WO2019087777A1 - サーミスタ素子およびその製造方法 - Google Patents

サーミスタ素子およびその製造方法 Download PDF

Info

Publication number
WO2019087777A1
WO2019087777A1 PCT/JP2018/038593 JP2018038593W WO2019087777A1 WO 2019087777 A1 WO2019087777 A1 WO 2019087777A1 JP 2018038593 W JP2018038593 W JP 2018038593W WO 2019087777 A1 WO2019087777 A1 WO 2019087777A1
Authority
WO
WIPO (PCT)
Prior art keywords
external electrode
electrode
underlayer
thermistor element
thin
Prior art date
Application number
PCT/JP2018/038593
Other languages
English (en)
French (fr)
Inventor
雄一 平田
賢吾 水戸
康次郎 時枝
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019551043A priority Critical patent/JP6939895B2/ja
Priority to CN201880070143.6A priority patent/CN111295724A/zh
Publication of WO2019087777A1 publication Critical patent/WO2019087777A1/ja
Priority to US16/839,141 priority patent/US10854361B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1413Terminals or electrodes formed on resistive elements having negative temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/021Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/041Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals

Definitions

  • the present invention relates to a thermistor device and a method of manufacturing the same, and more particularly to a thermistor device suitable for wire bonding and a method of manufacturing the same.
  • FIG. 7 is a schematic cross-sectional view showing an example of the structure of the chip-type thermistor element 100.
  • An upper surface electrode layer 102a is provided on the upper surface 101a of the thermistor body 101, and a lower surface electrode layer 102b is provided on the lower surface 101b, and wire bonding regions 103b and solder patterns 103 are formed on the surfaces of these electrodes 102a and 102b (for example, Patent Document 1).
  • the lower electrode layer 102b is electrically connected to the electronic device through the submount by melting the solder pattern 103, and a wire is bonded to the wire bonding region 103b.
  • the chip-type thermistor element of the conventional wire bonding specification has a problem that it can not sufficiently cope with the miniaturization and the reduction in height. There is also a need to further improve the reliability of wire bonding.
  • the present invention aims to provide a thermistor element and its manufacturing method capable of solving the above-mentioned problems, responding to miniaturization and shortening of height, and improving the reliability of wire bonding. did.
  • the thermistor element concerning one mode of the present invention is constituted from ceramics, and is arranged between the 1st end face and the 2nd end face which counter, and the 1st end face and the 2nd end face.
  • An element body having a peripheral surface, a first external electrode covering the first end surface and the first end surface side of the peripheral surface, and a second end surface covering the second end surface and the second end surface side of the peripheral surface
  • a second external electrode wherein the first external electrode and the second external electrode are composed of a plurality of electrode layers including a lowermost underlayer and a topmost metal plating layer;
  • the underlayer of the external electrode has two thin second adjacent external electrode side corner portions on the side of the second external electrode, and the underlayer of the second external electrode is the one of the first external electrode Characterized in that it has thin and adjacent two first external electrode side corners on the side Than is.
  • the thin portion of the base electrode absorbs the internal stress of the metal plating layer, which makes it possible to suppress the peeling of the external electrode and the generation of the crack.
  • the underlayer of the first external electrode has a thin first edge connected to the two second external electrode side corners
  • the underlayer of the second external electrode is: It has a thin second edge connected to the two first external electrode side corners.
  • the base layer has the thin first edge and the second edge, it is possible to further suppress the peeling of the external electrode and the generation of the crack.
  • the underlayer is made of a cured conductive paste.
  • the first external electrode has an arc-shaped recess whose central portion is recessed toward the first end face in a plan view, and the central portion of the second external electrode is in a plan view. It has a bow-shaped recess that is recessed toward the second end face side.
  • the short circuit of a 1st exterior electrode and a 2nd exterior electrode can be suppressed.
  • each of the first external electrode and the second external electrode is a pair of ends intersecting in a length direction extending from the first end surface toward the second end surface in a plan view.
  • the thermistor element even when the size and height of the thermistor element are reduced, contact between the first external electrode and the second external electrode can be prevented.
  • the central portions of the first external electrode and the second external electrode can be made flat, the adhesion to the wire can be improved, and the reliability of wire bonding can be improved.
  • the L1 and the L2 are 95 ⁇ m or more and 285 ⁇ m or less, and the E1 and the E2 are 100 ⁇ m or more and 290 ⁇ m or less.
  • the present invention can be used for a thermistor element of JIS standard 0603 size or smaller.
  • L1 and E1 and L2 and E2 are each 0.770 ⁇ (L1 / E1) ⁇ 0.975, 0.770 ⁇ (L2 / E2) ⁇ 0.975. Satisfy the relationship.
  • the adjacent corner on the first end face side of the first external electrode has an R shape
  • the adjacent corner on the second end face side of the second external electrode has an R shape.
  • the thermistor element according to the above aspect is An element producing step of producing an element; And an external electrode manufacturing step of manufacturing the first external electrode and the second external electrode,
  • the external electrode manufacturing step further includes an underlayer forming step of forming an underlayer, and the underlayer forming step includes: Forming a thin second adjacent second external electrode side corner portion on the second external electrode side of the base layer of the first external electrode, and the first of the underlayer of the second external electrode It can manufacture by the manufacturing method including forming thin two adjacent 1st exterior electrode side corner parts in the exterior electrode side.
  • the base layer of the first external electrode is provided with a thin first edge connected to the two second external electrode side corners, and the base layer of the second external electrode And a thin second edge connected to the two first external electrode side corners.
  • a length between a pair of end sides in a central portion of the base layer of the first external electrode and the second external electrode is the base layer.
  • the electrode paste is applied to the element body using a dipping method so as to be smaller than the length of the side of the substrate, and baked to form the underlayer.
  • the present invention can provide a thermistor element that can cope with miniaturization and lower height and can improve the reliability of wire bonding.
  • FIG. 4 is a schematic partial cross-sectional view taken along the line AA of FIG. 3; It is a model top view of the thermistor element which concerns on another aspect of this invention. It is a model top view of the thermistor element which concerns on another aspect of this invention. It is a model longitudinal cross-sectional view which shows an example of the structure of the conventional thermistor element.
  • a thermistor element is an element body made of a ceramic and having opposed first and second end surfaces and a circumferential surface disposed between the first end surface and the second end surface. And a first external electrode covering the first end surface and the first end surface side of the peripheral surface, and a second external electrode covering the second end surface and the second end surface side of the peripheral surface.
  • the thermistor element wherein the first external electrode and the second external electrode are composed of a plurality of electrode layers including a lowermost underlayer and a uppermost metal plating layer, and the underlayer of the first outer electrode is
  • the thin film adjacent to the second external electrode has two adjacent second external electrode side corners, and the base layer of the second external electrode is thinly adjacent to the first external electrode It is characterized in that it has two first external electrode side corners.
  • FIG. 1 is a schematic perspective view showing an example of the structure of the thermistor element 1 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of the thermistor element 1.
  • FIG. 3 is a schematic plan view of the thermistor element 1 with the metal plating layer removed.
  • 4 is a schematic partial longitudinal sectional view taken along the line A-A 'of FIG.
  • the thermistor element 1 covers the element body 10, the internal electrodes 21 and 22 provided in the element body 10, and a part of the surface of the element body 10 and is electrically connected to the internal electrodes 21 and 22. , And the second external electrodes 41 and 42.
  • the element body 10 is composed of a plurality of laminated ceramic layers 10a.
  • the ceramic layer 10a is made of, for example, a ceramic having negative resistance temperature characteristics.
  • the ceramic is, for example, a ceramic containing manganese oxide as its main component, and includes nickel oxide, cobalt oxide, alumina, iron oxide, titanium oxide, zirconium oxide, copper oxide, zinc oxide and the like. That is, the thermistor element 1 is an NTC (Negative Temperature Coefficient) thermistor, and the resistance value decreases as the temperature rises.
  • NTC Negative Temperature Coefficient
  • the element body 10 is formed in a substantially rectangular parallelepiped shape.
  • the surface of the element body 10 has a first end surface 15 and a second end surface 16 opposite to each other, and a circumferential surface 17 disposed between the first end surface 15 and the second end surface 16.
  • the first end face 15 and the second end face 16 are substantially parallel.
  • the circumferential surface 17 has a first side surface 11, a second side surface 12, a third side surface 13 and a fourth side surface 14.
  • the first side surface 11 and the second side surface 12 are located in the stacking direction of the ceramic layer 10 a and are located on opposite sides to each other.
