WO2019085678A1 - 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法 - Google Patents

多元合金化合物及其油墨、薄膜吸收层和它们的制备方法 Download PDF

Info

Publication number
WO2019085678A1
WO2019085678A1 PCT/CN2018/106991 CN2018106991W WO2019085678A1 WO 2019085678 A1 WO2019085678 A1 WO 2019085678A1 CN 2018106991 W CN2018106991 W CN 2018106991W WO 2019085678 A1 WO2019085678 A1 WO 2019085678A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
ink
alloy compound
high temperature
preparing
Prior art date
Application number
PCT/CN2018/106991
Other languages
English (en)
French (fr)
Inventor
陈腾
Original Assignee
北京铂阳顶荣光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京铂阳顶荣光伏科技有限公司 filed Critical 北京铂阳顶荣光伏科技有限公司
Publication of WO2019085678A1 publication Critical patent/WO2019085678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00594Gas-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • H01L2924/10821Copper indium gallium selenide, CIGS [Cu[In,Ga]Se2]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to, but is not limited to, a method for preparing a multi-alloy compound and a prepared multi-alloy compound, a method for preparing an ink using the multi-alloy compound, a prepared multi-alloy compound ink, and a film-absorbing layer using a multi-alloy compound ink. And a prepared multi-component alloy compound film absorbing layer.
  • CIGS CuIn x Ga (1-x) Se 2 , copper indium gallium selenide thin film solar cell
  • CIGS CuIn x Ga (1-x) Se 2 , copper indium gallium selenide thin film solar cell
  • the sputtering method based on the high vacuum of the first two methods, has a relatively high cost from the viewpoint of equipment and process. Therefore, the technology of non-vacuum and low-cost preparation of CIGS like printing is continuously promoted by the industry.
  • the CIGS nanomaterial is prepared by chemical synthesis and further prepared into a slurry, but the chemically synthesized CIGS has low purity and is prepared.
  • the CIGS film has a low lifetime and therefore has a relatively low battery efficiency.
  • four elemental powders or several ternary compound powders are used to mix the coating materials, and the slurry is further processed during the film formation process.
  • the reaction when forming the quaternary compound is difficult to control, and the insufficient reaction may cause component mismatch.
  • the higher reaction temperature may also cause a large loss of the selenium component, resulting in poor quality of the prepared CIGS film.
  • the preparation of the tapered band gap CIGS film is beneficial to improve the conversion efficiency of the film light absorbing layer, and the current printing preparation of CIGS film is limited to the preparation method of CIGS material, mostly a single fixed component CIGS film, which is not conducive to the preparation of high efficiency battery. .
  • the present application provides a preparation method of a multi-alloy compound capable of accurately controlling an alloy composition, a prepared multi-alloy compound, a method for preparing an ink using the multi-alloy compound, and a prepared multi-alloy compound ink, and the use thereof A method of preparing a thin film absorption layer of a multi-alloy compound ink and a composite film absorption layer of the obtained multi-alloy compound.
  • Embodiments of the present application provide a method of preparing a multi-alloy compound, the method comprising the steps of:
  • the material to be melted for preparing the multi-alloy compound is uniformly mixed and placed in a high-temperature synthesis zone of the vacuum vessel, and the material to be sublimated for preparing the multi-alloy compound is placed in a low-temperature evaporation zone of the vacuum vessel;
  • the material to be sublimed in the low temperature evaporation zone is heated to a gaseous state to react the sublimated gaseous material with the molten material.
  • the embodiment of the present application also provides a multi-alloy compound which is prepared by the method for producing a multi-alloy compound as described above.
  • the embodiment of the present application also provides a method for preparing a multi-alloy alloy ink capable of accurately controlling the composition ratio of each component of the multi-alloy compound.
  • the multi-alloy compound prepared by the method for producing a multi-component alloy compound as described above is ground into a powder;
  • the solvent in the mixture is removed to obtain a multicomponent alloy compound ink.
  • the embodiment of the present application also provides a multi-alloy compound ink prepared by the method for preparing a multi-alloy compound ink as described above.
  • the embodiment of the present application further provides a preparation method of a multi-component alloy compound film absorbing layer capable of accurately controlling the proportion of the component of the multi-alloy compound.
  • the multi-alloy compound ink prepared by the method for preparing the multi-alloy compound ink as described above is coated on the surface of the substrate, the coated substrate and the ink are dried, and the substrate after drying is finished.
  • the ink is annealed.
  • the embodiment of the present application further provides a multi-alloy compound film absorption layer which is prepared by the method for preparing a multi-alloy compound film absorption layer as described above.
  • multi-alloy compound is defined as a compound which is made of a plurality of simple substances, and whose sublimation temperature of one element is lower than the melting temperature of a mixture composed of other simple substances.
  • FIG. 1 is a schematic view showing the arrangement of a copper indium gallium selenide quaternary compound according to an embodiment of the present application
  • FIG. 2 is a schematic view of the first layer of ink after coating in an embodiment of the present application
  • FIG. 3 is a schematic view of the first layer of ink after drying according to an embodiment of the present application.
  • FIG. 4 is a schematic view of a second layer of ink after being coated in an embodiment of the present application.
  • FIG. 5 is a schematic view showing the formation of a copper indium gallium selenide light absorbing layer film after annealing in an embodiment of the present application.
  • Embodiments of the present application provide a method of preparing a multi-alloy compound, the method comprising the steps of:
  • the material to be melted for preparing the multi-alloy compound is uniformly mixed and placed in a high-temperature synthesis zone of the vacuum vessel, and the material to be sublimed of the multi-alloy compound is placed in a low-temperature evaporation zone of the vacuum vessel;
  • the material to be sublimed in the low temperature evaporation zone is heated to a gaseous state to react the sublimated gaseous material with the molten material.
  • the method may further include: maintaining a positive temperature gradient between the low temperature evaporation zone and the high temperature synthesis zone at all times.
  • the method may further include: controlling a time during which the material to be sublimed in the low temperature evaporation zone begins to be converted into a gaseous state no earlier than melting of the material to be melted in the high temperature synthesis zone.
  • the method may further include: insulating the high temperature synthesis zone and the low temperature evaporation zone after both the high temperature synthesis zone and the low temperature evaporation zone are heated to respective set temperatures, so that the sublimated gaseous material is The molten material continues to react; after the reaction is completed, the high temperature synthesis zone and the low temperature evaporation zone are cooled.
  • the method may further include: when the high temperature synthesis zone is kept for a set period of time, reducing the temperature of the high temperature synthesis zone to not lower than the melting temperature of the multicomponent alloy compound formed in the high temperature synthesis zone and The heat is again tempered to carry out the reaction. During the temperature reduction in the high temperature synthesis zone and during the heat preservation process, the low temperature evaporation zone is continuously kept at the original heat preservation temperature until the reaction is completed.
  • a vacuum container refers to a container that draws internal air pressure to 10 -1 Pa to 10 -4 Pa while in operation.
  • the multi-alloy compound may include a copper indium gallium selenide compound, and the material to be melted for preparing the copper indium gallium selenide compound may include copper, indium, and gallium, and the copper indium gallium selenide compound is prepared.
  • the material to be sublimed may include a single substance of selenium.
  • the vacuum vessel may be an L-shaped quartz tube or a ceramic tube, and the two ends of the L-shaped quartz tube or the ceramic tube may be a high temperature synthesis zone and a low temperature evaporation zone, respectively, and the high temperature synthesis zone may have a configuration.
  • the low temperature evaporation zone may have a container configured to hold a single element of selenium.
  • the containers of the high temperature synthesis zone and the low temperature evaporation zone may be quartz boats, crucibles or pits formed in the high temperature synthesis zone and the low temperature evaporation zone.
  • the method may include the following steps:
  • the copper, indium and gallium elements are uniformly mixed and placed in a container in a high temperature synthesis zone, and the selenium element is placed in a container in a low temperature evaporation zone;
  • the copper, indium and gallium in the high temperature synthesis zone are heated to a molten state, and the selenium in the low temperature evaporation zone is heated to a gaseous state for reaction.
  • the method may further include:
  • the high temperature synthesis zone and the low temperature evaporation zone are both heated to respective set temperatures, the high temperature synthesis zone and the low temperature evaporation zone are insulated;
  • the temperature of the high temperature synthesis zone is lowered to not less than the melting temperature of the copper indium gallium selenide compound and the temperature is again insulated to carry out the reaction, and the temperature is lowered in the high temperature synthesis zone and the temperature is again maintained.
  • the evaporation zone is continuously insulated at the original heat preservation temperature until the reaction is completed; after the reaction is completed, the high temperature synthesis zone and the low temperature evaporation zone are cooled to below 100 ° C;
  • the copper indium gallium may be first heated to a molten state, the copper indium gallium is first started to react, and then the selenium is heated and sublimated into a gaseous state to form a selenium atmosphere in the vacuum vessel, thereby selenizing the copper indium gallium. .
  • the copper indium gallium can be completely melted no later than the time when the selenium begins to sublimate.
  • the method may further include:
  • the temperature rise of the low temperature evaporation zone is started, thereby controlling the selenium element in the low temperature evaporation zone to start to change into a gaseous state no earlier than the melting of the copper indium gallium in the high temperature synthesis zone. time;
  • the high temperature synthesis zone When the temperature of the high temperature synthesis zone rises to 1100 ° C to 1150 ° C, the high temperature synthesis zone is initially insulated; when the temperature of the low temperature evaporation zone is raised to 550 ° C to 600 ° C, the low temperature evaporation zone is insulated;
  • the high temperature synthesis zone is kept at a temperature of 1100 ° C to 1150 ° C for a set period of time, the high temperature synthesis zone is cooled to 950 ° C to 1000 ° C and re-insulated, and at the same time, the low temperature evaporation zone is continuously maintained at 550 ° C to 600 ° C until the reaction After completion of the reaction, the temperature of the high temperature synthesis zone and the low temperature evaporation zone is lowered to below 100 °C.
  • the raw material for preparing the copper indium gallium selenide compound may be: 10 parts by mole of copper, 7 to 9 parts by mole of indium, 1 to 3 parts by mole of gallium, and more than 2 parts by mole of selenium.
  • the vacuum vessel may be a quartz tube or a ceramic tube.
  • the vacuum vessel may be an L-shaped quartz tube or a ceramic tube.
  • the two ends of the L-shaped quartz tube may be a high temperature synthesis zone and a low temperature evaporation zone, respectively, and the high temperature synthesis zone has a container configured to hold a single substance of copper indium selenium, and the low temperature evaporation zone is configured to be capable of A container for holding a single element of selenium, which may be a quartz boat, crucible or a pit formed in a high temperature synthesis zone or a low temperature evaporation zone.
  • the embodiment of the present application also provides a multi-alloy compound which is prepared by the method for producing a multi-alloy compound as described above.
  • the embodiment of the present application also provides a method for preparing a multi-alloy alloy ink capable of accurately controlling the composition ratio of each component of the multi-alloy compound.
  • the method for preparing a multi-alloy alloy ink comprises the steps of preparing an ink using the multi-alloy compound prepared by the method for preparing a multi-alloy compound as described above.
  • the method may include the following steps:
  • the multi-alloy compound prepared by the method for producing a multi-component alloy compound as described above is ground into a powder;
  • the solvent in the mixture is removed to obtain a multicomponent alloy compound ink.
