CN108039392A - 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法 - Google Patents

铜铟镓硒化合物、油墨及其薄膜吸收层制备方法 Download PDF

Info

Publication number
CN108039392A
CN108039392A CN201711079613.9A CN201711079613A CN108039392A CN 108039392 A CN108039392 A CN 108039392A CN 201711079613 A CN201711079613 A CN 201711079613A CN 108039392 A CN108039392 A CN 108039392A
Authority
CN
China
Prior art keywords
temperature
area
copper
indium
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711079613.9A
Other languages
English (en)
Inventor
陈腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Apollo Ding Rong Solar Technology Co Ltd
Original Assignee
Beijing Hina Film Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hina Film Power Technology Co Ltd filed Critical Beijing Hina Film Power Technology Co Ltd
Priority to CN201711079613.9A priority Critical patent/CN108039392A/zh
Publication of CN108039392A publication Critical patent/CN108039392A/zh
Priority to EP18195750.7A priority patent/EP3479931A1/en
Priority to US16/137,941 priority patent/US20190140118A1/en
Priority to CA3018233A priority patent/CA3018233A1/en
Priority to JP2018177223A priority patent/JP2019085325A/ja
Priority to PCT/CN2018/106991 priority patent/WO2019085678A1/zh
Priority to AU2018236736A priority patent/AU2018236736A1/en
Priority to KR1020180114972A priority patent/KR20190051781A/ko
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00594Gas-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1082Other
    • H01L2924/10821Copper indium gallium selenide, CIGS [Cu[In,Ga]Se2]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Wood Science & Technology (AREA)
  • Photovoltaic Devices (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明公开一种铜铟镓硒化合物、油墨及其薄膜吸收层制备方法,包括以下步骤:提供一真空容器,真空容器包括间隔设置的高温合成区和低温蒸发区;将铜、铟、镓单质放置在高温合成区,将硒单质放置在低温蒸发区;将高温合成区的铜、铟、镓加热至熔融状态,将低温蒸发区的硒加热至气态状态;低温蒸发区的硒开始转变为气态的时间不早于铜铟镓熔融的时间;将高温合成区和低温蒸发区保温;将高温合成区温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区和低温蒸发区降温至100℃以下;在上述步骤中,始终保持低温蒸发区与高温合成区之间存在正向温度梯度。

