility at 20 ° C of 1 mg / 100 g-H 2 O or less.
  • water insoluble by-products include melanin and its intermediates.
  • hexacyanoferrate (II) is complexed and removed from the reaction solution in which DHIs are generated.
  • the reaction solution additionally contains impurities such as unreacted starting materials, dihydroxyindoles are disclosed as disclosed in Non-Patent Documents 1 and 2 from the viewpoint of improving the purity of DHIs. It is preferable to extract and separate into extractant. And, in the extraction of DHIs using such extractant, improvement of the extraction yield is required.
  • the present inventors mixed the extractant into the first liquid L1 containing the water-insoluble by-product, the water-insoluble by-product was powder emulsified near the interface between the first liquid L1 and the extractant. It has been discovered that the third phase is formed to inhibit the phase separation between the first liquid L1 and the second liquid L2. It has also been discovered that the formation of this third phase is a factor that reduces the extraction yield of DHIs. As a means for solving this problem, the extraction yield of DHIs to the extractant can be obtained by removing the water-insoluble by-product from the first liquid L1 and appropriately phase separating the first liquid L1 and the extractant. It has been found that it can be enhanced and phase separation can be rapidly.
  • the aqueous first liquid L1 obtained by generating DHIs in this reaction step is mixed with the extractant in the purification step of the next step.
  • the extraction yield of DHIs by the extractant in the next purification step can be enhanced.
  • extraction yield refers to the percentage of the molar amount of DHIs contained in the extractant recovered after extraction and separation relative to the molar amount of DHIs produced in the reaction contained in the reaction liquid.
  • examples of the operation for removing the water-insoluble by-product include filtration, centrifugation and the like.
  • the removal operation of the water-insoluble by-product is preferably filtration among these in terms of the simplicity of the operation.
  • the method for removing the water-insoluble by-product of the first liquid L1 by filtration is not particularly limited.
  • a circulation pipe 181 provided with a filter 171 interposed therein is used as a reaction tank.
  • 11 may be a method of circulating the first liquid L1 and circulatingly filtering it, and storing the first liquid L1, which is a filtrate after filtration, in the reaction tank 11.
  • the number of passes of the circulation pipe 181 of the first liquid L1 is obtained by dividing the total circulating liquid volume obtained by multiplying the flow rate of the first liquid L1 in the circulation pipe 181 by the circulation time by the volume of the first liquid L1 in the reaction tank 11.
  • a filter 172 is interposed in an inter-tank connection pipe 182 extending from the reaction tank 11, and the inter-tank connection pipe 182 is connected to the filtrate tank 19 to allow the first liquid L1 to flow therethrough.
  • One-pass filtration may be performed, and the first solution L1 which is the filtrate after filtration may be stored in the filtrate tank 19.
  • the filter 171, 172 may be provided with a single filter medium 17a, or may be provided with a plurality of filter medium 17a.
  • the plurality of filter media 17a may be provided in series along the flow direction of the first liquid L1, as shown in FIG. 4A.
  • a plurality of filter media 17a provided in series may be provided mutually spaced apart.
  • the plurality of filter media 17a provided in series may have the same mesh size or may have different mesh sizes. In the latter case, it is preferable that the plurality of filter media 17a provided in series be provided with the filter media 17a having a large opening on the upstream side and the filter media 17a having a small opening on the downstream side.
  • the openings are provided so as to gradually decrease toward the side.
  • several filter media 17a may be provided in parallel so that each of 1st liquid L1 which flow-divided in filter 171,172 may pass.
  • the plurality of filter media 17a provided in parallel preferably have the same mesh size.
  • the plurality of filter media 17a may be provided by combining the configurations of FIGS. 4A and 4B. That is, as shown in FIG. 4C, the plurality of filter media 17a are provided in parallel so that each of the first liquids L1 separated in the filters 171 and 172 passes through, and for each of them, It may be provided in series along the flow direction of the one liquid L1.
  • the mesh size of the filter medium 17a provided in the filters 171 and 172 is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1.0 ⁇ m or more, from the viewpoint of increasing the filtration rate. It is preferably 5.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, and still more preferably 1.5 ⁇ m or less, from the viewpoint of removing the insoluble by-products to increase the extraction yield of DHIs into the extractant.
  • the mesh size of the filter medium 17a provided in the filters 171 and 172 is 0.1 ⁇ m to 5.0 ⁇ m, more preferably 0.5 ⁇ m to 2.0 ⁇ m, and still more preferably 1.0 ⁇ m to 1.5 ⁇ m.
  • the material of the filter medium 17a is not particularly limited from the viewpoint of removal of the water-insoluble by-product, but is preferably formed of a hydrophilic material from the viewpoint of increasing the filtration rate.
  • ⁇ Purification step (step 2)> In the purification step (step 2), the first liquid L1 obtained in the reaction step (step 1) and the extractant are mixed to obtain an oily second liquid L2 in which DHIs are extracted as extractant.
  • the extractant is added while stirring the first liquid L1 to extract the extractant.
  • the DHIs are extracted, and this time, the first liquid L1 of the lower aqueous phase and the second liquid L2 of the oil phase from which the DHIs are extracted as the upper extract are separated.
  • the lower layer first liquid L1 is discharged from the bottom of the tank A 20A to obtain an oily second liquid L2.
  • the tank A 20A may be the reaction tank 11 shown in FIG. 1 and FIGS. 2A and 2B used in the reaction step, or may be the filtrate storage tank 19 shown in FIG.
  • the extractant is added to the first liquid L1, but when the first liquid L1 is transferred from the reaction tank 11, the first liquid L1 and the extractant are mixed.
  • the first solution L1 may be added to the extractant, and the first solution L1 and the extractant may be added simultaneously or alternately to the liquid tank. It may be configured to be supplied.
  • the tank A it is preferable to reduce the oxygen concentration by supplying an inert gas such as nitrogen gas or argon gas.
  • the oxygen concentration in the gas phase in tank A 20A is preferably 1.0% by volume or less, most preferably 0% by volume. It is preferable to continuously supply the inert gas to the gas phase in the tank A 20A in the operation of this purification step.
  • the extractant is preferably an organic solvent having an octanol / water distribution coefficient (LogP) of 0 or more and 4.0 or less, from the viewpoint of separation.
  • the extractant for example, ethyl acetate (0.73), which is an organic solvent having an octanol / water distribution coefficient of less than 0.90, diethyl ether (0.89); an octanol / water distribution coefficient of more than 0.90
  • the organic solvent methyl isobutyl ketone (1.4), dichloromethane (1.3), cyclohexane (3.4), etc. may be mentioned (the value in the parentheses is octanol / water partition coefficient).
  • an octanol / water partition coefficient is preferably an organic solvent having a coefficient of 1.5 or less, more preferably less than 0.90. It is more preferable to use including, and it is further more preferable to use including ethyl acetate.
  • a chemical substance inert to DHIs such as benzoates and phosphates may be added together with the extractant.
  • the mixing amount of the extractant to the first liquid L1 is preferably 20% by volume or more, more preferably to the volume of the first liquid L1 at the end of the reaction from the viewpoint of enhancing the extraction yield of DHIs to the extractant. Is 30% by volume or more, more preferably 50% by volume or more, and from the viewpoint of reducing the amount of waste liquid to reduce the manufacturing cost, preferably 400% by volume or less, more preferably 200% by volume or less, more preferably It is 100 volume% or less.
  • the mixing amount of the extractant with respect to the first liquid L1 is preferably 20% to 400% by volume, more preferably 30% to 200% by volume, further preferably, relative to the volume of the first liquid L1 at the end of the reaction. Preferably, they are 50% by volume or more and 100% by volume or less.
  • the mixture is stirred after or while adding the extractant to the first liquid L1.
  • the stirring time (extraction time) of the mixture is preferably 10 minutes or more, more preferably 15 from the viewpoint of enhancing the extraction yield of DHIs to the extractant. It is preferably at least 120 minutes, more preferably at most 90 minutes, still more preferably at most 60 minutes, in view of enhancing the productivity.
  • the stirring time (extraction time) of the mixed solution is preferably 10 minutes to 120 minutes, more preferably 15 minutes to 90 minutes, and still more preferably 20 minutes to 60 minutes.
  • the stirring time (extraction time) from the start of the extractant addition of the first solution L1 increases the extraction yield of DHIs to the extractant. It is preferably 10 minutes or more, more preferably 15 minutes or more, still more preferably 20 minutes or more, and from the viewpoint of enhancing the productivity, preferably 120 minutes or less, more preferably 90 minutes or less, still more preferably 60 It is less than a minute.
  • the stirring time (extraction time) of the first liquid L1 is preferably 10 minutes to 120 minutes, more preferably 15 minutes to 90 minutes, and still more preferably 20 minutes to 60 minutes.
  • the oily second liquid L2 formed is preferably separated from the aqueous liquid from the viewpoint of removing impurities, and then the second liquid L2 obtained is further subjected to From the viewpoint of removing impurities, it is preferable to perform washing with washing water.
  • a cleaning method in the tank A for storing the obtained second liquid L2, after making the second liquid L2 sufficiently contact with the second liquid L2 by adding the washing water while stirring the second liquid L2, There is a method of discharging the latter of the oil phase of the second liquid L2 in the upper layer and the lower aqueous phase, which are phase-separated, from the bottom of the A tank 20A.
  • the amount of washing water added to the second liquid L2 is preferably 10% by volume or more, more preferably 20 volumes, with respect to the volume of the second liquid L2, from the viewpoint of keeping the pH of the washing water stable near neutrality. % Or more, more preferably 30% by volume or more, and preferably 100% by volume or less, more preferably 80% by volume or less, still more preferably 50% by volume or less from the viewpoint of enhancing the yield of DHIs.
  • the amount of washing water added to the second liquid L2 is preferably 10% to 100% by volume, more preferably 20% to 80% by volume, still more preferably 30% by volume, relative to the volume of the second liquid L2. It is volume% or more and 50 volume% or less.
  • the washing time of the second liquid L2 with washing water is preferably 30 minutes or more, more preferably 45 minutes or more, and still more preferably 60 minutes or more, from the viewpoint of keeping the pH of the washing water stable near neutrality. Also, from the viewpoint of increasing the yield of DHIs, it is preferably 120 minutes or less, more preferably 105 minutes or less, and still more preferably 90 minutes or less.
  • the washing time of the second liquid L2 with washing water is preferably 30 minutes to 120 minutes, more preferably 45 minutes to 105 minutes, and still more preferably 60 minutes to 90 minutes.
  • the washing water may contain a polybasic acid salt from the viewpoint of adjusting the pH to around neutral.
  • polybasic acid salts include potassium salts of phosphoric acid, potassium salts of citric acid, potassium salts of carbonic acid, sodium salts of phosphoric acid, sodium salts of citric acid, sodium salts of carbonic acid and the like. It is preferable to use one or more of these polybasic acids, and it is more preferable to use a potassium salt of phosphoric acid (dipotassium hydrogen phosphate and dipotassium hydrogen phosphate).
  • the extraction yield of DHIs into the extractant is preferably 25 mol% or more, more preferably 50 mol% or more, and still more preferably 75 mol% or more.
  • solvent substitution step (step 3) solvent substitution is carried out by mixing the second liquid L2 obtained in the purification step (step 2) and water W and distilling off the extractant, and It is preferable to obtain a DHI liquid of an aqueous solution or an aqueous dispersion containing DHIs, which is the third liquid L3. Further, from the viewpoint of the efficiency at the time of production, it is preferable to adjust the concentration together with this solvent substitution.
  • the solvent replacement step is preferably performed in the B tank 20B in which the inside of the tank is washed, from the viewpoint of increasing the purity of the DHI liquid. Therefore, first, as shown in FIG. 6A, the second liquid L2 obtained in the purification step is discharged from the tank A and transferred, and then the second liquid L2 is transferred to the tank B which cleans the inside of the tank. Supply and store.
  • the B tank 20B may be a liquid tank different from the A tank 20A, or may be the original A tank 20A in which the inside of the tank is washed after discharging the second liquid L2.
  • the oxygen concentration in the gas phase in the tank of tank B 20B is preferably 1.0% by volume or less, and most preferably 0% by volume. It is preferable that the supply of the inert gas to the gas phase in the tank of tank B 20B be continuously performed in the operation of the solvent replacement step.
  • water W is added to the second liquid L2 in the tank B 20B, and subsequently, the second liquid L2 to which the water W is added in the tank B 20B is heated to extract the extractant.
  • the solvent is distilled off and the extractant is solvent-replaced with water W.
  • the number of times of solvent substitution is preferably 2 or more and 4 or less.
  • water W to be added for example, ion exchange water or distilled water is preferably used.
  • water W it is preferable to use what reduced dissolved oxygen concentration by supplying inert gas, such as nitrogen gas and argon gas.
  • the dissolved oxygen concentration of water W is preferably 1.0 mg / L or less, more preferably 0.5 mg / L or less.
  • the addition of water W to the second liquid L2 at the time of the first solvent substitution may be performed on the second liquid L2 after being supplied to the B tank 20B, or may be discharged from the A tank 20A and the B tank It may be performed on the second liquid L2 until it is supplied to 20B.
  • the water W may be added to the liquid remaining in the B tank 20B in the second or subsequent solvent replacement.
