WO2019083174A1 - 이차전지용 라미네이션 장치 및 방법 - Google Patents

이차전지용 라미네이션 장치 및 방법

Info

Publication number
WO2019083174A1
WO2019083174A1 PCT/KR2018/011306 KR2018011306W WO2019083174A1 WO 2019083174 A1 WO2019083174 A1 WO 2019083174A1 KR 2018011306 W KR2018011306 W KR 2018011306W WO 2019083174 A1 WO2019083174 A1 WO 2019083174A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
heating
heating member
supporting
supported
Prior art date
Application number
PCT/KR2018/011306
Other languages
English (en)
French (fr)
Inventor
고준상
이관보
김재홍
이수호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880005532.0A priority Critical patent/CN110121810B/zh
Priority to US16/476,726 priority patent/US11563232B2/en
Priority to EP18870526.3A priority patent/EP3557675B1/en
Publication of WO2019083174A1 publication Critical patent/WO2019083174A1/ko
Priority to US18/078,761 priority patent/US20230109577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lamination apparatus and method for a secondary battery, and more particularly, to a lamination apparatus and method for a secondary battery, in which the electrode assembly and the heating member are separated during stoppage of the lamination apparatus, thereby preventing the electrode assembly from being heated, And more particularly, to a lamination apparatus and method for a secondary battery.
  • a secondary battery is a battery capable of being charged and discharged unlike a primary battery which can not be charged, and is widely used in electronic devices such as mobile phones, notebook computers, camcorders, and electric vehicles.
  • the secondary battery includes an electrode assembly having an electrode tab, an electrode lead coupled to the electrode tab, and a case accommodating the electrode assembly with the tip of the electrode lead drawn out to the outside, Separating films alternately stacked, or a structure in which a plurality of the basic unit bodies are stacked.
  • the electrode assembly performs a lamination process to increase the bonding strength between the electrode and the separator, and a lamination apparatus is used in the lamination process.
  • the lamination apparatus includes a transfer unit for transferring the electrode assembly in which the electrode and the separator are alternately stacked, a heating unit for heating the transferred electrode assembly, and a pressing unit for rolling the heated electrode assembly to increase the adhesion.
  • the heating unit continuously heats one electrode assembly, and accordingly, the electrode assembly deforms to cause defective products.
  • the lamination apparatus cuts off power supplied to the heating unit when the feeding unit stops, thereby preventing the heating unit from heating the electrode assembly while the temperature of the heating unit is lowered, Thereby preventing deformation of the electrode assembly and defective products.
  • the lamination apparatus takes a long time to normalize the temperature of the heating unit when the transfer unit is restarted, and thus the efficiency and continuity of the work are greatly reduced.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide a lamination apparatus and a method of manufacturing the same, in which a heating member for heating an electrode assembly is moved, Thereby preventing the electrode assembly from being heated by the heating member. As a result, deformation and defects of the electrode assembly can be prevented.
  • a lamination apparatus for a secondary battery is for thermally bonding an electrode assembly in which electrodes and a separator are alternately stacked, the transfer member for transferring the electrode assembly; A supporting member for supporting an upper surface and a lower surface of the electrode assembly conveyed by the conveying member, respectively; A heating member provided outside the support member for heating the electrode assembly supported by the support member; And a moving member for moving the heating member in a direction away from the electrode assembly.
  • the moving member may move the heating member in a direction away from the electrode assembly when the conveying member is stopped to prevent the electrode assembly from being heated by the heating member.
  • the moving member can return the heating member to the home position when re-moving the conveying member to reheat the electrode assembly.
  • the heating member can maintain the heat capacity even when the heating member moves by the moving member.
  • the supporting member may support the top and bottom surfaces of the electrode assembly, respectively, to prevent tilting of the electrode assembly, even if the heating member moves.
  • the support member may include a metal plate having thermal conductivity.
  • the support member may further include a heat-resistant plate provided on an inner surface of the metal plate on which the electrode assembly is supported.
  • the supporting member may include a heat-resistant plate supported by the electrode assembly, and a metal plate provided on an outer surface of the heat-resistant plate, on which the electrode assembly is not supported, to increase the strength of the heat-resistant plate.
  • a lamination method for a secondary battery includes a transfer step (S10) of transferring an electrode assembly through a transfer member; A supporting step (S20) of supporting the upper surface and the lower surface of the electrode assembly transferred by the conveying member with supporting members, respectively; A heating step (S30) for heating the electrode assembly supported by the supporting member via a heating member provided outside the supporting member; And a joining step (S40) of rolling and joining the electrode assembly heated by the heating member with a rolling member.
  • the heating member is moved in a direction away from the electrode assembly when the feeding member is stopped, thereby preventing the electrode assembly from being heated by the heating member And may further include a step (S35).
  • a lamination apparatus for a secondary battery is characterized in that it includes a transfer member, a supporting member, a heating member and a moving member, and by this feature, the heating member and the electrode assembly can be separated from each other, It is possible to prevent the electrode assembly from being heated, and as a result, deformation and defects of the electrode assembly can be prevented.
  • the moving member of the secondary battery lamination apparatus is characterized in moving the heating member in a direction away from the electrode assembly when the feeding member stops, and this feature prevents the heat capacity of the heating member from being transmitted to the electrode assembly It is possible to prevent deformation and defects of the electrode assembly.
  • the moving member of the lamination device for a secondary battery is characterized in that the heating member is brought into close contact with the electrode assembly when the feeding member is restarted, and this feature can reheat the electrode assembly, .
  • the heating member of the lamination apparatus for a secondary battery is characterized in that the heating capacity is maintained as it is moved by the moving member, and the heating member can reheat the electrode assembly without any waiting time, The continuity of the work can be increased.
  • the supporting member of the lamination device for a secondary battery is characterized in that both sides of the electrode assembly are supported, respectively, even if the heating member moves. This makes it possible to prevent the electrode included in the electrode assembly from tilting, It is possible to prevent the occurrence of defective assembly.
  • the supporting member of the lamination device for a secondary battery includes a metal plate having thermal conductivity.
  • the heat source transferred from the heating member can be directly transferred to the electrode assembly and heated.
  • the supporting member of the lamination apparatus for a secondary battery is characterized by further comprising a heat-resistant plate on the inner surface of the metal plate, and in particular, the heat-resistant plate is coated or adhered to the metal plate in film form. According to this aspect, it is possible to prevent the top and bottom surfaces of the electrode assembly supported by the support member from being damaged. As a result, it is possible to greatly prevent the occurrence of defects in the electrode assembly.
  • FIG. 1 is a perspective view schematically showing a lamination apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a side view showing a supporting member, a heating member, and a moving member in operation of the lamination apparatus according to the first embodiment of the present invention.
  • FIG 3 is a side view showing a supporting member, a heating member, and a moving member at the time of stopping the laminating apparatus according to the first embodiment of the present invention.
  • FIG 4 is a perspective view showing a supporting member of the lamination apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a lamination method according to a first embodiment of the present invention.
  • FIG. 6 is a perspective view showing a supporting member of a lamination apparatus according to a second embodiment of the present invention.
  • the lamination apparatus is for thermally bonding an electrode assembly in which electrodes and a separator are alternately stacked.
  • the lamination apparatus includes a transfer member 110 for transferring the electrode assembly 10
  • a support member 120 for supporting an uppermost surface and an uppermost surface of the electrode assembly 10 conveyed by the conveying member 110 and an electrode assembly 10 supported by the support member 120
  • a moving member 140 for moving the heating member 130 in a direction away from the electrode assembly 10.
  • the transfer member 110 transfers the electrode assembly 10, in which the electrodes and the separator are alternately stacked, to the rolling member 150 via the heating member 130.
  • the conveying member 110 is provided with a conveying roller or a conveyor belt to convey the electrode assembly at a predetermined time interval.
  • the transfer member 110 may further include an electrode transfer unit for transferring the electrode and the separation membrane, and a separation membrane transfer unit.
  • the electrode transfer unit may include a first electrode transfer unit 111 for transferring the first electrode 11, And a second electrode transfer unit 113 for transferring the two electrodes 13.
  • the separation membrane transfer unit includes a first separation membrane transfer unit 112 for transferring the first separation membrane 12 and a second electrode transfer unit 112 for transferring the second separation membrane 14, And a second separation membrane feeder 114.
  • the transfer member 110 may be formed by sequentially stacking the first electrode 11, the first separator 12, the second electrode 13, and the second separator 14, which are transferred through the electrode transfer unit and the separator transfer unit, And the electrode assembly 10 thus manufactured is transferred to the rolling member 150 through the heating member 130.
  • the transfer member 110 includes a first electrode 11 transferred by the first electrode transfer unit 111 and a second electrode 13 transferred by the second electrode transfer unit 113 to a predetermined size And a first cutter 115 which cuts the first cutter 115.
  • the feeder member 110 further includes a second cutter 116 for cutting the electrode assembly 10 bonded through the rolled member 150 to a predetermined size, The separator between the corresponding electrodes included in the electrode assembly 10 is cut, thereby obtaining the electrode assembly 10 of a predetermined size.
