WO2022139519A1 - 단위셀의 제조방법과 제조장치 - Google Patents

단위셀의 제조방법과 제조장치 Download PDF

Info

Publication number
WO2022139519A1
WO2022139519A1 PCT/KR2021/019761 KR2021019761W WO2022139519A1 WO 2022139519 A1 WO2022139519 A1 WO 2022139519A1 KR 2021019761 W KR2021019761 W KR 2021019761W WO 2022139519 A1 WO2022139519 A1 WO 2022139519A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
roller
unit cell
upper roller
heated
Prior art date
Application number
PCT/KR2021/019761
Other languages
English (en)
French (fr)
Inventor
박동혁
박신영
박성철
강태원
김주형
양기
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210184173A external-priority patent/KR20220091399A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21911584.7A priority Critical patent/EP4270567A1/en
Priority to US18/032,734 priority patent/US20230387447A1/en
Priority to CN202180067371.XA priority patent/CN116325257A/zh
Publication of WO2022139519A1 publication Critical patent/WO2022139519A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and apparatus for manufacturing a unit cell, and more particularly, before the lower separator and the upper separator are cut, the part to be cut is pre-bonded (sealed) between the lower separator and the upper separator. It relates to a manufacturing method and manufacturing apparatus of a unit cell capable of preventing the folding of the.
  • a secondary battery unlike a primary battery, can be recharged and can be miniaturized and large-capacity, so a lot of research and development has been made in recent years.
  • the demand for secondary batteries as an energy source is rapidly increasing.
  • a secondary battery is composed of an electrode assembly and an electrolyte in a case (pouch, can, etc.).
  • the electrode assembly mounted on the inside of the case has a stacked structure of anode/separator/cathode so that repeated charging and discharging is possible.
  • the electrode assembly is manufactured in a variety of ways, but a stacked type method in which the unit cells 4 are prepared in advance and then a plurality of the unit cells 4 are stacked to make the production is common.
  • the conventional manufacturing method for manufacturing the unit cell 4 is the positive electrode 1 and the upper separator 3a from above.
  • the negative electrode 2, and the lower separator 3b are each continuously unwound and supplied in a rolled-up state (however, the stacking positions of the positive electrode and the negative electrode may be different).
  • the separators 3: 3a, 3b are continuously supplied without interruption, the cathode 2 is supplied between the upper separator 3a and the lower separator 3b, and the anode 1 is disposed over the upper separator 3a. is supplied
  • the separators 3 are continuously supplied without being cut, while the positive electrode 1 and the negative electrode 2 are provided in a state cut to a predetermined size by the respective cutters 6 and 7 .
  • the positive electrode (1) and the negative electrode (2) are paired up and stacked with the upper separator (3a) interposed therebetween, and are arranged to be spaced apart from the adjacent positive electrode (1) and negative electrode (2) by a predetermined distance.
  • the separators 3 are continuously connected, but the negative electrode 2 and the positive electrode 1 pass through the laminating device 9 with a predetermined distance from each of the adjacent negative electrodes 2 and positive electrodes 1 . do.
  • adhesion is achieved at the point where the negative electrode 2 and the positive electrode 1 are in contact with the separators 3 .
  • the positive electrode 1 and the negative electrode 2 pass through the pressing device 5 composed of cylindrical rollers arranged in pairs additionally pressurized.
  • the separator 3 is cut between the adjacent positive electrode 1 and the positive electrode 1 by the cutter 8 and provided to the individual unit cells 4 .
  • the separators 3 are cut between adjacent electrodes. It is made into individual unit cells (4).
  • the cutter 8 since the cutter 8 has a structure that cuts the separator 3 by applying pressure up and down, if any one of the separators 3a and 3b is not properly cut, it will be folded along the direction in which the pressure is applied. There was a possible problem.
  • a plurality of the unit cells 4 are stacked and manufactured as an electrode assembly, so that the separator 3 is folded and a part of the negative electrode 2 or the positive electrode 1 is When exposed, there is a problem that a short circuit may occur inside the electrode assembly.