  • the amount of water W added is the volume of the liquid remaining in tank B 20B with respect to the volume of the second liquid L2 in the first solvent substitution, or in the second or later solvent substitution.
  • the amount of water W added is preferably 50% by volume or more with respect to the volume of the second liquid L2 in the first solvent substitution, or with respect to the volume of the liquid remaining in the tank B 20B in the second and subsequent solvent substitution. It is 150% by volume or less, more preferably 80% by volume or more and 120% by volume or less, and further preferably 100% by volume or more and 110% by volume or less.
  • the liquid temperature when distilling off the extractant is preferably 40 ° C. or more, more preferably 50 ° C. or more, still more preferably 60 ° C. or more, from the viewpoint of increasing the evaporation rate of the extractant From the viewpoint of suppressing thermal decomposition, it is preferably 90 ° C. or less, more preferably 85 ° C. or less, and further preferably 80 ° C. or less.
  • the liquid temperature when distilling off the extractant is preferably 40 ° C. or more and 90 ° C. or less, more preferably 50 ° C. or more and 85 ° C. or less, still more preferably 60 ° C. or more and 80 ° C. or less.
  • the pressure when distilling the extraction agent in the first solvent substitution is preferably atmospheric pressure (101.325 kPa (abs)) or less, more preferably 90 kPa (abs) or less, from the viewpoint of increasing the evaporation rate of the extraction agent. More preferably, it is 80 kPa (abs) or less.
  • the pressure for distilling off the extractant in the second or subsequent solvent substitution is preferably 80 kPa (abs) or less, more preferably 40 kPa (abs) or less, still more preferably 10 kPa, from the viewpoint of increasing the evaporation rate of the extractant. (Abs) or less.
  • DHIs in the form of DHI liquid which is an aqueous third liquid L3, by adding water and a water-soluble solvent to the liquid remaining in tank B after solvent substitution and adjusting the concentration
  • You can get As a water-soluble solvent, ethanol etc. are mentioned, for example.
  • the content of DHIs in the DHI solution of the third solution L3 obtained is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1.0% by mass or more.
  • the content of DHIs is measured by high performance liquid chromatography (HPLC).
  • the content of the organic solvent in the DHI liquid of the third liquid L3 obtained is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, and still more preferably 0.5% by mass or less.
  • the content of the organic solvent is measured by gas chromatography (GC).
  • DHI class liquid of the 3rd liquid L3 after solvent substitution when used for dyeing applications, such as hair dyeing, it is desirable for DHI class content to be about 1 mass%. From such a viewpoint, it is preferable to concentrate the second liquid L2 before solvent substitution.
  • the concentration operation of the second liquid L2 is carried out by concentrating the second liquid L2 obtained in the purification step by distilling off the extractant in the A tank 20A, and then discharging the concentrated second liquid L2 from the A tank 20A, May be supplied to and stored in the tank B 20B.
  • the second liquid L2 obtained in the purification step is discharged from tank A 20A, supplied to tank B 20B and stored, and then the extractant is distilled off in tank B 20B to concentrate second liquid L2 You may Furthermore, the second liquid L2 obtained in the purification step is discharged from the tank A, supplied to another liquid tank, concentrated by distilling off the extractant, and then discharged from the liquid tank and concentrated.
  • the second liquid L2 may be supplied to and stored in the B tank 20B.
  • the liquid temperature when concentrating the second liquid L2 is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, still more preferably 60 ° C. or higher, from the viewpoint of increasing the distillation rate of the extractant, and DHI From the viewpoint of suppressing the thermal decomposition of the above, it is preferably 90 ° C. or less, more preferably 85 ° C. or less, still more preferably 80 ° C. or less.
  • the liquid temperature when concentrating the second liquid L2 is preferably 40 ° C to 90 ° C, more preferably 50 ° C to 85 ° C, and still more preferably 60 ° C to 80 ° C.
  • the pressure for concentrating the second liquid L2 is preferably atmospheric pressure (101.325 kPa (abs)) or less, more preferably 100 kPa (abs) or less, still more preferably 90 kPa, from the viewpoint of increasing the distillation rate of the extractant. (Abs) or less.
  • DOPAs and an oxidizing agent are made to react, the process 1 of obtaining the aqueous
  • ⁇ 3-2> The method according to ⁇ 2>, wherein the opening of the filter medium used in the filtration is 1.5 ⁇ m or less.
  • ⁇ 4> The method according to any one of ⁇ 2> to ⁇ 3-2>, wherein the opening of the filter medium used in the filtration is 0.1 ⁇ m or more.
  • ⁇ 4-1> The production method according to any one of ⁇ 2> to ⁇ 3-2>, wherein the opening of the filter medium used in the filtration is 0.5 ⁇ m or more.
  • ⁇ 4-2> The method according to any one of ⁇ 2> to ⁇ 3-2>, wherein the opening of the filter medium used in the filtration is 1.0 ⁇ m or more.
  • ⁇ 5> The method according to any one of ⁇ 2> to ⁇ 4-2>, wherein the filtration is performed by circulating the first liquid through a circulation pipe provided with a filter provided with the filter medium. Manufacturing method.
  • the number of times of circulation of the first liquid to the circulation pipe is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, and preferably 10 or less, more preferably
  • the manufacturing method described in ⁇ 5> which is 8 times or less, more preferably 6 times or less.
  • ⁇ 7> The manufacturing method according to any one of ⁇ 2> to ⁇ 4>, wherein the filtration is performed by flowing through a pipe provided with a filter provided with the filter medium and performing one-pass filtration.
  • ⁇ 8> The method according to any one of ⁇ 5> to ⁇ 7>, wherein the filter medium provided in the filter is single.
  • ⁇ 9> The method according to any one of ⁇ 5> to ⁇ 7>, wherein a plurality of the filter media are provided in the filter.
  • ⁇ 12> The manufacturing method according to any one of ⁇ 9> to ⁇ 11>, wherein the plurality of filter media are provided in parallel so that each of the first liquids separated in the filter passes therethrough.
  • step 1 an aqueous solution or an aqueous suspension containing 0.20% by mass or more of the DOPAs and an aqueous solution or an aqueous suspension of the oxidizing agent are mixed, ⁇ 1> to ⁇ 13> The manufacturing method described in any of the above.
  • the content of ⁇ 15> the DOPAs is preferably 0.30% by mass or more, and is preferably 1.0% by mass or less, more preferably 0.70% by mass or less, still more preferably 0.50% by mass
  • the manufacturing method as described in ⁇ 14> which is% or less.
  • ⁇ 16> The method according to ⁇ 14> or ⁇ 15>, wherein the oxidizing agent comprises an alkali metal salt of hexacyanoferrate (III).
  • the content of the alkali metal of hexacyanoferrate (III) of the ⁇ 17> oxidizing agent is preferably 2.0 equivalents or more, more preferably 2.6 equivalents or more, further preferably to the number of moles of the DOPA. Is 3.5 equivalents or more, preferably 6.0 equivalents or less, more preferably 5.5 equivalents or less, still more preferably 4.6 equivalents or less.
  • ⁇ 18> The method according to any one of ⁇ 14> to ⁇ 17>, wherein the aqueous solution or aqueous suspension of the oxidizing agent contains a base.
  • the content of the ⁇ 20> base is preferably 3.9 equivalents or more, more preferably 5.1 equivalents or more, still more preferably 5.9 equivalents or more, relative to the number of moles of the DOPA.
  • the production method according to ⁇ 18> or ⁇ 19> which is preferably 9.0 equivalents or less, more preferably 7.8 equivalents or less, still more preferably 6.3 equivalents or less.
  • ⁇ 21> The production method according to any one of ⁇ 1> to ⁇ 20>, wherein the extractant contains an organic solvent having an octanol / water distribution coefficient of 0 or more and 4.0 or less.
  • the mixing amount of the extractant with respect to the ⁇ 23> first liquid is preferably 20% by volume or more, more preferably 30% by volume or more, still more preferably 50% by volume with respect to the volume of the first solution at the end of the reaction.
  • DHI content HPLC
  • a 0.1 wt% aqueous phosphoric acid solution containing 1.0 g of sodium ascorbate as an antioxidant and 0.2 wt% of potassium benzoate was added. 0g and 1.0g of DHI solution were mixed. The solution was then adjusted to 50 mL with a 0.1 wt% aqueous phosphoric acid solution in a volumetric flask and measured by HPLC to calculate the DHI content.
  • the solution which blew in nitrogen gas and made the dissolved oxygen concentration 1.0 mg / L or less also used any solution.
  • Method of measuring purity The purity of DHI was calculated as a percentage of the DHI peak area value to the value obtained by subtracting the area values of sodium ascorbate and potassium benzoate from the peak area values of all the substances measured by HPLC. .
  • Example 1 -Reaction process (Step 1)- In Example 1, a reaction vessel and an oxidant vessel are provided in the same manner as shown in FIG. 1, and a reaction vessel is provided with a circulation pipe having a filter interposed in the same manner as shown in FIG. 2A. I prepared the device.
  • the reaction vessel had a volume of 300 L and was provided with a stirrer having anchor wings and a jacket for temperature control.
  • the oxidant tank was provided with a stirrer.
  • the filter was provided with a single filter medium having an opening of 1.2 ⁇ m.
  • the potassium hexacyanoferrate (III) aqueous solution in the oxidizing agent tank is dropped over 10 minutes, and the solution is aged for 4 hours from the start of dropwise addition, DOPA and hexacyanoiron (III 2.)
  • the reaction mixture was subjected to oxidation reduction reaction with potassium acid to obtain an aqueous first liquid in which DHI was formed. During this time, the liquid temperature of the reaction liquid in the reaction tank was maintained at 35 ° C.
  • a pH adjustment agent is added with an aqueous phosphoric acid solution having a concentration of 10% by mass at a dissolved oxygen concentration of 1.0 mg / L or less to obtain a pH of 4. Adjusted to 7. A part of the obtained first liquid was taken out, the content of DHI was measured by HPLC, and the molar amount of DHI in the first liquid was calculated.
  • the first liquid in the reaction tank was circulated to a circulation pipe and filtered by a filter to remove water insoluble by-products.
  • the number of passes of the circulation piping of the first liquid was five.
  • step 2 A part of the first liquid from which water insoluble by-products were removed by filtration was taken out and No. 1 Transfer to 7 screw tube. Then, add 50% by volume of ethyl acetate as an extractant to the first solution in the screw tube with respect to the first solution, shake the screw tube by hand, and stir them well to obtain ethyl acetate as the extractant. An oily second liquid from which DHI was extracted was obtained. After that, the stirring was stopped, and the aqueous first liquid and the oily second liquid were phase separated. Thereafter, only the second solution in the upper layer is recovered using a pipette, a part of the obtained second solution is taken out, the DHI content is measured by HPLC, and the molar amount of DHI in the recovered second solution is determined. Calculated.
  • Example 2 -Reaction process (Step 1)- In Example 2, first, nitrogen gas was continuously supplied to a reaction vessel having a volume of 500 mL, and nitrogen gas was blown into the reactor to charge water having a dissolved oxygen concentration of 1.0 mg / L or less. While stirring the water in the reaction tank, DOPA was added and dissolved therein to prepare 348 mL of DOPA aqueous solution (DOPA-like liquid) having a concentration of 0.33% by mass. At this time, the liquid temperature of the DOPA aqueous solution was adjusted to 35 ° C.
  • DOPA aqueous solution DOPA-like liquid
  • potassium hexacyanoferrate (III) aqueous solution having a concentration of 16.8% by mass is added by dissolving the oxidizing agent potassium hexacyanoferrate (III) and the basic agent potassium hydrogencarbonate in ion-exchanged water and dissolving it
  • the preparation solution (41 mL) was prepared.
  • the content of potassium hexacyanoferrate (III) in the aqueous potassium hexacyanoferrate (III) solution is 4.0 equivalents relative to the number of moles of DOPA in the aqueous DOPA solution.
  • the content of potassium hydrogen carbonate of the basic agent in the aqueous potassium hexacyanoferrate (III) solution is 6.0 equivalents relative to the number of moles of DOPA in the aqueous solution of DOPA.
  • a pH adjustment agent is added with an aqueous phosphoric acid solution having a concentration of 10% by mass at a dissolved oxygen concentration of 1.0 mg / L or less to obtain a pH of 4. Adjusted to 7. A part of the obtained first liquid was taken out, the content of DHI was measured by HPLC, and the molar amount of DHI in the first liquid was calculated.
  • step 2 The first solution from which water insoluble by-products were removed by filtration was No. 1 solution. Transfer to 7 screw tube. Then, add 50% by volume of ethyl acetate as an extractant to the first solution in the screw tube with respect to the first solution, shake the screw tube by hand, and stir them well to obtain ethyl acetate as the extractant. An oily second liquid from which DHI was extracted was obtained. After that, the stirring was stopped, and the aqueous first liquid and the oily second liquid were phase separated. Thereafter, only the second solution in the upper layer is recovered using a pipette, a part of the obtained second solution is taken out, the DHI content is measured by HPLC, and the molar amount of DHI in the recovered second solution is determined. Calculated.
  • Example 3 In Example 3, the same operation as in Example 2 was performed except that a filter medium having an opening of 5.0 ⁇ m was used.
  • Example 4 In Example 4, the same operation as in Example 2 was performed except that the removal of the water-insoluble by-product was performed by centrifuging the first solution. Centrifugation was performed by taking 7 mL of the first solution in a reaction vessel in a centrifuge tube with a volume of 15 mL, and making the rotation speed 5000 rpm and the rotation time 2 minutes.
  • Comparative Example In the comparative example, the same operation as in Example 2 was performed except that the removal operation of the water-insoluble by-product by filtration was not performed.
  • phase separation speed was determined for each of Examples 1 to 4 and Comparative Example.
  • the phase separation speed was calculated by dividing the liquid height when ethyl acetate as the extractant was added to the first liquid by the time required for phase separation after stopping the agitation of the screw pipe.
  • the present invention is useful for the technical field of methods for producing dihydroxy indoles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)