  • the support member 120 supports the electrode assembly 10 transported by the transporting member 110 and has a rectangular plate shape and is supported on the upper and lower surfaces of the electrode assembly 10 . At this time, the support member 120 can press the electrode assembly 10 in a range that does not interfere with the conveyance of the electrode assembly 10 conveyed by the conveyance member 110, The tilting of the electrode assembly 10 carried by the electrode assembly 10 can be greatly prevented.
  • the support member 120 may include a metal plate 121 having a thermal conductivity, so that the support member 120 is conveyed by the heating member 130 Can be transferred to the electrode assembly 10 as it is, and as a result, the electrode assembly 10 can be effectively heated. That is, even if the supporting member 120 is positioned between the electrode assembly 10 and the heating member 130, the electrode assembly 10 can be stably heated.
  • the metal plate 121 has a thickness of 2 mm to 10 mm, and may have a thickness of 3 mm to 5 mm. That is, when the thickness of the metal plate 121 is 2 mm or less, the heat capacity of the heating member 130 can be transmitted to the electrode assembly 10 without loss, The problem of warping can be solved. However, the heat capacity of the heating member 130 may be lost, so that the electrode assembly 10 can not be stably heated.
  • the metal plate 121 may have an opening 121a formed on an outer surface of the electrode assembly 10 that does not face the electrode assembly 10 and may support the electrode assembly 10 through the opening 121a.
  • the heat capacity of the heating member 130 can be transmitted to the electrode assembly 10 without loss of the metal plate 121 while the thickness of the metal plate 121 is reduced.
  • the thickness of the rim of the light-shielding film is formed to be large, and deformation can be prevented.
  • the metal plate 121 may be formed in a rectangular shape so that the electrode assembly 10 is stably supported and the heat capacity of the heating member is transferred to the electrode assembly 10 as it is, ) Can be stably heated.
  • the support member 120 further includes a heat-resistant plate 122 on the inner surface of the metal plate 121 on which the electrode assembly 10 is supported, and the electrode assembly 10 is mounted on the heat- It is possible to prevent the electrode assembly 10 from being damaged.
  • the heat-resistant plate 122 is coated or adhered to the inner surface of the metal plate 121 in the form of a film, thereby improving the convenience and efficiency of use.
  • the area of the support member 120 is larger than the area of the electrode assembly 10 so that the upper or lower surface of the electrode assembly 10 can be stably supported.
  • the heating member 130 is provided outside the support member 120 and heats the electrode assembly 10 supported by the support member 120.
  • the heating member 130 is provided in close contact with the outer side of the support member 120, so that the heat capacity of the heating member 130 can be transmitted to the electrode assembly 10 more stably.
  • the heating member 130 may be a heating device that generates heat by a power source supplied from the outside.
  • the moving member 140 is for separating the heating member and the electrode assembly from the electrode assembly so that the heat source of the heating member is not transmitted to the electrode assembly. And moves in a direction away from the electrode assembly 10. 2 and 3, the moving member 140 moves the heating member 130 in the upper and lower directions away from the electrode assembly 10, respectively, so that the moving member 140 The heat source of the heating member 130 is prevented or minimized from being transmitted to the electrode assembly 10 to prevent the electrode assembly 10 from being heated by the heating member 130.
  • the moving member 140 moves the heating member 130 in a direction away from the electrode assembly 10 when the feeding member 110 stops, so that the heating member 130 To prevent the electrode assembly 10 from being heated, thereby preventing the electrode assembly 10 from being deformed and defective.
  • the heating member 130 can prevent the electrode assembly 10 from being heated even if the heat source is maintained.
  • the support member 120 supports the electrode assembly 10 even when the heating member 130 moves, thereby preventing the electrodes included in the electrode assembly 10 from being tilted between the separators.
  • the moving member 140 returns the heating member 130 to the original position when the feeding member 110 is moved again so that the waiting time can reheat the electrode assembly 10, The continuity and efficiency of the system can be improved.
  • the rolling members 150 are provided in a pair and roll the upper and lower surfaces of the electrode assembly 10 heated by the heating member 130 so that the electrodes included in the electrode assembly 10 and the separator So that the bonding force can be increased.
  • the lamination apparatus is characterized in that the heating member 130 is moved in a direction away from the electrode assembly 10 through the moving member 140 when the feeding member 110 stops Such a feature can prevent the electrode assembly 10 from being heated by the heating member 130, and as a result, deformation and defects of the electrode assembly can be prevented.
  • the heat capacity of the heating member can be maintained as it is. Accordingly, when the heating member is returned to the original position by the moving member 140 when the feeding member is restarted, the electrode assembly can be reheated without any waiting time, The resulting work can be made more continuous and more efficient.
  • the lamination method according to the first embodiment of the present invention includes a feeding step S10 for feeding the electrode assembly 10 through the feeding member 110, a feeding step S10 for feeding the electrode assembly 10 through the feeding member 110, A supporting step S20 of supporting the top and bottom surfaces of the transferred electrode assembly 10 by the supporting member 120 and a supporting step 120 of supporting the electrode assembly 10 through a heating member 130 provided outside the supporting member 120, A heating step S30 for heating the electrode assembly 10 supported by the heating member 130 and a bonding step S40 for rolling and joining the electrode assembly 10 heated by the heating member 130 to the rolling member 150, .
  • the transfer step S10 transfers the electrode assembly 10 through the heating member 130 to the rolling member 150 through the transfer member 110.
  • the transfer unit 110 further includes an electrode transfer unit and a separation membrane transfer unit for transferring the electrodes and the separation films alternately.
  • the electrode transfer unit includes a first electrode transfer unit 111 for transferring the first electrode 11, And a second electrode transfer unit 113 for transferring the second electrode 13.
  • the separation membrane transfer unit includes a first separation membrane transfer unit 112 for transferring the first separation membrane 12, And a second separator feeder 114 for feeding the second separator feeder 114.
  • the electrode assembly 10 is manufactured by transferring the first electrode 11, the first separation membrane 12, the second electrode 13, and the second separation membrane 14 in order, The manufactured electrode assembly 10 is transferred to the rolling member 150 through the heating member 130.
  • the transferring step S10 includes a first cutter 115 for cutting the transferred first electrode 11 and the second electrode 13 to a predetermined size, The first electrode 11 and the second electrode 13 cut into a size are alternately stacked together with the first separator 12 and the second separator 14 to produce an electrode assembly 10.
  • the uppermost surface and the bottom surface of the electrode assembly 10 transferred by the transferring step S10 are respectively supported by the supporting member 120, thereby preventing the electrode assembly 10 from tilting do.
  • the heating step S30 heats the electrode assembly 10 supported by the supporting member 120 through the heating member 130 provided on the outer side of the supporting member 120 to raise the temperature.
  • the electrode assembly 10 heated by the heating member 130 is rolled by the rolling member 150, so that the electrode included in the electrode assembly 10 and the separator are joined together, .
  • the joining step S40 includes a second cutter 116 for cutting the bonded electrode assembly 10 to a predetermined size and the second cutter 116 is disposed between the first separator (12) and the second separation membrane (14) are cut to manufacture an electrode assembly having a predetermined size.
  • the heating member 130 is moved through the moving member 140 when the feeding member 110 is stopped, (S35) for moving the electrode assembly (10) in a direction away from the electrode assembly (10), thereby preventing the electrode assembly (10) from being heated by the heating member (130).
  • the unheated step S35 is for preventing the heating member 130 from heating one electrode assembly 10 continuously during the stop of the feeding member 120,
  • the heating member 130 is moved in a direction away from the electrode assembly 10 supported by the supporting member 120 so that the heat source of the heating member 130 can be heated even if the heating member 130 maintains the heating capacity. It is possible to effectively prevent the electrode assembly 10 from being transmitted to the electrode assembly 10, and as a result, deformation and defects of the electrode assembly 10 can be prevented.
  • the support member 120 supports the electrode assembly 10 as it is, even if the heating member 130 moves, so that the first electrode 11 and the second electrode 13 included in the electrode assembly 10 Can be prevented from being tilted.
  • the support member 120 can transmit the heat capacity transferred from the heating member 130 to the electrode assembly 10 by the metal plate 121 having a thermal conductivity, Lt; / RTI >
  • the support member 120 can prevent the electrode assembly 10 from being damaged by the heat-resistant plate 122 provided on the inner surface of the metal plate 121.
  • the heating member 130 is returned to its original position when the conveying member 110 is restarted, between the non-heating step S35 and the joining step S40, (S37) for reheating the electrode assembly (10) supported by the support member (120) by the reheating step (130).
  • the reheating step S37 returns the heating member 130 to the original position through the moving member 140 when the feeding member 110 is restarted and the electrode assembly 10 is fed. At this time, the heating member 130 Maintains the heat capacity as it is, so that the transferred electrode assembly 10 can be immediately reheated without any waiting time, and as a result, continuity and efficiency of the operation can be improved.
  • the lamination apparatus includes a support member 120 ', and the support member 120' includes a heat resistant plate 122 'supported by the electrode assembly, And a metal plate 121 'which is provided at an outer edge of the heat-resistant plate 122' in which the electrode assembly 10 is not supported and which increases the strength of the heat-resistant plate 122 '.
  • the support member 120 ' has a metal plate 121' only at the outer edge of the heat-resistant plate 122 ', and in particular, the support member 120'
  • the heat capacity of the heat resistant member 130 can be effectively transmitted to the electrode assembly 10 without heat loss while the strength of the heat resistant member 122 'is increased. As a result, (10) can be stably heated.