  • the third side surface 13 and the fourth side surface 14 are located opposite to each other.
  • the first side surface 11 and the second side surface 12 are substantially parallel.
  • the third side surface 13 and the fourth side surface 14 are substantially parallel.
  • the first end face 15, the first side face 11, and the third side face 13 are orthogonal to each other.
  • the element body 10 may have a shape in which corners and ridges are
  • the length direction of the thermistor element 1 extending from the first end surface 15 toward the second end surface 16 is L direction
  • the thermistor element 1 extending from the third side surface 13 toward the fourth side surface 14 Let the width direction be the W direction, and let the thickness direction of the thermistor element 1 extending from the second side surface 12 toward the first side surface 11 be the T direction.
  • the L direction, the W direction, and the T direction are orthogonal to one another. Specifically, the L direction is a direction orthogonal to the first end surface 15, the W direction is a direction orthogonal to the third side surface 13, and the T direction is a direction orthogonal to the first side surface 11. .
  • the internal electrodes 21 and 22 are alternately stacked with the ceramic layers 10a.
  • the internal electrodes 21 and 22 contain, for example, at least one element or compound of Ag, Pd, AgPd.
  • the two adjacent internal electrodes 21 and 22 are arranged substantially in parallel with the ceramic layer 10a interposed therebetween.
  • the end 21 a of the first internal electrode 21 is exposed from the first end face 15 of the element body 10
  • the end 22 a of the second internal electrode 22 is the first end of the element body 10. 2 exposed from the end face 16;
  • the first external electrode 41 covers the first end surface 15 and the first end surface 15 side of the circumferential surface 17.
  • the first outer electrode 41 is in contact with the end 21 a of the first inner electrode 21 and is electrically connected.
  • the first outer electrode 41 is provided to face the circumferential direction of the circumferential surface 17.
  • the first outer electrode 41 is provided to face the entire circumference of the circumferential surface 17 in the circumferential direction. That is, the first external electrode 41 is opposed to the first side surface 11, the second side surface 12, the third side surface 13, and the fourth side surface 14 in order, the first surface portion 141, the second surface portion 142, the third surface portion 143, and It has a fourth surface portion 144.
  • the first surface portion 141 to the fourth surface portion 144 are portions extending along the circumferential surface 17. That is, the first surface portion 141 to the fourth surface portion 144 extend from one end surface of the first external electrode 41 in the L direction to the other end surface.
  • the first external electrode 41 may be provided on a portion of the circumferential surface 17.
  • the first end surface 15 may be covered and the first surface portion 141 and the second surface portion 142 may be provided in a U-shaped cross section. Alternatively, it may be provided so as to cover only the first end surface 15 and to have only the first surface portion 141, that is, to have an L-shaped cross section.
  • the second outer electrode 42 covers the second end face 16 and the second end face 16 side of the circumferential surface 17.
  • the second outer electrode 42 is electrically connected to the end 22 a of the second inner electrode 22.
  • the second outer electrode 42 is provided to face the entire circumference of the circumferential surface 17 in the circumferential direction.
  • the second outer electrode 42 is provided to face the entire circumference of the circumferential surface 17 in the circumferential direction. That is, the second external electrode 42 includes the first surface portion 141, the second surface portion 142, the third surface portion 143, and the first surface portion 141, which sequentially face the first side surface 11, the second side surface 12, the third side surface 13, and the fourth side surface 14. It has four faces 144.
  • the first surface portion 141 to the fourth surface portion 144 are portions extending along the circumferential surface 17. That is, the first surface portion 141 to the fourth surface portion 144 extend from one end surface of the second external electrode 42 in the L direction to the other end surface.
  • the second external electrode may be provided on a part of the circumferential surface 17.
  • the 1st surface part 141 and the 2nd surface part 142 ie, the shape of a section of a square.
  • covering the 2nd end face 16 it may be provided so that it may have only the 1st field part 141, ie, section L character-like.
  • the first surface portion 141 of the first outer electrode 41 has two thin second adjacent outer electrode side corner portions 141 d and 141 e on the second outer electrode side.
  • the first surface portion 141 of the second external electrode 42 has two thin first adjacent external electrode side corner portions 141 f and 141 g on the side of the first external electrode.
  • the second external electrode side corner portion and the first external electrode side corner portion are thinner than the region of the external electrode other than the corner portions.
  • the corner portion is a pair of end sides of the first external electrode and the second external electrode, which intersect in the length direction of the thermistor element 1 extending from the first end face 15 toward the second end face 16; Among the pair of sides along the length direction, it includes a peripheral area of an angle which is an intersection of the intersecting side and the side. In addition, when the peripheral region of the corner is chamfered, the chamfered region is included.
  • FIG. 3 is a schematic plan view of the thermistor element 1 with the metal plating layer removed from the external electrode.
  • a length direction in which the base layer 41a of the first external electrode 41 and the first surface portion 241 of the base layer 42a of the second external electrode 42 extend from the first end surface 15 toward the second end surface 16 in plan view It has a pair of end sides 241b and 241c intersecting with (L direction), and a pair of side sides 241a and 241a along the length direction.
  • the length between the pair of end sides 241b and 241c in the central portion of the base layer 41a is smaller than the length of the side side 241a of the base layer 41a.
  • the length between the pair of end sides 241b and 241c in the central portion of the base layer 42a is smaller than the length of the side side 241a of the base layer 42a.
  • the base layer 41a has a bow-shaped recess in which the central portion of the first surface portion 241 is recessed toward the first end face in plan view, and the base layer 42a is in plan view
  • the central portion of the first surface portion 241 may have a bow-shaped recess which is recessed toward the second end face side.
  • the central portion of the first surface portion 241 means a region including the respective midpoints of a pair of opposing end sides in the length direction extending from the first end surface 15 toward the second end surface 16. .
  • the base layer 41a of the first external electrode 41 has two thin second adjacent external electrode side corner portions 241d and 241e on the second external electrode 42 side.
  • the base layer 42 a of the second external electrode 42 has two thin first adjacent external electrode side corner portions 241 f and 241 g on the side of the first external electrode 41.
  • the second external electrode side corner portions 241d and 241e and the first external electrode side corner portions 241f and 241g are the end sides that intersect the pair of sides of the base layer 41a and the base layer 42a and the pair of side sides. It includes the area around the corner that is the intersection of the and sides.
  • the foundation layer 41a also has two thin second adjacent external electrode side corner portions (not shown) on the second external electrode 42 side. It has thin and adjacent two first external electrode side corner portions (not shown) also on the side of the first external electrode 41.
  • FIG. 4 is a schematic partial cross-sectional view taken along the line AA of FIG.
  • the underlayer 42a has thin corner portions 241f, and a metal plating layer 42b is formed on the underlayer 42a.
  • the entire second external electrode also has the thin corner portion 141 f.
  • the first outer electrode 41 and the second outer electrode 42 are each composed of a plurality of electrode layers whose outermost layer is a metal plating layer.
  • FIG. 2 the example which comprised the 1st exterior electrode 41 and the 2nd exterior electrode 42 by base layer 42a and the metal plating layer 42b from the bottom is shown.
  • an intermediate layer can be provided between the underlayer and the metal plating layer.
  • the underlayer, the intermediate layer, and the metal plating layer may be a single layer or a plurality of layers.
  • the underlayer is a layer covering the element body 10, and for example, Ni can be used.
  • the intermediate layer is a layer which suppresses the thermal diffusion of the constituent metal of the underlayer, and when Ni is used for the underlayer, it is possible to use, for example, Pd. Gold, silver, copper or the like can be used for the metal plating layer.
  • the underlayer and the intermediate layer can be formed by a sputtering method, a printing method, an immersion method, or the like.
  • the metal plating layer can be formed using an electrolytic plating method.
  • the plating layer When the plating layer is formed on the foundation layer, there is a problem that an end of the plating layer peels off or a crack is generated at the end due to internal stress of the plating layer.
  • the base layer is made thinner from the viewpoint of downsizing and reducing the height of the thermistor element, peeling and cracking easily occur at the corner portions.
  • the thin corner of the base electrode absorbs internal stress of the metal plating layer, so that it is possible to suppress peeling of the external electrode and generation of a crack. This makes it possible to improve the reliability of wire bonding.
  • the size of the thermistor element is not particularly limited, it can be used for a thermistor element of JIS standard 0603 size or a thermistor element of a smaller size.
  • the JIS standard 0603 size is (0.6 ⁇ 0.03) mm (L direction) ⁇ (0.3 ⁇ 0.03) mm (W direction).