  • the solvent in the mixture may be removed by heating or standing evaporation.
  • the multi-alloy compound obtained by the above method for preparing the multi-alloy compound can also precisely control the ink. The content of each component.
  • the solvent may be selected from any one or two of ethanol and methanol
  • the dispersing agent may be selected from any one or two of phytol and t-butanol
  • the binding agent may be selected from any one or more of ethyl cellulose and cellulose derivatives.
  • the cellulose derivative may be a cellulose ester derivative.
  • the heating and evaporation process may be performed using a rotary evaporator.
  • the embodiment of the present application also provides a multi-alloy compound ink prepared by the method for preparing a multi-alloy compound ink as described above.
  • the embodiment of the present application provides a method for preparing a multi-component alloy compound film absorption layer capable of accurately controlling the proportion of a component of a multi-alloy compound.
  • the preparation method of the multi-alloy compound film absorption layer comprises the following steps: preparing the multi-alloy compound film absorption layer by using the multi-alloy compound ink prepared by the method for preparing the multi-alloy compound ink as described above.
  • the method may include the following steps:
  • the multi-alloy compound ink prepared by the method for preparing the multi-alloy compound ink as described above is coated on the surface of the substrate, the coated substrate and the ink are dried, and the substrate after drying is finished.
  • the ink is annealed.
  • the film formation annealing temperature is low, the crystallization is good, and no additional selenization is required.
  • the present application can also accurately control the composition of each component in the preparation process of the multi-alloy compound film absorption layer by printing.
  • the ratio overcomes the defect that it is difficult to control the composition ratio in the process of preparing the absorption layer of the multi-alloy compound film by the printing method.
  • the method for preparing the multi-alloy compound film absorption layer of the present application may include the following steps:
  • the copper indium gallium selenide ink prepared by the method for preparing the multi-alloy compound ink as described above is coated on the surface of the substrate with at least two layers so that the ratio of indium gallium content of the ink adjacent to the sunny side of the adjacent two layers of ink is a ratio of indium gallium content lower than a layer of ink away from the sunny side;
  • the layers of ink are annealed.
  • the process of applying ink to the surface of the substrate may include the following steps:
  • each layer of ink After the coating of each layer of ink is completed, the substrate and each layer of ink are annealed;
  • the step of applying a layer of ink to the upper layer of ink and drying is performed at least once.
  • the embodiment of the present application further provides a multi-alloy compound film absorption layer which is prepared by the method for preparing a multi-alloy compound film absorption layer as described above.
  • a multi-alloy compound having a different band gap width can be prepared.
  • a multi-alloy compound having different band gap widths a multi-alloy compound film absorption layer having a progressive band gap can be prepared, and the purpose of producing a progressive band gap multi-alloy compound film absorption layer by printing is realized.
  • An embodiment of the present application provides a method for preparing a multi-alloy compound, which is exemplified by the preparation of a copper indium gallium selenide compound, and the method may include the following steps:
  • the vacuum container comprises a high temperature synthesis zone 1 and a low temperature evaporation zone 2;
  • a vacuum container which may be a container having a certain rigidity prepared by using a high temperature resistant material such as a quartz tube or a ceramic tube. As shown in Fig. 1, portions having a certain interval in the vacuum vessel can be used as the high temperature synthesis zone 1 and the low temperature evaporation zone 2, respectively. After the material is placed in the above container, the air pressure in the container is pumped to 10 -1 Pa or below to become a vacuum container.
  • Cu, In, Ga, and Se simple substances having a purity greater than 99.999% can be used as raw materials, and the mass of each element can be weighed according to the composition CuIn 0.7 Ga 0.3 Se 2.05 , that is, 1 mol parts of Cu, 0.7 mol parts.
  • the Se element can be placed in the quartz boat at the short side of the L-shaped quartz tube, and the Cu, In, Ga element can be placed in the quartz boat at the end of the long side of the L-shaped quartz tube, and the quartz tube can be evacuated to 10 -2 Pa.
  • the L-shaped quartz tube is sealed and placed in an electric heating furnace.
  • the quartz boat containing the Se element can correspond to the low temperature zone of the corresponding low-temperature evaporation zone 2 in the electric furnace, and the quartz boat containing the Cu, In and Ga elements can correspond to the electric heating.
  • the high temperature zone corresponding to the high temperature synthesis zone 1 in the furnace.
  • a vacuum vessel may be formed by using the reactor as described above, and the reactor may be evacuated to other pressures of 10 -1 Pa or below, for example, 10 -1 Pa, 10 -2 Pa, 10 -3 Pa or 10 -4 Pa. It is also possible to use other high-temperature-resistant containers without using a quartz boat to hold the materials, for example, using enamel materials. If the high temperature synthesis zone 1 and the low temperature evaporation zone 2 of the vessel have pits, the material can be placed directly in the pit. In addition to the electric furnace, the L-shaped quartz tube can be heated by other heating means.
  • the method of preparing a multi-alloy compound of the present embodiment can be carried out in an apparatus comprising a vacuum vessel and a heating device, the vacuum vessel comprising a high temperature synthesis zone 1, a low temperature evaporation zone 2, and a sealing device;
  • the high temperature synthesis zone 1 and the low temperature evaporation zone 2 are respectively disposed at both ends of the vacuum vessel;
  • the heating device is disposed at intervals around the vacuum vessel, configured to heat the vacuum vessel and form a temperature gradient;
  • the vacuum vessel has an opening, and the closure device is configured to seal the opening.
  • the high temperature synthesis zone 1 and the low temperature evaporation zone 2 are respectively disposed at both ends of the vacuum vessel, so that the high temperature synthesis zone 1 and the low temperature evaporation zone 2 are spaced apart by a set distance, so that they can be heated to different temperatures. In the case where the distance requirement is satisfied, the positions of the high temperature synthesis zone 3 and the low temperature evaporation zone 2 can be adjusted as needed.
  • the heating device can be configured to enable zone heating of the vacuum vessel such that the temperature of each zone can be individually controlled and form a temperature gradient.
  • the heating means may be an electric heating coil which may be wrapped around the outer surface of the vacuum vessel or may be placed adjacent to the outer surface of the vacuum vessel.
  • the composition of the above copper indium gallium selenide compound is not limited to the formation of the composition of the copper indium gallium selenide compound prepared in the present embodiment.
  • a copper indium gallium selenide compound of the following composition may also be prepared: CuIn 0.85 Ga 0.15 Se 2.05 , CuIn 0.9 Ga 0.1 Se 2 , CuIn 0.8 Ga 0.2 Se 2 , CuIn 0.75 Ga 0.25 Se 2 ; during the preparation of the above copper indium gallium selenide compound, the sum of the molar fraction of indium and gallium and the molar of copper may be used for weighing The number of parts is substantially equal to calculate the mass of elemental copper, indium and gallium.
  • the ratio of the molar fraction of copper, indium and gallium can be made substantially equal to the ratio of the number of atoms of copper, indium and gallium in the compound to be prepared.
  • the molar fraction of selenium can be calculated as twice the molar fraction of copper.
  • the ratio of the molar fraction of selenium to copper can be slightly larger than the atomic ratio of selenium to copper in the compound to be prepared.
  • the molar fraction of selenium may be 2.1 times, 2.2 times, 2.3 times, 2.4 times or 2.5 times that of copper. Excess selenium can be placed in the low temperature evaporation zone 2, so that the reaction can be maintained in an atmosphere of selenium vapor throughout the entire reaction process because selenium is excessive.
  • a temperature gradient interval from a low temperature to a high temperature may be formed by adjusting the temperature control power between the high temperature synthesis zone and the low temperature evaporation zone, for example, a linear temperature gradient interval may be formed.
  • the high temperature synthesis zone 1 can be set to rise from 1100 ° C to 1150 ° C from 85 min to 90 min.
  • the temperature of the high temperature synthesis zone 1 can be raised to 700 ° C to 750 ° C.
  • the temperature rise of the low temperature evaporation zone 2 can be started, and the low temperature evaporation zone 2 can be set to be heated from 55 min to 60 min. To 550 ° C to 600 ° C.
  • the heating power of the heating device corresponding to each region between the high temperature synthesis zone 1 and the low temperature evaporation zone 2 can be separately adjusted, thereby forming a temperature gradient interval from the low temperature evaporation zone 2 to the high temperature synthesis zone 1 from low temperature to high temperature.
  • the region between the low temperature evaporation zone 2 and the high temperature synthesis zone 1 can be heated to form a temperature gradient interval from the low temperature to the high temperature in the region from the low temperature evaporation zone 2 to the high temperature synthesis zone 1.
  • the time during which the selenium in the low temperature evaporation zone 2 starts to be converted into a gaseous state no earlier than the time in which the copper indium gallium is melted may be such that the selenium in the low temperature evaporation zone 2 starts to be converted into a gaseous state no earlier than the time when the copper indium gallium is completely melted.
  • step S4 the temperature is maintained after the high temperature synthesis zone 1 and the low temperature evaporation zone 2 reach their respective set maximum temperatures.
  • the holding time can be calculated according to the quantity of the material, the type of reaction, etc., and the copper indium gallium selenide is fully reacted as much as possible.
  • the high temperature synthesis zone 1 and the low temperature evaporation zone 2 can be kept warm for 6 hours after both the high temperature synthesis zone 1 and the low temperature evaporation zone 2 reach the maximum temperature.
  • the heating rate of the high temperature synthesis zone 1 and the low temperature evaporation zone 2 can simultaneously reach their respective maximum temperatures, and then the insulation is simultaneously started.
  • step S5 the temperature of the high temperature synthesis zone 1 is lowered to not less than the melting temperature of the copper indium gallium selenide alloy and is kept warm, which is advantageous for avoiding the evaporation of selenium from selenium due to excessive temperature in the late stage of the reaction process. Incorporation, which facilitates the formation of compounds.
  • the high temperature synthesis zone 1 can be set to 15 min to 950 ° C to 1000 ° C, and once again for 1.5 h to 2 h.
  • the low temperature evaporation zone 2 can be maintained at 700 ° C to After heat preservation at 750 ° C, all heating devices were turned off to cool the high temperature synthesis zone 1 and the low temperature evaporation zone 2 to less than 100 ° C with the electric furnace, and a CIGS quaternary compound was obtained in the quartz boat of the high temperature synthesis zone 1.
  • the synthesized CIGS compound component was CuIn 0.7 Ga 0.3 Se 2 .
  • the mass of each element is weighed according to the composition CuIn 0.7 Ga 0.3 Se 2.05 in step S2, and the composition of the obtained CIGS compound is CuIn 0.7 Ga 0.3 Se 2 , that is, to obtain the compound CuIn 0.7 Ga 0.3 Se 2 can calculate the molar ratio of each element to be weighed according to the atomic ratio of each element in CuIn 0.7 Ga 0.3 Se 2.05 .
  • a positive temperature gradient from the low temperature evaporation zone 2 to the high temperature synthesis zone 1 can be achieved, in order to ensure the stability of the vapor transport rate, It is possible to control a linear temperature gradient between the low temperature evaporation zone 2 of the quartz tube and the high temperature synthesis zone 1.
  • the copper indium gallium is first heated to a molten state, and the copper indium gallium is first reacted, and then the selenium is heated and sublimated into a gaseous state to form a selenium atmosphere in the vacuum container, thereby inducing copper indium.
  • Gallium is selenized.
  • the present application can completely melt copper indium gallium no later than the time when selenium begins to sublimate. Further, in order to ensure that the selenium vapor can be transported to the high temperature synthesis zone 1 at a stable rate, it is possible to always have a positive temperature gradient from the low temperature evaporation zone 2 to the high temperature synthesis zone 1.
  • the method of preparing the multi-alloy compound of the present embodiment can also be used to prepare other multi-alloy compounds.