  • the main object is to provide a manufacturing method and manufacturing apparatus of a unit cell that can be sealed).
  • a device for manufacturing a unit cell that cuts a lower separator and an upper separator between adjacent electrodes (along the longitudinal direction of the separator), comprising: a lower roller disposed under the lower separator; and an upper roller disposed to be vertically aligned with the lower roller on the upper separator and having an elliptical shape having a minor axis and a major axis; After the electrode passes, the upper roller presses the upper separator and the lower separator to the surface
  • the upper and lower rollers are arranged to heat-seal the upper and lower separators before cutting the upper and lower separators.
  • a portion of the upper roller in contact with the separation membrane is made of a material having elasticity.
  • the upper roller includes a core part made of a material having a relatively higher hardness, and a surface part coupled to cover the surface of the core part and made of a material having a relatively higher elastic force and contacting the upper separation membrane.
  • the surface portion is made of a material having a shore hardness in the range of HS20 to HS40.
  • At least one of the lower roller and the upper roller is heated to a range of 60 to 110°C.
  • the pressure applied between the lower roller and the upper roller is set in the range of 100 to 1000 kg.
  • the lower roller may be heated and the upper roller may not be heated.
  • the lower roller may not be heated and the upper roller may be heated.
  • both the lower roller and the upper roller may be configured to be heated.
  • the manufacturing method of the unit cell provided in the present invention is a method of manufacturing a unit cell in which electrodes are respectively stacked between the lower separator and the upper separator and on the upper separator, wherein the lower separator and the upper separator are continuously moved along the longitudinal direction, , providing an electrode and a separator in a state in which the electrode is stacked between the lower separator and the upper separator and on the upper separator, respectively; and passing the electrode and the separator between the lower roller disposed under the lower separator and the upper roller disposed to be vertically aligned with the lower roller on the upper separator and having an elliptical shape having a minor axis and a major axis;
  • the electrode passes while the upper roller rotates, the upper roller does not contact the upper separator, and after the electrode passes, the upper roller presses the upper separator and the lower separator to the surface of the lower roller, but at least one of the lower roller and the upper roller Either one is heated to a predetermined temperature, and the upper separator and lower
  • the upper and lower rollers are arranged to heat-seal the upper and lower separators before cutting the upper and lower separators.
  • the upper roller is made of a material having elasticity and is pressed by the elastic force of the material when the upper separation membrane is pressed.
  • the present invention having the configuration as described above includes an upper roller having an oval shape and a circular lower roller, wherein at least one of the upper roller and the lower roller is heated to a predetermined temperature, so that the long axis of the upper roller is By pressing the separators, the upper and lower separators can be bonded (thermal-sealed) to each other. Accordingly, after the cut is made, it is possible to prevent the separation membrane from being folded.
  • a portion at which the upper roller comes into contact with the separation membrane is made of a material having elasticity to prevent damage to the separation membrane when pressurized.
  • FIG. 1 is a simplified view showing a state in which a unit cell is manufactured according to a conventional method.
  • FIG. 2 is a simplified front view (left figure) and a cross-sectional view (right figure) of each of the upper and lower rollers showing a simplified manufacturing apparatus for a unit cell according to an embodiment of the present invention
  • FIG 3 is a view showing a state ⁇ A> when the long axis of the upper roller is perpendicular to the lower roller and a state ⁇ B> when the short axis of the upper roller is perpendicular to the lower roller.
  • FIG. 4 is a view showing a state in which the short axis of the upper roller is perpendicular to the lower roller when the electrode is positioned between the upper roller and the lower roller;
  • FIG. 5 is a view showing a state in which the long axis of the upper roller is perpendicular to the lower roller and pressurizing the separation membranes when only the separation membranes are positioned between the upper roller and the lower roller;
  • the present invention relates to a method and apparatus for manufacturing a unit cell 4 in which electrodes 1 and 2 are respectively stacked between the lower separator 3b and the upper separator 3a and on the upper separator 3a, Embodiments according to the present invention will be described in more detail with reference to the accompanying drawings.
  • the present invention provides an apparatus for manufacturing a unit cell as a first embodiment.