  • the thickness of the thin corner of the base layer may be smaller than the thickness of the portion other than the thin corner, but for example, the average thickness of the portion other than the thin corner of the base layer is 4 ⁇ m When the thickness is 14 ⁇ m or less, the average thickness of the thin corner portion is 1 ⁇ m to 10 ⁇ m, preferably 2 ⁇ m to 7 ⁇ m.
  • the first external electrode 41 has a first view in plan view
  • a central portion of the surface portion 141 has an arc-shaped recess which is recessed toward the first end face side
  • the second external electrode 42 has an arc shape in which the center portion of the first surface portion 141 is recessed toward the second end face in plan view It is preferable to have a recess.
  • the distance between the first external electrode and the second external electrode may be reduced, which may cause a short circuit between the first external electrode and the second external electrode.
  • the central portion of the first surface portion 141 means a region including the respective midpoints of a pair of opposing end sides in the length direction extending from the first end surface 15 toward the second end surface 16. .
  • L1 and L2 be the lengths between a pair of end sides in the central portion of the first external electrode 41 and the second external electrode 42, and the lengths of the side 141a of the first external electrode 41 and the second external electrode 42 be each
  • E1 and E2 it is preferable to satisfy the relationship of L1 ⁇ E1 and L2 ⁇ E2.
  • the central portion of the first external electrode 41 or the second external electrode 42 is the middle of the pair of opposing sides in the length direction extending from the first end face 15 toward the second end face 16. It means an area that contains points.
  • the length between both end sides 141 b and 141 c in the central portion of the first external electrode 41 is the peripheral surface of the first external electrode 41.
  • the first surface portion 141 and the first surface portion 141 are provided.
  • the average value of the length between the end sides 141 b and 141 c in the central portion of the second surface portion 142 is referred to.
  • the length between both end sides 141b and 141c in the central portion of the second external electrode 42 is the peripheral surface of the second external electrode 42 When provided so as to oppose the entire circumference of 17 in the circumferential direction and when provided so as to cover the second end face 16 and to have the first surface portion 141 and the second surface portion 142, the first surface portion 141 and The average value of the length between the end sides 141 b and 141 c in the central portion of the second surface portion 142 is referred to.
  • the length is the length between both ends 141 b and 141 c in the central portion of the first surface portion 141.
  • the length E1 of the side 141a of the first external electrode 41 covers the first end face 15 when the first external electrode 41 is provided to face the entire circumference of the circumferential surface 17 in the circumferential direction.
  • it means the average value of the four sides of the first surface portion 141 and the second surface portion 142.
  • the first external electrode 41 covers the first end surface 15 and has only the first surface portion 141, the average value of two sides of the first surface portion 141 is used.
  • the length E2 of the side 141 a of the second external electrode 42 covers the second end face 16 when the second external electrode 42 is provided to face the entire circumference of the circumferential surface 17 in the circumferential direction.
  • the average value of the four sides of the first surface portion 141 and the second surface portion 142 is said.
  • the second external electrode 42 covers the second end face 16 and has only the first surface portion 141, the average value of the two sides of the first surface portion 141 is used.
  • the distance between the first external electrode and the second external electrode is narrowed, which facilitates shorting.
  • L1 ⁇ E1 and L2 ⁇ E2 that is, since the lengths of the central portions of the first external electrode and the second external electrode are smaller than the length of the side, the first external electrode And the second external electrode can be prevented from contacting each other.
  • the length of the central portion is smaller than the length of the side, the amount of the electrode paste is smaller at the central portion.
  • the central portion of the first external electrode and the second external electrode can be made flat because the electrode component is not easily shifted to the central portion when the electrode paste is baked, the adhesion with the wire can be improved. it can. Thereby, the reliability of wire bonding can be improved.
  • L1 and L2 may be in such a range that the first external electrode and the second external electrode do not contact each other, and for example, L1 and L2 are 95 ⁇ m to 285 ⁇ m, preferably 200 ⁇ m to 255 ⁇ m.
  • E1 and E2 can be 100 ⁇ m or more and 290 ⁇ m or less, preferably 205 ⁇ m or more and 260 ⁇ m or less. If it is this range, it can be used for a thermistor element of JIS standard 0603 size and smaller size.
  • L1 and E1 and L2 and E2 satisfy the relationship of 0.770 ⁇ (L1 / E1) ⁇ 0.975 and 0.770 ⁇ (L2 / E2) ⁇ 0.975, respectively. It is possible to prevent the first external electrode and the second external electrode from contacting with each other while securing the flatness of the first external electrode and the second external electrode.
  • adjacent corner portions 141 h and 141 i on the first end face 15 side of the first external electrode 41 have an R shape, and adjacent corners on the second end face 16 side of the second external electrode 42. It is preferable that the portions 141 h and 141 i have an R shape.
  • the corner portions 141 h and 141 i having a rounded shape can prevent cracking and chipping of the corner portions.
  • the base layer 42a may be provided with a thin second edge 241i connected to the two first external electrode side corners 241f and 241g.
  • the thickness of the first edge and the second edge can be the same as the thickness of the thin corner described above.
  • One aspect of a method of manufacturing a thermistor element includes an element production step of producing an element and an outer electrode production step of producing a first outer electrode and a second outer electrode, and the outer electrode production step further includes the steps described above.
  • a ceramic material is mixed and crushed to prepare a mixed powder, and the mixed powder is subjected to calcination treatment to prepare a calcined powder. Thereafter, the calcined powder is formed into a sheet to prepare a sheet, and the sheet and the materials of the internal electrodes 21 and 22 are alternately laminated to form a laminate. Thereafter, the laminate is fired in a reducing atmosphere to produce a body 10 in which the internal electrodes 21 and 22 are provided. If necessary, chamfering processing such as barrel processing may be performed to chamfer the corners and ridges of the element body 10.
  • two thin second adjacent exterior electrode side corner portions are formed on the second exterior electrode side of the foundation layer of the first exterior electrode, and the above-mentioned second exterior electrode On the first outer electrode side of the underlayer, two thin first adjacent outer electrode side corner portions are formed.
  • the underlayer can be formed by a sputtering method, a vapor deposition method, a printing method, or an immersion method, but the immersion method is preferable from the viewpoint of work efficiency.
  • the conductive paste can be easily flowed to the peripheral portion of the first surface portion (except in the direction of the opposing base layer side) by adjusting the viscosity of the conductive paste or using a chamfered element.
  • the first outer electrode side corner portion and the second outer electrode side corner portion can be thinned while securing the flatness of the first surface portion. That is, it is possible to integrally form the base layer in which the first external electrode side corner portion and the second external electrode side corner portion are thin.
  • the immersion method there is a problem that when the conductive paste coating film is sintered, cracks easily occur at the corners of the coating film due to the sintering shrinkage of the coating film, but the first external electrode side angle When the portion and the second external electrode side corner portion are thin, the corner portion absorbs a part of the contraction stress, which also has an effect of suppressing the generation of a crack.
  • the immersion method is used so that the length between a pair of end faces in the central portion of the base layer of the first external electrode and the second external electrode is smaller than the length of the side of the base layer.
  • the method further comprises applying an electrode paste to the base body and baking it to produce a base electrode.
  • the length between a pair of end sides in the central portion of the underlayer of the first external electrode 41 and the second external electrode 42 is smaller than the length of the side of the underlayer.
  • An electrode paste is applied to the element body 10 using an immersion method, and is baked to form an underlayer.
  • the length between a pair of end sides in the central portion of the underlayer smaller than the length of the side of the underlayer, for example, to the peripheral portion excluding the direction of the underlayer on which the electrode paste faces It is possible to use a method that makes it easy to flow. For example, a method of adjusting the viscosity of the electrode paste to adjust the fluidity of the electrode paste can be used.
  • the applied electrode paste is more likely to flow from the central portion of the element body to the peripheral portion excluding the direction of the facing underlayer.
  • the length between a pair of end sides in the central portion of the underlayer can be smaller than the length of the side of the underlayer, and a flatter underlayer can be formed.
  • the corner portion on the first end face side and the second end face side of the foundation layer can be rounded.
  • the thermistor element is an NTC thermistor in the above-described embodiment, it may be a positive temperature coefficient (PTC) thermistor.
  • PTC positive temperature coefficient
  • the cross section of the circumferential surface of the element body is tetragonal, but may be triangular or more than pentagonal, or circular, elliptical or oblong. It is also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)
  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