Abstract

ジヒドロキシインドール類の製造方法は、3-(3,4-ジヒドロキシフェニル)アラニン及びその誘導体の群から選ばれる1種又は2種以上と酸化剤とを反応させてジヒドロキシインドール類を生成させた水性の第1液を得る工程1と、前記工程1で得た前記第1液と抽剤とを混合して前記抽剤に前記ジヒドロキシインドール類を抽出した油性の第2液を得る工程2とを含む。前記工程1で得た前記第1液に、前記工程2で前記抽剤と混合する前に、水不溶性副生成物の除去操作を行う。

Description

ジヒドロキシインドール類の製造方法
 本発明は、ジヒドロキシインドール類の製造方法に関する。
 メラニンは、動物や植物において形成される黄色乃至黒色の色素であり、紫外線吸収機能、ラジカル捕獲機能、酸化防止機能等を有することが知られている。また、メラニンは、生体由来の安全性の高い物質であるので、化粧料、食品、プラスチック製品等に含有させることが広く行われており、例えば、日焼け防止クリームやサングラス等では紫外線吸収剤として使用され、また、食品やプラスチック製品等では酸化防止剤として使用され、更に、白髪染め等では色素として使用されている。
 ところで、生体内において、メラニンは、基質化合物である3-(3,4-ジヒドロキシフェニル)アラニン(DOPA)がメラニン生成酵素であるチロシナーゼの触媒作用により酸化されてドーパキノンを経てメラニン前駆体のジヒドロキシインドール類(5,6-ジヒドロキシインドール、5,6-ジヒドロキシインドール-2-カルボン酸等)を生成し、このジヒドロキシインドール類が重合することにより生合成される。このようにして生合成されるメラニンは、皮膚や髪等のメラニン産生細胞内に小粒となって存在し、熱濃硫酸や強アルカリを用いなければ溶解しない水や有機溶剤に不溶の安定な高分子化合物である。そのため、例えばメラニンを繊維や皮革等の染料とする場合、メラニンをそのまま添加剤として使用しても、水や有機溶剤に不溶なメラニンを染色対象物の組織に浸透させて染色することはできないので、水溶性のジヒドロキシインドール類を添加剤として使用して染色対象物においてメラニンを形成させるということが行われる。
 そのような用途で用いるジヒドロキシインドール類の製造方法として、例えば、特許文献1には、3-(3,4-ジヒドロキシフェニル)アラニンを含有する水溶液にヘキサシアノ鉄(III)酸塩を添加して反応させることによりジヒドロキシインドール類を生成し、得られたジヒドロキシインドール類を含有する水溶液からヘキサシアノ鉄(II)酸塩を錯体化して除去することが開示されている。また、非特許文献1及び2には、3-(3,4-ジヒドロキシフェニル)アラニンを含有する水溶液にヘキサシアノ鉄(III)酸塩を添加して反応させることによりジヒドロキシインドール類を生成し、得られたジヒドロキシインドール類を含有する水溶液に抽剤の酢酸エチルを添加してジヒドロキシインドール類を抽出することが開示されている。
米国特許第5704949号明細書
Wakamatsu,K. and Ito,S. (1988) Analytical Biochemistry 170,335-340. R.Edge,M.d’lschia,E.J.Land,A.Napolitano,S.Navaratham,L.Panzella,A.Pezzella,C.A.Ramsden and P.A.Riley (2006) Pigment Cell Res.19;443-450.
 本発明は、3-(3,4-ジヒドロキシフェニル)アラニン及びその誘導体の群から選ばれる1種又は2種以上と酸化剤とを反応させてジヒドロキシインドール類を生成させた水性の第1液を得る工程1と、前記工程1で得た前記第1液と抽剤とを混合して前記抽剤に前記ジヒドロキシインドール類を抽出した油性の第2液を得る工程2とを含むジヒドロキシインドール類の製造方法であって、前記工程1で得た前記第1液に、前記工程2で前記抽剤と混合する前に、水不溶性副生成物の除去操作を行うものである。
反応装置の構成を示す図である。 循環濾過を行う装置構成を示す図である。 ワンパス濾過を行う装置構成を示す図である。 単一の濾材が設けられた濾過器の構造を示す図である。 複数の濾材が直列に設けられた濾過器の構造を示す図である。 複数の濾材が並列に設けられた濾過器の構造を示す図である。 複数の濾材が並列で且つ直列に設けられた濾過器の構造を示す図である。 精製工程を示す第1の説明図である。 精製工程を示す第2の説明図である。 溶媒置換工程を示す第1の説明図である。 溶媒置換工程を示す第2の説明図である。 溶媒置換工程を示す第3の説明図である。
 以下、実施形態について図面を参照して詳細に説明する。
 実施形態に係るジヒドロキシインドール類の製造方法は、反応工程(工程1)、精製工程(工程2)、及び、任意工程としての溶媒置換工程(工程3)を含む。なお、本明細書において、「3-(3,4-ジヒドロキシフェニル)アラニン:DOPA」、「3-(3,4-ジヒドロキシフェニル)アラニン及びその誘導体の群から選ばれる1種又は2種以上:DOPA類」、「5,6-ジヒドロキシインドール:DHI」、及び「ジヒドロキシインドール類:DHI類」とそれぞれ略記する。
 <反応工程(工程1)>
 反応工程では、DOPA類と酸化剤とを反応させてDHI類を生成させた水性の第1液L1を得る。このとき、DOPA類の水溶液又は水性懸濁液のDOPA類液Dと、酸化剤の水溶液又は水性懸濁液の酸化剤液Oとを混合することが好ましい。また、DOPA類と酸化剤との反応は、酸化還元反応である。
 図1は、反応工程(工程1)で用いる反応装置10の一例を示す。
 反応装置10は、反応槽11と酸化剤槽12とを有する。反応槽11の上部には、酸化剤槽12の底部から延びた酸化剤供給管13が導入されている。反応槽11の底部からは排出管14が延びている。反応槽11及び酸化剤槽12にはそれぞれ撹拌機151,152が設けられている。撹拌機151,152の撹拌翼151a,152aは、低粘度液を十分に撹拌できるものであればよく、例えば、パドル翼、ディスクタービン、傾斜パドル翼、アンカー翼等が挙げられる。反応槽11には槽内を温度調整するためのジャケット16が設けられている。
 具体的には、まず、反応槽11に水を仕込む。水には、例えばイオン交換水や蒸留水を用いることが好ましい。水は、窒素ガスやアルゴンガス等の不活性ガスを供給することにより溶存酸素濃度を低減したものを用いることが好ましい。水の溶存酸素濃度は、好ましくは1.0mg/L以下、より好ましくは0.5mg/L以下である。この水の溶存酸素濃度は、市販の溶存酸素計を用いて測定される(以下同様)。
 反応槽11内は、水を仕込む前又は後に、窒素ガスやアルゴンガス等の不活性ガスを供給することにより酸素濃度を低減することが好ましい。反応槽11内の気相の酸素濃度は、好ましくは1.0体積%以下、最も好ましくは0体積%である。反応槽11内の気相の酸素濃度は、市販の酸素濃度計により測定される(以下同様)。反応槽11内の気相への不活性ガスの供給は、この反応工程の操作において継続して行うことが好ましい。
 次いで、反応槽11に設けられた撹拌機151を起動させて水を撹拌しながらDOPA類を投入して溶解又は分散させることによりDOPA類液Dを得る。なお、このDOPA類液Dの調製方法は好適な具体例であって、先にDOPA類を反応槽11に仕込み、次いで水を反応槽11に供給してもよいし、水及びDOPA類を同時に反応槽11に供給してもよいし、或いは、水及びDOPA類を、それぞれ分割して、交互に反応槽11に供給してもよい。
 DOPA類のうちのDOPAとしては、D-DOPA(3,4-ジヒドロキシ-D-フェニルアラニン)及びL-DOPA(3,4-ジヒドロキシ-L-フェニルアラニン)が挙げられる。DOPA類のうちのDOPA誘導体としては、例えば、2-3’,4’-ジヒドロキシフェニルエチルアミン誘導体(N-オクタノイル-4-(2-アミノエチル)ベンゼン-1,2-ジオール、N-オクタノイル-4,2-(3,4-ジヒドロフェニル)エチルアミン等)、4-(2-アミノエチル)ベンゼン-1,2-ジオール(ドーパミン)、D-DOPAの塩(カリウム塩、ナトリウム塩など)、L-DOPAの塩(カリウム塩、ナトリウム塩など)、DOPAの低級(炭素数1~4)アルキルエステル、α-低級(炭素数1以上4以下)アルキルDOPA、及びこれらの異性体等が挙げられる。なお、DOPA類液Dは、DOPA類以外に安息香酸塩類等DOPA類に対して不活性な化学物質を含有してもよい。
 DOPA類液DにおけるDOPA類の含有量は、高い生産性を得る観点から、好ましくは0.10質量%以上、より好ましくは0.20質量%以上、更に好ましくは0.30質量%以上であり、また、副反応の進行を抑制してDHI類の収率を高める観点から、好ましくは1.0質量%以下、より好ましくは0.70質量%以下、更に好ましくは0.50質量%以下である。DOPA類液DにおけるDOPA類の含有量は、好ましくは0.10質量%以上1.0質量%以下、より好ましくは0.20質量%以上0.70質量%以下、更に好ましくは0.30質量%以上0.50質量%以下である。
 また、酸化剤槽12に水を仕込む。水には、例えばイオン交換水や蒸留水を用いることが好ましい。水は、窒素ガスやアルゴンガス等の不活性ガスを供給することにより溶存酸素濃度を低減したものを用いることが好ましい。水の溶存酸素濃度は、好ましくは1.0mg/L以下、より好ましくは0.5mg/L以下である。
 次いで、酸化剤槽12に設けられた撹拌機152を起動させて水を撹拌しながら酸化剤を投入して溶解又は分散させることにより酸化剤液Oを得る。なお、この酸化剤液Oの調製方法は好適な具体例であって、先に酸化剤を酸化剤槽12に仕込み、次いで水を酸化剤槽12に供給してもよいし、水及び酸化剤を同時に又は交互に酸化剤槽12に供給してもよいし、或いは、水及び酸化剤を、それぞれ分割して、交互に酸化剤槽12に供給してもよい。
 酸化剤としては、例えば、ヘキサシアノ鉄(III)酸カリウム、ヘキサシアノ鉄(III)酸ナトリウム、ヘキサシアノ鉄(III)酸リチウムなどのヘキサシアノ鉄(III)酸のアルカリ金属塩、また、ヘキサシアノ鉄(III)酸塩;二酸化マンガン、酸化銀、二酸化パラジウム、過マンガン酸カリウムなどの金属酸化物;塩化鉄、三塩化酸化バナジウム(V)、硫酸セリウム(IV)などの金属塩等が挙げられる。酸化剤は、これらのうちの1種又は2種以上を用いることが好ましく、生産性の観点から、ヘキサシアノ鉄(III)酸塩を用いることが好ましく、ヘキサシアノ鉄(III)酸のアルカリ金属塩を用いることがより好ましく、また、汎用性の観点から、ヘキサシアノ鉄(III)酸カリウムを用いることが更に好ましい。なお、銅、マンガン、ニッケル等の金属触媒存在下においては酸素を酸化剤として利用することができる。
 酸化剤としてヘキサシアノ鉄(III)酸のアルカリ金属塩等のヘキサシアノ鉄(III)酸塩を用いる場合、酸化剤液Oにおける酸化剤のヘキサシアノ鉄(III)酸のアルカリ金属塩等のヘキサシアノ鉄(III)酸塩の含有量は、反応を促進させてDHI類の収率を高める観点から、DOPA類液DにおけるDOPA類のモル数に対して、好ましくは2.0当量以上、より好ましくは2.6当量以上、更に好ましくは3.5当量以上であり、また、副反応の進行を抑制してDHI類の収率を高める観点から、好ましくは6.0当量以下、より好ましくは5.5当量以下、更に好ましくは4.6当量以下である。酸化剤液Oにおける酸化剤のヘキサシアノ鉄(III)酸のアルカリ金属塩等のヘキサシアノ鉄(III)酸塩の含有量は、DOPA類液DにおけるDOPA類のモル数に対して、好ましくは2.0当量以上6.0当量以下、より好ましくは2.6当量以上5.5当量以下、更に好ましくは3.5当量以上4.6当量以下である。
 酸化剤液Oは、反応時のpHを弱塩基性に保って反応を促進させる観点から、塩基剤を含有することが好ましい。塩基剤としては、例えば、炭酸水素カリウムや炭酸水素ナトリウムなどの炭酸水素イオンのアルカリ金属塩、炭酸カリウムや炭酸ナトリウムなどの炭酸イオンのアルカリ金属塩等が挙げられる。塩基剤は、これらのうちの1種又は2種以上を用いることが好ましい。なお、酸化剤液Oは、その他に安息香酸塩類等の酸化剤に対して不活性な化学物質を含有してもよい。