Description

铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
技术领域
本发明涉及一种铜铟镓硒四元化合物的制备方法、采用铜铟镓硒化合物制备油墨的方法以及采用铜铟镓硒油墨制备薄膜吸收层的方法。
背景技术
众所周知,CIGS薄膜电池是最具潜力的一种薄膜太阳能电池, 目前产业上制备CIGS的主流方法为共蒸发法和磁控溅射法,基于前两种方法的高真空性,无论从设备还是工艺角度,成本都比较高,因此,类似印刷等非真空低成本制备CIGS的技术被业界不断推动。
当前非真空印刷CIGS涂布浆料或胶体的制备主要有两种方法,第一,采用化学合成方法制备CIGS纳米材料并进一步调制成浆料,但是化学合成CIGS纯度低,制备的CIGS薄膜少子寿命低,因此目前采用该种吸收层的电池效率比较低;第二,采用四种单质粉末或几种二三元化合物粉末调配涂布原材料,这种浆料在成膜进一步反应形成四元化合物时反应难于控制,不充分的反应会造成组分失配,同时,较高的反应温度也易于造成硒组分的大量流失,从而制备的CIGS薄膜质量差。
另外,制备渐变带隙的CIGS薄膜有利于提高薄膜光吸收层的转化效率,而当前印刷制备CIGS薄膜局限于CIGS材料的制备方法,多为单一固定组分CIGS,不利于高效电池的制备。
发明内容
针对上述问题,本发明提供一种能够精准控制CIGS合金成分的铜铟镓硒化合物制备方法。
为达到上述目的,本发明提供一种的铜铟镓硒合金制备方法:提供一真空容器,真空容器包括间隔设置的高温合成区和低温蒸发区;制备方法包括以下步骤:
将铜、铟、镓单质放置在高温合成区,将硒单质放置在低温蒸发区;
将高温合成区的铜、铟、镓加热至熔融状态,将低温蒸发区的硒加热至气态状态;低温蒸发区的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
将高温合成区和低温蒸发区保温;
将高温合成区温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区和低温蒸发区降温至100℃以下;
在上述步骤中,始终保持低温蒸发区与高温合成区之间存在正向温度梯度。
在本发明中,真空容器是指在工作状态时,将内部气压抽至10-1~10-4Pa的容器。本发明的铜铟镓硒化合物制备方法中,首先将铜铟镓加热至熔融状态,使铜铟镓首先开始反应,然后将硒加热升华为气态,使真空容器中形成硒氛围,从而将铜铟镓进行硒化。为了使铜铟镓在硒化过程中能够均匀硒化,本发明需要保证铜铟镓的熔融时间不晚于硒开始升华的时间。另外,为了保证硒蒸汽的能够以稳定的速率向高温合成区输送,需要保证低温蒸发区向高温合成区始终具有一个正向的温度梯度。
进一步地,加热过程按照以下步骤进行:
(1)当高温合成区的温度升至700℃-750℃时,开始对低温蒸发区进行升温;当高温合成区的温度升至1100℃-1150℃时,开始对高温合成区进行保温;
(2)当低温蒸发区的温度升至550℃-600℃后,对低温蒸发区进行保温;
降温过程按照以下步骤进行:保温时间结束后,先将高温合成区降温至950-1000℃并进行二次保温;二次保温时间结束后,将高温合成区和低温蒸发区的温度降至100℃以下。
进一步地,所述铜铟镓硒按照摩尔数计算的比例以下: 10份铜、7-9份铟、1-3份镓和大于2份的硒。
进一步地,所述真空容器为L型石英管。
进一步地,所述L型石英管的两端分别为高温合成区和低温蒸发区,高温合成区放置盛有铜铟硒单质的石英舟,在低温蒸发区放置盛有硒单质的石英舟。
针对上述问题,本发明提供一种能够精准控制CIGS比例的铜铟镓硒油墨的制备方法。
为达到上述目的,本发明铜铟镓硒油墨的制备方法,包括以下步骤:
将上述任意一项所述方法制备的铜铟镓硒化合物研磨成粉末状;
向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成混合物;
将混合物经过加热蒸发或静置挥发,除去溶剂形成浆料。
由于上述的铜铟镓硒化合物制备过程中能够精准的控制铜铟镓硒的含量,因此,采用上述的铜铟镓硒化合物制备过程制备的铜铟镓硒化合物制备铜铟镓硒油墨也同样可以精准控制油墨的铜铟镓硒含量。
进一步地,所述溶剂为乙醇和/或甲醇,所述分散剂为帖品醇和/或特丁醇,粘结剂为乙基纤维素和/或纤维素衍生物。
进一步地,所述加热蒸发过程采用旋转蒸发仪进行。
针对上述问题,本发明提供一种能够精准控制CIGS比例的铜铟镓硒薄膜吸收层的制备方法。
为达到上述目的,本发明铜铟镓硒薄膜吸收层的制备方法,包括以下步骤:将上述任意一项所述油墨制备方法制备的油墨涂布在衬底表面,对涂布完成的衬底和油墨进行烘干处理,对烘干处理完成的衬底和油墨进行退火处理。并且采用本发明铜铟镓硒薄膜吸收层的制备方法制备薄膜的过程中,成膜退火温度低,结晶好,不需要额外的硒化.
由于上述油墨中的铜铟镓硒比例能够精准控制,因此,本发明在采用印刷的方式进行铜铟镓硒薄膜的制备过程中也同样能够精准的控制铜铟镓硒比例,克服了以往采用印刷的方法制备铜铟镓硒薄膜过程中难以控制铜铟镓硒比例的缺陷。