小型化および低背化に対応可能で、ワイヤボンディングの信頼性を向上させることの可能な、サーミスタ素子およびその製造方法を提供する。本発明のサーミスタ素子は、セラミックスから構成され、対向する第1端面および第2端面と、第1端面と第2端面との間に配置される周面とを有する素体と、第1端面と周面の第1端面側とを覆う第1外部電極と、第2端面と周面の第2端面側とを覆う第2外部電極と、を備える。第1外部電極と第2外部電極は、最下層の下地層と最上層の金属めっき層を含む複数の電極層から構成され、第1外部電極の下地層は、第2外部電極の側に、薄肉で隣接する2つの第2外部電極側角部を有し、第2外部電極の下地層は、第1外部電極の側に、薄肉で隣接する2つの第1外部電極側角部を有する。

Description

サーミスタ素子およびその製造方法
 本発明は、サーミスタ素子およびその製造方法に関し、さらに詳しくはワイヤボンディングに適したサーミスタ素子およびその製造方法に関する。
 近年、電子機器の小型化に対する要求の高まりに伴い、サーミスタ素子等の電子部品の小型化および低背化が進んでいる。図7は、チップ型のサーミスタ素子100の構造の一例を示す模式断面図である。サーミスタ素体101の上面101aに上面電極層102aを、下面101bに下面電極層102bを備え、これら各電極102a、102bの表面にはワイヤボンディング領域103bとはんだパターン103が形成されている(例えば、特許文献1)。実装時には、はんだパターン103を溶融させることで下面電極層102bをサブマウントを介して電子機器に電気的に接続し、ワイヤボンディング領域103bにワイヤをボンディングしている。
特開2005-5373号公報
 しかしながら、従来のワイヤボンディング仕様のチップ型のサーミスタ素子では、小型化および低背化に十分対応できないという問題がある。また、ワイヤボンディングの一層の信頼性向上も必要とされている。
 そこで、本発明は、上記の課題を解決し、小型化および低背化に対応可能で、ワイヤボンディングの信頼性を向上させることの可能な、サーミスタ素子およびその製造方法を提供することを目的とした。
 上記課題を解決するため、本発明の一態様に係るサーミスタ素子は、セラミックスから構成され、対向する第1端面および第2端面と、前記第1端面と前記第2端面との間に配置される周面とを有する素体と、前記第1端面と前記周面の前記第1端面側とを覆う第1外部電極と、前記第2端面と前記周面の前記第2端面側とを覆う第2外部電極と、を備えるサーミスタ素子であって、前記第1外部電極と前記第2外部電極は、最下層の下地層と最上層の金属めっき層を含む複数の電極層から構成され、前記第1外部電極の下地層は、前記第2外部電極の側に、薄肉で隣接する2つの第2外部電極側角部を有し、前記第2外部電極の下地層は、前記第1外部電極の側に、薄肉で隣接する2つの第1外部電極側角部を有する、ことを特徴とするものである。
 上記の態様によれば、下地電極の薄肉部が金属めっき層の内部応力を吸収することで、外部電極の剥がれやクラックの生成を抑制することが可能となる。
 また、別の態様においては、前記第1外部電極の下地層は、前記2つの第2外部電極側角部につながる薄肉の第1縁部を有し、前記第2外部電極の下地層は、前記2つの第1外部電極側角部につながる薄肉の第2縁部を有する。
 上記の態様によれば、下地層が薄肉の第1縁部および第2縁部を有しているので、外部電極の剥がれやクラックの生成をさらに抑制することが可能となる。
 また、別の態様においては、前記下地層は硬化した導電ペーストからなる。
 上記の態様によれば、硬化した導電ペーストからなる下地層の剥がれやクラックの生成を抑制することが可能となる。
 また、別の態様において、前記第1外部電極は、平面視で、中央部が前記第1端面側に向かって凹む弓形凹部を有し、前記第2外部電極は、平面視で、中央部が前記第2端面側に向かって凹む弓形凹部を有する。
 上記の態様によれば、第1外部電極と第2外部電極の短絡を抑制することができる。
 また、別の態様において、前記第1外部電極と前記第2外部電極は、それぞれ、平面視で、前記第1端面から前記第2端面に向かって延在する長さ方向に交差する一対の端辺と、前記長さ方向に沿った一対の側辺とを有し、前記第1外部電極と前記第2外部電極の中央部における前記一対の端辺間の長さをそれぞれL1とL2とし、前記第1外部電極と前記第2外部電極の側辺の長さをそれぞれE1とE2とした時、L1<E1、かつL2<E2である。
 上記の態様によれば、サーミスタ素子を小型化および低背化した場合であっても、第1外部電極と第2外部電極とが互いに接触するのを防止することができる。また、第1外部電極と第2外部電極の中央部を平坦にすることができるので、ワイヤとの密着性を向上させてワイヤボンディングの信頼性を向上させることができる。
 また、別の態様においては、前記L1および前記L2が95μm以上285μm以下であり、前記E1および前記E2が100μm以上290μm以下である。
 上記の態様によれば、JIS規格0603サイズおよびそれ以下のサイズのサーミスタ素子に用いることができる。
 また、別の態様においては、前記L1と前記E1および前記L2と前記E2が、それぞれ、0.770≦(L1/E1)≦0.975、0.770≦(L2/E2)≦0.975、の関係を満たす。
 上記の態様によれば、第1外部電極と第2外部電極の中央部の平坦性を確保しながら、第1外部電極と第2外部電極とが互いに接触するのを防止することが可能となる。
 また、別の態様において、前記第1外部電極の前記第1端面側の隣接する角部がR形状を有し、前記第2外部電極の前記第2端面側の隣接する角部がR形状を有する。
 上記の態様によれば、角部の割れや欠けを防止することができるので、ワイヤボンディングの信頼性をさらに向上させることが可能となる。
 また、上記一態様に係るサーミスタ素子は、
 素体を作製する素体作製工程と、
 第1外部電極と第2外部電極を作製する外部電極作製工程とを含み、
 前記外部電極作製工程は、さらに下地層を形成する下地層形成工程を含み、前記下地層形成工程は、
 前記第1外部電極の前記下地層の前記第2外部電極側に、薄肉で隣接する2つの第2外部電極側角部を形成すること、および前記第2外部電極の前記下地層の前記第1外部電極側に、薄肉で隣接する2つの第1外部電極側角部を形成することを含む、製造方法により製造することができる。
 上記の製造方法によれば、外部電極の剥がれやクラックの生成を抑制できるサーミスタ素子を製造することが可能となる。
 また、別の態様に係る製造方法では、前記第1外部電極の下地層に前記2つの第2外部電極側角部につながる薄肉の第1縁部を設けるとともに、前記第2外部電極の下地層に前記2つの第1外部電極側角部につながる薄肉の第2縁部を設ける。
 上記の態様によれば、外部電極の剥がれやクラックの生成をさらに抑制できる。
 また、別の態様に係る製造方法では、前記下地層形成工程において、前記第1外部電極と前記第2外部電極の前記下地層の中央部における一対の端辺間の長さが、前記下地層の側辺の長さより小さくなるように、浸漬法を用いて前記素体に電極ペーストを塗布し、焼き付けて前記下地層を形成する、ことを含む。
 上記の態様によれば、第1外部電極と第2外部電極とが互いに接触するのを防止できるとともに、第1外部電極と第2外部電極の中央部が平坦であるサーミスタ素子を提供することができる。
 本発明は、小型化および低背化に対応可能で、ワイヤボンディングの信頼性を向上させることの可能な、サーミスタ素子を提供できる。
本発明の一態様に係るサーミスタ素子の構造を示す模式斜視図である。 図1のサーミスタ素子の模式断面図である。 図1のサーミスタ素子の模式平面図である。 図3のA-A‘線に沿った模式部分断面図である。 本発明の別の態様に係るサーミスタ素子の模式平面図である。 本発明のさらに別の態様に係るサーミスタ素子の模式平面図である。 従来のサーミスタ素子の構造の一例を示す模式縦断面図である。
 以下、本発明を実施の形態により詳細に説明する。なお、以下の実施の形態の説明および図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
 本発明の一態様に係るサーミスタ素子は、セラミックスから構成され、対向する第1端面および第2端面と、前記第1端面と前記第2端面との間に配置される周面とを有する素体と、前記第1端面と前記周面の前記第1端面側とを覆う第1外部電極と、前記第2端面と前記周面の前記第2端面側とを覆う第2外部電極と、を備えるサーミスタ素子であって、前記第1外部電極と前記第2外部電極は、最下層の下地層と最上層の金属めっき層を含む複数の電極層から構成され、前記第1外部電極の下地層は、前記第2外部電極の側に、薄肉で隣接する2つの第2外部電極側角部を有し、前記第2外部電極の下地層は、前記第1外部電極の側に、薄肉で隣接する2つの第1外部電極側角部を有する、ことを特徴とする。
 図1は、本態様に係るサーミスタ素子1の構造の一例を示す模式斜視図である。図2は、サーミスタ素子1の模式断面図である。また、図3は、金属めっき層を除いたサーミスタ素子1の模式平面図である。また、図4は、図3のA-A’ 線に沿った模式部分縦断面図である。
 サーミスタ素子1は、素体10と、素体10内に設けられた内部電極21,22と、素体10の表面の一部を覆うと共に内部電極21,22に電気的に接続される第1、第2外部電極41,42とを有する。
 素体10は、積層された複数のセラミックス層10aから構成される。セラミックス層10aは、例えば、負の抵抗温度特性を有するセラミックスからなる。セラミックスは、例えば、酸化マンガンを主成分とするセラミックスであり、酸化ニッケル、酸化コバルト、アルミナ、酸化鉄、酸化チタン、酸化ジルコニウム、酸化銅、酸化亜鉛などを含む。つまり、サーミスタ素子1は、NTC(Negative Temperature Coefficient)サーミスタであり、温度の上昇に伴って抵抗値が減少する。