 酸化剤液Oにおける塩基剤の含有量は、反応時のpHを適度に弱塩基性に保って反応を促進させる観点から、DOPA類液DにおけるDOPA類のモル数に対して、好ましくは3.9当量以上、より好ましくは5.1当量以上、更に好ましくは5.9当量以上であり、また、同様の観点から、好ましくは9.0当量以下、より好ましくは7.8当量以下、更に好ましくは6.3当量以下である。酸化剤液Oにおける塩基剤の含有量は、DOPA類液DにおけるDOPA類のモル数に対して、好ましくは3.9当量以上9.0当量以下、より好ましくは5.1当量以上7.8当量以下、更に好ましくは5.9当量以上6.3当量以下である。
 続いて、反応槽11において撹拌機151でDOPA類液Dを撹拌しながら、反応槽11内のDOPA類液Dに、酸化剤槽12から酸化剤供給管13を介して酸化剤液Oを滴下する。
 酸化剤液Oの滴下時間は、大量生産への適用可能性の観点から、好ましくは1分以上、より好ましくは3分以上、更に好ましくは5分以上であり、また、副反応の進行を抑制してDHI類の収率を高める観点から、好ましくは1時間以下、より好ましくは30分以下、更に好ましくは10分以下である。酸化剤液Oの滴下時間は、好ましくは1分以上1時間以下、より好ましくは3分以上30分以下、更に好ましくは5分以上10分以下である。
 そして、上記のDOPA類液Dへの酸化剤液Oの滴下により、DOPA類とヘキサシアノ鉄(III)酸塩との酸化還元反応を進行させてDHI類を生成する。なお、本実施形態では、反応槽11内のDOPA類液Dに、酸化剤槽12からの酸化剤液Oを添加する構成としたが、DOPA類液Dと酸化剤液Oとを混合する構成であれば、特にこれに限定されるものではなく、例えば、酸化剤液OにDOPA類液Dを添加する構成であってもよく、また、液槽に、DOPA類液D及び酸化剤液Oを同時に又は交互に供給する構成であってもよい。
 DOPA類と酸化剤との反応温度は、反応速度を高めて反応時間を短くする観点から、好ましくは10℃以上、より好ましくは25℃以上、更に好ましくは30℃以上であり、また、副反応の進行を抑制してDHI類の収率を高める観点から、好ましくは50℃以下、より好ましくは45℃以下、更に好ましくは40℃以下である。DOPA類と酸化剤との反応温度は、好ましくは10℃以上50℃以下、より好ましくは25℃以上45℃以下、更に好ましくは30℃以上40℃以下である。なお、この反応温度は、反応槽11に設けられたジャケット16による液温設定により制御することができ、また、反応槽11でのDOPA類液Dの調製時に、DOPA類液Dの液温をこの反応温度に設定しておくことが好ましい。
 DOPA類と酸化剤との反応時間(熟成時間)は、DHI類の収率を高める観点から、酸化剤液Oの滴下開始時から、好ましくは2時間以上、より好ましくは3時間以上、更に好ましくは4時間以上であり、また、生産性を高める観点から、好ましくは22時間以下、より好ましくは6時間以下、更に好ましくは5時間以下である。DOPA類と酸化剤との反応時間は、好ましくは2時間以上22時間以下、より好ましくは3時間以上6時間以下、更に好ましくは4時間以上5時間以下である。
 生成するDHI類は、原料のDOPA類に対応するが、例えば、DHI及びその塩(カリウム塩、ナトリウム塩など)、5,6-ジヒドロキシインドール-2-カルボン酸及びその塩(カリウム塩、ナトリウム塩など)等が挙げられる。DHI類は、これらのうちの1種又は2種以上を含有することが好ましい。
 以上のようにして反応槽11には、DHI類を含有する水性の第1液L1が得られる。
 得られた第1液L1は、DHI類を安定化させる観点から、pH調整剤を添加してpH調整を行うことが好ましい。pH調整剤としては、例えば、リン酸水溶液、希硫酸、希塩酸等が挙げられる。pH調整剤は、これらのうちの1種又は2種以上を用いることが好ましい。pH調整後の第1液L1のpHは、DHI類を安定化させてその収率を高める観点から、好ましくは3.0以上、より好ましくは3.3以上、更に好ましくは3.5以上であり、また、後述の濾過時の濾過速度を高めると共に抽出時に良好な分相を得る観点から、好ましくは5.5以下、より好ましくは5.3以下、更に好ましくは5.0以下である。pH調整後の第1液L1のpHは、好ましくは3.0以上5.5以下、より好ましくは3.3以上5.3以下、更に好ましくは3.5以上5.0以下である。
 実施形態に係るDHI類の製造方法では、この反応工程で得た第1液L1に、次工程の精製工程で抽剤を混合する前に、水不溶性副生成物の除去操作を行う。本出願において、「水不溶性副生成物」とは、DOPA類と酸化剤との酸化還元反応の副生成物であって、20℃における溶解度が1mg/100g-HO以下のものをいう。水不溶性副生成物としては、例えばメラニンやその中間体等が挙げられる。
 ところで、特許文献1に開示された技術では、DHI類を生成させた反応液からヘキサシアノ鉄(II)酸塩を錯体化して除去する。ところが、反応液には、それ以外にも未反応原料等の不純物が含まれるため、DHI類の純度を向上させる観点からは、非特許文献1及び2に開示されているように、ジヒドロキシインドール類を抽剤に抽出して分離することが好ましい。そして、そのような抽剤を用いたDHI類の抽出において、その抽出収率の向上が求められている。
 これに対し、本発明者らは、水不溶性副生成物を含む第1液L1に抽剤を混合すると、第1液L1と抽剤との界面付近で水不溶性副生成物が粉体乳化し、第3相を形成してしまい、第1液L1と第2液L2との相分離を阻害することを発見した。また、この第3相の形成が、DHI類の抽出収率を低下させる要因となっていることを発見した。この課題を解決する手段として、第1液L1から水不溶性副生成物を除去して第1液L1と抽剤とを適正に相分離させることにより、抽剤へのDHI類の抽出収率を高めることができ、かつ迅速に相分離させることができることを見出した。このことから、実施形態に係るDHI類の製造方法によれば、この反応工程でDHI類を生成させて得た水性の第1液L1に、次工程の精製工程で抽剤を混合する前に、上記のように水不溶性副生成物の除去操作を行うことにより、次の精製工程における抽剤によるDHI類の抽出収率を高めることができる。なお、本出願において、「抽出収率」とは、反応液中に含有される、反応で生成したDHI類のモル量に対する、抽出分離後回収した抽剤に含まれるDHI類のモル量の百分率をいう。
 ここで、水不溶性副生成物の除去操作としては、例えば、濾過、遠心分離等が挙げられる。水不溶性副生成物の除去操作は、操作の簡便性の観点から、これらのうちの濾過が好ましい。
 濾過により第1液L1の水不溶性副生成物を除去する方法としては、特に限定されるものではなく、例えば、図2Aに示すように、濾過器171が介設された循環配管181を反応槽11に設け、これに第1液L1を循環させて循環濾過し、濾過後の濾液である第1液L1を反応槽11に貯留する方法であってもよい。第1液L1の循環配管181のパス回数は、循環配管181における第1液L1の流量に循環時間を乗じた総循環液量を、反応槽11内の第1液L1の体積で除して算出されるが、水不溶性副生成物を除去し、抽出収率を高めるという観点から、好ましくは2回以上、より好ましくは3回以上、更に好ましくは4回以上であり、また、濾過の工程時間を短くし、生産性を高めるという観点から、好ましくは10回以下、より好ましくは8回以下、更に好ましくは6回以下である。また、図2Bに示すように、反応槽11から延びる槽間連結配管182に濾過器172を介設すると共に槽間連結配管182を濾液槽19に接続し、これに第1液L1を流通させてワンパス濾過し、濾過後の濾液である第1液L1を濾液槽19に貯留する方法であってもよい。
 濾過器171,172には、図3に示すように、単一の濾材17aが設けられていてもよく、また、複数の濾材17aが設けられていてもよい。濾過器171,172に複数の濾材17aが設けられている場合、複数の濾材17aは、図4Aに示すように、第1液L1の流動方向に沿って直列に設けられていてもよい。直列に設けられた複数の濾材17aは、相互に間隔をおいて設けられていてもよい。直列に設けられた複数の濾材17aは、目開きが同一であってもよく、また、目開きが異なっていてもよい。後者の場合、直列に設けられた複数の濾材17aは、上流側に目開きの大きい濾材17aが設けられ且つ下流側に目開きの小さい濾材17aが設けられていることが好ましく、上流側から下流側に向かって目開きが段階的に小さくなるように設けられていることがより好ましい。また、複数の濾材17aは、図4Bに示すように、濾過器171,172内で分流した第1液L1のそれぞれが通過するように並列に設けられていてもよい。並列に設けられた複数の濾材17aは、目開きが同一であることが好ましい。さらに、複数の濾材17aは、図4A及びBの構成が組み合わされて設けられていてもよい。すなわち、複数の濾材17aは、図4Cに示すように、濾過器171,172内で分流した第1液L1のそれぞれが通過するように並列に設けられているとともに、更にそれらのそれぞれについて、第1液L1の流動方向に沿って直列に設けられていてもよい。
 濾過器171,172に設けられる濾材17aの目開きは、濾過速度を高める観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1.0μm以上であり、また、水不溶性副生成物を除去して抽剤へのDHI類の抽出収率を高める観点から、好ましくは5.0μm以下、より好ましくは2.0μm以下、更に好ましくは1.5μm以下である。濾過器171,172に設けられる濾材17aの目開きは、0.1μm以上5.0μm以下、より好ましくは0.5μm以上2.0μm以下、更に好ましくは1.0μm以上1.5μm以下である。
 濾材17aは、水不溶性副生成物の除去の観点から、特に材質は限定されないが、濾過速度を高める観点から、親水性材料で形成されていることが好ましい。
 <精製工程(工程2)>
 精製工程(工程2)では、反応工程(工程1)で得た第1液L1と抽剤とを混合して抽剤にDHI類を抽出した油性の第2液L2を得る。
 具体的な一例としては、図5Aに示すように、反応工程で得た第1液L1を貯留するA槽20Aにおいて、第1液L1を撹拌しながら抽剤を添加することにより、抽剤にDHI類を抽出し、また、このとき下層の水相の第1液L1と上層の抽剤にDHI類を抽出した油相の第2液L2とに相分離し、その後、図5Bに示すように、下層の第1液L1をA槽20Aの底部から排出することにより油性の第2液L2を得る。ここで、A槽20Aは、反応工程で用いた図1及び図2A及びBに示す反応槽11であってもよく、また、図2Bに示す濾液貯槽19であってもよく、更に、それらから第1液L1を移送した別の液槽であってもよい。なお、本実施形態では、第1液L1に抽剤を添加する構成としたが、反応槽11から第1液L1を移送する場合には、第1液L1と抽剤とを混合する構成であれば、特にこれに限定されるものではなく、例えば、抽剤に第1液L1を添加する構成であってもよく、また、液槽に、第1液L1及び抽剤を同時に又は交互に供給する構成であってもよい。
 A槽20A内は、窒素ガスやアルゴンガス等の不活性ガスを供給することにより酸素濃度を低減することが好ましい。A槽20A内の気相の酸素濃度は、好ましくは1.0体積%以下、最も好ましくは0体積%である。A槽20A内の気相への不活性ガスの供給は、この精製工程の操作において継続して行うことが好ましい。
 抽剤は、分層性の観点から、オクタノール/水分配係数(LogP)が0以上4.0以下の有機溶剤であることが好ましい。抽剤としては、例えば、オクタノール/水分配係数が0.90未満の有機溶剤である酢酸エチル(0.73)、ジエチルエーテル(0.89);オクタノール/水分配係数が0.90よりも大きい有機溶剤であるメチルイソブチルケトン(1.4)、ジクロロメタン(1.3)、シクロヘキサン(3.4)等が挙げられる(括弧内の数値はオクタノール/水分配係数)。抽剤は、これらのうちの1種又は2種以上を用いることが好ましく、抽出効率を高める観点から、オクタノール/水分配係数が好ましくは1.5以下、より好ましくは0.90未満の有機溶剤を含めて用いることがより好ましく、酢酸エチルを含めて用いることが更に好ましい。なお、第1液L1には抽剤と併せて安息香酸塩類やリン酸塩類等DHI類に対して不活性な化学物質を添加してもよい。