Abstract

본 발명은 전극과 분리막이 교대로 적층된 전극조립체를 열접합하는 이차전지용 라미네이션 장치로서, 상기 전극조립체를 이송하는 이송부재; 상기 이송부재에 의해 이송된 상기 전극조립체의 상면과 하면을 각각 지지하는 지지부재; 상기 지지부재의 외측에 구비되고, 상기 지지부재에 지지된 상기 전극조립체를 가열하는 가열부재; 및 상기 가열부재를 상기 전극조립체로부터 멀어지는 방향으로 이동시키는 이동부재를 포함한다.

Description

이차전지용 라미네이션 장치 및 방법
관련출원과의 상호인용
본 출원은 2017년 10월 24일자 한국특허출원 제10-2017-0138385호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 라미네이션 장치 및 방법에 관한 것으로서, 보다 상세하게는 라미네이션 장치의 정지시 전극조립체와 가열부재를 분리시키며, 이에 따라 전극조립체는 가열되는 것을 방지할 수 있고, 상기 가열부재는 온도를 그대로 유지시킬 수 있는 이차전지용 라미네이션 장치 및 방법에 관한 것이다.
일반적으로, 이차전지는 충전이 불가능한 일차 전지와 달리, 충방전이 가능한 전지를 의미하며, 휴대폰, 노트북 컴퓨터, 캠코더 등의 전자기기 또는 전기 자동차 등에 널리 사용되고 있다.
이러한 이차전지는 전극탭을 구비한 전극조립체, 상기 전극탭에 결합되는 전극리드, 상기 전극리드의 선단이 외부로 인출된 상태로 상기 전극조립체를 수용하는 케이스를 포함하며, 상기 전극조립체는 전극과 분리막이 교대로 적층되는 기본단위체, 또는 상기 기본단위체가 복수개 적층되는 구조를 가진다.
한편, 상기 전극조립체는 상기 전극과 상기 분리막의 접합력을 높이기 위해 라미네이션 공정을 수행하며, 상기 라미네이션 공정에는 라미네이션 장치가 사용된다.
즉, 상기 라미네이션 장치는 상기 전극과 상기 분리막이 교대로 적층된 전극조립체를 이송하는 이송부, 상기 이송된 전극조립체를 가열하는 가열부, 상기 가열된 전극조립체를 압연하여 접착력을 높이는 가압부를 포함한다.
그러나 상기 라미네이션 장치는 상기 이송부의 정지시 상기 가열부가 하나의 전극조립체를 연속하여 가열하게 되며, 이에 따라 상기 전극조립체가 변형되면서 제품불량이 발생하는 문제점이 있었다.
이를 방지하기 위해 상기 라미네이션 장치는 상기 이송부의 정지시 상기 가열부에 공급되는 전원을 차단하며, 이에 따라 상기 가열부의 온도가 내려가면서 상기 가열부에 의해 상기 전극조립체가 가열되는 것을 방지하고, 그 결과 전극조립체의 변형 및 제품불량을 방지하고 있다.
그러나 상기 라미네이션 장치는 상기 이송부의 재가동시 상기 가열부의 온도를 정상화하는데 많은 시간이 소요되며, 이에 따라 작업의 효율성과 연속성이 크게 떨어지는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 발명된 것으로서, 본 발명의 목적은 라미네이션 장치에 포함된 이송부재가 정지될 경우 전극조립체를 가열하는 가열부재를 이동시켜서 상기 상기 전극조립체와 상기 가열부재를 분리시키며, 이에 따라 상기 가열부재에 의해 상기 전극조립체가 가열되는 것을 방지할 수 있고, 그 결과 상기 전극조립체의 변형 및 불량 발생을 방지할 수 있다. 특히 상기 가열부재는 온도를 그대로 유지시킬 수 있으며, 이에 따라 상기 이송부재의 재가동시 대기시간 없이 전극조립체를 바로 재가열할 수 있는 이차전지용 라미네이션 장치를 제공하는데 있다.
본 발명의 일 실시예에 따른 이차전지용 라미네이션 장치는 전극과 분리막이 교대로 적층된 전극조립체를 열접합하기 위한 것으로, 상기 전극조립체를 이송하는 이송부재; 상기 이송부재에 의해 이송된 상기 전극조립체의 상면과 하면을 각각 지지하는 지지부재; 상기 지지부재의 외측에 구비되고, 상기 지지부재에 지지된 상기 전극조립체를 가열하는 가열부재; 및 상기 가열부재를 상기 전극조립체로부터 멀어지는 방향으로 이동시키는 이동부재를 포함할 수 있다.
상기 이동부재는, 상기 이송부재의 정지시 상기 가열부재를 상기 전극조립체로부터 멀어지는 방향으로 이동켜서 상기 가열부재에 의해 상기 전극조립체가 가열되는 것을 방지할 수 있다.
상기 이동부재는, 상기 이송부재의 재가동시 상기 가열부재를 원위치로 복귀시켜서 상기 전극조립체를 재가열할 수 있다.
상기 가열부재는 상기 이동부재에 의해 이동하더라도 열용량을 그대로 유지할 수 있다.
상기 지지부재는 상기 가열부재가 이동하더라도 상기 전극조립체의 상면과 하면을 각각 지지하여 상기 전극조립체의 틸팅을 방지할 수 있다.
상기 지지부재는 열전도성을 가진 금속플레이트를 포함할 수 있다.
상기 지지부재는 상기 전극조립체가 지지되는 상기 금속플레이트의 내측면에 구비되는 내열판을 더 포함할 수 있다.
한편, 상기 지지부재는 상기 전극조립체에 지지되는 내열판과, 상기 전극조립체가 지지되지 않는 상기 내열판의 외측면 테두리에 구비되면서 상기 내열판의 강도를 증대하는 금속플레이트를 포함할 수 있다.
본 발명의 일 실시예에 따른 이차전지용 라미네이션 방법은 이송부재를 통해 전극조립체를 이송하는 이송 단계(S10); 상기 이송부재에 의해 이송된 전극조립체의 상면과 하면을 각각 지지부재로 지지하는 지지 단계(S20); 상기 지지부재의 외측에 구비되는 가열부재를 통해 상기 지지부재에 지지된 전극조립체를 가열하는 가열하는 가열 단계(S30); 및 상기 가열부재에 의해 가열된 전극조립체를 압연부재로 압연하여 접합하는 접합 단계(S40)를 포함할 수 있다.
상기 가열 단계(S30)와 상기 접합 단계(S40) 사이에는 상기 이송부재의 정지시 상기 가열부재를 상기 전극조립체로부터 멀어지는 방향으로 이동시켜서 상기 가열부재에 의해 상기 전극조립체가 가열되는 것을 방지하는 미가열 공정(S35)을 더 포함할 수 있다.
상기 미가열 공정(S35)과 상기 접합 단계(S40) 사이에는 상기 이송부재의 재가동시 상기 가열부재를 원위치로 복귀시켜서 상기 가열부재에 의해 상기 지지부재에 지지된 전극조립체를 재가열하는 재가열 공정(S37)을 더 포함할 수 있다.