 素体10は、略直方体状に形成されている。素体10の表面は、互いに反対側に位置する第1端面15および第2端面16と、第1端面15と第2端面16との間に配置される周面17とを有する。第1端面15と第2端面16とは、略平行である。周面17は、第1側面11と第2側面12と第3側面13と第4側面14とを有する。第1側面11と第2側面12とは、セラミックス層10aの積層方向に位置し、互いに反対側に位置する。第3側面13と第4側面14とは、互いに反対側に位置する。第1側面11と第2側面12とは、略平行である。第3側面13と第4側面14とは、略平行である。第1端面15と第1側面11と第3側面13とは、互いに直交する。なお、素体10は、角部や稜線が面取りされた形状でもよい。
 ここで、第1端面15から第2端面16に向かって延在するサーミスタ素子1の長さ方向を、L方向とし、第3側面13から第4側面14に向かって延在するサーミスタ素子1の幅方向をW方向とし、第2側面12から第1側面11に向かって延在するサーミスタ素子1の厚み方向をT方向とする。L方向とW方向とT方向とは、互いに直交する。具体的に述べると、L方向は、第1端面15に直交する方向であり、W方向は、第3側面13に直交する方向であり、T方向は、第1側面11に直交する方向である。
 内部電極21,22は、セラミックス層10aと交互に積層される。内部電極21,22は、例えば、Ag、Pd、AgPdうちの少なくとも一つの元素または化合物を含んでいる。
 隣り合う2つの内部電極21,22は、セラミックス層10aを挟んで、略平行に配列されている。隣り合う2つの内部電極21,22において、第1内部電極21の端部21aは、素体10の第1端面15から露出し、第2内部電極22の端部22aは、素体10の第2端面16から露出している。
 第1外部電極41は、第1端面15と周面17の第1端面15側とを覆う。第1外部電極41は、第1内部電極21の端部21aに接触して電気的に接続される。第1外部電極41は、周面17の周方向に対向するように設けられる。例えば、図1に示すように、第1外部電極41を、周面17の周方向の全周に対向するように設ける。すなわち、第1外部電極41は、第1側面11、第2側面12、第3側面13、および第4側面14に順に対向する、第1面部141、第2面部142、第3面部143、および第4面部144を有する。第1面部141から第4面部144は、周面17に沿って延在する部分である。つまり、第1面部141から第4面部144は、第1外部電極41のL方向の一方の端面から他方の端面に延在する。また、第1外部電極41を周面17の一部の面部に設けてもよい。例えば、第1端面15を覆うとともに、第1面部141と第2面部142とを有するように、すなわち、断面コの字状に設けてもよい。あるいは、第1端面15を覆うとともに、第1面部141のみを有するように、すなわち、断面L字状に設けてもよい。
 また、第2外部電極42は、第2端面16と周面17の第2端面16側とを覆う。第2外部電極42は、第2内部電極22の端部22aに接触して電気的に接続される。第2外部電極42は、周面17の周方向の全周に対向するように設けられる。例えば、図1に示すように、第2外部電極42を、周面17の周方向の全周に対向するように設ける。すなわち、第2外部電極42は、第1側面11、第2側面12、第3側面13、および第4側面14に順に対向する第1面部141、第2面部142、第3面部143、および第4面部144を有する。第1面部141から第4面部144は、周面17に沿って延在する部分である。つまり、第1面部141から第4面部144は、第2外部電極42のL方向の一方の端面から他方の端面に延在する。また、第2外部電極を周面17の一部の面部に設けてもよい。例えば、第2端面16を覆うとともに、第1面部141と第2面部142とを有するように、すなわち、断面コの字状に設けてもよい。あるいは、第2端面16を覆うとともに、第1面部141のみを有するように、すなわち、断面L字状に設けてもよい。
 また、図1に示すように、第1外部電極41の第1面部141は、第2外部電極側に、薄肉で隣接する2つの第2外部電極側角部141d,141eを有している。同様に、第2外部電極42の第1面部141は、第1外部電極側に、薄肉で隣接する2つの第1外部電極側角部141f,141gを有している。第2外部電極側角部と第1外部電極側角部は、それらの角部以外の外部電極の領域よりも厚さが薄い。ここで、角部とは、第1端面15から第2端面16に向かって延在するサーミスタ素子1の長さ方向に交差する、第1外部電極と第2外部電極の一対の端辺と、前記長さ方向に沿った一対の側辺の内、交差する端辺と側辺の交点である角の周辺領域を含む。また、角の周辺領域が面取り加工されている場合には、その面取り加工された領域を含んでいる。
 図3は、外部電極から金属めっき層を除いたサーミスタ素子1の模式平面図である。第1外部電極41の下地層41aと第2外部電極42の下地層42aの第1面部241は、それぞれ、平面視で、第1端面15から第2端面16に向かって延在する長さ方向(L方向)に交差する一対の端辺241b,241cと、前記長さ方向に沿った一対の側辺241a,241aとを有する。下地層41aの中央部における一対の端辺241b,241c間の長さは、下地層41aの側辺241aの長さよりも小さい。同様に、下地層42aの中央部における一対の端辺241b,241c間の長さは、下地層42aの側辺241aの長さよりも小さい。例えば、図3に示すように、下地層41aは、平面視で、第1面部241の中央部が前記第1端面側に向かって凹む弓形凹部を有し、下地層42aは、平面視で、第1面部241の中央部が前記第2端面側に向かって凹む弓形凹部を有していてもよい。ここで、第1面部241の中央部とは、第1端面15から第2端面16に向かって延在する長さ方向において、対向する一対の端辺のそれぞれの中間点を含む領域を意味する。
 また、第1外部電極41の下地層41aは、第2外部電極42側に、薄肉で隣接する2つの第2外部電極側角部241d,241eを有する。同様に、第2外部電極42の下地層42aは、第1外部電極41側に、薄肉で隣接する2つの第1外部電極側角部241f,241gを有する。ここで、第2外部電極側角部241d,241eと第1外部電極側角部241f,241gは、下地層41aと下地層42aの一対の端辺と一対の側辺の内、交差する端辺と側辺の交点である角の周辺領域を含んでいる。なお、第1面部241と対向する第2面部(不図示)においても、下地層41aは、第2外部電極42側に、薄肉で隣接する2つの第2外部電極側角部(不図示)を有し、第1外部電極41側にも、薄肉で隣接する2つの第1外部電極側角部(不図示)を有する。
 図4は、図3のA-A‘線に沿った模式部分断面図である。下地層42aは、薄肉の角部241fを有し、下地層42aの上には、金属めっき層42bが形成されている。これにより、第2外部電極全体としても、薄肉の角部141fを有する。
 第1外部電極41および第2外部電極42は、最外層が金属めっき層である複数の電極層から構成される。図2では、第1外部電極41および第2外部電極42を、下から下地層42aと金属めっき層42bとで構成した例を示している。必要に応じて、下地層と金属めっき層との間に中間層を設けることもできる。下地層、中間層、および金属めっき層は、単層でも複数層でもよい。下地層は、素体10を覆う層であり、例えばNiを用いることができる。また、中間層は、下地層の構成金属の熱拡散を抑制する層であり、下地層にNiを用いた場合、例えばPdを用いることができる。金属めっき層には、金、銀、銅等を用いることができる。下地層と中間層は、スパッタリング法、印刷法、および浸漬法等を用いて形成することができる。また、金属めっき層は電解めっき法を用いて形成することができる。
 下地層の上にめっき層を形成する場合、めっき層の内部応力により、めっき層の端部が剥がれたり、端部にクラックが発生するという問題がある。特に、サーミスタ素子の小型化や低背化の観点から、下地層を薄くしようとすると、角部に剥がれやクラックが発生し易くなる。本態様に係るサーミスタ素子によれば、下地電極の薄肉の角部が金属めっき層の内部応力を吸収することで、外部電極の剥がれやクラックの生成を抑制することが可能となる。これにより、ワイヤボンディングの信頼性を向上させることが可能となる。
 サーミスタ素子のサイズは特に限定されないが、JIS規格0603サイズのサーミスタ素子、あるいはそれよりも小さいサイズのサーミスタ素子に用いることができる。ここで、JIS規格0603サイズとは、(0.6±0.03)mm(L方向)×(0.3±0.03)mm(W方向)である。
 ここで、下地層の薄肉の角部の厚さは、その薄肉の角部以外の部分の厚さよりも小さければよいが、例えば、下地層の薄肉の角部以外の部分の平均厚さが4μm以上14μm以下の場合、薄肉の角部の平均厚さは1μm以上10μm以下、好ましくは2μm以上7μm以下である。
 また、サーミスタ素子は、図1に示すように、第1端面15から第2端面16に向かって延在する長さ方向(L方向)において、第1外部電極41は、平面視で、第1面部141の中央部が前記第1端面側に向かって凹む弓形凹部を有し、第2外部電極42は、平面視で、第1面部141の中央部が前記第2端面側に向かって凹む弓形凹部を有することが好ましい。サーミスタ素子を小型化すると、第1外部電極と第2外部電極との間の距離が小さくなり、第1外部電極と第2外部電極とが短絡する可能性がある。しかし、第1面部141の中央部に弓形凹部を設けることで短絡を防止することができる。ここで、第1面部141の中央部とは、第1端面15から第2端面16に向かって延在する長さ方向において、対向する一対の端辺のそれぞれの中間点を含む領域を意味する。
 また、図5に示すように、第1外部電極41と第2外部電極42は、それぞれ、平面視で、第1端面15から第2端面16に向かって延在する長さ方向(L方向)に交差する一対の端辺141b,141cと、前記長さ方向に沿った一対の側辺141a,141aとを有する。第1外部電極41と第2外部電極42の中央部における一対の端辺間の長さをそれぞれL1とL2とし、第1外部電極41と第2外部電極42の側辺141aの長さをそれぞれE1とE2とした時、L1<E1、かつL2<E2の関係を満たすことが好ましい。ここで、第1外部電極41または第2外部電極42の中央部とは、第1端面15から第2端面16に向かって延在する長さ方向において、対向する一対の端辺のそれぞれの中間点を含む領域を意味する。