  • An embodiment of the present application provides a method of preparing a CIGS ink, and the method may include the following steps:
  • the prepared CIGS compound may be ground into a nanopowder using a zirconia planetary ball mill, but the method of pulverizing the CIGS compound is not limited to the zirconia planetary ball mill, and other methods may be employed as long as the CIGS can be pulverized into nano powder. can.
  • the copper indium gallium selenide compound powder may be mixed with a solvent, a binder, and a dispersing agent to form a mixture; the above mixture is ultrasonically stirred to form a homogeneous mixture.
  • the solvent may be ethanol, methanol or a mixture of the two;
  • the binder may be ethyl cellulose, a cellulose derivative (for example, a cellulose ester derivative) or a mixture of the two;
  • the dispersant may be terpineol, Butanol or a mixture of the two.
  • anhydrous ethanol or other solvent in the mixture formed in the step S20 may be evaporated by a rotary evaporator to obtain a CIGS ink.
  • ethyl cellulose, cellulose derivatives or a mixture of the two may be dissolved in terpineol, tert-butanol or a mixture of the two to form a liquid binder phase, which may be treated with anhydrous ethanol.
  • the viscosity of the binder phase is adjusted to a suitable range to facilitate the uniform distribution of the copper indium gallium selenide alloy.
  • the anhydrous ethanol is evaporated, and finally the powder of the copper indium gallium selenide alloy is uniformly suspended in the above liquid substance. In the middle, a copper indium gallium selenide ink is formed.
  • the method of evaporating anhydrous ethanol can be carried out by using a rotary evaporator. This method does not limit the method for evaporating ethanol in the present application. For example, it is also possible to remove anhydrous ethanol by a step-down evaporation method or to evaporate the mixture by heating. The anhydrous ethanol is removed, and the mixture can be allowed to evaporate naturally at room temperature until anhydrous ethanol.
  • An embodiment of the present application provides a method for preparing a copper indium gallium selenide thin film absorption layer, and the method may include the following steps:
  • the prepared copper indium gallium selenide ink is applied by screen printing on a soda-lime glass or stainless steel substrate coated with Mo, and the coating method can be intermittently coated or continuously coated according to the overall process requirements of the thin film battery.
  • the ink-coated substrate is transferred into a continuous sintering furnace for slurry drying and annealing, the drying temperature may be 150 ° C to 250 ° C, the drying time may be 3 min to 5 min, and the annealing temperature may be 450 ° C to 550 ° C.
  • the annealing time can be from 10 min to 15 min, and finally the CIGS film absorption layer is obtained.
  • the prepared ink may be coated on a soda-lime glass or stainless steel substrate coated with Mo, and then the ink is dried, and the liquid adhesive phase can be evaporated or decomposed during the drying process.
  • the copper indium gallium selenide powder is left on the substrate, and then the copper indium gallium selenide powder is annealed. During the annealing process, the copper indium gallium selenide powder grows to form a thin film absorption layer of copper indium gallium selenide.
  • the preparation ink is made of copper indium gallium selenide alloy, it is not necessary to heat it to the reaction temperature of copper indium gallium selenide during the annealing process, and only needs to be heated to the annealing temperature to grow the powder into a film.
  • the method for preparing the copper indium gallium selenide alloy can accurately control the composition of the copper indium gallium selenide alloy
  • the method for preparing the copper indium gallium selenide thin film absorption layer of the present embodiment adopts the prepared copper indium gallium selenide alloy to prepare the film absorption.
  • the layer can also control the composition of the film absorbing layer, thereby enabling control of the band gap width of the film absorbing layer.
  • An embodiment of the present application provides a method for preparing a copper indium gallium selenide thin film absorption layer, and the method may include the following steps: first performing ink coating on a Mo-coated soda lime glass or a stainless steel substrate by screen printing.
  • the coating method can be intermittently coated or continuously coated according to the overall process requirements of the thin film battery, and is coated as shown in FIG. 2 by using the intermittent coating method.
  • the ink-coated substrate is transferred into a sintering furnace for slurry drying, and the drying temperature may be 150 ° C to 250 ° C, and the drying time may be 2 min to 3 min, as shown in FIG. 3 .
  • the second ink is selected on the substrate to which the dried ink is attached, as shown in FIG.
  • the coating method can be intermittently coated or continuously coated according to the overall process requirements of the thin film battery.
  • the substrate coated with the ink two is transferred into a continuous sintering furnace for ink drying and annealing, the drying temperature may be 150 ° C to 250 ° C, the drying time may be 3 min to 5 min, and the annealing temperature may be 450 ° C to 550 ° C.
  • the annealing time can be from 10 min to 15 min, and finally a CIGS film absorption layer having a double band gap is obtained, as shown in FIG.
  • the ink one and the ink two are inks prepared by using the prepared different components of copper indium gallium selenide alloy.
  • the ink may be an ink prepared by using the prepared CuIn 0.7 Ga 0.3 Se 2
  • the ink 2 may be The obtained ink was prepared using the prepared CuIn 0.85 Ga 0.15 Se 2.05 .
  • the ink used in the above-mentioned film absorbing layer is not limited to the selection of the ink of the present embodiment, and the above-described number of ink printings cannot limit the number of ink printings of the present application.
  • a copper indium gallium selenide alloy of a composition such as CuIn 0.9 Ga 0.1 Se 2 , CuIn 0.8 Ga 0.2 Se 2 , CuIn 0.75 Ga 0.25 Se 2 , but in the printing process.
  • the ratio of the indium gallium content of the ink adjacent to the sunny side of the adjacent two layers of ink may be lower than the ratio of the indium gallium content of the layer of ink away from the sunny side, thereby ensuring that the progressively bandgap light absorbing layer faces from the sunny side to the back side
  • the band gap is gradually narrowed, so that long-wavelength light can be absorbed by the latter absorption layer through the previous absorption layer, so that the light of each wavelength is absorbed layer by layer by the absorption layers arranged in the sun-facing surface. Light absorption rate.
  • a copper indium gallium selenide compound is first prepared, and the steps are as follows:
  • the vacuum container comprises a high temperature synthesis zone 1 and a low temperature evaporation zone 2;
  • a vacuum container is provided, and the vacuum container may be an L-shaped quartz tube.
  • the vacuum container includes a high temperature synthesis zone and a low temperature evaporation zone, and the portions of the vacuum vessel having a certain interval may be respectively used as the high temperature synthesis zone 1 and the low temperature.
  • the two ends of the L-shaped quartz tube may be a high temperature synthesis zone and a low temperature evaporation zone respectively, and a quartz boat containing a copper indium selenium element is placed in the high temperature synthesis zone, and a quartz boat containing a single element of selenium is placed in the low temperature evaporation zone.
  • step S2 Cu, In, Ga, and Se simple substances having a purity greater than 99.999% can be used as a raw material, and the mass of each element can be weighed according to the composition CuIn 0.8 Ga 0.2 Se 2.05 , that is, 1 part by mole of Cu, 0.8 parts by mole. In, 0.2 parts by mole of Ga and 2.05 parts by mole of Se were used to weigh each element.
  • the Se element can be placed in a quartz boat at the short side of the L-shaped quartz tube, and the Cu, In, and Ga elements are placed in a quartz boat at the end of the long side of the L-shaped quartz tube, and the quartz tube is evacuated to below 10 -3 Pa.
  • the L-shaped quartz tube is sealed in the electric furnace, and the quartz boat containing the Se element corresponds to the low temperature zone corresponding to the low-temperature evaporation zone 2 in the electric furnace, and the quartz boat containing the Cu, In and Ga elements is corresponding to the electric furnace.
  • the high temperature zone of the high temperature synthesis zone 1 corresponds to the high temperature zone of the high temperature synthesis zone 1.
  • a linear temperature gradient interval from low temperature to high temperature can be formed by adjusting the temperature control power between the high temperature synthesis zone and the low temperature evaporation zone.
  • the high temperature synthesis zone 1 can be set to rise to 1125 ° C in 88 minutes.
  • the temperature of the high temperature synthesis zone 1 can be raised to 725 ° C.
  • the temperature rise of the low temperature evaporation zone 2 can be started, and the temperature can be set.
  • the low temperature evaporation zone 2 was heated to 575 ° C at 56 min.
  • step S4 after the high temperature synthesis zone 1 reaches 1125 ° C and the low temperature evaporation zone 2 reaches 575 ° C, the temperature of the high temperature synthesis zone and the temperature of the low temperature evaporation zone are maintained for 6 h, respectively.
  • step S5 the high temperature synthesis zone can be set to 15 min to 960 ° C, and the temperature is again maintained for 2 h.
  • the low temperature evaporation zone 2 can be kept at 575 ° C, and then all heating devices are turned off.
  • the high temperature synthesis zone 1 and the low temperature evaporation zone 2 were cooled to below 100 ° C with an electric furnace, and a CIGS quaternary compound was obtained in the quartz boat of the high temperature synthesis zone 1, and the synthesized CIGS compound component was CuIn 0.8 Ga 0.2 Se 2 .
  • a positive temperature gradient from the low temperature evaporation zone 2 to the high temperature synthesis zone 1 can be achieved, in order to ensure the stability of the vapor transport rate, It is possible to control a linear temperature gradient between the low temperature evaporation zone 2 of the quartz tube and the high temperature synthesis zone 1.
  • S20 mixing the CIGS compound powder with a solvent, a binder, and a dispersing agent; the above mixture is ultrasonically stirred to form a homogeneous mixture.
  • the solvent may be anhydrous ethanol; the binder may be ethyl cellulose; and the dispersant may be terpineol.
  • the anhydrous ethanol in the above mixture can be evaporated by a rotary evaporator to obtain a CIGS ink.
  • ethyl cellulose can be dissolved in terpineol to form a liquid binder phase, and the viscosity of the binder phase can be adjusted to a suitable range by using anhydrous ethanol to facilitate uniformity of the copper indium gallium selenide alloy.
  • the anhydrous ethanol is evaporated, and finally the powder of the copper indium gallium selenide alloy is uniformly suspended in the above liquid to form a copper indium gallium selenide ink.
  • the prepared copper indium gallium selenide ink is applied by screen printing on Mo-plated soda-lime glass or stainless steel substrate, and the coating method can be intermittently coated or continuously coated according to the overall process requirements of the thin film battery.
  • the ink-coated substrate is transferred into a continuous sintering furnace for slurry drying and annealing.
  • the drying temperature can be 180 ° C
  • the drying time can be 4 min
  • the annealing temperature can be 500 ° C
  • the annealing time can be 13 min. It has a CIGS film absorbing layer.
  • Another method of preparing a copper indium gallium selenide light absorbing layer using the above copper indium gallium selenide ink may include the following steps:
  • the ink is first coated on the Mo-coated soda-lime glass or the stainless steel substrate by screen printing, and the coating method can be intermittently coated or continuously coated according to the overall process requirements of the thin film battery.
  • the ink-coated substrate is transferred into a sintering furnace for slurry drying, the drying temperature may be 160 ° C, and the drying time may be 3 min.
  • the second ink is selected on the substrate to which the dried ink is attached, and the coating method can be intermittently coated or continuously coated according to the overall process requirements of the thin film battery.
  • the drying temperature can be 200 ° C
  • the drying time can be 4 min
  • the annealing temperature can be 525 ° C
  • the annealing time can be 13 min.
  • a CIGS film absorber layer having a double band gap is obtained.
  • Ink 1 and Ink 2 may be inks prepared by the method for preparing CIGS inks according to the present invention using different compositions of copper indium gallium selenide compounds prepared in this embodiment.
  • the method for preparing the copper indium gallium selenide alloy of the embodiment can accurately control the composition of the copper indium gallium selenide alloy, the composition of the copper indium gallium selenide of each absorption layer can be controlled when preparing the light absorption layer of the progressive band gap. It is also possible to control the band gap width of each of the absorbing layers, thereby enabling the printing method to produce a progressive bandgap light absorbing layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Wood Science & Technology (AREA)
  • Photovoltaic Devices (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