  • the device for manufacturing the unit cell provided in this embodiment may be added between the pressing device 5 and the cutter 8 in the process shown in FIG. 1 or may be installed instead of the pressing device 5 .
  • FIG. 2 is a simplified front view (left figure) and a cross-section (right figure) of each of the upper and lower rollers showing a simplified manufacturing apparatus for a unit cell according to an embodiment of the present invention
  • FIG. 3 is an upper roller It is a view showing a state when the long axis of ⁇ A> is perpendicular to the lower roller and a state ⁇ B> when the short axis of the upper roller is perpendicular to the lower roller.
  • the apparatus for manufacturing a unit cell according to the present invention is configured to include a lower roller 10 and an upper roller 20 .
  • the upper roller 20 and the lower roller 10 are arranged to heat-seal the upper separator 3a and the lower separator 3b before cutting the upper separator 3a and the lower separator 3b.
  • the separator 3 and the electrodes 1 and 2 is that the lower separator 3b and the upper separator 3a continuously move along the longitudinal direction, and between the lower separator 3b and the upper separator 3a and on the upper separator 3a, the positive electrode 1 and the negative electrode ( 2) is provided in a stacked state, that is, stacked in the order of 'anode/upper layer separator/cathode/lower layer separator' or 'cathode/upper layer separator/anode/lower layer separator' from top to bottom.
  • the lower roller 10 has a circular shape and is disposed under the lower separator 3b. And, it is configured to be heated to a predetermined temperature through a heater (not shown) or the like.
  • the lower roller 10 may be heated to a range of 60 to 110 °C.
  • the reason for being limited to the above temperature range is that when it is less than 60 ° C, it is difficult to achieve efficient thermal fusion of the separator 3, and when it exceeds 110 ° C, the separator 3 is melted (or deformation or damage occurs) ) because sealing may be difficult.
  • the upper roller 20 is arranged to be vertically aligned with the lower roller 10 on the upper separation membrane 3a, and is configured to have an elliptical shape having a minor axis and a long axis.
  • the upper roller 20 may also be heated to a range of 60 to 110° C. through an external heater (not shown).
  • the upper roller 20 and the lower roller 10 are axially rotated by respective motors M1 and M2, but are spaced at a constant interval along the width direction (left and right direction in FIG. 2). placed to be maintained.
  • the rotational speed of the motors M1 and M2 may be adjusted according to the transport speed of the separation membranes 3a and 3b, and one motor rotates the lower roller 10 and the upper roller 20 at the same time. may be configured.
  • the upper roller 20 comes into contact with the upper separator 3a, the upper roller 20 comes into contact with the upper separator 3a to prevent damage to the separators 3a and 3b. It is made of a material with elasticity,
  • the upper roller 20 is coupled to cover the surface of the core part 21 and the core part 21 made of a material having a relatively higher hardness, and is made of a material having a relatively higher elastic force. It may include a surface portion 22 in contact with the upper separation membrane 3a.
  • the surface portion 22 may be made of a rubber material or silicone material having appropriate elasticity, and may have a shore hardness in the range of HS20 to HS40.
  • the core part 21 is made of a metal material having a higher hardness to support the elastic deformation of the surface part when it occurs.
  • FIG. 4 is a view showing a state in which the short axis of the upper roller 20 is perpendicular to the lower roller 10 when the electrode is positioned between the upper roller 20 and the lower roller 10
  • FIG. 5 is When only the separation membranes 3a and 3b are positioned between the upper roller 20 and the lower roller 10, the long axis of the upper roller 20 is perpendicular to the lower roller 10 and the separation membranes 3a, 3b
  • Figure 6 shows a state in which the upper roller is heated and the lower roller is unheated (i), the upper roller is unheated and the lower roller is heated (ii), and both the upper roller and the lower roller are heated (iii).
  • the upper roller 20 and the lower roller 10 of the unit cell manufacturing apparatus provided in this embodiment are installed before the separation membranes 3 reach the cutter 8, the When the electrodes 1 and 2 pass while the upper roller 20 rotates, the upper roller 20 does not come into contact with the upper separator 3a, and after the electrodes 1 and 2 pass, the upper roller 20 moves on the upper layer The separation membrane 3a and the lower layer separation membrane 3b are pressed against the surface of the lower roller 10 .