 第1液L1に対する抽剤の混合量は、抽剤へのDHI類の抽出収率を高める観点から、反応終了時における第1液L1の体積に対して、好ましくは20体積%以上、より好ましくは30体積%以上、更に好ましくは50体積%以上であり、また、廃液量を低減して製造コストを削減する観点から、好ましくは400体積%以下、より好ましくは200体積%以下、更に好ましくは100体積%以下である。第1液L1に対する抽剤の混合量は、反応終了時における第1液L1の体積に対して、好ましくは20体積%以上400体積%以下、より好ましくは30体積%以上200体積%以下、更に好ましくは50体積%以上100体積%以下である。
 抽剤へのDHI類の抽出収率を高める観点から、好ましくは第1液L1に抽剤を添加した後又は添加しながら、それらの混合液を撹拌する。
 抽剤を添加した後、混合液を撹拌する場合、混合液の撹拌時間(抽出時間)は、抽剤へのDHI類の抽出収率を高める観点から、好ましくは10分以上、より好ましくは15分以上、更に好ましくは20分以上であり、また、生産性を高める観点から、好ましくは120分以下、より好ましくは90分以下、更に好ましくは60分以下である。混合液の撹拌時間(抽出時間)は、好ましくは10分以上120分以下、より好ましくは15分以上90分以下、更に好ましくは20分以上60分以下である。
 また、抽剤を添加しながら第1液L1を撹拌する場合、第1液L1の抽剤添加開始時からの撹拌時間(抽出時間)は、抽剤へのDHI類の抽出収率を高める観点から、好ましくは10分以上、より好ましくは15分以上、更に好ましくは20分以上であり、また、生産性を高める観点から、好ましくは120分以下、より好ましくは90分以下、更に好ましくは60分以下である。第1液L1の撹拌時間(抽出時間)は、好ましくは10分以上120分以下、より好ましくは15分以上90分以下、更に好ましくは20分以上60分以下である。
 上記の抽剤を混合した後、形成する油性の第2液L2は、不純物を除去する観点から、好ましくは水性の液との分離操作を行い、その後、得られた第2液L2は、更に不純物を除去する観点から、洗浄水による洗浄を行うことが好ましい。洗浄方法としては、得られた第2液L2を貯留するA槽20Aにおいて、第2液L2を撹拌しながら洗浄水を添加することにより第2液L2に洗浄水を十分に接触させた後、相分離した上層の第2液L2の油相及び下層の水相のうちの後者をA槽20Aの底部から排出する方法がある。
 第2液L2への洗浄水の添加量は、洗浄水のpHを中性付近に安定に保つ観点から、第2液L2の体積に対して、好ましくは10体積%以上、より好ましくは20体積%以上、更に好ましくは30体積%以上であり、また、DHI類の収率を高める観点から、好ましくは100体積%以下、より好ましくは80体積%以下、更に好ましくは50体積%以下である。第2液L2への洗浄水の添加量は、第2液L2の体積に対して、好ましくは10体積%以上100体積%以下、より好ましくは20体積%以上80体積%以下、更に好ましくは30体積%以上50体積%以下である。
 第2液L2の洗浄水での洗浄時間は、洗浄水のpHを中性付近に安定に保つ観点から、好ましくは30分以上、より好ましくは45分以上、更に好ましくは60分以上であり、また、DHI類の収率を高める観点から、好ましくは120分以下、より好ましくは105分以下、更に好ましくは90分以下である。第2液L2の洗浄水での洗浄時間は、好ましくは30分以上120分以下、より好ましくは45分以上105分以下、更に好ましくは60分以上90分以下である。
 洗浄水には、pHを中性付近に調整する観点から、多塩基酸塩を含有させてもよい。多塩基酸塩としては、例えば、リン酸のカリウム塩、クエン酸のカリウム塩、炭酸のカリウム塩、リン酸のナトリウム塩、クエン酸のナトリウム塩、炭酸のナトリウム塩等が挙げられる。多塩基酸は、これらのうちの1種又は2種以上を用いることが好ましく、リン酸のカリウム塩(リン酸水素二カリウム及びリン酸水素二カリウム)を含めて用いることがより好ましい。
 抽剤へのDHI類の抽出収率は、好ましくは25mol%以上、より好ましくは50mol%以上、更に好ましくは75mol%以上である。
 <溶媒置換工程(工程3)>
 任意工程としての溶媒置換工程(工程3)では、精製工程(工程2)で得た第2液L2と水Wとを混合して抽剤を留去することにより溶媒置換を行い、水性の第3液L3であるDHI類を含有する水溶液又は水分散液のDHI類液を得ることが好ましい。また、生産時の効率性の観点からは、この溶媒置換と共に濃度調整を行うことが好ましい。
 溶媒置換工程は、DHI類液の純度を高める観点から、槽内を洗浄したB槽20Bにおいて行うことが好ましい。そこで、まず、図6Aに示すように、精製工程で得た第2液L2をA槽20Aから排出し、それを移送した後、その第2液L2を、槽内を洗浄したB槽20Bに供給して貯留する。B槽20Bは、A槽20Aとは別の液槽であってもよく、また、第2液L2を排出した後に槽内を洗浄した元のA槽20Aであってもよい。
 槽内を洗浄したB槽20Bの槽内は、窒素ガスやアルゴンガス等の不活性ガスを供給することにより酸素濃度を低減することが好ましい。B槽20Bの槽内の気相の酸素濃度は、好ましくは1.0体積%以下、最も好ましくは0体積%である。B槽20Bの槽内の気相への不活性ガスの供給は、この溶媒置換工程の操作において継続して行うことが好ましい。
 次いで、図6Bに示すように、B槽20B内の第2液L2に水Wを添加し、それに続いて、B槽20Bにおいて水Wを添加した第2液L2を加熱することにより抽剤を留去させて抽剤を水Wに溶媒置換する。有機溶剤の濃度を低減する観点からは、この水Wの添加及び抽剤の留去による溶媒置換を複数回行うことが好ましい。溶媒置換の回数は好ましくは2回以上4回以下である。
 添加する水Wには、例えばイオン交換水や蒸留水を用いることが好ましい。水Wは、窒素ガスやアルゴンガス等の不活性ガスを供給することにより溶存酸素濃度を低減したものを用いることが好ましい。水Wの溶存酸素濃度は、好ましくは1.0mg/L以下、より好ましくは0.5mg/L以下である。
 初回の溶媒置換の際の第2液L2への水Wの添加は、B槽20Bに供給した後の第2液L2に対して行ってもよく、また、A槽20Aから排出してB槽20Bに供給されるまでの間の第2液L2に対して行ってもよい。なお、2回目以降の溶媒置換の際の水Wの添加は、B槽20Bに残留した液体に対して行えばよい。
 水Wの添加量は、効率的に溶媒置換を行う観点から、初回の溶媒置換における第2液L2の体積に対して、又は、2回目以降の溶媒置換におけるB槽20Bに残留した液体の体積に対して、好ましくは50体積%以上、より好ましくは80体積%以上、更に好ましくは100体積%以上であり、また、同様の観点から、好ましくは150体積%以下、より好ましくは120体積%以下、更に好ましくは110体積%以下である。水Wの添加量は、初回の溶媒置換における第2液L2の体積に対して、又は、2回目以降の溶媒置換におけるB槽20Bに残留した液体の体積に対して、好ましくは50体積%以上150体積%以下、より好ましくは80体積%以上120体積%以下、更に好ましくは100体積%以上110体積%以下である。
 抽剤を留去させるときの液温は、抽剤の留去速度を高める観点から、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上であり、また、DHI類の熱分解を抑制する観点から、好ましくは90℃以下、より好ましくは85℃以下、更に好ましくは80℃以下である。抽剤を留去させるときの液温は、好ましくは40℃以上90℃以下、より好ましくは50℃以上85℃以下、更に好ましくは60℃以上80℃以下である。なお、留去した抽剤の蒸気は、熱交換器等により凝縮させて回収することが好ましい。
 初回の溶媒置換における抽剤を留去させるときの圧力は、抽剤の留去速度を高める観点から、好ましくは大気圧(101.325kPa(abs))以下、より好ましくは90kPa(abs)以下、更に好ましくは80kPa(abs)以下である。2回目以降の溶媒置換における抽剤を留去させるときの圧力は、抽剤の留去速度を高める観点から、好ましくは80kPa(abs)以下、より好ましくは40kPa(abs)以下、更に好ましくは10kPa(abs)以下である。
 そして、図6Cに示すように、溶媒置換後にB槽20Bに残留した液体に水及び水溶性溶媒を添加して濃度調整することにより水性の第3液L3であるDHI類液の形でDHI類を得ることができる。水溶性溶媒としては、例えばエタノール等が挙げられる。
 得られた第3液L3のDHI類液におけるDHI類の含有量は、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上である。DHI類の含有量は、高速液体クロマトグラフィー(HPLC)により測定される。
 得られた第3液L3のDHI類液における有機溶剤の含有量は、好ましくは1.5質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.5質量%以下である。有機溶剤の含有量は、ガスクロマトグラフィー(GC)により測定される。
 ところで、溶媒置換後の第3液L3のDHI類液を染毛等の染色用途で用いる場合、DHI類の含有量が1質量%程度であることが望まれる。かかる観点からは、溶媒置換前に第2液L2を濃縮することが好ましい。
 第2液L2の濃縮操作は、精製工程で得た第2液L2をA槽20Aにおいて抽剤を留去させることにより濃縮した後、濃縮した第2液L2をA槽20Aから排出し、それをB槽20Bに供給して貯留してもよい。また、精製工程で得た第2液L2をA槽20Aから排出し、それをB槽20Bに供給して貯留した後、B槽20Bにおいて抽剤を留去させることにより第2液L2を濃縮してもよい。更に、精製工程で得た第2液L2をA槽20Aから排出し、それを別の液槽に供給して抽剤を留去させることにより濃縮した後にその液槽から排出し、濃縮した第2液L2をB槽20Bに供給して貯留してもよい。
 第2液L2を濃縮するときの液温は、抽剤の留去速度を高める観点から、好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上であり、また、DHI類の熱分解を抑制する観点から、好ましくは90℃以下、より好ましくは85℃以下、更に好ましくは80℃以下である。第2液L2を濃縮するときの液温は、好ましくは40℃以上90℃以下、より好ましくは50℃以上85℃以下、更に好ましくは60℃以上80℃以下である。
 第2液L2を濃縮するときの圧力は、抽剤の留去速度を高める観点から、好ましくは大気圧(101.325kPa(abs))以下、より好ましくは100kPa(abs)以下、更に好ましくは90kPa(abs)以下である。
 上述した実施形態に関し、更に以下の構成を開示する。
 <1>DOPA類と酸化剤とを反応させてDHI類を生成させた水性の第1液を得る工程1と、前記工程1で得た前記第1液と抽剤とを混合して前記抽剤に前記DHI類を抽出した油性の第2液を得る工程2と、を含むDHI類の製造方法であって、前記工程1で得た前記第1液に、前記工程2で前記抽剤と混合する前に、水不溶性副生成物の除去操作を行うDHI類の製造方法。
 <2>前記水不溶性副生成物の除去操作が濾過である、<1>に記載された製造方法。
 <3>前記濾過で用いる濾材の目開きが5.0μm以下である、<2>に記載された製造方法。
 <3-1>前記濾過で用いる濾材の目開きが2.0μm以下である、<2>に記載された製造方法。
 <3-2>前記濾過で用いる濾材の目開きが1.5μm以下である、<2>に記載された製造方法。
 <4>前記濾過で用いる濾材の目開きが0.1μm以上である、<2>乃至<3-2>のいずれかに記載された製造方法。
 <4-1>前記濾過で用いる濾材の目開きが0.5μm以上である、<2>乃至<3-2>のいずれかに記載された製造方法。
 <4-2>前記濾過で用いる濾材の目開きが1.0μm以上である、<2>乃至<3-2>のいずれかに記載された製造方法。
 <5>前記濾過を、前記濾材が設けられた濾過器が介設された循環配管に、前記第1液を循環させることにより行う、<2>乃至<4-2>のいずれかに記載された製造方法。