첫째: 이차전지용 라미네이션 장치는 이송부재, 지지부재, 가열부재 및 이동부재를 포함하는 것에 특징을 가지며, 이와 같은 특징으로 인해 상기 가열부재와 상기 전극조립체를 분리시킬 수 있고, 이에 따라 상기 가열부재에 의해 상기 전극조립체가 가열되는 것을 방지할 수 있으며, 그 결과 전극조립체의 변형 및 불량 발생을 방지할 수 있다.
둘째: 이차전지용 라미네이션 장치의 이동부재는 이송부재의 정지시 가열부재를 전극조립체로부터 멀어지는 방향으로 이동시키는 것에 특징을 가지며, 이와 같은 특징으로 인해 가열부재의 열용량이 상기 전극조립체에 전달되는 것을 방지할 수 있고, 이에 따라 전극조립체의 변형 및 불량 발생을 방지할 수 있다.
셋째: 이차전지용 라미네이션 장치의 이동부재는 이송부재의 재가동시 가열부재를 전극조립체에 근접되도록 원위치시키는 것에 특징을 가지며, 이와 같은 특징으로 인해 상기 전극조립체를 재가열할 수 있고, 이에 따라 작업의 효율성을 높일 수 있다.
넷째: 이차전지용 라미네이션 장치의 가열부재는 이동부재에 의해 이동하더라도 열용량을 그대로 유지하는 것에 특징을 가지며, 이와 같은 특징으로 인해 상기 가열부재는 별도의 대기 시간 없이 전극조립체를 재가열할 수 있으며, 이에 따라 작업의 연속성을 높일 수 있다.
다섯째: 이차전지용 라미네이션 장치의 지지부재는 가열부재가 이동하더라도 전극조립체의 양측면을 각각 지지하는 것에 특징을 가지며, 이와 같은 특징으로 인해 전극조립체에 포함된 전극의 틸팅을 방지할 수 있고, 이에 따라 전극조립체의 불량 발생을 방지할 수 있다.
여섯째: 이차전지용 라미네이션 장치의 지지부재는 열전도성을 가진 금속플레이트를 포함하는 것에 특징을 가지며, 이와 같은 특징으로 인해 가열부재로부터 전달되는 열원을 그대로 상기 전극조립체에 전달하여 가열할 수 있다.
일곱째: 이차전지용 라미네이션 장치의 지지부재는 금속플레이트의 내측면에 내열판을 더 포함하는 것에 특징을 가지며, 특히 상기 내열판은 필름 형태로 상기 금속플레이트에 코팅 또는 부착되는 것에 특징을 가진다. 이와 같은 특징으로 인해 지지부재에 지지되는 전극조립체의 상면 및 하면이 손상되는 것을 방지할 수 있고, 그 결과 전극조립체의 불량 발생을 크게 방지할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 라미네이션 장치를 대략적으로 도시한 사시도.
도 2는 본 발명의 제1 실시예에 따른 라미네이션 장치의 작동시 지지부재, 가열부재 및 이동부재를 도시한 측면도.
도 3은 본 발명의 제1 실시예에 따른 라미네이션 장치의 정지시 지지부재, 가열부재 및 이동부재를 도시한 측면도.
도 4는 본 발명의 제1 실시예에 따른 라미네이션 장치의 지지부재를 도시한 사시도.
도 5는 본 발명의 제1 실시예에 따른 라미네이션 방법을 나타낸 순서도.
도 6은 본 발명의 제2 실시예에 따른 라미네이션 장치의 지지부재를 도시한 사시도.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[본 발명의 제1 실시예에 따른 라미네이션 장치]
본 발명의 제1 실시예에 따른 라미네이션 장치는 도 1에 도시되어 있는 것과 같이, 전극과 분리막이 교대로 적층된 전극조립체를 열접합하기 위한 것으로, 전극조립체(10)를 이송하는 이송부재(110), 상기 이송부재(110)에 의해 이송된 상기 전극조립체(10)의 최외각 상면과 하면을 각각 지지하는 지지부재(120), 상기 지지부재(120)에 지지된 상기 전극조립체(10)를 가열하는 가열부재(130), 및 상기 가열부재(130)를 상기 전극조립체(10)로부터 멀어지는 방향으로 이동시키는 이동부재(140)를 포함한다.
상기 이송부재(110)는 전극과 분리막이 교대로 적층된 전극조립체(10)를 가열부재(130)를 거쳐서 압연부재(150)까지 이송한다. 예를 들면, 상기 이송부재(110)는 이송롤러 또는 컨베이어벨트로 구비되면서 상기 전극조립체를 일정한 시간과 간격으로 이송한다.
한편, 이송부재(110)는 상기 전극과 상기 분리막을 각각 이송하는 전극 이송부와 분리막 이송부를 더 포함하며, 상기 전극 이송부는 제1 전극(11)을 이송하는 제1 전극 이송부(111)와, 제2 전극(13)을 이송하는 제2 전극 이송부(113)를 포함하고, 상기 분리막 이송부는 제1 분리막(12)을 이송하는 제1 분리막 이송부(112)와, 제2 분리막(14)을 이송하는 제2 분리막 이송부(114)를 포함한다.
이와 같은 이송부재(110)는 상기 전극 이송부와 상기 분리막 이송부를 통해 이송되는 제1 전극(11), 제1 분리막(12), 제2 전극(13) 및 제2 분리막(14)을 순차적으로 적층하여 전극조립체(10)를 제조하고, 제조한 전극조립체(10)를 가열부재(130)를 거쳐서 압연부재(150)까지 이송한다.
한편, 상기 이송부재(110)는 상기 제1 전극 이송부(111)에 의해 이송된 제1 전극(11)과, 상기 제2 전극 이송부(113)에 의해 이송된 제2 전극(13)을 일정한 크기로 절단하는 제1 커터(115)를 더 포함한다.
또한, 상기 이송부재(110)는 상기 압연부재(150)를 통해 접합된 전극조립체(10)를 일정한 크기로 절단하는 제2 커터(116)를 더 포함하며, 상기 제2 커터(116)는 접합된 전극조립체(10)에 포함된 상호 대응하는 전극 사이의 분리막을 절단하며, 이에 따라 소정 크기의 전극조립체(10)를 얻을 수 있다.
상기 지지부재(120)는 상기 이송부재(110)에 의해 이송되는 전극조립체(10)를 지지하기 위한 것으로, 사각판 형태를 가지며, 상기 전극조립체(10)의 최외각 상면과 하면에 각각 지지한다. 이때 상기 지지부재(120)는 상기 이송부재(110)에 의해 이송되는 전극조립체(10)의 이송에 방해되지 않는 범위로 상기 전극조립체(10)를 가압할 수 있으며, 이에 따라 상기 이송부재(110)에 의해 이송되는 전극조립체(10)의 틸팅을 크게 방지할 수 있다.
한편, 상기 지지부재(120)는 도 4에 도시되어 있는 것과 같이, 열전도성을 가진 금속플레이트(121)를 포함할 수 있으며, 이에 따라 상기 지지부재(120)는 가열부재(130)에 의해 전달되는 열용량을 그대로 상기 전극조립체(10)에 전달할 수 있고, 그 결과 상기 전극조립체(10)를 효과적으로 가열할 수 있다. 즉, 전극조립체(10)와 가열부재(130) 사이에 지지부재(120)가 위치하더라도 상기 전극조립체(10)를 안정적으로 가열할 수 있다.