针对上述问题,本发明提供一种能够精准控制CIGS比例的铜铟镓硒薄膜吸收层的制备方法。
为达到上述目的,本发明铜铟镓硒薄膜吸收层的制备方法,将上述任意一项所述油墨制备方法制备的油墨在衬底表面涂布至少两层,相邻两层油墨中靠近向阳面的一层油墨的铟镓含量比值低于远离向阳面的一层油墨的铟镓含量比值;
每一层油墨涂布完成后进行烘干处理,最后一层油墨烘干完成后对各层油墨进行退火处理。
进一步地,在衬底表面涂布油墨的过程以下:
1)在衬底上涂布一层油墨并进行烘干;
2)在上一层油墨上再涂布一层油墨并进行烘干;
3)各层油墨涂布完毕后,将衬底和各层油墨进行退火处理;
在上述步骤中,步骤2)至少进行一次。
由于油墨的铜铟镓硒含量可控,实现了制作不同铟镓比的铜铟镓硒化合物的,而不同铟镓比的铜铟镓硒化合物具有不同的带隙宽度,因此,采用不同铟镓比的铜铟镓硒化合物进行逐层印刷,最后再进行退火处理,能够生成具有渐进带隙的铜铟镓硒薄膜吸收层,实现了采用印刷的方式制作渐进带隙的铜铟镓硒薄膜吸收层的目的。
附图说明
图1是本发明实施例1的铜铟镓硒四元化合物制备时的布置示意图;
图中箭头方向为Se蒸汽流动的方向。
图2是本发明实施例4中涂布完第一层油墨后的示意图;
图3为本发明实施例4中第一层油墨烘干后的示意图;
图4是本发明实施例4中涂布完第二层油墨后的示意图;
图5是本发明实施例4中退火后形成铜铟镓硒光吸收层薄膜的示意图。
具体实施方式
下面结合说明书附图对本发明做进一步的描述。
以下,仅为本发明的较佳实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求所界定的保护范围为准。
实施例1
如图1所示,本实施例提供一种铜铟镓硒化合物的制备方法,步骤如下:
S1提供一真空容器,真空容器包括间隔设置的高温合成区1和低温蒸发区2;
S2将铜、铟、镓单质放置在高温合成区1,将硒单质放置在低温蒸发区2;
S3将高温合成区1的铜、铟、镓加热至熔融状态,将低温蒸发区2的硒加热至气态状态;低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
S4将高温合成区1和低温蒸发区2保温;
S5将高温合成区1温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区1和低温蒸发区2降温至100℃以下;
在上述步骤中,始终保持低温蒸发区2与高温合成区1之间存在正向温度梯度。
在S1中,提供一种容器,该容器可以为石英管、陶瓷管等采用耐高温材质制备的具有一定刚性的容器。将真空容器中具有一定间隔的部分分别作为高温合成区1和低温蒸发区2。当物料放入上述的容器中后,将容器内的气压抽至10-1Pa或者以下就成为真空容器。真空容器内的气压可以为10-1Pa、10-2Pa、10-3Pa或者10-4Pa。
在S2中,使用纯度大于5N的Cu、In、Ga和Se单质为原材料,各单质质量按照组分CuIn0.7Ga0.3Se2.05去称配,将Se单质置于L型石英管短端的石英舟内,将Cu、In、Ga单质置于L型石英管长端的石英舟内,将石英管抽真空至10-2Pa以下封管放入电热炉中,盛有Se单质的石英舟对应炉中低温蒸发区2,盛有CuInGa单质的石英舟对应高温合成区1。当然,也可以不采用石英舟盛放物料而采用其他耐高温的容器盛放,例如采用坩埚盛放物料。如果在容器的高温合成区1和低温蒸发区2具有凹坑,可以不采用其他容器盛放物料,直接将物料置于凹坑内。
上述铜铟镓硒化合物的成分并不对本发明的制备的铜铟镓硒化合物的成分形成限定,例如,还可以制备以下组分的铜铟镓硒化合物CuIn0.85Ga0.15Se2.05,CuIn0.9Ga0.1Se2,CuIn0.8Ga0.2Se2,CuIn0.75Ga0.25Se2;在上述铜铟镓硒化合物的制备过程中,称量时应当按照铟和镓的摩尔分数之和应当与铜的摩尔分数基本相等进行计算,而硒的摩尔分数应当大于铜的摩尔分数的两倍进行计算;例如硒的摩尔分数可以为铜的2.1倍、2.2倍、2.3倍、2.4倍或者2.5倍。采用过量的硒放置在低温蒸发区2,这样,在整个反应过程中,由于硒是过量的,能够始终保持在硒蒸汽的氛围中进行反应。
在S3中,调整高温合成区和低温合成区之间的温控功率,形成从低温到高温的线性温度梯度区间。高温合成区1设定85min-90min升温至1100℃-1150℃,当高温合成区1启动升温55min-60min时,高温合成区1的温度升至700℃-750℃,此时启动低温蒸发区2升温,设定55min-60min升温至550℃-600℃。
在S4中,待低温蒸发区2达到最高温度后保持6h。保温时间可以根据物料的数量、反应类型等条件进行计算。
在S5中,将高温合成区设定为15min降温至950-1000℃,再保持1.5h-2h,之后关闭所有温区加热装置随炉冷却至100℃以下,在高温合成区1端石英舟内得到CIGS四元化合物,合成的CIGS化合物组分为CuIn0.7Ga0.3Se2
为了保证硒蒸汽在输运过程中不会凝结在石英管的内壁上,需要保证有低温蒸发区2道高温合成区1之间具有正向的温度梯度,为了保证蒸汽输运速率的稳定性,最好控制整个石英管的低温蒸发区2到高温合成区1之间具有线性的温度梯度。