一种制备多元合金化合物的方法,包括以下步骤:将制备多元合金化合物的待熔融材料均匀混合后放置在真空容器的高温合成区,将制备多元合金化合物的待升华材料放置在真空容器的低温蒸发区;将高温合成区的待熔融材料加热至熔融状态以形成熔融材料;将低温蒸发区的待升华材料加热至气态以使已升华的气态材料与所述熔融材料进行反应。还提供了制备得到的多元合金化合物、采用该多元合金化合物制备油墨的方法和制备得到的多元合金化合物油墨、以及采用多元合金化合物油墨制备薄膜吸收层的方法和制备得到的多元合金化合物薄膜吸收层。

Description

多元合金化合物及其油墨、薄膜吸收层和它们的制备方法 技术领域
本申请涉及但不限于一种多元合金化合物的制备方法和制备得到的多元合金化合物、采用该多元合金化合物制备油墨的方法和制备得到的多元合金化合物油墨、以及采用多元合金化合物油墨制备薄膜吸收层的方法和制备得到的多元合金化合物薄膜吸收层。
背景技术
众所周知,CIGS(CuIn xGa (1-x)Se 2,铜铟镓硒薄膜太阳能电池)是具备很大潜力的一种薄膜太阳能电池,目前产业上制备CIGS的主流方法为共蒸发法和磁控溅射法,基于前两种方法的高真空性,无论从设备还是工艺角度,成本都比较高,因此,类似印刷等非真空低成本制备CIGS的技术被业界不断推动。
当前非真空印刷CIGS采用的涂布浆料或胶体的制备主要有两种方法,第一,采用化学合成方法制备CIGS纳米材料并进一步调制成浆料,但是化学合成的CIGS的纯度低,制备的CIGS薄膜少子寿命低,因此目前采用该种吸收层的电池效率比较低;第二,采用四种单质粉末或几种二三元化合物粉末调配涂布原材料,这种浆料在成膜过程中进一步形成四元化合物时的反应难于控制,不充分的反应会造成组分失配,同时,较高的反应温度也可能造成硒组分的大量流失,从而导致制备的CIGS薄膜质量差。
另外,制备渐变带隙的CIGS薄膜有利于提高薄膜光吸收层的转化效率,而当前印刷制备CIGS薄膜局限于CIGS材料的制备方法,多为单一固定组分的CIGS薄膜,不利于高效电池的制备。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对上述问题,本申请提供了一种能够精准控制合金成分的多元合金化合物的制备方法和制备得到的多元合金化合物、采用该多元合金化合物制备油墨的方法和制备得到的多元合金化合物油墨、以及采用多元合金化合物油墨制备薄膜吸收层的方法和制备得到的多元合金化合物薄膜吸收层。
本申请实施例提供了一种制备多元合金化合物的方法,所述方法包括以下步骤:
将制备多元合金化合物的待熔融材料均匀混合后放置在真空容器的高温合成区,将制备多元合金化合物的待升华材料放置在真空容器的低温蒸发区;
将高温合成区的待熔融材料加热至熔融状态以形成熔融材料;
将低温蒸发区的待升华材料加热至气态以使已升华的气态材料与所述熔融材料进行反应。
本申请实施例还提供了一种多元合金化合物,所述多元合金化合物通过如上所述的制备多元合金化合物的方法制备得到。
本申请实施例还提供了一种能够精准控制多元合金化合物各组分的组成比例的多元合金化合物油墨的制备方法。
本申请实施例提供的制备多元合金化合物油墨的方法,包括以下步骤:
将通过如上所述的制备多元合金化合物的方法制备得到的多元合金化合物研磨成粉末;
向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成混合物;
除去所述混合物中的溶剂,得到多元合金化合物油墨。
本申请实施例还提供了一种多元合金化合物油墨,所述多元合金化合物油墨通过如上所述的制备多元合金化合物油墨的方法制备得到。
本申请实施例还提供了一种能够精准控制多元合金化合物成分比例的多元合金化合物薄膜吸收层的制备方法。
本申请实施例提供的制备多元合金化合物薄膜吸收层的制备方法,包括以下步骤:
将通过如上所述的制备多元合金化合物油墨的方法制备得到的多元合金 化合物油墨涂布在衬底表面,对涂布完成的衬底和油墨进行烘干处理,对烘干处理完成的衬底和油墨进行退火处理。
本申请实施例还提供了一种多元合金化合物薄膜吸收层,所述多元合金化合物薄膜吸收层通过如上所述的制备多元合金化合物薄膜吸收层的方法制备得到。
在本申请中,术语“多元合金化合物”定义为由多种单质制成、并且其中一种单质的升华温度低于由其他单质组成的混合物的熔融温度的化合物。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是根据本申请实施例的铜铟镓硒四元化合物制备时的布置示意图;
图2是本申请一实施例中涂布完第一层油墨后的示意图;
图3为本申请一实施例中第一层油墨烘干后的示意图;
图4是本申请一实施例中涂布完第二层油墨后的示意图;
图5是本申请一实施例中退火后形成铜铟镓硒光吸收层薄膜的示意图。
详述
下面结合说明书附图对本申请做进一步的描述。
以下,仅为本申请的较佳实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求所界定的保护范围为准。
本申请实施例提供了一种制备多元合金化合物的方法,所述方法包括以下步骤:
将制备多元合金化合物的待熔融材料均匀混合后放置在真空容器的高温 合成区,将制备多元合金化合物的待升华材料放置在真空容器的低温蒸发区;
将高温合成区的待熔融材料加热至熔融状态以形成熔融材料;
将低温蒸发区的待升华材料加热至气态以使已升华的气态材料与所述熔融材料进行反应。
在示例性实施例中,所述方法还可以包括:始终保持低温蒸发区与高温合成区之间存在正向温度梯度。
在示例性实施例中,所述方法还可以包括:控制低温蒸发区的待升华材料开始转变为气态的时间不早于高温合成区的待熔融材料的熔融的时间。
在示例性实施例中,所述方法还可以包括:当高温合成区和低温蒸发区均加热到各自的设定的温度后将高温合成区和低温蒸发区保温,以使已升华的气态材料与所述熔融材料持续反应;反应完成后将高温合成区和低温蒸发区降温。
在示例性实施例中,所述方法还可以包括:当高温合成区保温设定的时间段后,将高温合成区的温度降至不低于在高温合成区形成的多元合金化合物的熔融温度并再次保温以进行反应,在高温合成区降温并再次保温过程中,低温蒸发区以原保温的温度持续保温,直至反应完成。
在本申请中,真空容器是指在工作状态时,将内部气压抽至10 -1Pa至10 -4Pa的容器。
在示例性实施例中,所述多元合金化合物可以包括铜铟镓硒化合物,制备所述铜铟镓硒化合物的待熔融材料可以包括铜、铟和镓单质,制备所述铜铟镓硒化合物的待升华材料可以包括硒单质。
在示例性实施例中,所述真空容器可以为L型石英管或陶瓷管,所述L型石英管或陶瓷管的两端可以分别为高温合成区和低温蒸发区,高温合成区可以具有配置为能够盛放铜铟镓单质的容器,低温蒸发区可以具有配置为能够盛放硒单质的容器。
在示例性实施例中,高温合成区和低温蒸发区的容器可以为石英舟、坩埚或形成在高温合成区和低温蒸发区中的凹坑。
在示例性实施例中,所述方法可以包括以下步骤:
将铜、铟和镓单质均匀混合后放置在高温合成区的容器内,将硒单质放置在低温蒸发区的容器内;
将高温合成区的铜、铟和镓加热至熔融状态,将低温蒸发区的硒加热至气态状态进行反应。
在示例性实施例中,所述方法还可以包括:
控制低温蒸发区的硒单质开始转变为气态的时间不早于高温合成区的铜铟镓的熔融的时间;
当高温合成区和低温蒸发区均加热到各自的设定温度后,将高温合成区和低温蒸发区保温;
当高温合成区保温设定的时间段后,将高温合成区的温度降至不低于铜铟镓硒化合物的熔融温度并再次保温以进行反应,在高温合成区降温并再次保温过程中,低温蒸发区以原保温的温度持续保温,直至反应完成;反应完成后将高温合成区和低温蒸发区降温至100℃以下;
始终保持低温蒸发区与高温合成区之间存在正向温度梯度。
在示例性实施例中,可以首先将铜铟镓加热至熔融状态,使铜铟镓首先开始反应,然后将硒加热升华为气态,使真空容器中形成硒氛围,从而将铜铟镓进行硒化。为了使铜铟镓在硒化过程中能够均匀硒化,可以使铜铟镓完全熔融的时间不晚于硒开始升华的时间。另外,为了保证硒蒸气能够以稳定的速率向高温合成区输送,可以使从低温蒸发区到高温合成区之间始终具有一个正向的温度梯度。
在示例性实施例中,所述方法还可以包括:
当高温合成区的温度升至700℃至750℃时,开始对低温蒸发区进行升温,从而控制低温蒸发区的硒单质开始转变为气态的时间不早于高温合成区的铜铟镓的熔融的时间;
当高温合成区的温度升至1100℃至1150℃时,开始对高温合成区进行保温;当低温蒸发区的温度升至550℃至600℃后,对低温蒸发区进行保温;
对高温合成区在1100℃至1150℃保温设定的时间段后,将高温合成区降温至950℃至1000℃并再次保温,并且同时使低温蒸发区在550℃至600℃持 续保温,直至反应完成;反应完成后,将高温合成区和低温蒸发区的温度降至100℃以下。
在示例性实施例中,制备所述铜铟镓硒化合物的原料可以为:10摩尔份数铜、7至9摩尔份数铟、1至3摩尔份数镓和大于2摩尔份数的硒。
在示例性实施例中,所述真空容器可以为石英管或陶瓷管。
在示例性实施例中,所述真空容器可以为L型石英管或陶瓷管。
在示例性实施例中,所述L型石英管的两端可以分别为高温合成区和低温蒸发区,高温合成区具有配置为能够盛放铜铟硒单质的容器,低温蒸发区具有配置为能够盛放硒单质的容器,所述容器可以为石英舟、坩埚或形成在高温合成区或低温蒸发区中的凹坑。
本申请实施例还提供了一种多元合金化合物,所述多元合金化合物通过如上所述的制备多元合金化合物的方法制备得到。
本申请实施例还提供了一种能够精准控制多元合金化合物各组分的组成比例的多元合金化合物油墨的制备方法。
本申请实施例提供的制备多元合金化合物油墨的方法,包括以下步骤:采用通过如上所述的制备多元合金化合物的方法制备得到的多元合金化合物制备油墨。
在示例性实施例中,所述方法可以包括以下步骤:
将通过如上所述的制备多元合金化合物的方法制备得到的多元合金化合物研磨成粉末;
向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成混合物;
除去所述混合物中的溶剂,得到多元合金化合物油墨。
在示例性实施例中,除去所述混合物中的溶剂的方式可以为加热蒸发或静置蒸发。
由于上述制备多元合金化合物的方法能够精准地控制多元合金化合物中各组分的含量,因此,采用上述的制备多元合金化合物的方法得到的多元合金化合物制备多元合金化合物油墨也同样可以精准控制油墨中的各组分的含 量。
在示例性实施例中,所述溶剂可以选自乙醇和甲醇中的任意一种或两种,所述分散剂可以选自帖品醇和特丁醇中的任意一种或两种,所述粘结剂可以选自乙基纤维素和纤维素衍生物中的任意一种或更多种。