여기서 상기 금속플레이트(121)는 2mm~10mm의 두께를 가지며, 특히 3mm~5mm의 두께를 가질 수 있다. 즉, 상기 금속플레이트(121)의 두께가 2mm 이하일 경우 가열부재(130)의 열용량을 손실 없이 상기 전극조립체(10)에 보다 전달할 수는 있지만 쉽게 휘어지는 문제가 있으며, 상기 금속플레이트(121)의 두께가 10mm 이상일 경우 휘어지는 문제는 해결할 수 있지만 가열부재(130)의 열용량 손실이 발생할 수 있으며, 이에 따라 전극조립체(10)를 안정적으로 가열할 수 없다.
또한, 상기 금속플레이트(121)는 상기 전극조립체(10)를 향하지 않는 바깥쪽 표면에 개방홈(121a)을 형성할 수 있으며, 상기 개방홈(121a)을 통해 상기 전극조립체(10)를 지지하는 상기 금속플레이트(121)의 두께는 작게 형성되면서 상기 가열부재(130)의 열용량을 손실 없이 상기 전극조립체(10)에 전달되도록 할 수 있고, 상기 전극조립체(10)가 지지되지 않는 금속플레이트(121)의 테두리 두께는 크게 형성되면서 변형을 방지할 수 있다.
한편, 상기 금속플레이트(121)는 사각틀 형태로 형성될 수 있으며, 이에 따라 전극조립체(10)를 안정적으로 지지함과 동시에 가열부재의 열용량이 그대로 상기 전극조립체(10)에 전달되면서 전극조립체(10)를 안정적으로 가열할 수 있다.
한편, 상기 지지부재(120)는 상기 전극조립체(10)가 지지되는 상기 금속플레이트(121)의 안쪽 표면에 내열판(122)을 더 포함하며, 상기 내열판(122)에 전극조립체(10)가 지지되면서 상기 전극조립체(10)의 손상을 방지할 수 있다. 특히 상기 내열판(122)은 필름 형태로 상기 금속플레이트(121)의 안쪽 표면에 코팅 또는 부착되며, 이에 따라 사용의 편의성과 효율성을 높일 수 있다.
한편, 상기 지지부재(120)의 면적은 상기 전극조립체(10)의 면적 보다 크게 형성되며, 이에 따라 상기 전극조립체(10)의 상면 또는 하면 전체를 안정적으로 지지할 수 있다.
상기 가열부재(130)는 상기 지지부재(120)의 외측에 구비되고, 상기 지지부재(120)에 지지된 상기 전극조립체(10)를 가열한다. 여기서 상기 가열부재(130)는 상기 지지부재(120)의 외측에 밀착되게 구비되며, 이에 따라 가열부재(130)의 열용량을 보다 안정적으로 상기 전극조립체(10)에 전달할 수 있다.
한편, 가열부재(130)는 외부로부터 공급되는 전원에 의해 열을 발생시키는 가열장치일 수 있다.
상기 이동부재(140)는 상기 가열부재의 열원이 상기 전극조립체에 전달되지 않도록 상기 가열부재와 상기 전극조립체를 분리시키기 위한 것으로, 상기 가열부재(130)를 상기 지지부재(120)에 지지된 상기 전극조립체(10)로부터 멀어지는 방향으로 이동시킨다. 즉, 도 2 및 도 3에서 보았을 때 상기 이동부재(140)는 상기 가열부재(130)를 상기 전극조립체(10)로부터 멀어지는 상부 및 하부 방향으로 각각 이동시키며, 이에 따라 상기 이동부재(140)는 가열부재(130)의 열원이 상기 전극조립체(10)에 전달되는 것을 차단하거나 또는 최소화하여 상기 가열부재(130)에 의해 상기 전극조립체(10)가 가열되는 것을 방지한다.
즉, 이동부재(140)는 도 2에 도시되어 있는 것과 같이, 상기 이송부재(110)의 작동시 상기 가열부재(130)를 상기 지지부재(120)의 외측에 밀착시켜서 상기 가열부재(130)를 통해 상기 지지부재(120)에 지지된 전극조립체(10)를 안정적으로 가열되도록 한다.
한편, 이동부재(140)는 도 3에 도시되어 있는 것과 같이, 상기 이송부재(110)의 정지시 상기 가열부재(130)를 상기 전극조립체(10)로부터 멀어지는 방향으로 이동시켜서 상기 가열부재(130)에 의해 상기 전극조립체(10)가 가열되는 것을 방지하며, 이에 따라 전극조립체(10)의 변형 및 불량을 방지할 수 있다.
이때, 상기 가열부재(130)는 열원을 그대로 유지하더라도 상기 전극조립체(10)가 가열되는 것을 방지할 수 있다.
또한, 지지부재(120)는 가열부재(130)가 이동하더라도 상기 전극조립체(10)를 지지하며, 이에 따라 상기 전극조립체(10)에 포함된 전극이 분리막 사이에서 틸팅되는 것을 방지할 수 있다.
이후, 상기 이동부재(140)는 상기 이송부재(110)의 재가동시 상기 가열부재(130)를 원위치로 복귀시키며, 이에 따라 대기 시간이 상기 전극조립체(10)를 재가열 할 수 있고, 그 결과 작업의 연속성과 효율성을 높일 수 있다.
상기 압연부재(150)는 한 쌍으로 마련되고, 상기 가열부재(130)에 의해 가열된 전극조립체(10)의 상하면을 압연하며, 이에 따라 전극조립체(10)에 포함된 전극과 분리막 사이를 접합하여 결합력을 높일 수 있다.
따라서 본 발명의 제1 실시예에 따른 라미네이션 장치는 상기 이송부재(110)의 정지시 이동부재(140)를 통해 가열부재(130)를 상기 전극조립체(10)로부터 멀어지는 방향으로 이동시키는 것에 특징을 가지며, 이와 같은 특징으로 인해 상기 가열부재(130)에 의해 상기 전극조립체(10)가 가열되는 것을 방지할 수 있고, 그 결과 전극조립체의 변형 및 불량을 방지할 수 있다. 특히 가열부재의 열용량을 그대로 유지시킬 수 있으며, 이에 따라 상기 이송부재의 재가동시 상기 이동부재(140)에 의해 상기 가열부재가 원위치할 경우 별도의 대기시간 없이 상기 전극조립체를 재가열할 수 있으며, 그 결과 작업의 연속성과 효율성을 높일 수 있다.
이하, 본 발명의 제1 실시예에 따른 라미네이션 장치를 이용한 라미네이션 방법을 설명한다.
[본 발명의 제1 실시예에 따른 라미네이션 방법]
본 발명의 제1 실시예에 따른 라미네이션 방법은 도 5에 도시되어 있는 것과 같이, 이송부재(110)를 통해 전극조립체(10)를 이송하는 이송 단계(S10), 상기 이송부재(110)에 의해 이송된 전극조립체(10)의 상면과 하면을 각각 지지부재(120)로 지지하는 지지 단계(S20), 상기 지지부재(120)의 외측에 구비되는 가열부재(130)를 통해 상기 지지부재(120)에 지지된 전극조립체(10)를 가열하는 가열 단계(S30), 및 상기 가열부재(130)에 의해 가열된 전극조립체(10)를 압연부재(150)로 압연하여 접합하는 접합 단계(S40)를 포함한다.