本实施例的铜铟镓硒化合物制备方法中,首先将铜铟镓加热至熔融状态,使铜铟镓首先开始反应,然后将硒加热升华为气态,使真空容器中形成硒氛围,从而将铜铟镓进行硒化。为了使铜铟镓在硒化过程中能够均匀硒化,本发明需要保证铜铟镓的熔融时间不晚于硒开始升华的时间。另外,为了保证硒蒸汽的能够以稳定的速率向高温合成区1输送,需要保证低温蒸发区2向高温合成区1始终具有一个正向的温度梯度。
实施例2
本实施例提供一种制备CIGS油墨的方法,包括以下步骤:
S1将上述实施例1制备的铜铟镓硒化合物研磨成粉末状;
S2向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成;
S3将混合物经过加热蒸发或静置挥发,除去溶剂形成浆料。
在S1中,可以使用氧化锆行星球磨机将实施例1制备的CIGS化合物研磨成纳米粉末,当然,粉碎CIGS化合物的方法并不限于氧化锆行星球磨机,也可以采用其他方式,只要能够将CIGS粉碎成纳米粉末即可。
在S2中,将铜铟镓硒化合物粉末与溶剂、粘结剂以及分散剂进行混合;将上述的混合物进行搅拌超声形成均匀的混合物。溶剂可以采用乙醇、甲醇或者两者的混合物;粘结剂采用乙基纤维素、纤维素衍生物或者两者的混合物;分散剂采用萜品醇、特丁醇或者两者的混合物。
在S3中,用旋转蒸发仪蒸发掉上述预调浆料中的无水乙醇能够得到CIGS的印刷浆料。在超声搅拌过程中,乙基纤维素、纤维素衍生物或者两者的混合物溶于萜品醇、特丁醇或者两者的混合物中形成液态的粘合相,而无水乙醇则用来将粘合相的粘度调节至合适的范围,便于铜铟镓硒合金的均匀分布,分布完成后,将其中的无水乙醇蒸发掉,最终铜铟镓硒合金的粉末均匀的悬浮于上述的液态物中,形成铜铟镓硒油墨。
蒸发掉无水乙醇的方法是采用旋转蒸发仪进行蒸发,该方式并不对本发明中蒸发乙醇的方法形成限制,例如,还可以采用降压蒸发的方法去除无水乙醇,或者对混合物进行加热蒸发掉其中的无水乙醇,甚至可以将混合物置于室温下待无水乙醇自然蒸发。
实施例3
本实施例提供一种制备铜铟镓硒光吸收层的制备方法,将实施例3制备的铜铟镓硒油墨利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上进行浆料的涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度150℃-250℃,烘干时间3min-5min,退火温度450℃-550℃,退火时间10min-15min,最终得到具有CIGS薄膜吸收层。
在本实施例中,实施例3制备的油墨在镀Mo的钠钙玻璃或者不锈钢衬底上,然后对浆料进行烘干,烘干过程中能够将液态的粘合相蒸发掉或者分解掉,而铜铟镓硒粉末则会留在衬底上,然后将铜铟镓硒粉末进行退火,退火的过程中,铜铟镓硒粉末会生长形成铜铟镓硒的光吸收层,制备油墨采用的是铜铟镓硒合金,因此,在退火过程中不需要将其加热到铜铟镓硒的反应温度,只需要加热到退火温度使粉末生长成膜。
由于本发明的铜铟镓硒合金的制备方法在制备过程中能够精准的控制铜铟镓硒合金的成分,因此,采用本实施例的铜铟镓硒光吸收层的制备方法制备的薄膜同样可以控制光吸收层的成分,从而能够控制光吸收层的带隙宽度。
实施例4
如图2-5所示,本实施例提供一种铜铟镓硒光吸收层的制备方法,利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上先进行浆料一的涂布,如图2所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料一的衬底转移进入烧结炉进行浆料烘干,烘干温度150℃-250℃,烘干时间2min-3min,如图3所示。选用浆料二在附着有烘干的浆料一的衬底上进行二次印刷,如图4所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料二的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度150℃-250℃,烘干时间3min-5min,退火温度450℃-550℃,退火时间10min-15min,最终得到具有双带隙的CIGS薄膜吸收层, 如图5所示。
在本实施例中,浆料一是将实施例2中制备的铜铟镓硒合金按照实施例3的制备方法制备的浆料,浆料二是将实施例1中制备的铜铟镓硒合金按照实施例3的制备方法制备的浆料。
当然,上述浆料中采用的浆料并不对本实施例的浆料选用形成限定,并且,上述的浆料印刷次数也不能对本发明的浆料印刷次数形成限定。
例如,还可以采用CuIn0.9Ga0.1Se2,CuIn0.8Ga0.2Se2,CuIn0.75Ga0.25Se2等成分的铜铟镓硒合金制备的浆料进行三次或者三次以上的印刷,但是,在印刷过程中要始终注意,相邻两层油墨中靠近向阳面的一层油墨的铟镓含量比值低于远离向阳面的一层油墨的铟镓含量比值;这样,能够保证渐进带隙的光吸收层由向阳面向背阳面的带隙逐渐变窄,从而,长波长的光能够通过前一吸收层而被后一吸收层吸收。这样,各个波长的光被由向阳面向背阳面排列的各吸收层逐层吸收,能够提高光吸收率。