在示例性实施例中,所述纤维素衍生物可以为纤维素酯类衍生物。
在示例性实施例中,所述加热蒸发的过程可以采用旋转蒸发仪进行。
本申请实施例还提供了一种多元合金化合物油墨,所述多元合金化合物油墨通过如上所述的制备多元合金化合物油墨的方法制备得到。
本申请实施例提供了一种能够精准控制多元合金化合物成分比例的多元合金化合物薄膜吸收层的制备方法。
本申请实施例提供的制备多元合金化合物薄膜吸收层的制备方法,包括以下步骤:采用通过如上所述的制备多元合金化合物油墨的方法制备得到的多元合金化合物油墨制备多元合金化合物薄膜吸收层。
在示例性实施例中,所述方法可以包括以下步骤:
将通过如上所述的制备多元合金化合物油墨的方法制备得到的多元合金化合物油墨涂布在衬底表面,对涂布完成的衬底和油墨进行烘干处理,对烘干处理完成的衬底和油墨进行退火处理。
当本申请的制备多元合金化合物薄膜吸收层的方法制备铜铟镓硒薄膜吸收层时,成膜退火温度低,结晶好,不需要额外的硒化。
由于上述油墨中的多元合金化合物的各组分的组成比例能够精准控制,因此,本申请在采用印刷的方式进行多元合金化合物薄膜吸收层的制备过程中也同样能够精准地控制各组分的组成比例,克服了以往采用印刷的方法制备多元合金化合物薄膜吸收层过程中难以控制组成比例的缺陷。
当多元合金化合物薄膜吸收层为铜铟镓硒薄膜吸收层时,本申请的制备多元合金化合物薄膜吸收层的方法可以包括以下步骤:
将通过如上所述的制备多元合金化合物油墨的方法制备得到的铜铟镓硒油墨在衬底表面涂布至少两层,使相邻两层油墨中靠近向阳面的一层油墨的铟镓含量比值低于远离向阳面的一层油墨的铟镓含量比值;
待每一层油墨涂布完成后进行烘干处理;
待最后一层油墨烘干完成后对各层油墨进行退火处理。
在示例性实施例中,在衬底表面涂布油墨的过程可以包括以下步骤:
在衬底上涂布一层油墨并进行烘干;
在上一层油墨上再涂布一层油墨并进行烘干;
待各层油墨涂布完毕后,将衬底和各层油墨进行退火处理;
在上述步骤中,在上一层油墨上再涂布一层油墨并进行烘干的步骤至少进行一次。
本申请实施例还提供了一种多元合金化合物薄膜吸收层,所述多元合金化合物薄膜吸收层通过如上所述的制备多元合金化合物薄膜吸收层的方法制备得到。
由于多元合金化合物中各组分的含量可控,因此可以制备出具有不同的带隙宽度的多元合金化合物。采用具有不同带隙宽度的多元合金化合物,能够制备出具有渐进带隙的多元合金化合物薄膜吸收层,实现了采用印刷的方式制作渐进带隙的多元合金化合物薄膜吸收层的目的。
本申请一实施例提供一种制备多元合金化合物的方法,以制备铜铟镓硒化合物为例,所述方法可以包括以下步骤:
S1:提供一真空容器,真空容器包括间隔设置的高温合成区1和低温蒸发区2;
S2:将铜、铟和镓单质放置在高温合成区1,将硒单质放置在低温蒸发区2;
S3:将高温合成区1的铜、铟和镓单质加热至熔融状态,将低温蒸发区2的硒单质加热至气态;并使低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
S4:将高温合成区1和低温蒸发区2保温;
S5:将高温合成区1的温度降至不低于铜铟镓硒合金的熔融温度并再次进行保温,然后将高温合成区1和低温蒸发区2降温至100℃以下;
在上述步骤中,可以始终保持低温蒸发区2与高温合成区1之间存在正向温度梯度,即真空容器的温度从低温蒸发区2到高温合成区1是梯度增加的。
在步骤S1中,提供一种真空容器,该真空容器可以为石英管、陶瓷管等采用耐高温材质制备的具有一定刚性的容器。如图1所示,可以将真空容器中具有一定间隔的部分分别作为高温合成区1和低温蒸发区2。当物料放入上述的容器中后,将容器内的气压抽至10 -1Pa或者以下就成为真空容器。在步骤S2中,可以使用纯度大于99.999%的Cu、In、Ga和Se单质为原材料,各单质质量可以按照组分CuIn 0.7Ga 0.3Se 2.05去称配,即按照1摩尔份Cu、0.7摩尔份In、0.3摩尔份Ga以及2.05摩尔份Se去称配各单质。可以将Se单质置于L型石英管短边一端的石英舟内,将Cu、In、Ga单质置于L型石英管长边一端的石英舟内,可以将石英管抽真空至10 -2Pa以下后密封L型石英管,放入电热炉中,盛有Se单质的石英舟可以对应电热炉中的对应低温蒸发区2的低温区,盛有Cu、In和Ga单质的石英舟可以对应电热炉中的对应高温合成区1的高温区。除了L型石英管之外,也可以采用如上所述的反应器形成真空容器,可以将反应器抽真空至10 -1Pa或者以下的其他压力,例如,10 -1Pa、10 -2Pa、10 -3Pa或者10 -4Pa。也可以不采用石英舟盛放物料而采用其他耐高温的容器盛放,例如采用坩埚盛放物料。如果在容器的高温合成区1和低温蒸发区2具有凹坑,可以直接将物料置于凹坑内。除了电热炉,也可以采用其他加热装置对L型石英管进行加热。本实施例的制备多元合金化合物的方法可以在包括真空容器和加热装置的设备中进行,所述真空容器包括高温合成区1、低温蒸发区2和封口装置;
所述高温合成区1和所述低温蒸发区2分别设置在所述真空容器的两端;
所述加热装置间隔设置在所述真空容器的周围,配置为对所述真空容器加热,并形成温度梯度;
所述真空容器具有开口,所述封口装置配置为能够对所述开口进行密封。
高温合成区1和低温蒸发区2分别设置在所述真空容器的两端,使高温合成区1和低温蒸发区2间隔设定的距离,从而可以加热到不同的温度。在满足距离要求的情况下,高温合成区3和低温蒸发区2的位置可以根据需要 进行调整。
所述加热装置可以配置为能够对所述真空容器进行分区加热,使每个区的温度能够被单独控制并形成温度梯度。
所述加热装置可以为电加热线圈,其可以环绕在真空容器外表面,也可以设置在靠近真空容器外表面的位置。
上述铜铟镓硒化合物的成分并不对本实施例的制备的铜铟镓硒化合物的成分形成限定,例如,还可以制备以下组分的铜铟镓硒化合物:CuIn 0.85Ga 0.15Se 2.05,CuIn 0.9Ga 0.1Se 2,CuIn 0.8Ga 0.2Se 2,CuIn 0.75Ga 0.25Se 2;在上述铜铟镓硒化合物的制备过程中,称量时可以按照使铟和镓的摩尔份数之和与铜的摩尔份数基本相等去计算单质铜、铟和镓的质量,例如,可以使铜、铟和镓的摩尔份数之比基本等于期望制备的化合物中的铜、铟和镓的原子个数之比,而硒的摩尔份数可以按照大于铜的摩尔份数的两倍进行计算,例如,可以使硒与铜的摩尔份数之比可以稍大于期望制备的化合物中的硒与铜的原子个数比;例如硒的摩尔份数可以为铜的2.1倍、2.2倍、2.3倍、2.4倍或者2.5倍。可以将过量的硒放置在低温蒸发区2,这样,在整个反应过程中,由于硒是过量的,能够始终保持在硒蒸气的氛围中进行反应。
在步骤S3中,可以通过调整高温合成区和低温蒸发区之间的温控功率,形成从低温到高温的温度梯度区间,例如,可以形成线性温度梯度区间。高温合成区1可以设定85min至90min升温至1100℃至1150℃。当高温合成区1启动升温55min至60min时,高温合成区1的温度可以升至700℃至750℃,此时可以启动对低温蒸发区2升温,可以设定低温蒸发区2在55min至60min升温至550℃至600℃。例如,可以通过单独调整高温合成区1和低温蒸发区2之间的各个区域所对应的加热装置的加热功率,从而使从低温蒸发区2到高温合成区1形成从低温到高温的温度梯度区间。可以对低温蒸发区2与高温合成区1之间的区域进行加热,使从低温蒸发区2到高温合成区1的区域形成从低温到高温的温度梯度区间。
使低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓熔融的时间可以为使低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓完全熔融的时间。
在步骤S4中,待高温合成区1和低温蒸发区2达到各自的设定的最高温度后保持温度。保温时间可以根据物料的数量、反应类型等条件进行计算,尽量保证使铜铟镓硒充分进行反应。例如,可以待高温合成区1和低温蒸发区2都达到最高温度后使高温合成区1和低温蒸发区2都保温6h。可以通过控制高温合成区1和低温蒸发区2的加热速率,使高温合成区1和低温蒸发区2同时达到各自的最高温度,然后同时开始保温。
在步骤S5中,将高温合成区1的温度降至不低于铜铟镓硒合金的熔融温度并进行保温,这样有利于避免反应过程中的后期由于温度过高而导致的硒的挥发大于硒的融入,从而有利于化合物的良好形成。可以将高温合成区1设定为15min降温至950℃至1000℃,再次保温1.5h至2h,当高温合成区1在950℃至1000℃保温时,可以使低温蒸发区2持续在700℃至750℃保温,之后关闭所有加热装置使高温合成区1和低温蒸发区2随电热炉冷却至100℃以下,在高温合成区1的石英舟内得到CIGS四元化合物,合成的CIGS化合物组分为CuIn 0.7Ga 0.3Se 2。本实施例在步骤S2中按照组分CuIn 0.7Ga 0.3Se 2.05去称配各单质的质量,得到的CIGS化合物的组分为CuIn 0.7Ga 0.3Se 2,也就是说若要得到化合物CuIn 0.7Ga 0.3Se 2,可以按照CuIn 0.7Ga 0.3Se 2.05中各元素的原子比去计算待称量的各单质的摩尔比。
为了保证硒蒸气在输运过程中不会凝结在石英管的内壁上,可以使由低温蒸发区2到高温合成区1之间具有正向的温度梯度,为了保证蒸气输运速率的稳定性,可以控制石英管的低温蒸发区2到高温合成区1之间具有线性的温度梯度。
本实施例的铜铟镓硒化合物制备方法中,首先将铜铟镓加热至熔融状态,使铜铟镓首先反应,然后将硒加热升华为气态,使真空容器中形成硒氛围,从而对铜铟镓进行硒化。为了使铜铟镓能够被均匀硒化,本申请可以使铜铟镓完全熔融的时间不晚于硒开始升华的时间。另外,为了保证硒蒸气的能够以稳定的速率向高温合成区1输送,可以使从低温蒸发区2到高温合成区1始终具有一个正向的温度梯度。
除了铜铟镓硒化合物,本实施例的制备多元合金化合物的方法还可以用于制备其他的多元合金化合物。
本申请一实施例提供一种制备CIGS油墨的方法,所述方法可以包括以下步骤:
S10:将制备的铜铟镓硒化合物研磨成粉末;
S20:向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成混合物;
S30:将所述混合物经过加热蒸发或静置挥发,除去溶剂形成CIGS油墨。
在步骤S10中,可以使用氧化锆行星球磨机将制备的CIGS化合物研磨成纳米粉末,但粉碎CIGS化合物的方法并不限于氧化锆行星球磨机,也可以采用其他方式,只要能够将CIGS粉碎成纳米粉末即可。