 <6>前記循環配管への前記第1液の循環回数が、好ましくは2回以上、より好ましくは3回以上、更に好ましくは4回以上であり、また、好ましくは10回以下、より好ましくは8回以下、更に好ましくは6回以下である、<5>に記載された製造方法。
 <7>前記濾過を、前記濾材が設けられた濾過器が介設された配管に流通させてワンパス濾過することにより行う、<2>乃至<4>のいずれかに記載された製造方法。
 <8>前記濾過器に設けられた前記濾材が単一である、<5>乃至<7>のいずれかに記載された製造方法。
 <9>前記濾過器に設けられた前記濾材が複数である、<5>乃至<7>のいずれかに記載された製造方法。
 <10>前記複数の濾材が、前記第1液の流動方向に沿って直列に設けられている、<9>に記載された製造方法。
 <11>前記直列に設けられた前記複数の濾材は、上流側から下流側に向かって目開きが段階的に小さくなるように設けられている、<10>に記載された製造方法。
 <12>前記複数の濾材が、前記濾過器内で分流した前記第1液のそれぞれが通過するように並列に設けられている、<9>乃至<11>のいずれかに記載された製造方法。
 <13>前記並列に設けられた前記複数の濾材は、目開きが同一である、<12>に記載された製造方法。
 <14>前記工程1では、前記DOPA類を0.20質量%以上含有する水溶液又は水性懸濁液と、前記酸化剤の水溶液又は水性懸濁液とを混合する、<1>乃至<13>のいずれかに記載された製造方法。
 <15>前記DOPA類の含有量が、好ましくは0.30質量%以上であり、また、好ましくは1.0質量%以下、より好ましくは0.70質量%以下、更に好ましくは0.50質量%以下である、<14>に記載された製造方法。
 <16>前記酸化剤がヘキサシアノ鉄(III)酸のアルカリ金属塩を含む、<14>又は<15>に記載された製造方法。
 <17>前記酸化剤のヘキサシアノ鉄(III)酸のアルカリ金属の含有量が、前記DOPA類のモル数に対して、好ましくは2.0当量以上、より好ましくは2.6当量以上、更に好ましくは3.5当量以上であり、また、好ましくは6.0当量以下、より好ましくは5.5当量以下、更に好ましくは4.6当量以下である、<16>に記載された製造方法。
 <18>前記酸化剤の水溶液又は水性懸濁液が塩基剤を含有する、<14>乃至<17>のいずれかに記載された製造方法。
 <19>前記塩基剤が炭酸水素イオンのアルカリ金属塩を含む、<18>に記載された製造方法。
 <20>前記塩基剤の含有量が、前記DOPA類のモル数に対して、好ましくは3.9当量以上、より好ましくは5.1当量以上、更に好ましくは5.9当量以上であり、また、好ましくは9.0当量以下、より好ましくは7.8当量以下、更に好ましくは6.3当量以下である、<18>又は<19>に記載された製造方法。
 <21>前記抽剤が、オクタノール/水分配係数が0以上4.0以下の有機溶剤を含む、<1>乃至<20>のいずれかに記載された製造方法。
 <21-1>前記抽剤が、オクタノール/水分配係数が、好ましくは0以上1.5以下、より好ましくは0以上0.9未満の有機溶剤を含む、<1>乃至<20>のいずれかに記載された製造方法。
 <22>前記抽剤が酢酸エチルを含む、<21>に記載された製造方法。
 <23>前記第1液に対する前記抽剤の混合量が、反応終了時における前記第1液の体積に対して、好ましくは20体積%以上、より好ましくは30体積%以上、更に好ましくは50体積%以上であり、また、好ましくは400体積%以下、より好ましくは200体積%以下、更に好ましくは100体積%以下である、<1>乃至<22>のいずれかに記載された製造方法。
 <24>前記抽剤への前記DHI類の抽出収率が、好ましくは25mol%以上、より好ましくは50mol%以上、更に好ましくは75mol%以上である、<1>乃至<23>のいずれかに記載された製造方法。
 (DHIの製造)
 以下の実施例1~4及び比較例のDHIの製造実験を行った。なお、いずれの工程も窒素雰囲気下にて行った。それぞれの構成については表1にも示す。
 なお、DHIの含有量(HPLC)及び純度の測定は次のようにして行った。
・DHIの含有量(HPLC)
 まず、容器内を窒素で置換した50mLのメスフラスコに、酸化防止剤であるアスコルビン酸ナトリウムを1.0g、安息香酸カリウムを0.2重量%含有した0.1重量%りん酸水溶液を2.0g及びDHI溶液を1.0gを混合した。次いで、メスフラスコに0.1重量%りん酸水溶液を50mLになるまで加えて溶液を調整し、それをHPLCにより測定してDHIの含有量を算出した。なお、いずれの溶液も窒素ガスを吹き込んで溶存酸素濃度を1.0mg/L以下にした溶液を使用した。
・純度の測定方法
 DHIの純度は、HPLCにより測定された全ての物質のピーク面積値より、アスコルビン酸ナトリウム及び安息香酸カリウムの面積値を減じた値に対する、DHIのピーク面積値の百分率として算出した。
 <実施例1>
 -反応工程(工程1)-
 実施例1では、図1に示すのと同様に反応槽及び酸化剤槽を備え、また、図2Aに示すのと同様に反応槽に、濾過器が介設された循環配管が設けられた反応装置を準備した。反応槽は、容量が300Lであって、アンカー翼を有する撹拌機及び温度調節用のジャケットが設けられたものであった。酸化剤槽は、撹拌機が設けられたものであった。濾過器は、目開きが1.2μmの単一の濾材が設けられたものであった。
 まず、反応槽に窒素ガスを継続的に供給し、そこに窒素ガスを吹き込んで溶存酸素濃度を1.0mg/L以下にした水を仕込んだ。反応槽内で水を撹拌しながら、そこにDOPAを投入して溶解させることにより、濃度が0.33質量%のDOPA水溶液(DOPA類液)を175L調製した。このとき、ジャケットに温水を流して、DOPA水溶液の液温を35℃に調整した。
 また、酸化剤槽に水を仕込んだ。酸化剤槽内で水を撹拌しながら、そこに酸化剤のヘキサシアノ鉄(III)酸カリウム及び塩基剤の炭酸水素カリウムを投入して溶解させることにより、濃度が16.8質量%のヘキサシアノ鉄(III)酸カリウム水溶液(酸化剤液)を25.2L調製した。このヘキサシアノ鉄(III)酸カリウム水溶液における酸化剤のヘキサシアノ鉄(III)酸カリウムの含有量は、DOPA水溶液におけるDOPAのモル数に対して4.0当量である。また、このヘキサシアノ鉄(III)酸カリウム水溶液における塩基剤の炭酸水素カリウムの含有量は、DOPA水溶液におけるDOPAのモル数に対して6.0当量である。
 次いで、反応槽内のDOPA水溶液を撹拌しながら、そこに酸化剤槽内のヘキサシアノ鉄(III)酸カリウム水溶液を10分かけて滴下し、滴下開始から4時間熟成させ、DOPAとヘキサシアノ鉄(III)酸カリウムとを酸化還元反応させてDHIを生成させた水性の第1液を得た。この間、反応槽内の反応液の液温を35℃に維持した。
 続いて、反応槽内の第1液を撹拌しながら、そこにpH調整剤として溶存酸素濃度を1.0mg/L以下とした濃度が10質量%のリン酸水溶液を添加してpHを4.7に調整した。得られた第1液の一部を取出し、そのDHIの含有量をHPLCにより測定し、第1液におけるDHIのモル量を算出した。
 そして、反応槽内の第1液を循環配管に循環させて濾過器で濾過することにより水不溶性副生成物を除去した。第1液の循環配管のパス回数は5回とした。
 -精製工程(工程2)-
 濾過により水不溶性副生成物を除去した第1液の一部を取出してNo.7スクリュー管に移した。次いで、スクリュー管内の第1液に、抽剤として酢酸エチルを、第1液に対して50体積%添加し、スクリュー管を手で振ってそれらをよく撹拌することにより、抽剤の酢酸エチルにDHIを抽出した油性の第2液を得た。その後、撹拌を止め、水性の第1液と油性の第2液とを相分離させた。その後、ピペットを用いて上層の第2液のみを回収し、得られた第2液の一部を取出し、そのDHIの含有量をHPLCにより測定し、回収した第2液におけるDHIのモル量を算出した。
 <実施例2>
 -反応工程(工程1)-
 実施例2では、まず、容量が500mLの反応槽に窒素ガスを継続的に供給し、そこに窒素ガスを吹き込んで溶存酸素濃度を1.0mg/L以下にした水を仕込んだ。反応槽内の水を撹拌しながら、そこにDOPAを投入して溶解させることにより、濃度が0.33質量%のDOPA水溶液(DOPA類液)を348mL調製した。このとき、DOPA水溶液の液温を35℃に調整した。
 また、イオン交換水に酸化剤のヘキサシアノ鉄(III)酸カリウム及び塩基剤の炭酸水素カリウムを投入して溶解させることにより、濃度が16.8質量%のヘキサシアノ鉄(III)酸カリウム水溶液(酸化剤液)を41mL調製した。このヘキサシアノ鉄(III)酸カリウム水溶液におけるヘキサシアノ鉄(III)酸カリウムの含有量は、DOPA水溶液におけるDOPAのモル数に対して4.0当量である。また、このヘキサシアノ鉄(III)酸カリウム水溶液における塩基剤の炭酸水素カリウムの含有量は、DOPA水溶液におけるDOPAのモル数に対して6.0当量である。
 次いで、反応槽内のDOPA水溶液を撹拌しながら、そこにヘキサシアノ鉄(III)酸カリウム水溶液を5分かけて滴下し、滴下開始から4時間熟成させ、DOPAとヘキサシアノ鉄(III)酸カリウムとを酸化還元反応させてDHIを生成させた水性の第1液を得た。この間、反応槽内の反応液の液温を35℃に維持した。
 続いて、反応槽内の第1液を撹拌しながら、そこにpH調整剤として溶存酸素濃度を1.0mg/L以下とした濃度が10質量%のリン酸水溶液を添加してpHを4.7に調整した。得られた第1液の一部を取出し、そのDHIの含有量をHPLCにより測定し、第1液におけるDHIのモル量を算出した。
 そして、反応槽内の第1液の一部を取り出し、それを、目開きが2.0μmの濾材を用いて濾過することにより水不溶性副生成物を除去した。
 -精製工程(工程2)-
 濾過により水不溶性副生成物を除去した第1液をNo.7スクリュー管に移した。次いで、スクリュー管内の第1液に、抽剤として酢酸エチルを、第1液に対して50体積%添加し、スクリュー管を手で振ってそれらをよく撹拌することにより、抽剤の酢酸エチルにDHIを抽出した油性の第2液を得た。その後、撹拌を止め、水性の第1液と油性の第2液とを相分離させた。その後、ピペットを用いて上層の第2液のみを回収し、得られた第2液の一部を取出し、そのDHIの含有量をHPLCにより測定し、回収した第2液におけるDHIのモル量を算出した。
 <実施例3>
 実施例3では、目開きが5.0μmの濾材を用いたことを除いて実施例2と同様の操作を行った。
 <実施例4>
 実施例4では、水不溶性副生成物の除去を、第1液を遠心分離することにより行ったことを除いて実施例2と同様の操作を行った。遠心分離は、反応槽内の第1液を容量が15mLの遠沈管に7mL取り、回転数を5000rpm及び回転時間を2分として行った。
 <比較例>
 比較例では、濾過による水不溶性副生成物の除去操作を行わなかったことを除いて実施例2と同様の操作を行った。
Figure JPOXMLDOC01-appb-T000001
 (試験方法及び結果)
 実施例1~4及び比較例それぞれで得た油性の第2液について抽出収率を求めた。抽出収率は、第1液におけるDHIの含有モル量に対する、第2液におけるDHIの含有モル量の百分率として算出した。
 また、実施例1~4及び比較例それぞれについて相分離速度を求めた。相分離速度は、第1液に抽剤の酢酸エチルを添加したときの液高さを、スクリュー管を振る撹拌を停止してから相分離するまでに要した時間で除したものを算出した。
 それらの結果を表1に示す。表1によれば、水不溶性副生成物の除去操作を行った実施例1~4は、水不溶性副生成物の除去操作を行わなかった比較例に比べ、抽出収率が高く、また、相分離速度が速いことが分かる。
 本発明は、ジヒドロキシインドール類の製造方法の技術分野について有用である。
D DOPA類液
O 酸化剤液
L1 第1液
L2 第2液
L3 第3液
W 水
10 反応装置
11 反応槽
12 酸化剤槽
13 酸化剤供給管
14 排出管
151,152 撹拌機
151a,152a 撹拌翼
16 ジャケット
171,172 濾過器
17a 濾材
181 循環配管
182 槽間連結配管
19 濾液槽