  • the upper roller 20 has a posture in which its minor axis is in a vertical direction (a direction in which it is placed vertically). Accordingly, the upper roller 20 does not contact the anode 1 of the uppermost layer. And, when the separation membrane 3 moves (to the right in FIG. 4), the upper roller 20 also rotates (counterclockwise), so that the upper roller 20 has its long axis in a vertical direction (a direction in which it is placed up and down). ), the upper separation membrane 3a starts to press so that it comes into contact with the lower separation membrane 3b.
  • the upper roller 20 rotates counterclockwise based on FIG. 5 to rotate as shown in FIG. 4 , and the next electrodes 1 and 2 are When passed, the upper separator 3a and the lower separator 3b are heat-sealed again in the same manner.
  • the point where the thermal fusion is made in this way is cut by the cutter 8 shown in FIG. 1 to manufacture the unit cell 4 .
  • the pressure applied to the separation membrane 3 may vary depending on the material of the upper roller 20 and the distance between the upper roller 20 and the lower roller 10 .
  • the pressure applied to the lower separator and the upper separator by the lower roller 10 and the upper roller 20 is a unit area (1 cm 2 ) Or 1 m 2) per 100 ⁇ 1000 kg is preferably set in the range.
  • the lower roller 10 has a cylindrical shape, if it can be configured to efficiently transfer the heat of the heater 11 included therein to the surface of the housing 12, it is not limited to a specific structure, but is sealed In order to maintain the sealing quality of the part evenly, the straightness is preferably 5/1000 or less, the surface roughness is Ra 0.8 or less, and the centrifugation is 8/1000 or less.
  • the manufacturing method of the unit cell according to the present invention is configured such that the upper roller 20 is heated or the lower roller 10 is heated in consideration of the material or thickness of the separators 3a and 3b, the spacing between electrodes, the heating temperature, etc. can
  • the lower roller 10 may be configured such that only the upper roller 20 is heated in an unheated state. In this case, since heat is not unnecessarily transferred to the electrodes 1 and 2 (by the heated lower roller), thermal damage to the electrodes 1 and 2 can be prevented.
  • the lower roller 10 may be configured such that the upper roller 20 is not heated in a heated state.
  • the heat sealing quality can be adjusted by adjusting the pressing force through the upper roller 20 .
  • it may be configured in this way.
  • both the lower roller 10 and the upper roller 20 can be heated. In this case, heat can be uniformly transferred to the upper separator 3a and the lower separator 3b, so that the thermal fusion efficiency can be increased.
  • the apparatus for manufacturing the unit cell provided in this embodiment is the upper roller 20 according to the required thermal fusion specifications, the configuration of the upper roller 20 and the lower roller 10, and the thickness or type of the separation membranes 3a and 3b. and at least one or both of the lower rollers 10 may be configured to be heated.
  • a method for manufacturing a unit cell capable of manufacturing a unit cell using the above-described manufacturing apparatus is provided as a second embodiment.
  • the manufacturing method provided in this embodiment includes a step in which the separator 3 and the electrodes 1 and 2 are laminated in a predetermined order and then laminated to provide the electrodes 1 and 2 and the separator 3, and an upper roller 2 ) and the lower roller 10 is configured to include the step of passing the separation membrane (3).
  • the electrodes 1 and 2 and the separator 3 are provided in the stage in which the electrodes 1 and 2 and the separator 3 are provided, the lower separator 3b and the upper separator 3a continuously move along the longitudinal direction, and the lower separator 3b and the upper separator 3a ) and on the upper separator 3a, the electrodes 1 and 2 are stacked, respectively, and the electrodes 1 and 2 and the separator 3 are provided.
  • the upper roller 20 presses the upper separator 3a and the lower separator 3b to the surface of the lower roller 10 to heat-seal them.
  • the upper roller 20 is made of a material having elasticity, and when the upper separator 3a is pressed, it is pressed by the elastic force of the material.