상기 이송 단계(S10)는 이송부재(110)를 통해 전극조립체(10)를 가열부재(130)를 거쳐서 상기 압연부재(150)까지 이송한다. 한편, 상기 이송부재(110)는 전극과 분리막이 교대로 적층되도록 각각 이송하는 전극 이송부와 분리막 이송부를 더 포함하며, 상기 전극 이송부는 제1 전극(11)을 이송하는 제1 전극 이송부(111)와, 제2 전극(13)을 이송하는 제2 전극 이송부(113)를 포함하고, 상기 분리막 이송부는 제1 분리막(12)을 이송하는 제1 분리막 이송부(112)와, 제2 분리막(14)을 이송하는 제2 분리막 이송부(114)를 포함한다.
즉, 상기 이송 단계는 제1 전극(11), 제1 분리막(12), 제2 전극(13) 및 제2 분리막(14)이 순차적으로 적층되도록 이송하여 전극조립체(10)를 제조하고, 상기 제조된 전극조립체(10)를 상기 가열부재(130)를 거쳐서 상기 압연부재(150)까지 이송한다.
한편, 상기 이송 단계(S10)는 이송된 제1 전극(11)과 제2 전극(13)을 일정한 크기로 절단하는 제1 커터(115)를 포함하며, 상기 제1 커터(115)에 의해 일정한 크기로 절단된 제1 전극(11)과 제2 전극(13)은 상기 제1 분리막(12)과 제2 분리막(14)과 함께 교대로 적층되면서 전극조립체(10)로 제조된다.
상기 지지 단계(S20)는 상기 이송 단계(S10)에 의해 이송된 전극조립체(10)의 최외각 상면과 하면을 지지부재(120)로 각각 지지하며, 이에 따라 전극조립체(10)의 틸팅을 방지한다.
상기 가열 단계(S30)는 상기 지지부재(120)의 외측에 구비되는 가열부재(130)를 통해 상기 지지부재(120)에 지지된 전극조립체(10)를 가열하여 온도를 상승시킨다.
상기 접합 단계(S40)는 상기 가열부재(130)에 의해 가열된 전극조립체(10)를 압연부재(150)로 압연하며, 이에 따라 전극조립체(10)에 포함된 전극과 분리막이 접합되면서 결합력을 높일 수 있다.
한편, 상기 접합 단계(S40)는 접합된 전극조립체(10)를 일정 크기로 절단하는 제2 커터(116)를 포함하며, 상기 제2 커터(116)는 상호 대응하는 전극 사이에 위치한 제1 분리막(12)과 제2 분리막(14)을 절단하여 일정 크기의 전극조립체를 제조한다.
여기서 상기 가열 단계(S30)와 상기 접합 단계(S40) 사이에는 도 3 및 도 4에 도시되어 있는 것과 같이, 상기 이송부재(110)의 정지시 이동부재(140)를 통해 상기 가열부재(130)를 상기 전극조립체(10)로부터 멀어지는 방향으로 이동시키며, 이에 따라 상기 가열부재(130)에 의해 상기 전극조립체(10)가 가열되는 것을 방지하는 미가열 공정(S35)을 더 포함한다.
즉, 미가열 공정(S35)는 이송부재(120)의 정지시 가열부재(130)가 하나의 전극조립체(10)를 연속하여 가열하는 것을 방지하기 위한 것으로, 상기 이동부재(140)를 통해 상기 가열부재(130)를 상기 지지부재(120)에 지지된 전극조립체(10)로부터 멀어지는 방향으로 이동시키며, 이에 따라 상기 가열부재(130)가 열용량을 그대로 유지하더라도 상기 가열부재(130)의 열원이 상기 전극조립체(10)에 전달되는 것을 효과적으로 차단할 수 있고, 그 결과 상기 전극조립체(10)의 변형 및 불량 발생을 방지할 수 있다.
이때 지지부재(120)는 상기 가열부재(130)가 이동하더라도 상기 전극조립체(10)를 그대로 지지하며, 이에 따라 상기 전극조립체(10)에 포함된 제1 전극(11) 및 제2 전극(13)의 틸팅을 방지할 수 있다.
특히 지지부재(120)는 열전도성을 가진 금속플레이트(121)에 의해 가열부재(130)로부터 전달되는 열용량을 그대로 상기 전극조립체(10)에 전달할 수 있고, 그 결과 상기 전극조립체(10)를 안정적으로 가열할 수 있다.
또한, 지지부재(120)는 상기 금속플레이트(121)의 안쪽 표면에 구비된 내열판(122)에 의해 상기 전극조립체(10)의 손상을 방지할 수 있다.
한편, 상기 미가열 공정(S35)과 상기 접합 단계(S40) 사이에는 도 2에 도시되어 있는 것과 같이, 상기 이송부재(110)의 재가동시 상기 가열부재(130)를 원위치로 복귀시켜서 상기 가열부재(130)에 의해 상기 지지부재(120)에 지지된 전극조립체(10)를 재가열하는 재가열 공정(S37)을 더 포함한다.
즉, 재가열 공정(S37)은 이송부재(110)가 재가동하여 전극조립체(10)가 이송되면, 상기 이동부재(140)를 통해 상기 가열부재(130)를 원위치로 복귀시키며, 이때 가열부재(130)는 열용량을 그대로 유지하고 있어 이송되는 전극조립체(10)를 별도의 대기 시간 없이 바로 재가열할 수 있고, 그 결과 작업의 연속성과 효율성을 높일 수 있다.
이하, 본 발명의 다른 실시예를 설명함에 있어 전술한 실시예와 동일한 구성과 기능을 가지는 구성에 대해서는 동일한 구성부호를 사용하며, 중복되는 설명은 생략한다.
[본 발명의 제2 실시예에 따른 라미네이션 장치]
본 발명의 제2 실시예에 따른 라미네이션 장치는 도 6에 도시되어 있는 것과 같이, 지지부재(120')를 포함하되, 상기 지지부재(120')는 상기 전극조립체에 지지되는 내열판(122')과, 상기 전극조립체(10)가 지지되지 않는 상기 내열판(122')의 외측면 테두리에 구비되면서 상기 내열판(122')의 강도를 증대하는 금속플레이트(121')를 포함한다.
즉, 상기 지지부재(120')는 내열판(122')의 외측면 테두리에만 금속플레이트(121')를 구비하며, 특히 상기 지지부재(120')는 내열판(122')의 마주보는 두 변에만 구비되고, 이에 따라 내열판(122')의 강도를 증대하는 한편, 가열부재(130)에 의해 전달되는 열용량을 열손실 없이 효과적으로 전극조립체(10)에 전달할 수 있고, 그 결과 상기 전극조립체(10)를 안정적으로 가열할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.