Claims (9)

  1.  3-(3,4-ジヒドロキシフェニル)アラニン及びその誘導体の群から選ばれる1種又は2種以上と酸化剤とを反応させてジヒドロキシインドール類を生成させた水性の第1液を得る工程1と、
     前記工程1で得た前記第1液と抽剤とを混合して前記抽剤に前記ジヒドロキシインドール類を抽出した油性の第2液を得る工程2と、
    を含むジヒドロキシインドール類の製造方法であって、
     前記工程1で得た前記第1液に、前記工程2で前記抽剤と混合する前に、水不溶性副生成物の除去操作を行う製造方法。
  2.  前記水不溶性副生成物の除去操作が濾過である、請求項1に記載された製造方法。
  3.  前記濾過で用いる濾材の目開きが5.0μm以下である、請求項2に記載された製造方法。
  4.  前記濾過で用いる濾材の目開きが2.5μm以下である、請求項2に記載された製造方法。
  5.  前記濾過で用いる濾材の目開きが2.0μm以下である、請求項2に記載された製造方法。
  6.  前記濾過で用いる濾材の目開きが1.5μm以下である、請求項2に記載された製造方法。
  7.  前記工程1では、前記3-(3,4-ジヒドロキシフェニル)アラニン及びその誘導体の群から選ばれる1種又は2種以上を0.2質量%以上含有する水溶液又は水性懸濁液と、前記酸化剤の水溶液又は水性懸濁液とを混合する、請求項1乃至6のいずれかに記載された製造方法。
  8.  前記工程1では、前記3-(3,4-ジヒドロキシフェニル)アラニン及びその誘導体の群から選ばれる1種又は2種以上を0.3質量%以上含有する水溶液又は水性懸濁液と、前記酸化剤の水溶液又は水性懸濁液とを混合する、請求項1乃至7のいずれかに記載された製造方法。
  9.  前記抽剤が、オクタノール/水分配係数が0以上4.0以下の有機溶剤を含む、請求項1乃至8のいずれかに記載された製造方法。
PCT/JP2018/040458 2017-11-01 2018-10-31 ジヒドロキシインドール類の製造方法 WO2019088152A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112020008675-4A BR112020008675A2 (pt) 2017-11-01 2018-10-31 método para a produção de di-hidroxiindóis
EP18874431.2A EP3705473B1 (en) 2017-11-01 2018-10-31 Production method for dihydroxyindoles
JP2019550444A JPWO2019088152A1 (ja) 2017-11-01 2018-10-31 ジヒドロキシインドール類の製造方法
US16/761,142 US10947195B2 (en) 2017-11-01 2018-10-31 Production method for dihydroxyindoles
CN201880067423.1A CN111225902A (zh) 2017-11-01 2018-10-31 二羟基吲哚类的制造方法
SG11202004021RA SG11202004021RA (en) 2017-11-01 2018-10-31 Production method for dihydroxyindoles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-212038 2017-11-01
JP2017212038 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019088152A1 true WO2019088152A1 (ja) 2019-05-09