实施例5
首先制备铜铟镓硒化合物,步骤如下:
S1提供一真空容器,真空容器包括间隔设置的高温合成区1和低温蒸发区2;
S2将铜、铟、镓单质放置在高温合成区1,将硒单质放置在低温蒸发区2;
S3将高温合成区1的铜、铟、镓加热至熔融状态,将低温蒸发区2的硒加热至气态状态;低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
S4将高温合成区1和低温蒸发区2保温;
S5将高温合成区1温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区1和低温蒸发区2降温至100℃以下;
在上述步骤中,始终保持低温蒸发区2与高温合成区1之间存在正向温度梯度。
S1,提供一真空容器,所述真空容器为L型石英管,真空容器包括高温合成区和低温蒸发区,将真空容器中具有一定间隔的部分分别作为高温合成区1和低温蒸发区2,所述L型石英管的两端分别为高温合成区和低温蒸发区,高温合成区放置盛有铜铟硒单质的石英舟,在低温蒸发区放置盛有硒单质的石英舟;
S2,使用纯度大于5N的Cu、In、Ga和Se单质为原材料,各单质质量按照组分CuIn0.8Ga0.2Se2.05去称配,将Se单质置于L型石英管短端的石英舟内,将Cu、In、Ga单质置于L型石英管长端的石英舟内,将石英管抽真空至10-3Pa以下封管放入电热炉中,盛有Se单质的石英舟对应炉中低温蒸发区2,盛有CuInGa单质的石英舟对应高温合成区1。
S3,调整高温合成区和低温合成区之间的温控功率,形成从低温到高温的线性温度梯度区间。高温合成区1设定88min升温至1125℃,当高温合成区1启动升温55min时,高温合成区1的温度升至725℃,此时启动低温蒸发区2升温,设定56min升温至575℃。
S4,待低温蒸发区2达到575℃后,将高温合成区温度和低温蒸发区温度保持6h。在S5中,将高温合成区设定为15min降温至960℃,再保持2h,之后关闭所有温区加热装置随炉冷却至100℃以下,在高温合成区1端石英舟内得到CIGS四元化合物,合成的CIGS化合物组分为CuIn0.8Ga0.2Se2
为了保证硒蒸汽在输运过程中不会凝结在石英管的内壁上,需要保证有低温蒸发区2道高温合成区1之间具有正向的温度梯度,为了保证蒸汽输运速率的稳定性,最好控制整个石英管的低温蒸发区2到高温合成区1之间具有线性的温度梯度。
接着利用上述CIGS四元化合物制备CIGS油墨,包括以下步骤:
S1,用氧化锆行星球磨机将制备的CIGS化合物研磨成纳米粉末。
S2,将铜铟镓硒化合物粉末与溶剂、粘结剂以及分散剂进行混合;将上述的混合物进行搅拌超声形成均匀的混合物。溶剂为乙醇;粘结剂为乙基纤维素;分散剂为萜品醇。
S3,用旋转蒸发仪蒸发掉上述预调浆料中的无水乙醇能够得到CIGS的印刷浆料。在超声搅拌过程中,乙基纤维素溶于萜品醇中形成液态的粘合相,而无水乙醇则用来将粘合相的粘度调节至合适的范围,便于铜铟镓硒合金的均匀分布,分布完成后,将其中的无水乙醇蒸发掉,最终铜铟镓硒合金的粉末均匀的悬浮于上述的液态物中,形成铜铟镓硒油墨。
利用上述制备得到的铜铟镓硒油墨制备铜铟镓硒光吸收层的制备方法,将制备的铜铟镓硒油墨利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上进行浆料的涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度180℃,烘干时间4min,退火温度500℃,退火时间13min,最终得到具有CIGS薄膜吸收层。
另一种利用上述铜铟镓硒油墨的制备铜铟镓硒光吸收层的方法,利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上先进行浆料一的涂布,如图2所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料一的衬底转移进入烧结炉进行浆料烘干,烘干温度160℃,烘干时间3min,如图3所示。选用浆料二在附着有烘干的浆料一的衬底上进行二次印刷,如图4所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料二的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度200℃,烘干时间4min,退火温度525℃,退火时间13min,最终得到具有双带隙的CIGS薄膜吸收层, 如图5所示。
由于本发明的铜铟镓硒合金制备方法在制备过程中能够精准的控制铜铟镓硒合金的成分,因此,在制备渐进带隙的光吸收层时,能够控制各个吸收层的铜铟镓硒的成分,也就能够控制各个吸收层的带隙宽度,从而,使印刷的方法制备渐进带隙的光吸收层能够实现。
以上实施例仅用于对本发明进行具体说明,其并不对本发明的保护范围起到任何限定作用,本发明的保护范围由权利要求确定。根据本领域的公知技术和本发明所公开的技术方案,可以推导或联想出许多变型方案,所有这些变型方案,也应认为是本发明的保护范围。