Claims (11)

  1. 전극과 분리막이 교대로 적층된 전극조립체를 열접합하는 이차전지용 라미네이션 장치로서,
    상기 전극조립체를 이송하는 이송부재;
    상기 이송부재에 의해 이송된 상기 전극조립체의 상면과 하면을 각각 지지하는 지지부재;
    상기 지지부재의 외측에 구비되고, 상기 지지부재에 지지된 상기 전극조립체를 가열하는 가열부재; 및
    상기 가열부재를 상기 전극조립체로부터 멀어지는 방향으로 이동시키는 이동부재를 포함하는 이차전지용 라미네이션 장치.
  2. 청구항 1에 있어서,
    상기 이동부재는, 상기 이송부재의 정지시 상기 가열부재를 상기 전극조립체로부터 멀어지는 방향으로 이동시켜서 상기 가열부재에 의해 상기 전극조립체가 가열되는 것을 방지하는 이차전지용 라미네이션 장치.
  3. 청구항 2에 있어서,
    상기 이동부재는, 상기 이송부재의 재가동시 상기 가열부재를 원위치로 복귀시켜서 상기 전극조립체를 재가열하는 이차전지용 라미네이션 장치.
  4. 청구항 1에 있어서,
    상기 가열부재는 상기 이동부재에 의해 이동하더라도 열용량을 그대로 유지하는 이차전지용 라미네이션 장치.
  5. 청구항 1에 있어서,
    상기 지지부재는 상기 가열부재가 이동하더라도 상기 전극조립체의 상면과 하면을 각각 지지하여 상기 전극조립체의 틸팅을 방지하는 이차전지용 라미네이션 장치.
  6. 청구항 1에 있어서,
    상기 지지부재는 열전도성을 가진 금속플레이트를 포함하는 이차전지용 라미네이션 장치.
  7. 청구항 6에 있어서,
    상기 지지부재는 상기 전극조립체가 지지되는 상기 금속플레이트의 내측면에 구비되는 내열판을 더 포함하는 이차전지용 라미네이션 장치.
  8. 청구항 1에 있어서,
    상기 지지부재는 상기 전극조립체에 지지되는 내열판과, 상기 전극조립체가 지지되지 않는 상기 내열판의 외측면 테두리에 구비되면서 상기 내열판의 강도를 증대하는 금속플레이트를 포함하는 이차전지용 라미네이션 장치.
  9. 이송부재를 통해 전극조립체를 이송하는 이송 단계(S10);
    상기 이송부재에 의해 이송된 상기 전극조립체의 상면과 하면을 각각 지지부재로 지지하는 지지 단계(S20);
    상기 지지부재의 외측에 구비되는 가열부재를 통해 상기 지지부재에 지지된 상기 전극조립체를 가열하는 가열 단계(S30); 및
    상기 가열부재에 의해 가열된 상기 전극조립체를 압연부재로 압연하여 접합하는 접합 단계(S40)를 포함하는 이차전지용 라미네이션 방법.
  10. 청구항 9에 있어서,
    상기 가열 단계(S30)와 상기 접합 단계(S40) 사이에는 상기 이송부재의 정지시 이동부재를 통해 상기 가열부재를 상기 전극조립체로부터 멀어지는 방향으로 이동시켜서 상기 가열부재에 의해 상기 전극조립체가 가열되는 것을 방지하는 미가열 공정(S35)을 더 포함하는 이차전지용 라미네이션 방법.
  11. 청구항 10에 있어서,
    상기 미가열 공정(S35)과 상기 접합 단계(S40) 사이에는 상기 이송부재의 재가동시 상기 이동부재를 통해 상기 가열부재를 원위치로 복귀시켜서 상기 가열부재에 의해 상기 지지부재에 지지된 전극조립체를 재가열하는 재가열 공정(S37)을 더 포함하는 이차전지용 라미네이션 방법.
PCT/KR2018/011306 2017-10-24 2018-09-21 이차전지용 라미네이션 장치 및 방법 WO2019083174A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880005532.0A CN110121810B (zh) 2017-10-24 2018-09-21 用于二次电池的层压设备和方法
US16/476,726 US11563232B2 (en) 2017-10-24 2018-09-21 Lamination apparatus and method for secondary battery
EP18870526.3A EP3557675B1 (en) 2017-10-24 2018-09-21 Lamination apparatus and method for secondary battery
US18/078,761 US20230109577A1 (en) 2017-10-24 2022-12-09 Lamination apparatus and method for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0138385 2017-10-24
KR1020170138385A KR102223722B1 (ko) 2017-10-24 2017-10-24 이차전지용 라미네이션 장치 및 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/476,726 A-371-Of-International US11563232B2 (en) 2017-10-24 2018-09-21 Lamination apparatus and method for secondary battery
US18/078,761 Continuation US20230109577A1 (en) 2017-10-24 2022-12-09 Lamination apparatus and method for secondary battery

Publications (1)

Publication Number Publication Date
WO2019083174A1 true WO2019083174A1 (ko) 2019-05-02

Family

ID=66247855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011306 WO2019083174A1 (ko) 2017-10-24 2018-09-21 이차전지용 라미네이션 장치 및 방법

Country Status (5)