  • at least one of the upper roller 20 and the lower roller 10 is heated to perform thermal fusion at the point where the separation membranes 3a and 3b are pressed.
  • the present invention having the configuration as described above includes an upper roller 20 having an elliptical shape and a lower roller 10 having a circular shape, and at least one of the upper roller 20 and the lower roller 10 is heated to a predetermined temperature, and the long axis of the upper roller 20 presses the separation membranes 3a and 3b to bond (thermal-seal) the upper separator 3a and the lower separator 3b. Accordingly, since the sealing of the cut point is made, the separation membranes 3a and 3b are fixed after the cut is made to prevent folding.
  • the portion where the upper roller 20 comes into contact with the separation membrane 3 is made of a material having elasticity to prevent damage to the separation membrane 3 when pressurized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 아래층 분리막과 윗층 분리막이 길이방향을 따라 계속적으로 이동하고, 상기 아랫층 분리막과 윗층 분리막 사이 및 윗층 분리막 위에 전극이 각각 적층된 상태로 제공되는 단위셀의 제조공정 중, 이웃 하는 전극들 사이에서 아래층 분리막과 윗층 분리막을 커팅하는 단위셀의 제조장치로써, 아래층 분리막 아래에 배치된 하부롤러; 및 윗층 분리막 위에서 상기 하부롤러와 수직으로 정렬되도록 배치되며, 단축과 장축을 갖는 타원형 모양을 갖는 상부롤러;를 포함하고, 상기 상부롤러가 회전하는 동안 전극이 지날때는 상부롤러는 윗층 분리막과 접촉하지 않으며, 전극이 지난 후 상부롤러는 윗층 분리막과 아래층 분리막을 하부롤러의 표면으로 가압하되, 상기 하부롤러와 상부롤러 중 적어도 어느 하나는 미리 정해진 온도로 가열되어 윗층 분리막과 아랫층 분리막이 가압된 지점을 열융착시킨다.

Description

단위셀의 제조방법과 제조장치
본 출원은 2020년 12월 23일자 한국특허출원 제10-2020-0182655호 및 2021년 12월 21일자 한국특허출원 제10-2021-0184173호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 단위셀의 제조방법과 제조장치에 관한 것으로써, 더욱 상세하게는 아랫층 분리막과 윗층 분리막이 커팅되기 이전에, 상기 아랫층 분리막과 윗층 분리막에서 커팅이 이뤄질 부분을 미리 접합(실링)하여 분리막의 접힘을 방지할 수 있는 단위셀의 제조방법과 제조장치에 관한 것이다.
이차 전지는 일차 전지와는 달리 재충전이 가능하고, 또 소형화 및 대용량화가 가능하여 근래에 많은 연구와 개발이 이뤄지고 있다. 그리고, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격하게 증가하고 있다.
이차 전지는 케이스(파우치, 캔 등)에 전극조립체 및 전해액이 내장되어 구성된다. 케이스의 내부에 장착되는 전극조립체는 양극/분리막/음극의 적층 구조로 이루어져 반복적인 충방전이 가능하다. 전극조립체는 다양한 방식으로 제조가 이뤄지나, 단위셀(4)을 미리 제조한 후 상기 단위셀(4)을 복수 개 적층하여 제조가 이뤄지는 적층형 방식이 일반적이다.
즉, 종래의 방식에 따라 단위셀이 제조되는 모습이 단순화되어 도시된 도 1 을 참조하면, 단위셀(4)을 제조하기 위한 종래의 제조 방식은 위에서부터 양극(1), 윗층 분리막(3a), 음극(2), 아래층 분리막(3b) 각각이 롤 형태로 권취된 상태에서 연속적으로 권출되어 공급되도록 구성된다(단, 양극과 음극의 적층 위치는 달라질 수 있다).
상기 분리막들(3: 3a, 3b)은 끊김 없이 연속적으로 공급되며, 상기 음극(2)은 윗층 분리막(3a)과 아랫층 분리막(3b) 사이로 공급되고 상기 양극(1)은 윗층 분리막(3a) 위로 공급된다.