Claims (10)

1.一种铜铟镓硒化合物的制备方法,其特征在于:所述制备方法在一真空容器中进行,所述真空容器为L型石英管,真空容器包括高温合成区和低温蒸发区,所述L型石英管的两端分别为高温合成区和低温蒸发区,高温合成区放置盛有铜铟硒单质的石英舟,在低温蒸发区放置盛有硒单质的石英舟;将铜、铟、镓单质均匀混合后放置在高温合成区,将硒单质放置在低温蒸发区; 将高温合成区的铜、铟、镓加热至熔融状态,将低温蒸发区的硒加热至气态状态进行反应。
2.如权利要求1所述的铜铟镓硒化合物的制备方法,其特征在于:
控制低温蒸发区的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
反应过程中将高温合成区和低温蒸发区保温;
反应完成后将高温合成区温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区和低温蒸发区降温至100℃以下;
在上述步骤中,始终保持低温蒸发区与高温合成区之间存在正向温度梯度。
3.如权利要求2所述铜铟镓硒化合物的制备方法,其特征在于:
加热过程按照以下步骤进行:(1)对高温合成区加热,当高温合成区的温度升至700℃-750℃时,开始对低温蒸发区进行升温; (2)当高温合成区的温度升至1100℃-1150℃时,开始对高温合成区进行保温;当低温蒸发区的温度升至550℃-600℃后,对低温蒸发区进行保温;
降温过程按照以下步骤进行:保温时间结束后,先将高温合成区降温至950-1000℃并进行二次保温;二次保温时间结束后,将高温合成区和低温蒸发区的温度降至100℃以下。
4.如权利要求1所述铜铟镓硒化合物的制备方法,其特征在于:所述铜铟镓硒按照摩尔份数计算的比例如下: 10份铜、7-9份铟、1-3份镓和大于2份的硒。
5.一种铜铟镓硒油墨的制备方法,其特征在于:包括以下步骤:
将权利要求1-4任意一项所述方法制备的铜铟镓硒化合物研磨成粉末状;
向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成;
将混合物经过加热蒸发或静置挥发,除去溶剂形成浆料。
6.如权利要求5所述铜铟镓硒薄膜油墨的制备方法,其特征在于:所述溶剂为乙醇和/或甲醇,所述分散剂为帖品醇和/或特丁醇,粘结剂为乙基纤维素和/或纤维素衍生物。
7.如权利要求6所述铜铟镓硒油墨的制备方法,其特征在于:所述加热蒸发过程采用旋转蒸发仪进行。
8.一种铜铟镓硒薄膜吸收层的制备方法,其特征在于:将权利要求6-7任意一项所述的方法制备的油墨涂布在衬底表面,对涂布完成的衬底和油墨进行烘干处理,对烘干处理完成的衬底和油墨进行退火处理。
9.一种铜铟镓硒薄膜吸收层的制备方法,其特征在于:将权利要求6-7任意一项所述的方法制备的油墨在衬底表面涂布至少两层,相邻两层油墨中靠近向阳面的一层油墨的铟镓含量比值低于远离向阳面的一层油墨的铟镓含量比值;
每一层油墨涂布完成后进行烘干处理,最后一层油墨烘干完成后对各层油墨进行退火处理。
10.如权利要求8或9所述的铜铟镓硒薄膜吸收层的制备方法,其特征在于:烘干温度150℃-250℃,烘干时间3min-5min,退火温度450℃-550℃,退火时间10min-15min。
CN201711079613.9A 2017-11-06 2017-11-06 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法 Pending CN108039392A (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201711079613.9A CN108039392A (zh) 2017-11-06 2017-11-06 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
EP18195750.7A EP3479931A1 (en) 2017-11-06 2018-09-20 Multi-element alloy compound, ink and film absorption layer thereof, and methods for preparing the same
US16/137,941 US20190140118A1 (en) 2017-11-06 2018-09-21 Multi-Element Alloy Compound, Ink and Film Absorption Layer Thereof, and Methods for Preparing the Same
CA3018233A CA3018233A1 (en) 2017-11-06 2018-09-21 Multi-element alloy compound, ink and film absorption layer thereof, and methods for preparing the same
JP2018177223A JP2019085325A (ja) 2017-11-06 2018-09-21 多元合金化合物及びそのインク、薄膜吸収層及びそれらの製造方法
PCT/CN2018/106991 WO2019085678A1 (zh) 2017-11-06 2018-09-21 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法
AU2018236736A AU2018236736A1 (en) 2017-11-06 2018-09-25 Multi-element alloy compound, ink and film absorption layer thereof, and methods for preparing the same
KR1020180114972A KR20190051781A (ko) 2017-11-06 2018-09-27 다성분 합금 화합물 및 그 잉크, 박막 흡수층과 이들의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711079613.9A CN108039392A (zh) 2017-11-06 2017-11-06 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法