Country Link
US (2) US11563232B2 (ko)
EP (1) EP3557675B1 (ko)
KR (1) KR102223722B1 (ko)
CN (1) CN110121810B (ko)
WO (1) WO2019083174A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102468395B1 (ko) * 2019-07-22 2022-11-16 주식회사 엘지에너지솔루션 이차전지 분리막 접힘 방지를 위한 분리막 실링 장치 및 실링 방법
KR20210119786A (ko) * 2020-03-25 2021-10-06 주식회사 엘지에너지솔루션 셀 제조 장치 및 방법
KR20210119785A (ko) * 2020-03-25 2021-10-06 주식회사 엘지에너지솔루션 단위 셀 제조 장치 및 방법
KR20210119787A (ko) * 2020-03-25 2021-10-06 주식회사 엘지에너지솔루션 단위 셀 제조 장치 및 방법
KR20220102232A (ko) 2021-01-13 2022-07-20 주식회사 엘지에너지솔루션 불량률이 감소된 전극조립체 라미네이션 장치 및 이에 의한 전극조립체 제조방법
CN115732735A (zh) * 2021-08-31 2023-03-03 宁德时代新能源科技股份有限公司 加热装置、电池制造设备及电池制造方法
CN216015471U (zh) * 2021-09-23 2022-03-11 宁德时代新能源科技股份有限公司 一种电极组件的制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221706A (ja) * 2011-04-07 2012-11-12 Kyoto Seisakusho Co Ltd 積層装置および積層方法
JP2013122831A (ja) * 2011-12-09 2013-06-20 Automotive Energy Supply Corp 電極群の製造装置および製造方法と電池の製造方法
KR20160100561A (ko) * 2015-02-16 2016-08-24 주식회사 엘지화학 분리막 형상 가공 장치 및 이를 사용하여 제조된 전지셀
KR20160143587A (ko) * 2015-06-04 2016-12-14 주식회사 엘지화학 전극 조립체의 라미네이션용 보호 부재 및 이를 이용한 이차 전지의 제조 방법
KR20170090157A (ko) * 2016-01-28 2017-08-07 주식회사 탑앤씨 이차전지용 파우치필름을 제조하기 위한 복합 라미네이션 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289559A (en) * 1979-10-18 1981-09-15 Murphy Shirley D Process and apparatus for heat laminating film to a substrate
JP3432710B2 (ja) 1997-08-21 2003-08-04 東芝電池株式会社 ポリマー電池用電極要素の製造装置
JP2000208140A (ja) 1999-01-13 2000-07-28 Toshiba Battery Co Ltd ポリマ―電池用電極要素のラミネ―ション装置
WO2000072398A1 (en) * 1999-05-25 2000-11-30 Leading Edge Technologies, Inc. Apparatus and method for battery cell electrode preparation, assembly and lamination
US20020007552A1 (en) * 1999-05-25 2002-01-24 Singleton Robert W. Apparatus and method of manufacturing a battery cell
TW499766B (en) * 2000-03-29 2002-08-21 Elite Ionergy Co Ltd Battery manufacturing method
JP4486373B2 (ja) 2004-02-10 2010-06-23 カシオマイクロニクス株式会社 ラミネート方法およびその方法を用いたラミネート装置
JP3918004B2 (ja) 2005-04-22 2007-05-23 日本アビオニクス株式会社 半導体装置のリペア方法
JP2008041581A (ja) * 2006-08-10 2008-02-21 Hitachi Maxell Ltd 巻回体電極群、角形二次電池およびラミネート形二次電池
JP5844052B2 (ja) * 2011-02-04 2016-01-13 三洋電機株式会社 積層式電池およびその製造方法
CN108054326A (zh) * 2012-08-06 2018-05-18 住友化学株式会社 分隔件的制造方法、分隔件及二次电池的制造方法
JP2014086265A (ja) * 2012-10-24 2014-05-12 Nissan Motor Co Ltd セパレータ接合方法およびセパレータ接合装置
KR101609424B1 (ko) * 2013-09-26 2016-04-05 주식회사 엘지화학 전극조립체의 제조방법
KR101586121B1 (ko) 2013-09-30 2016-01-22 주식회사 엘지화학 전극 가이드를 포함하는 라미네이션 장치
WO2015050084A1 (ja) * 2013-10-02 2015-04-09 日産自動車株式会社 電気デバイスのセパレータ接合方法、電気デバイスのセパレータ接合装置、および電気デバイス
KR101826894B1 (ko) 2013-11-04 2018-02-07 주식회사 엘지화학 전극 조립체 및 이를 제조하는 장치
KR101775230B1 (ko) 2014-10-02 2017-09-05 주식회사 엘지화학 이차전지용 라미네이팅 장치 및 이차전지의 라미네이팅 방법
KR101749148B1 (ko) * 2014-10-23 2017-06-20 주식회사 엘지화학 고주파 유도 가열을 이용한 라미네이션 장치 및 이를 이용하여 생산되는 이차전지
KR101925090B1 (ko) * 2015-11-18 2018-12-04 주식회사 엘지화학 이차전지용 실링장치
JP6787241B2 (ja) * 2017-04-28 2020-11-18 トヨタ自動車株式会社 電極積層体及び電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221706A (ja) * 2011-04-07 2012-11-12 Kyoto Seisakusho Co Ltd 積層装置および積層方法
JP2013122831A (ja) * 2011-12-09 2013-06-20 Automotive Energy Supply Corp 電極群の製造装置および製造方法と電池の製造方法
KR20160100561A (ko) * 2015-02-16 2016-08-24 주식회사 엘지화학 분리막 형상 가공 장치 및 이를 사용하여 제조된 전지셀
KR20160143587A (ko) * 2015-06-04 2016-12-14 주식회사 엘지화학 전극 조립체의 라미네이션용 보호 부재 및 이를 이용한 이차 전지의 제조 방법
KR20170090157A (ko) * 2016-01-28 2017-08-07 주식회사 탑앤씨 이차전지용 파우치필름을 제조하기 위한 복합 라미네이션 장치

Also Published As

Publication number Publication date
US20190363389A1 (en) 2019-11-28
KR20190045602A (ko) 2019-05-03
US20230109577A1 (en) 2023-04-06
KR102223722B1 (ko) 2021-03-05
EP3557675B1 (en) 2024-01-24
US11563232B2 (en) 2023-01-24
EP3557675A4 (en) 2020-05-27
CN110121810B (zh) 2022-05-24
CN110121810A (zh) 2019-08-13
EP3557675A1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
WO2019083174A1 (ko) 이차전지용 라미네이션 장치 및 방법
WO2018199484A1 (ko) 이차전지용 라미네이션장치
WO2014209054A1 (ko) 세퍼레이터 절단공정을 포함하는 전극조립체의 제조방법
WO2020184835A1 (ko) 이차전지용 라미네이션장치 및 방법
WO2015046711A1 (ko) 이차전지용 단위체 적층장치 및 적층방법
WO2018182129A1 (ko) 전극적층방법 및 이를 수행하는 전극적층장치
WO2015046690A1 (ko) 전극 가이드를 포함하는 라미네이션 장치
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2018236033A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2021080210A1 (ko) 가열과 가압을 동시에 적용하는 단계를 포함하는 전극조립체 제조방법
WO2019135507A1 (ko) 전극 슬러리 코팅장치 및 방법
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2014133303A1 (ko) 안정성이 향상된 이차전지용 바이셀 및 그 제조방법
WO2016200173A1 (ko) 전지팩의 시트 부착 장치
WO2022164257A1 (ko) 분리막 접착장치
WO2018207999A1 (ko) 이차전지, 그의 제조장치 및 방법
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2013141431A1 (ko) 배터리 셀
WO2023090842A1 (ko) 전극조립체, 그의 제조장치 및 제조방법
WO2022139518A1 (ko) 단위셀의 제조방법과 제조장치
WO2022270998A1 (ko) 요철부를 포함하는 분리막, 이를 포함하는 전극조립체 및 상기 전극조립체의 제조방법
WO2023191415A1 (ko) 전극 조립체 제조장치
WO2018009042A1 (ko) 전극 조립체 및 그의 제조 방법
WO2023224287A1 (ko) 분리막 접힘을 방지하기 위한 전극조립체 제조장치 및 이를 이용하여 제조된 전극조립체
WO2022139519A1 (ko) 단위셀의 제조방법과 제조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018870526

Country of ref document: EP

Effective date: 20190717

NENP Non-entry into the national phase

Ref country code: DE