이때, 분리막들(3)은 절단되지 않고 연속적으로 공급되는 반면, 양극(1)과 음극(2)은 각각의 커터들(6, 7)에 의해 일정한 크기로 절단된 상태로 투입되어 제공된다. 상기 양극(1)과 음극(2)은 짝을 이뤄 윗층 분리막(3a)을 사이에 두고 위아래로 정렬되어 적층되되, 이웃하는 양극(1) 및 음극(2)과는 일정거리를 두도록 배치된다.
즉, 분리막들(3)은 계속적으로 이어지되 음극(2)과 양극(1)은 이웃하는 각각의 음극(2) 및 양극(1)과 일정거리를 둔 상태로 라미네이팅 장치(9)를 통과하게 된다. 상기 라미네이팅 장치(9)에서는 열과 압력을 가함으로써 음극(2)과 양극(1)이 분리막들(3)과 접촉하는 지점에서는 접착이 이뤄진다.
상기 양극(1)과 음극(2)이 분리막(3)에 접착된 상태로 라미네이팅 장치(9)를 통과한 후에, 상하로 짝을 이뤄 배치된 원통형 롤러들로 구성된 가압장치(5)를 통과하며 추가적으로 가압된다.
그리고, 그 다음에, 이웃하는 양극(1)과 양극(1) 사이에서 커터(8)에 의해 분리막(3)이 절단되어 개별 단위셀(4)로 제공된다.
즉, 라미네이팅 장치(9) 및 가압장치(5)에 의한 가열과 가압에 의해 전극(1, 2)과 분리막(3)의 접착이 이뤄진 후, 이웃하는 전극들 사이로 분리막들(3)의 절단이 이뤄져서 개별 단위셀(4)로 제조된다.
하지만, 상기 커터(8)는 위아래로 압력을 가해 분리막(3)을 절단하는 구조인 관계로, 분리막들(3a, 3b) 중 어느 하나의 절단이 제대로 이뤄지지 않으면 압력이 가해지는 방향을 따라 접혀질 수 있는 문제가 있었다.
그리고, 단위셀(4)로 제조된 후, 상기 단위셀(4)은 복수 개가 적층되어 전극조립체로 제조되므로, 분리막(3)의 접힘이 발생하여 음극(2) 또는 양극(1)의 일부가 노출되면, 전극조립체 내부에서 쇼트가 발생할 수 있는 문제가 있었다.
즉, 분리막(3)과 전극(1, 2)이 맞닿는 지점은 접착은 이뤄지나, 종래의 구조에서는 윗층 분리막(3a)과 아래층 분리막(3b)은 접착되지 못해 커터(8)에 의해 절단이 이뤄질 때 또는 절단이 이뤄진 후, 고정되지 못하고 접혀질 수 있는 문제가 있었다.
따라서, 본 발명은 분리막의 절단 시 윗층 분리막 및 아래층 분리막의 접힘을 방지할 수 있도록 분리막의 절단 전에(분리막의 절단이 이뤄질 지점이 커터(8)에 도달하기 전에) 윗층 분리막과 아래층 분리막의 접착(실링)이 이뤄질 수 있는 단위셀의 제조방법과 제조장치를 제공하는 것에 주목적이 있다.
위와 같은 목적을 달성하기 위한 본 발명에 따른 단위셀의 제조장치는, 아래층 분리막과 윗층 분리막이 길이방향을 따라 계속적으로 이동하고, 상기 아랫층 분리막과 윗층 분리막 사이 및 윗층 분리막 위에 전극(양극 및 음극)이 각각 적층된 상태(즉, 위에서부터 아래로 '양극/윗층 분리막/음극/아래층 분리막' 또는 '음극/윗층 분리막/양극/아래층 분리막' 순서로 적층된 상태)로 제공되는 단위셀의 제조공정 중, (분리막의 길이방향을 따라) 이웃 하는 전극들 사이에서 아래층 분리막과 윗층 분리막을 커팅하는 단위셀의 제조장치로써, 아래층 분리막 아래에 배치된 하부롤러; 및 윗층 분리막 위에서 상기 하부롤러와 수직으로 정렬되도록 배치되며, 단축과 장축을 갖는 타원형 모양을 갖는 상부롤러;를 포함하고, 상기 상부롤러가 회전하는 동안 전극이 지날때는 상부롤러는 윗층 분리막과 접촉하지 않으며, 전극이 지난 후 상부롤러는 윗층 분리막과 아래층 분리막을 하부롤러의 표면으로 가압하되, 상기 하부롤러와 상부롤러 중 적어도 어느 하나는 미리 정해진 온도로 가열되어 윗층 분리막과 아랫층 분리막이 가압된 지점을 열융착시킨다.