Publications (1)

Publication Number Publication Date
CN108039392A true CN108039392A (zh) 2018-05-15

Family

ID=62093771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711079613.9A Pending CN108039392A (zh) 2017-11-06 2017-11-06 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法

Country Status (8)

Country Link
US (1) US20190140118A1 (zh)
EP (1) EP3479931A1 (zh)
JP (1) JP2019085325A (zh)
KR (1) KR20190051781A (zh)
CN (1) CN108039392A (zh)
AU (1) AU2018236736A1 (zh)
CA (1) CA3018233A1 (zh)
WO (1) WO2019085678A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085678A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法
WO2019085679A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 一种制备多元合金化合物的装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113768881A (zh) 2013-10-08 2021-12-10 人工智能治疗公司 用于治疗淋巴管平滑肌瘤病的雷帕霉素
RU2718583C2 (ru) 2014-04-04 2020-04-08 ЭйАй ТЕРАПЬЮТИКС, ИНК. Рапамицин-содержащая композиция, вводимая путем ингаляции для лечения возрастных заболеваний
WO2016057712A1 (en) 2014-10-07 2016-04-14 Lam Therapeutics, Inc. An inhalable rapamycin formulation for the treatment of pulmonary hypertension
CN114477105B (zh) * 2022-03-30 2023-02-24 中国科学院苏州纳米技术与纳米仿生研究所 二维BiCuSeO纳米片及其制备方法、半导体器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071329A (zh) * 2010-11-25 2011-05-25 广东先导稀有材料股份有限公司 一种铜铟镓硒合金的制备方法
CN102983222A (zh) * 2012-12-06 2013-03-20 许昌天地和光能源有限公司 具有梯度带隙分布的吸收层制备方法
CN103088301A (zh) * 2013-01-17 2013-05-08 中国科学院过程工程研究所 一种铜铟镓硒薄膜的硒化处理装置、方法及铜铟镓硒薄膜器件
CN103572089A (zh) * 2013-11-12 2014-02-12 中国科学院金属研究所 一种铜铟镓硒四元半导体合金的制备方法
CN104810431A (zh) * 2015-03-31 2015-07-29 安徽省嘉信包装印务有限公司 一种丝网印刷工艺制备铜铟镓硒薄膜的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563348B2 (en) * 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
JP2011241452A (ja) * 2010-05-19 2011-12-01 Hitachi Cable Ltd Cu−Ga合金材、スパッタリングターゲット、及びCu−Ga合金材の製造方法
JP5588757B2 (ja) * 2010-06-21 2014-09-10 株式会社アルバック In−Se合金粉末、In−Se合金焼結体、Ga−Se合金粉末、Ga−Se合金焼結体、In−Ga−Se合金粉末、In−Ga−Se合金焼結体、Cu−In−Ga−Se合金粉末及びCu−In−Ga−Se合金焼結体の製造方法
KR101267254B1 (ko) * 2011-08-22 2013-05-23 한국과학기술연구원 박막형 광흡수층의 제조방법 및 이를 이용한 박막 태양전지의 제조방법
CN103214901B (zh) * 2013-04-08 2014-11-12 无锡舒玛天科新能源技术有限公司 一种制备铜铟镓硒墨水的方法
CN103236472B (zh) * 2013-04-28 2015-09-30 柳州百韧特先进材料有限公司 Cigs薄膜太阳能电池硒化物的制备方法
CN108039392A (zh) * 2017-11-06 2018-05-15 北京汉能薄膜发电技术有限公司 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
CN207398068U (zh) * 2017-11-06 2018-05-22 北京汉能薄膜发电技术有限公司 一种制备铜铟镓硒化合物的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071329A (zh) * 2010-11-25 2011-05-25 广东先导稀有材料股份有限公司 一种铜铟镓硒合金的制备方法
CN102983222A (zh) * 2012-12-06 2013-03-20 许昌天地和光能源有限公司 具有梯度带隙分布的吸收层制备方法
CN103088301A (zh) * 2013-01-17 2013-05-08 中国科学院过程工程研究所 一种铜铟镓硒薄膜的硒化处理装置、方法及铜铟镓硒薄膜器件
CN103572089A (zh) * 2013-11-12 2014-02-12 中国科学院金属研究所 一种铜铟镓硒四元半导体合金的制备方法
CN104810431A (zh) * 2015-03-31 2015-07-29 安徽省嘉信包装印务有限公司 一种丝网印刷工艺制备铜铟镓硒薄膜的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085678A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法
WO2019085679A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 一种制备多元合金化合物的装置