 ここで、第1外部電極41の中央部における両端辺141b、141cの間の長さ(以下、第1外部電極41の中央部の長さともいう)とは、第1外部電極41を周面17の周方向の全周に対向するように設けた場合、および第1端面15を覆うとともに、第1面部141と第2面部142とを有するように設けた場合には、第1面部141と第2面部142の中央部における両端辺141b、141cの間の長さの平均値をいう。また、第1外部電極41が、第1端面15を覆うとともに、第1面部141のみを有する場合には、第1面部141の中央部における両端辺141b、141cの間の長さである。同様に、第2外部電極42の中央部における両端辺141b、141cの間の長さ(以下、第2外部電極42の中央部の長さともいう)とは、第2外部電極42を周面17の周方向の全周に対向するように設けた場合、および第2端面16を覆うとともに、第1面部141と第2面部142とを有するように設けた場合には、第1面部141と第2面部142の中央部における両端辺141b、141cの間の長さの平均値をいう。また、第2外部電極42が、第2端面16を覆うとともに、第1面部141のみを有する場合には、第1面部141の中央部における両端辺141b、141cの間の長さである。
 また、第1外部電極41の側辺141aの長さE1とは、第1外部電極41を周面17の周方向の全周に対向するように設けた場合、および第1端面15を覆うとともに、第1面部141と第2面部142とを有するように設けた場合には、第1面部141と第2面部142の4つの側辺の平均値をいう。また、第1外部電極41が、第1端面15を覆うとともに、第1面部141のみを有する場合には、第1面部141の2つの側辺の平均値をいう。同様に、第2外部電極42の側辺141aの長さE2とは、第2外部電極42を周面17の周方向の全周に対向するように設けた場合、および第2端面16を覆うとともに、第1面部141と第2面部142とを有するように設けた場合には、第1面部141と第2面部142の4つの側辺の平均値をいう。また、第2外部電極42が、第2端面16を覆うとともに、第1面部141のみを有する場合には、第1面部141の2つの側辺の平均値をいう。
 サーミスタ素子を小型化および低背化した場合、第1外部電極と第2外部電極との間隔が狭くなり、短絡し易くなる。これに対し、L1<E1、かつL2<E2の関係を満たすことで、すなわち、第1外部電極および第2外部電極の中央部の長さが側辺の長さよりも小さいので、第1外部電極と第2外部電極とが互いに接触するのを防止することが可能となる。また、中央部の長さが側辺の長さより小さいため、電極ペーストの量は中央部が少ない。これにより、電極ペーストの焼き付け時に電極成分が中央部に寄りにくいことにより、第1外部電極と第2外部電極の中央部を平坦にすることができるので、ワイヤとの密着性を向上させることができる。これにより、ワイヤボンディングの信頼性を向上させることができる。
 L1およびL2の値は、第1外部電極と第2外部電極とが互いに接触しない範囲であればよく、例えば、L1およびL2が95μm以上285μm以下、好ましくは200μm以上255μm以下である。それに対して、E1およびE2を100μm以上290μm以下、好ましくは205μm以上260μm以下とすることができる。この範囲であれば、JIS規格0603サイズおよびそれ以下のサイズのサーミスタ素子に用いることができる。
 また、L1とE1およびL2とE2が、それぞれ、0.770≦(L1/E1)≦0.975、0.770≦(L2/E2)≦0.975、の関係を満たすことが好ましい。第1外部電極と第2外部電極の平坦性を確保しながら、第1外部電極と第2外部電極とが互いに接触するのを防止することが可能となる。
 また、図5に示すように、第1外部電極41の第1端面15側の隣接する角部141h,141iがR形状を有し、第2外部電極42の第2端面16側の隣接する角部141h,141iがR形状を有することが好ましい。角部141h,141iがR形状を有することで、角部の割れや欠けを防止することができる。
 また、図6に示すように、第1外部電極41の下地層41aに2つの第2外部電極側角部241d,241eにつながる薄肉の第1縁部241hを設けるとともに、第2外部電極42の下地層42aに2つの第1外部電極側角部241f,241gにつながる薄肉の第2縁部241iを設けることもできる。これにより、金属めっき層の内部応力をさらに吸収することが可能となり、外部電極の剥がれやクラックの生成をさらに抑制することが可能となる。第1縁部と第2縁部の厚さは、上記の薄肉の角部と同様の厚さを用いることができる。
 次に、サーミスタ素子の製造方法について説明する。
 サーミスタ素子の製造方法の一態様は、素体を作製する素体作製工程と、第1外部電極と第2外部電極を作製する外部電極作製工程とを含み、前記外部電極作製工程は、さらに前記下地層を形成する下地層形成工程を含み、前記下地層形成工程は、前記第1外部電極の前記下地層の前記第2外部電極側にある隣接する2つの第2外部電極側角部と、前記第2外部電極の前記下地層の前記第1外部電極側にある隣接する2つの第1外部電極側角部に薄肉部を形成することを含む。
(素体作製工程)
 まず、セラミックスの素材を混合粉砕して混合粉体を作製し、混合粉体に仮焼処理を施して仮焼粉を作製する。その後、仮焼粉をシート状に形成してシート体を作製し、シート体と内部電極21,22の材料とを交互に積層して積層体を作製する。その後、積層体を還元雰囲気で焼成して、内部に内部電極21,22が設けられた素体10を作製する。必要に応じて、バレル加工等の面取り加工を行い、素体10の角部や稜線部の面取りを行ってもよい。
(外部電極作製工程)
 その後、素体10の表面に下地層を形成し、その上に電解めっき法により金属めっき層を形成して、第1外部電極41と第2外部電極42を作製する。これにより、サーミスタ素子1を作製する。
 ここで、下地層を形成する場合、第1外部電極の下地層の第2外部電極側に、薄肉で隣接する2つの第2外部電極側角部を形成し、および前記第2外部電極の前記下地層の前記第1外部電極側に、薄肉で隣接する2つの第1外部電極側角部を形成する。下地層は、スパッタリング法、蒸着法、印刷法、または浸漬法により形成できるが、作業効率性の観点から、浸漬法が好ましい。浸漬法を用いる場合、例えば、導電ペーストの粘度調整や面取りした素体を用いることで、導電ペーストが第1面部の周縁部(対向する下地層側の方向を除く)へと流動し易くし、第1面部の平坦性を確保しながら、第1外部電極側角部と第2外部電極側角部を薄肉にすることができる。すなわち、第1外部電極側角部と第2外部電極側角部を薄肉とした下地層を一体に形成できる。また、浸漬法を用いる場合、導電ペースト塗膜を焼結する際、塗膜の焼結収縮に伴い、塗膜の角部にクラックが発生し易いという問題があるが、第1外部電極側角部と第2外部電極側角部が薄肉であると、角部が収縮応力の一部を吸収することでクラックの発生を抑制できるという効果も有する。
 また、下地層作製工程が、第1外部電極と第2外部電極の下地層の中央部における一対の端面間の長さが、下地層の側辺の長さより小さくなるように、浸漬法を用いて素体に電極ペーストを塗布し、焼き付けて下地電極を作製する、ことをさらに含むことが好ましい。
 詳しくは、下地層を形成するに際し、第1外部電極41と第2外部電極42の下地層の中央部における一対の端辺間の長さが、下地層の側辺の長さより小さくなるように、浸漬法を用いて素体10に電極ペーストを塗布し、焼き付けて下地層を形成する。下地層の中央部における一対の端辺間の長さが、下地層の側辺の長さより小さくなるようにするためには、例えば、電極ペーストが対向する下地層側の方向を除く周縁部へと流動し易くなるようにする方法を用いることができる。例えば、電極ペーストの粘度を調整して電極ペーストの流動性を調整する方法を用いることができる。また、面取り加工を行った素体を用いることもできる。面取り加工を行わない場合に比べて、塗布した電極ペーストが素体の中心部から、対向する下地層側の方向を除く周縁部へと流動し易くなる。これにより、下地層の中央部における一対の端辺間の長さが、下地層の側辺の長さより小さくなるとともに、より平坦な下地層を形成することができる。また、下地層の第1端面側および第2端面側の角部にもR形状を付与することができる。この下地層の形状を維持するように金属めっき層等を形成することで、第1外部電極と第2外部電極を作製する。
 本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形および改良が可能である。例えば、上述の実施の形態では、サーミスタ素子は、NTCサーミスタとしたが、PTC(Positive Temperature Coefficient)サーミスタとしてもよい。また、上述の実施の形態では、素体の周面の横断面は、4角形であったが、3角形や5角形以上であってもよく、または、円形や楕円形や長円形であってもよい。
 1 サーミスタ素子
 10 素体
 10a セラミックス層
 11 第1側面
 12 第2側面
 13 第3側面
 14 第4側面
 15 第1端面
 16 第2端面
 17 周面
 21 第1内部電極
 22 第2内部電極
 41 第1外部電極
 42 第2外部電極
 41a 下地層
 41b 金属めっき層
 42a 下地層
 42b 金属めっき層
 141 第1面部
 142 第2面部
 143 第3面部
 144 第4面部
 141a 側辺
 141b 端辺
 141c 端辺
 141d 第1外部電極の第2外部電極側角部
 141e 第1外部電極の第2外部電極側角部
 141f 第2外部電極の第1外部電極側角部
 141g 第2外部電極の第1外部電極側角部
 141h 角部
 141i 角部
 241 下地層の第1面部
 241a 下地層の側辺
 241b 下地層の端辺
 241c 下地層の端辺
 241d 下地層の第2外部電極側角部
 241e 下地層の第2外部電極側角部
 241f 下地層の第1外部電極側角部
 241g 下地層の第1外部電極側角部
 241h 下地層の第1縁部
 241i 下地層の第2縁部