상기 상부롤러와 하부롤러는 윗층 분리막과 아래층 분리막의 커팅이 이뤄지기 전에 윗층 분리막과 아래층 분리막을 열융착시키도록 배치된다.
상기 상부롤러가 분리막과 맞닿게 되는 부분은 탄성을 갖는 재질로 제조된다.
상기 상부롤러는 상대적으로 더 높은 경도를 갖는 재질로 제조된 코어부 및 상기 코어부의 표면을 덮도록 결합되며 상대적으로 더 높은 탄성력을 갖는 재질로 제조되고 윗층 분리막과 접촉하는 표면부를 포함한다.
상기 표면부는 HS20 내지 HS40 범위의 쇼어경도(shore hardness)를 갖는 재질로 제조된다.
상기 하부롤러와 상부롤러 중 어느 하나 이상은 60 내지 110℃ 범위까지 가열된다.
상기 하부롤러와 상부롤러가 아래층 분리막과 윗층 분리막을 가압할 때 상기 하부롤러와 상부롤러 사이에서 가해지는 압력은 100 ~1000kg 범위로 정해진다.
본 발명에서, 상기 하부롤러는 가열되고 상기 상부롤러는 가열되지 않을 수 있다. 또는, 상기 하부롤러는 가열되지 않고 상기 상부롤러는 가열될 수 있다. 또는 상기 하부롤러와 상기 상부롤러는 모두 가열되게 구성될 수 있다.
아울러, 본 발명에서 제공되는 단위셀의 제조방법은, 아랫층 분리막과 윗층 분리막 사이 및 윗층 분리막 위에 전극이 각각 적층된 단위셀의 제조방법으로써, 아래층 분리막과 윗층 분리막이 길이방향을 따라 계속적으로 이동하고, 상기 아랫층 분리막과 윗층 분리막 사이 및 윗층 분리막 위에 전극이 각각 적층된 상태로 전극과 분리막이 제공되는 단계; 및 아래층 분리막 아래에 배치된 하부롤러와 윗층 분리막 위에서 상기 하부롤러와 수직으로 정렬되도록 배치되며, 단축과 장축을 갖는 타원형 모양을 갖는 상부롤러 사이를 상기 전극과 분리막이 통과하는 단계;를 포함하고, 상기 상부롤러가 회전하는 동안 전극이 지날 때는 상부롤러는 윗층 분리막과 접촉하지 않으며, 전극이 지난 후 상부롤러는 윗층 분리막과 아래층 분리막을 하부롤러의 표면으로 가압하되, 상기 하부롤러와 상부롤러 중 적어도 어느 하나는 미리 정해진 온도로 가열되어 윗층 분리막과 아랫층 분리막이 가압된 지점이 열융착되는 것을 특징으로 한다.
상기 상부롤러와 하부롤러는 윗층 분리막과 아래층 분리막의 커팅이 이뤄지기 전에 윗층 분리막과 아래층 분리막을 열융착시키도록 배치된다.
상기 상부롤러는 탄성을 갖는 재질로 제조되어 윗층 분리막을 가압할 때 재질의 탄성력으로 가압한다.
전술한 바와 같은 구성을 갖는 본 발명은, 타원형 모양을 갖는 상부롤러 및 원형의 하부롤러를 포함하되, 상부롤러와 하부롤러 중 적어도 어느 하나 이상은 미리 정해진 온도로 가열되어, 상기 상부롤러의 장축이 분리막들을 가압하여 윗층 분리막과 아래층 분리막을 접합(열융착)시킬 수 있다. 이에따라, 절단이 이뤄진 후, 분리막의 접힘을 방지할 수 있다.