在步骤S20中,可以将铜铟镓硒化合物粉末与溶剂、粘结剂以及分散剂进行混合形成混合物;将上述的混合物进行超声搅拌形成均匀的混合物。溶剂可以采用乙醇、甲醇或者两者的混合物;粘结剂可以采用乙基纤维素、纤维素衍生物(例如,纤维素酯类衍生物)或者两者的混合物;分散剂可以采用萜品醇、特丁醇或者两者的混合物。
在步骤S30中,可以用旋转蒸发仪蒸发掉步骤S20形成的混合物中的无水乙醇或其他溶剂,从而得到CIGS油墨。在超声搅拌过程中,可以采用乙基纤维素、纤维素衍生物或者两者的混合物溶于萜品醇、特丁醇或者两者的混合物中形成液态的粘合相,可以采用无水乙醇将粘合相的粘度调节至合适的范围,便于铜铟镓硒合金的均匀分布,分布完成后,将其中的无水乙醇蒸发掉,最终铜铟镓硒合金的粉末均匀地悬浮于上述的液态物中,形成铜铟镓硒油墨。
蒸发掉无水乙醇的方法可以采用旋转蒸发仪进行蒸发,该方式并不对本申请中蒸发乙醇的方法形成限制,例如,还可以采用降压蒸发的方法去除无水乙醇,或者对混合物进行加热蒸发掉其中的无水乙醇,甚至可以将混合物置于室温下待无水乙醇自然蒸发。
本申请一实施例提供一种制备铜铟镓硒薄膜吸收层的制备方法,所述方法可以包括以下步骤:
将制备的铜铟镓硒油墨利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上进行涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连 续涂布。将涂布油墨的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度可以为150℃至250℃,烘干时间可以为3min至5min,退火温度可以为450℃至550℃,退火时间可以为10min至15min,最终得到CIGS薄膜吸收层。
在本实施例中,可以将制备的油墨涂布在镀Mo的钠钙玻璃或者不锈钢衬底上,然后对油墨进行烘干,烘干过程中能够将液态的粘合相蒸发掉或者分解掉,而铜铟镓硒粉末则会留在衬底上,然后将铜铟镓硒粉末进行退火,退火的过程中,铜铟镓硒粉末会生长形成铜铟镓硒的薄膜吸收层。由于制备油墨采用的是铜铟镓硒合金,因此,在退火过程中不需要将其加热到铜铟镓硒的反应温度,只需要加热到退火温度使粉末生长成膜。
由于本申请制备铜铟镓硒合金的方法能够精准地控制铜铟镓硒合金的成分,因此,本实施例的制备铜铟镓硒薄膜吸收层的方法采用制备的铜铟镓硒合金制备薄膜吸收层同样可以控制薄膜吸收层的成分,从而能够控制薄膜吸收层的带隙宽度。
本申请一实施例提供一种铜铟镓硒薄膜吸收层的制备方法,所述方法可以包括以下步骤:利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上先进行油墨一的涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布,采用间断涂布方式涂布完成后如图2所示。将涂布油墨一的衬底转移进入烧结炉进行浆料烘干,烘干温度可以为150℃至250℃,烘干时间可以为2min至3min,如图3所示。选用油墨二在附着有烘干的油墨一的衬底上进行二次印刷,如图4所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布油墨二的衬底转移进入连续烧结炉进行油墨烘干和退火,烘干温度可以为150℃至250℃,烘干时间可以为3min至5min,退火温度可以为450℃至550℃,退火时间可以为10min至15min,最终得到具有双带隙的CIGS薄膜吸收层,如图5所示。
在本实施例中,油墨一和油墨二是用制备的不同成分铜铟镓硒合金制备得到的油墨,例如,油墨一可以是用制备的CuIn 0.7Ga 0.3Se 2制备得到的油墨,油墨二可以是用制备的CuIn 0.85Ga 0.15Se 2.05制备得到的油墨。
上述薄膜吸收层时采用的油墨并不对本实施例的油墨选用形成限定,并 且,上述的油墨印刷次数也不能对本申请的油墨印刷次数形成限定。
例如,还可以采用CuIn 0.9Ga 0.1Se 2,CuIn 0.8Ga 0.2Se 2,CuIn 0.75Ga 0.25Se 2等成分的铜铟镓硒合金制备的油墨进行三次或者三次以上的印刷,但是,在印刷过程中可以使相邻两层油墨中靠近向阳面的一层油墨的铟镓含量比值低于远离向阳面的一层油墨的铟镓含量比值,这样可以保证渐进带隙的光吸收层由向阳面向背阳面的带隙逐渐变窄,从而,长波长的光可以通过前一吸收层而被后一吸收层吸收,进而使各个波长的光被由向阳面向背阳面排列的各吸收层逐层吸收,能够提高光吸收率。
在本申请的一实施例中,首先制备铜铟镓硒化合物,步骤如下:
S1:提供一真空容器,真空容器包括间隔设置的高温合成区1和低温蒸发区2;
S2:将铜、铟和镓单质放置在高温合成区1,将硒单质放置在低温蒸发区2;
S3:将高温合成区1的铜、铟和镓单质加热至熔融状态,将低温蒸发区2的硒加热至气态;并使低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
S4:将高温合成区1和低温蒸发区2保温;
S5:将高温合成区1的温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区1和低温蒸发区2降温至100℃以下;
在上述步骤中,可以始终保持低温蒸发区2与高温合成区1之间存在正向温度梯度。
在步骤S1中,提供一真空容器,所述真空容器可以为L型石英管,真空容器包括高温合成区和低温蒸发区,可以将真空容器中具有一定间隔的部分分别作为高温合成区1和低温蒸发区2,所述L型石英管的两端可以分别为高温合成区和低温蒸发区,高温合成区放置盛有铜铟硒单质的石英舟,在低温蒸发区放置盛有硒单质的石英舟;
在步骤S2中,可以使用纯度大于99.999%的Cu、In、Ga和Se单质为原材料,各单质质量可以按照组分CuIn 0.8Ga 0.2Se 2.05去称配,即按照1摩尔份 Cu、0.8摩尔份In、0.2摩尔份Ga以及2.05摩尔份Se去称配各单质。可以将Se单质置于L型石英管短边一端的石英舟内,将Cu、In和Ga单质置于L型石英管长边一端的石英舟内,将石英管抽真空至10 -3Pa以下后密封L型石英管,放入电热炉中,盛有Se单质的石英舟对应电热炉中的对应低温蒸发区2的低温区,盛有Cu、In和Ga单质的石英舟对应电热炉中的对应高温合成区1的高温区。
在步骤在S3中,可以通过调整高温合成区和低温蒸发区之间的温控功率,形成从低温到高温的线性温度梯度区间。高温合成区1可以设定88min升温至1125℃,当高温合成区1启动升温55min时,高温合成区1的温度可以升至725℃,此时可以启动对低温蒸发区2升温,可以设定使低温蒸发区2在56min升温至575℃。
在步骤在S4中,可以待高温合成区1达到1125℃、低温蒸发区2达到575℃后,将高温合成区的温度和低温蒸发区的温度分别保持6h。
在步骤S5中,可以将高温合成区设定为15min降温至960℃,再次保温2h,高温合成区1在960℃保温时,可以使低温蒸发区2持续在575℃保温,之后关闭所有加热装置使高温合成区1和低温蒸发区2随电热炉冷却至100℃以下,在高温合成区1的石英舟内得到CIGS四元化合物,合成的CIGS化合物组分为CuIn 0.8Ga 0.2Se 2
为了保证硒蒸气在输运过程中不会凝结在石英管的内壁上,可以使由低温蒸发区2到高温合成区1之间具有正向的温度梯度,为了保证蒸气输运速率的稳定性,可以控制石英管的低温蒸发区2到高温合成区1之间具有线性的温度梯度。
接着利用上述CIGS四元化合物制备CIGS油墨,可以包括以下步骤:
S10:用氧化锆行星球磨机将制备的CIGS化合物研磨成纳米粉末。
S20:将CIGS化合物粉末与溶剂、粘结剂以及分散剂进行混合;将上述的混合物进行超声搅拌形成均匀的混合物。溶剂可以为无水乙醇;粘结剂可以为乙基纤维素;分散剂可以为萜品醇。
S30:可以用旋转蒸发仪蒸发掉上述混合物中的无水乙醇,从而得到CIGS 油墨。在超声搅拌过程中,可以采用乙基纤维素溶于萜品醇中形成液态的粘合相,可以采用无水乙醇将粘合相的粘度调节至合适的范围,便于铜铟镓硒合金的均匀分布,分布完成后,将其中的无水乙醇蒸发掉,最终铜铟镓硒合金的粉末均匀的悬浮于上述的液态物中,形成铜铟镓硒油墨。
利用上述制备得到的铜铟镓硒油墨制备铜铟镓硒光吸收层的方法,所述方法可以包括以下步骤:
将制备的铜铟镓硒油墨利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上进行涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布油墨的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度可以为180℃,烘干时间可以为4min,退火温度可以为500℃,退火时间可以为13min,最终得到具有CIGS薄膜吸收层。
另一种利用上述铜铟镓硒油墨的制备铜铟镓硒光吸收层的方法,所述方法可以包括以下步骤:
利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上先进行油墨一的涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布油墨一的衬底转移进入烧结炉进行浆料烘干,烘干温度可以为160℃,烘干时间可以为3min。选用油墨二在附着有烘干的油墨一的衬底上进行二次印刷,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布油墨二的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度可以为200℃,烘干时间可以为4min,退火温度可以为525℃,退火时间可以为13min,最终得到具有双带隙的CIGS薄膜吸收层。
油墨一和油墨二可以为采用本实施例制备得到的不同成分的铜铟镓硒化合物按照本实施例中的制备CIGS油墨的方法制备得到的油墨。
由于本实施例的制备铜铟镓硒合金方法能够精准地控制铜铟镓硒合金的成分,因此,在制备渐进带隙的光吸收层时,能够控制各个吸收层的铜铟镓硒的成分,也就能够控制各个吸收层的带隙宽度,从而,使印刷的方法制备渐进带隙的光吸收层能够实现。
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人 员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本申请的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。在本申请中或在任一个引用的专利、引用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。