Also Published As

Publication number Publication date
WO2019085678A1 (zh) 2019-05-09
JP2019085325A (ja) 2019-06-06
EP3479931A1 (en) 2019-05-08
AU2018236736A1 (en) 2019-05-23
CA3018233A1 (en) 2019-05-06
KR20190051781A (ko) 2019-05-15
US20190140118A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
CN108039392A (zh) 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
US9614118B2 (en) Method and apparatus for depositing copper-indium-gallium selenide (CuInGaSe2-cigs) thin films and other materials on a substrate
CN101459200B (zh) 柔性铜铟镓硒薄膜太阳电池吸收层的制备方法
CN207398068U (zh) 一种制备铜铟镓硒化合物的装置
CN102498576A (zh) 由平衡前体形成的太阳能电池吸收层
US8323408B2 (en) Methods and apparatus to provide group VIA materials to reactors for group IBIIIAVIA film formation
CN102712996A (zh) 溅射靶、化合物半导体薄膜、具有化合物半导体薄膜的太阳能电池以及化合物半导体薄膜的制造方法
US20090148669A1 (en) Methods structures and apparatus to provide group via and ia materials for solar cell absorber formation
CN103824896A (zh) 从金属间纳米薄片颗粒的半导体前体层的高生产量印刷
Lu et al. Microemulsion-mediated solvothermal synthesis of copper indium diselenide powders
Ahn et al. Cu (In, Ga) Se2 thin film solar cells from nanoparticle precursors
Nagaoka et al. Growth of Cu2ZnSnS4 single crystal by traveling heater method
Sun et al. High-sulfur Cu2ZnSn (S, Se) 4 films by sulfurizing as-deposited CZTSe film: The evolutions of phase, crystallinity and S/(S+ Se) ratio
CN105070784A (zh) 一种全新的低成本高效率cigs电池吸收层制备工艺
Atasoy et al. Cu (In, Ga)(Se, Te) 2 films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation
CN105742385B (zh) 一种铜铁锌锡硫微米单晶颗粒及其制备方法和在制备太阳能电池方面的应用
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
Pisarkiewicz et al. Vacuum selenization of metallic multilayers for CIS solar cells
JP2011091228A (ja) 光導変換半導体層の製造方法
CN210956716U (zh) 一种持续提供活性硒的装置
KR101601213B1 (ko) 화합물 반도체의 제조방법 및 이를 통해 제조된 화합물 반도체
CN109402573B (zh) 一种大尺寸基板蒸镀装置及利用该蒸镀装置制备CdTe太阳能镀膜的方法
CN104925760A (zh) CIGS的Na掺杂方法、及其溅射靶材的制作方法
Casteleyn et al. Growth studies of CuInSe/sub 2/using Cu-Se fluxes
CN105118878B (zh) Cigs的锑化合物掺杂方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180719

Address after: 100176 Beijing Daxing District Beijing economic and Technological Development Zone Rongchang East Street 7 hospital 6 Building 3001 room.

Applicant after: BEIJING BOYANG DINGRONG PHOTOVOLTAIC TECHNOLOGY CO., LTD.

Address before: No. 0-A, Chaoyang District, Beijing, Beijing

Applicant before: Beijing hina film Power Technology Co. Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20180515

RJ01 Rejection of invention patent application after publication