Claims (12)

  1.  セラミックスから構成され、対向する第1端面および第2端面と、前記第1端面と前記第2端面との間に配置される周面とを有する素体と、
     前記第1端面と前記周面の前記第1端面側とを覆う第1外部電極と、
     前記第2端面と前記周面の前記第2端面側とを覆う第2外部電極と、を備えるサーミスタ素子であって、
     前記第1外部電極と前記第2外部電極は、最下層の下地層と最上層の金属めっき層を含む複数の電極層から構成され、
     前記第1外部電極の下地層は、前記第2外部電極の側に、薄肉で隣接する2つの第2外部電極側角部を有し、
     前記第2外部電極の下地層は、前記第1外部電極の側に、薄肉で隣接する2つの第1外部電極側角部を有する、該サーミスタ素子。
  2.  前記第1外部電極の下地層は、前記2つの第2外部電極側角部につながる薄肉の第1縁部を有し、前記第2外部電極の下地層は、前記2つの第1外部電極側角部につながる薄肉の第2縁部を有する、請求項1記載のサーミスタ素子。
  3.  前記下地層は硬化した導電ペーストからなる、請求項1または2に記載のサーミスタ素子。
  4.  前記第1外部電極は、平面視で、中央部が前記第1端面側に向かって凹む弓形凹部を有し、前記第2外部電極は、平面視で、中央部が前記第2端面側に向かって凹む弓形凹部を有する、請求項1から3のいずれか1項に記載のサーミスタ素子。
  5.  前記第1外部電極と前記第2外部電極は、それぞれ、平面視で、前記第1端面から前記第2端面に向かって延在する長さ方向に交差する一対の端辺と、前記長さ方向に沿った一対の側辺とを有し、前記第1外部電極と前記第2外部電極の中央部における前記一対の端辺間の長さをそれぞれL1とL2とし、前記第1外部電極と前記第2外部電極の側辺の長さをそれぞれE1とE2とした時、L1<E1、かつL2<E2である、請求項1から4のいずれか1項に記載のサーミスタ素子。
  6.  前記L1および前記L2が95μm以上285μm以下であり、前記E1および前記E2が100μm以上290μm以下である、請求項5記載のサーミスタ素子。
  7.  前記L1と前記E1および前記L2と前記E2が、それぞれ、
    0.770≦(L1/E1)≦0.975、0.770≦(L2/E2)≦0.975、
    の関係を満たす、請求項5または6に記載のサーミスタ素子。
  8.  前記第1外部電極の前記第1端面側の隣接する角部がR形状を有し、前記第2外部電極の前記第2端面側の隣接する角部がR形状を有する、請求項1~7のいずれか1項に記載のサーミスタ素子。
  9.  セラミックスから構成され、対向する第1端面および第2端面と、前記第1端面と前記第2端面との間に配置される周面とを有する素体と、
     前記第1端面と前記周面の前記第1端面側とを覆う第1外部電極と、
     前記第2端面と前記周面の前記第2端面側とを覆う第2外部電極と、を備えるサーミスタ素子の製造方法であって、
     素体を作製する素体作製工程と、
     第1外部電極と第2外部電極を作製する外部電極作製工程とを含み、
     前記外部電極作製工程は、さらに下地層を形成する下地層形成工程を含み、前記下地層形成工程は、
     前記第1外部電極の前記下地層の前記第2外部電極側に、薄肉で隣接する2つの第2外部電極側角部を形成すること、および前記第2外部電極の前記下地層の前記第1外部電極側に、薄肉で隣接する2つの第1外部電極側角部を形成することを含む、該製造方法。
  10.  前記第1外部電極の下地層に前記2つの第2外部電極側角部につながる薄肉の第1縁部を設けるとともに、前記第2外部電極の下地層に前記2つの第1外部電極側角部につながる薄肉の第2縁部を設ける、請求項9記載の製造方法。
  11.  前記下地層形成工程は、浸漬法を用いて前記素体に電極ペーストを塗布し、焼き付けて前記下地層を形成することを含む、請求項9または10に記載の製造方法。
  12.  前記下地層形成工程は、前記第1外部電極と前記第2外部電極の前記下地層の中央部における一対の端辺間の長さが、前記下地層の側辺の長さより小さくなるように、浸漬法を用いて前記素体に電極ペーストを塗布し、焼き付けて前記下地層を形成することを含む、請求項9~11のいずれか1項に記載の製造方法。
PCT/JP2018/038593 2017-11-02 2018-10-17 サーミスタ素子およびその製造方法 WO2019087777A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019551043A JP6939895B2 (ja) 2017-11-02 2018-10-17 サーミスタ素子およびその製造方法
CN201880070143.6A CN111295724A (zh) 2017-11-02 2018-10-17 热敏电阻元件及其制造方法
US16/839,141 US10854361B2 (en) 2017-11-02 2020-04-03 Thermistor element and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-213109 2017-11-02
JP2017213109 2017-11-02
JP2017-213106 2017-11-02
JP2017213106 2017-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/839,141 Continuation US10854361B2 (en) 2017-11-02 2020-04-03 Thermistor element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2019087777A1 true WO2019087777A1 (ja) 2019-05-09