Claims (17)

  1. 一种制备多元合金化合物的方法,所述方法包括以下步骤:
    将制备多元合金化合物的待熔融材料均匀混合后放置在真空容器的高温合成区,将制备多元合金化合物的待升华材料放置在真空容器的低温蒸发区;
    将高温合成区的待熔融材料加热至熔融状态以形成熔融材料;
    将低温蒸发区的待升华材料加热至气态以使已升华的气态材料与所述熔融材料进行反应。
  2. 如权利要求1所述的制备多元合金化合物的方法,还包括:始终保持低温蒸发区与高温合成区之间存在正向温度梯度。
  3. 如权利要求2所述的制备多元合金化合物的方法,还包括:控制低温蒸发区的待升华材料开始转变为气态的时间不早于高温合成区的待熔融材料的熔融的时间。
  4. 如权利要求3所述的制备多元合金化合物的方法,还包括:当高温合成区和低温蒸发区均加热到各自的设定温度后,将高温合成区和低温蒸发区保温,以使已升华的气态材料与所述熔融材料持续反应;反应完成后将高温合成区和低温蒸发区降温。
  5. 如权利要求4所述的制备多元合金化合物的方法,还包括:当高温合成区保温设定的时间段后,将高温合成区的温度降至不低于在高温合成区形成的多元合金化合物的熔融温度并再次保温以进行反应,在高温合成区降温并再次保温过程中,低温蒸发区以原保温的温度持续保温,直至反应完成。
  6. 如权利要求1至5中任一项所述的制备多元合金化合物的方法,其中,所述多元合金化合物包括铜铟镓硒化合物,制备所述铜铟镓硒化合物的待熔融材料包括铜、铟和镓单质,制备所述铜铟镓硒化合物的待升华材料包括硒单质。
  7. 如权利要求6所述的制备多元合金化合物的方法,其中,所述真空容器为L型石英管或陶瓷管,所述L型石英管或陶瓷管的两端分别为高温合成区和低温蒸发区,高温合成区具有配置为能够盛放铜、铟和镓单质的容器, 低温蒸发区具有配置为能够盛放硒单质的容器;
    高温合成区和低温蒸发区的容器为石英舟、坩埚或形成在高温合成区和低温蒸发区中的凹坑。
  8. 如权利要求7所述的制备多元合金化合物的方法,还包括:
    当高温合成区的温度升至700℃至750℃时,开始对低温蒸发区进行升温,从而控制低温蒸发区的硒单质开始转变为气态的时间不早于高温合成区的铜铟镓的熔融的时间;
    当高温合成区的温度升至1100℃至1150℃时,开始对高温合成区进行保温;当低温蒸发区的温度升至550℃至600℃后,对低温蒸发区进行保温;
    对高温合成区在1100℃至1150℃保温设定的时间段后,将高温合成区降温至950℃至1000℃并再次保温,并且同时使低温蒸发区在550℃至600℃持续保温,直至反应完成;反应完成后,将高温合成区和低温蒸发区的温度降至100℃以下;
    始终保持低温蒸发区与高温合成区之间存在正向温度梯度。
  9. 如权利要求7所述的制备多元合金化合物的方法,其中,制备所述铜铟镓硒化合物的原料为:10摩尔份数铜、7至9摩尔份数铟、1至3摩尔份数镓和大于2摩尔份数硒。
  10. 一种多元合金化合物,所述多元合金化合物通过如权利要求1至9中任一项所述的方法制备得到。
  11. 一种制备多元合金化合物油墨的方法,所述方法包括以下步骤:
    将如权利要求10所述的多元合金化合物研磨成粉末;
    向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成混合物;
    除去所述混合物中的溶剂,得到多元合金化合物油墨。
  12. 如权利要求11所述的制备多元合金化合物油墨的方法,其中,所述溶剂选自乙醇和甲醇中的任意一种或两种,所述分散剂选自帖品醇和特丁醇中的任意一种或两种,所述粘结剂选自乙基纤维素和纤维素衍生物中的任意一种或更多种。
  13. 一种多元合金化合物油墨,所述多元合金化合物油墨通过如权利要求11或12所述的方法制备得到。
  14. 一种制备多元合金化合物薄膜吸收层的方法,所述方法包括以下步骤:将如权利要求13所述的油墨涂布在衬底表面,对涂布完成的衬底和油墨进行烘干处理,对烘干处理完成的衬底和油墨进行退火处理。
  15. 如权利要求14所述的制备多元合金化合物薄膜吸收层的方法,当多元合金化合物薄膜吸收层为铜铟镓硒薄膜吸收层时,所述方法包括以下步骤:
    在衬底表面涂布至少两层油墨,相邻两层油墨中靠近向阳面的一层油墨的铟镓含量比值低于远离向阳面的一层油墨的铟镓含量比值;
    待每一层油墨涂布完成后进行烘干处理;
    待最后一层油墨烘干完成后对各层油墨进行退火处理。
  16. 如权利要求15所述的制备多元合金化合物薄膜吸收层的方法,其中,所述烘干的温度为150℃至250℃,所述烘干的时间为3min至5min,所述退火的温度为450℃至550℃,所述退火的时间为10min至15min。
  17. 一种多元合金化合物薄膜吸收层,所述多元合金化合物薄膜吸收层通过如权利要求14至16中任一项所述的方法制备得到。
PCT/CN2018/106991 2017-11-06 2018-09-21 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法 WO2019085678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711079613.9A CN108039392A (zh) 2017-11-06 2017-11-06 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
CN201711079613.9 2017-11-06