Family

ID=66333101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040458 WO2019088152A1 (ja) 2017-11-01 2018-10-31 ジヒドロキシインドール類の製造方法

Country Status (8)

Country Link
US (1) US10947195B2 (ja)
EP (1) EP3705473B1 (ja)
JP (1) JPWO2019088152A1 (ja)
CN (1) CN111225902A (ja)
BR (1) BR112020008675A2 (ja)
SG (1) SG11202004021RA (ja)
TW (1) TW201922701A (ja)
WO (1) WO2019088152A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981782A (zh) * 2019-12-25 2020-04-10 广州星业科技股份有限公司 一种高效制备5,6-二羟基吲哚的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028565A (zh) * 2022-05-25 2022-09-09 敏峰高新材料(广东)有限公司 5,6-二羟基吲哚的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704949A (en) 1996-02-16 1998-01-06 Clairol Incorporated Process for the manufacture of a hair dye product containing 5,6-dihydroxyindole

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950054B1 (fr) * 2009-09-16 2011-10-07 Chanel Parfums Beaute Composition cosmetique comprenant un derive de leucodopachrome
CN106109258B (zh) * 2016-07-06 2019-05-17 南京普瑞彩生物科技有限公司 黑色素前体物质染发剂的制备方法及其使用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704949A (en) 1996-02-16 1998-01-06 Clairol Incorporated Process for the manufacture of a hair dye product containing 5,6-dihydroxyindole

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CHARKOUDIAN, L. K. ET AL.: "Fe(III)-Coordination Properties of Neuromelanin Components: 5,6-Dihydroxyindole and 5,6-Dihydroxyindole-2-carboxylic Acid", INORG. CHEM., vol. 45, no. 9, 2006, pages 3657 - 3664, XP055617966, DOI: 10.1021/ic060014r *
CHEMICAL SOCIETY OF JAPAN: "New experimental chemistry lecture 1: Basic operation", NEW EXPERIMENTAL CHEMISTRY LECTURE 1: BASIC OPERATION, 20 March 1978 (1978-03-20), pages 293 - 295, XP009520604 *
EDGE, R. ET AL.: "Dopaquinone redox exchange with dihydroxyindole and dihydroxyindole carboxylic acid", PIGMENT CELL RES., vol. 19, no. 5, 2006, pages 443 - 450, XP055617957, ISSN: 0893-5785, DOI: 10.1111/j.1600-0749.2006.00327.x *
R. EDGEM. D'LSCHIAE. J. LANDA. NAPOLITANOS. NAVARATHAML. PANZELLAA. PEZZELLAC. A. RAMSDENP. A. RILEY, PIGMENT CELL RES, vol. 19, 2006, pages 443 - 450
See also references of EP3705473A4
TRAN, M. L. ET AL.: "Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance", BIOPHYSICAL JOURNAL, vol. 90, no. 3, 2006, pages 743 - 752, XP055617964, DOI: 10.1529/biophysj.105.069096 *
WAKAMATSU, K. ET AL.: "Preparation of Eumelanin-Related Metabolites 5,6-Dihydroxyindole, 5,6-Dihydroxyindole-2-carboxylic Acid, and Their 0-Methyl Derivatives", ANALYTICAL BIOCHEMISTRY, vol. 170, 1988, pages 335 - 340, XP024820504, DOI: 10.1016/0003-2697(88)90639-2 *
WAKAMATSU, K.ITO, S., ANALYTICAL BIOCHEMISTRY, vol. 170, 1988, pages 335 - 340

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981782A (zh) * 2019-12-25 2020-04-10 广州星业科技股份有限公司 一种高效制备5,6-二羟基吲哚的方法

Also Published As

Publication number Publication date
US10947195B2 (en) 2021-03-16
SG11202004021RA (en) 2020-05-28
EP3705473A4 (en) 2021-07-07
JPWO2019088152A1 (ja) 2020-11-12
US20200270208A1 (en) 2020-08-27
CN111225902A (zh) 2020-06-02
TW201922701A (zh) 2019-06-16
EP3705473A1 (en) 2020-09-09
EP3705473B1 (en) 2024-02-28
BR112020008675A2 (pt) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2019088152A1 (ja) ジヒドロキシインドール類の製造方法
CN107555406B (zh) 一种纳米羟基磷灰石分散体及其制备工艺
CN107635969A (zh) 恩杂鲁胺结晶形式的制造方法
JP7212628B2 (ja) ジヒドロキシインドール類の製造方法
EP4077293B1 (en) Thermal treatment of purified 2,5-furandicarboxylic acid resulting carboxylic acid composition
CN104086466B (zh) 2‑氯‑4‑甲砜基苯甲酸的制备方法
CN107721849A (zh) 一种制备薄荷酰胺中间体薄荷酸的方法
CN107400069A (zh) 一种月桂酰精氨酸乙酯盐酸盐的制备方法
CN106478433B (zh) 一种由s-肾上腺素制备消旋体肾上腺素的方法
CN1935825A (zh) S-腺苷-l-甲硫氨酸硫酸盐的制备方法
CN106916068A (zh) 一种简单便捷的苯扎氯铵生产方法
CN102718704B (zh) 一种2-氯吡啶氮氧化物的制备方法
CN110423226A (zh) 4-甲基-5-烷氧基噁唑的制备方法
CN106977413B (zh) 一种dl-门冬氨酸dl-鸟氨酸的制备方法
CN108579747A (zh) 一种果糖加氢铜基催化剂的制备方法
EP4077295B1 (en) Water and thermal treatment of purified 2,5-furandicarboxylic acid
CN113024394B (zh) 一种l-鸟氨酸盐的制备方法
CN102875361A (zh) 由含杂质的苯乙酸盐溶液免析晶制取苯乙酸的工艺
CN108640826A (zh) 一种制备ws系列凉味剂中间体薄荷基碳酸的格氏工艺
RU2692370C1 (ru) Способ получения висмут лактата
JP2004107127A (ja) 過酸化マグネシウムの製造方法
CN105399622A (zh) 一种采用重组分乳酸生产乳酸钾的方法
CN102627591A (zh) 一种2-氯-4-甲砜基苯甲酸的制备方法
CN104031099B (zh) 一种含双丙叉基的糖化合物脱丙叉的催化方法
CN115286624A (zh) 一种噻虫嗪的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018874431

Country of ref document: EP

Effective date: 20200602

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020008675

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020008675

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200430