Family

ID=66333470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038593 WO2019087777A1 (ja) 2017-11-02 2018-10-17 サーミスタ素子およびその製造方法

Country Status (4)

Country Link
US (1) US10854361B2 (ja)
JP (1) JP6939895B2 (ja)
CN (1) CN111295724A (ja)
WO (1) WO2019087777A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236308A (ja) * 1995-02-22 1996-09-13 Murata Mfg Co Ltd セラミック電子部品とその特性値調整方法
JP2004087717A (ja) * 2002-08-26 2004-03-18 Murata Mfg Co Ltd 電子部品
JP2005251993A (ja) * 2004-03-04 2005-09-15 Tdk Corp チップ型電子部品
JP2012216699A (ja) * 2011-04-01 2012-11-08 Murata Mfg Co Ltd チップptcサーミスタ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258906A (ja) * 1992-03-13 1993-10-08 Tdk Corp チップ型サーミスタ
KR100255906B1 (ko) * 1994-10-19 2000-05-01 모리시타 요이찌 전자부품과 그 제조방법
US6157289A (en) * 1995-09-20 2000-12-05 Mitsushita Electric Industrial Co., Ltd. PTC thermistor
WO2004001774A1 (ja) * 2002-06-19 2003-12-31 Rohm Co., Ltd. 低い抵抗値を有するチップ抵抗器とその製造方法
JP2005005373A (ja) 2003-06-10 2005-01-06 Mitsubishi Materials Corp チップ型サーミスタ及びその製造方法
JP2006173270A (ja) * 2004-12-14 2006-06-29 Tdk Corp チップ型電子部品
CN101116154A (zh) * 2005-02-08 2008-01-30 株式会社村田制作所 表面安装型负特性热敏电阻
US20060202794A1 (en) * 2005-03-10 2006-09-14 Chang-Wei Ho Resettable over-current protection device and method for producing the same
JP4586831B2 (ja) * 2007-08-08 2010-11-24 Tdk株式会社 セラミックグリーンシート構造、及び、積層セラミック電子部品の製造方法
CN101567264A (zh) * 2008-04-24 2009-10-28 广州三则电子材料有限公司 一种微波多层片式陶瓷电容器的贱金属镍内部电极浆料
JP5246215B2 (ja) * 2010-07-21 2013-07-24 株式会社村田製作所 セラミック電子部品及び配線基板
JP2013058558A (ja) * 2011-09-07 2013-03-28 Tdk Corp 電子部品
JP5510479B2 (ja) * 2012-03-03 2014-06-04 株式会社村田製作所 Ntcサーミスタ用半導体磁器組成物
JP5673595B2 (ja) * 2012-04-19 2015-02-18 株式会社村田製作所 積層型セラミック電子部品およびその実装構造体
JP2015109415A (ja) * 2013-10-24 2015-06-11 株式会社村田製作所 積層セラミック電子部品、テーピング電子部品連及び積層セラミック電子部品の製造方法
JP6252679B2 (ja) * 2014-07-04 2017-12-27 株式会社村田製作所 サーミスタ素子および電子部品
JP2017022232A (ja) * 2015-07-09 2017-01-26 株式会社村田製作所 電子部品およびその製造方法
JP6693125B2 (ja) * 2015-12-28 2020-05-13 Tdk株式会社 電子部品
JP6756484B2 (ja) * 2016-01-20 2020-09-16 株式会社日立製作所 電圧非直線抵抗体
KR101883042B1 (ko) * 2016-02-15 2018-07-27 삼성전기주식회사 칩 저항 소자 및 칩 저항 소자 어셈블리
JP7065735B2 (ja) * 2018-09-07 2022-05-12 太陽誘電株式会社 積層セラミック電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236308A (ja) * 1995-02-22 1996-09-13 Murata Mfg Co Ltd セラミック電子部品とその特性値調整方法
JP2004087717A (ja) * 2002-08-26 2004-03-18 Murata Mfg Co Ltd 電子部品
JP2005251993A (ja) * 2004-03-04 2005-09-15 Tdk Corp チップ型電子部品
JP2012216699A (ja) * 2011-04-01 2012-11-08 Murata Mfg Co Ltd チップptcサーミスタ

Also Published As

Publication number Publication date
CN111295724A (zh) 2020-06-16
US10854361B2 (en) 2020-12-01
JP6939895B2 (ja) 2021-09-22
US20200234856A1 (en) 2020-07-23
JPWO2019087777A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
US10008331B2 (en) Multilayer ceramic electronic component
CN110098050B (zh) 电子部件
US9941049B2 (en) Multilayer ceramic electronic component
KR102448667B1 (ko) 전자 부품
US8988854B1 (en) Multilayer ceramic electronic component
US20200176176A1 (en) Passive component and electronic device
US10299383B2 (en) Composite electronic component and resistance element
US10453617B2 (en) Composite electronic component and resistance element
CN111180202A (zh) 多层电容器
US10186381B2 (en) Composite electronic component and resistance element
CN109727769B (zh) 电子部件
US11610737B2 (en) Multilayer ceramic electronic component
JP5786751B2 (ja) 積層電子部品
US11538634B2 (en) Multilayer ceramic electronic component including an insulating layer
JP6469899B2 (ja) 積層コンデンサ
JP6374237B2 (ja) 積層コンデンサ
JP6338011B2 (ja) 基板埋め込み用ntcサーミスタおよびその製造方法
WO2019087777A1 (ja) サーミスタ素子およびその製造方法
WO2020194812A1 (ja) 積層バリスタ
JP2000106322A (ja) 積層セラミックコンデンサ
JP2022073617A (ja) 積層セラミックコンデンサ
JP2019087579A (ja) サーミスタ素子
WO2024142679A1 (ja) 積層セラミックコンデンサ
JP2023098547A (ja) チップバリスタ
JP2023103548A (ja) チップバリスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873920

Country of ref document: EP

Kind code of ref document: A1