Publications (1)

Publication Number Publication Date
WO2019085678A1 true WO2019085678A1 (zh) 2019-05-09

Family

ID=62093771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106991 WO2019085678A1 (zh) 2017-11-06 2018-09-21 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法

Country Status (8)

Country Link
US (1) US20190140118A1 (zh)
EP (1) EP3479931A1 (zh)
JP (1) JP2019085325A (zh)
KR (1) KR20190051781A (zh)
CN (1) CN108039392A (zh)
AU (1) AU2018236736A1 (zh)
CA (1) CA3018233A1 (zh)
WO (1) WO2019085678A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529012B2 (ja) 2013-10-08 2019-06-12 エイアイ・セラピューティクス・インコーポレーテッド リンパ脈管筋腫症の処置のためのラパマイシン
US20170014341A1 (en) 2014-04-04 2017-01-19 Lam Therapeutics, Inc. An Inhalable Rapamycin Formulation for Treating Age-Related Conditions
CN107249576A (zh) 2014-10-07 2017-10-13 拉姆医疗公司 用于治疗肺高压的可吸入雷帕霉素制剂
CN207398068U (zh) * 2017-11-06 2018-05-22 北京汉能薄膜发电技术有限公司 一种制备铜铟镓硒化合物的装置
CN108039392A (zh) * 2017-11-06 2018-05-15 北京汉能薄膜发电技术有限公司 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
CN114477105B (zh) * 2022-03-30 2023-02-24 中国科学院苏州纳米技术与纳米仿生研究所 二维BiCuSeO纳米片及其制备方法、半导体器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284372A1 (en) * 2010-05-19 2011-11-24 Hitachi Cable, Ltd. Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, METHOD OF MAKING Cu-Ga ALLOY MATERIAL, Cu-In-Ga-Se ALLOY FILM, AND METHOD OF MAKING Cu-In-Ga-Se ALLOY FILM
CN103236472A (zh) * 2013-04-28 2013-08-07 柳州百韧特先进材料有限公司 Cigs薄膜太阳能电池硒化物的制备方法
JP5588757B2 (ja) * 2010-06-21 2014-09-10 株式会社アルバック In−Se合金粉末、In−Se合金焼結体、Ga−Se合金粉末、Ga−Se合金焼結体、In−Ga−Se合金粉末、In−Ga−Se合金焼結体、Cu−In−Ga−Se合金粉末及びCu−In−Ga−Se合金焼結体の製造方法
CN108039392A (zh) * 2017-11-06 2018-05-15 北京汉能薄膜发电技术有限公司 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
CN207398068U (zh) * 2017-11-06 2018-05-22 北京汉能薄膜发电技术有限公司 一种制备铜铟镓硒化合物的装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
CN102071329B (zh) * 2010-11-25 2012-04-25 清远先导材料有限公司 一种铜铟镓硒合金的制备方法
KR101267254B1 (ko) * 2011-08-22 2013-05-23 한국과학기술연구원 박막형 광흡수층의 제조방법 및 이를 이용한 박막 태양전지의 제조방법
CN102983222A (zh) * 2012-12-06 2013-03-20 许昌天地和光能源有限公司 具有梯度带隙分布的吸收层制备方法
CN103088301B (zh) * 2013-01-17 2015-07-01 中国科学院过程工程研究所 一种铜铟镓硒薄膜的硒化处理装置、方法及铜铟镓硒薄膜器件
CN103214901B (zh) * 2013-04-08 2014-11-12 无锡舒玛天科新能源技术有限公司 一种制备铜铟镓硒墨水的方法
CN103572089B (zh) * 2013-11-12 2015-10-28 中国科学院金属研究所 一种铜铟镓硒四元半导体合金的制备方法
CN104810431A (zh) * 2015-03-31 2015-07-29 安徽省嘉信包装印务有限公司 一种丝网印刷工艺制备铜铟镓硒薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284372A1 (en) * 2010-05-19 2011-11-24 Hitachi Cable, Ltd. Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, METHOD OF MAKING Cu-Ga ALLOY MATERIAL, Cu-In-Ga-Se ALLOY FILM, AND METHOD OF MAKING Cu-In-Ga-Se ALLOY FILM
JP5588757B2 (ja) * 2010-06-21 2014-09-10 株式会社アルバック In−Se合金粉末、In−Se合金焼結体、Ga−Se合金粉末、Ga−Se合金焼結体、In−Ga−Se合金粉末、In−Ga−Se合金焼結体、Cu−In−Ga−Se合金粉末及びCu−In−Ga−Se合金焼結体の製造方法
CN103236472A (zh) * 2013-04-28 2013-08-07 柳州百韧特先进材料有限公司 Cigs薄膜太阳能电池硒化物的制备方法
CN108039392A (zh) * 2017-11-06 2018-05-15 北京汉能薄膜发电技术有限公司 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
CN207398068U (zh) * 2017-11-06 2018-05-22 北京汉能薄膜发电技术有限公司 一种制备铜铟镓硒化合物的装置

Also Published As

Publication number Publication date
US20190140118A1 (en) 2019-05-09
CA3018233A1 (en) 2019-05-06
EP3479931A1 (en) 2019-05-08
CN108039392A (zh) 2018-05-15
JP2019085325A (ja) 2019-06-06
KR20190051781A (ko) 2019-05-15
AU2018236736A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2019085678A1 (zh) 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法
US20190311889A1 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
Nagaoka et al. Preparation of Cu2ZnSnS4 single crystals from Sn solutions
CN100511729C (zh) 一种制备Cu2ZnSnS4半导体薄膜太阳能电池吸收层的工艺
Luo et al. The preparation of CuInSe2 films by combustion method and non-vacuum spin-coating process
Ahn et al. Cu (In, Ga) Se2 thin film solar cells from nanoparticle precursors
CN101820018A (zh) 一种CdS薄膜的制备方法
CN207398068U (zh) 一种制备铜铟镓硒化合物的装置
CN101101939A (zh) 一种制备Cu2ZnSnS4薄膜太阳能电池吸收层的工艺
Sun et al. High-sulfur Cu2ZnSn (S, Se) 4 films by sulfurizing as-deposited CZTSe film: The evolutions of phase, crystallinity and S/(S+ Se) ratio
CN112331557A (zh) 一种无机无铅双钙钛矿薄膜、太阳能电池及其制备方法
Fix et al. Preparation of β-CuGaO2 thin films by ion-exchange of β-NaGaO2 film fabricated by a solgel method
CN112251722B (zh) 一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法
Ullah et al. A modified hybrid chemical vapor deposition method for the fabrication of efficient CsPbBr3 perovskite solar cells
CN110808335B (zh) 一种择优取向生长的锡铅二元钙钛矿薄膜的制备方法及应用
CN105742385B (zh) 一种铜铁锌锡硫微米单晶颗粒及其制备方法和在制备太阳能电池方面的应用
JP2004111664A (ja) 化合物半導体薄膜の形成方法
Chen et al. Facile fabrication of Cu2ZnSnS4 thin film based on a novel metal–salt precursor printing route
CN104925760B (zh) CIGS的Na掺杂方法、及其溅射靶材的制作方法
KR101601213B1 (ko) 화합물 반도체의 제조방법 및 이를 통해 제조된 화합물 반도체
Yao et al. Characterization and preparation of Cu2ZnSnS4 thin films by ball-milling, coating and sintering
Chen et al. Preparation of Cu (In, Ga) Se2 films via direct heating the selenium-containing precursors without selenization
Lu et al. Synthesis and Characterization of Silver Indium Diselenide Thin Films Prepared via the Sol‐Gel Assisted Process
CN103280486A (zh) 一种铜铟镓硒薄膜的制备方法
Chen et al. Synthesis of chalcopyrite CuIn1− xGaxSe2 alloys for photovoltaic application by a novel melting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18872018

Country of ref document: EP

Kind code of ref document: A1