상기 상부롤러가 분리막과 맞닿게 되는 부분은 탄성을 갖는 재질로 제조되어 가압이 이뤄질 때 분리막의 손상을 방지할 수 있다.
도 1 은 종래의 방식에 따라 단위셀이 제조되는 모습이 단순화되어 도시된 도면.
도 2 는 본 발명의 실시예에 따른 단위셀의 제조장치가 단순화되어 도시된 정면도(좌측 그림) 및 상부롤러와 하부롤러 각각의 횡단면(우측 그림)이 도시된 도면.
도 3 은 상부롤러의 장축이 하부롤러와 수직을 이룰 때의 모습<A> 및 상부롤러의 단축이 하부롤러와 수직을 이룰 때의 모습<B>이 도시된 도면.
도 4 는 상부롤러와 하부롤러 사이에 전극이 위치할 때, 상기 상부롤러의 단축이 하부롤러와 수직을 이루는 모습이 도시된 도면.
도 5 는 상부롤러와 하부롤러 사이에 분리막들만 위치할 때, 상기 상부롤러의 장축이 하부롤러와 수직을 이루며 분리막들을 가압하는 모습이 도시된 도면.
도 6 은 상부롤러는 가열되고 하부롤러는 미가열된 모습(i), 상부롤러는 미가열되고 하부롤러는 가열된 모습(ii), 상부롤러와 하부롤러 모두 가열된 모습(iii)이 각각 도시된 도면.
이하, 첨부된 도면에 의거하여 본 발명에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 아랫층 분리막(3b)과 윗층 분리막(3a) 사이 및 윗층 분리막(3a) 위에 전극(1, 2)이 각각 적층된 단위셀(4)의 제조방법 및 제조장치에 관한 것으로써, 이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예들을 더욱 상세히 설명한다.
제1실시예
본 발명에서는 단위셀의 제조장치를 제1실시예로써 제공한다. 이 실시예에서 제공되는 단위셀의 제조장치는 도 1 에 도시된 공정에서 가압장치(5)와 커터(8) 사이에 추가되거나 또는 가압장치(5)를 대신하여 설치될 수 있다.
도 2 는 본 발명의 실시예에 따른 단위셀의 제조장치가 단순화되어 도시된 정면도(좌측 그림) 및 상부롤러와 하부롤러 각각의 횡단면(우측 그림)이 도시된 도면이고, 도 3 은 상부롤러의 장축이 하부롤러와 수직을 이룰 때의 모습<A> 및 상부롤러의 단축이 하부롤러와 수직을 이룰 때의 모습<B>이 도시된 도면이다.
도시된 바와 같이, 본 발명에 따른 단위셀의 제조장치는 하부롤러(10) 및 상부롤러(20)를 포함하여 구성된다. 상기 상부롤러(20)와 하부롤러(10)는 윗층 분리막(3a)과 아래층 분리막(3b)의 커팅이 이뤄지기 전에 윗층 분리막(3a)과 아래층 분리막(3b)을 열융착시키도록 배치된다.
이 실시예에서 제공되는 단위셀의 제조장치는 종래의 가압장치(5)를 대신하여 또는 가압장치(5)와 커터(8) 사이에 추가적으로 제공됨에 따라, 분리막(3)과 전극(1, 2)은 아래층 분리막(3b)과 윗층 분리막(3a)이 길이방향을 따라 계속적으로 이동하고, 상기 아랫층 분리막(3b)과 윗층 분리막(3a) 사이 및 윗층 분리막(3a) 위에 양극(1) 및 음극(2)이 각각 적층된 상태, 즉, 위에서부터 아래로 '양극/윗층 분리막/음극/아래층 분리막' 또는 '음극/윗층 분리막/양극/아래층 분리막' 순서로 적층된 상태로 제공된다.
상기 하부롤러(10)는 원형 모양을 가지며 아래층 분리막(3b) 아래에 배치된다. 그리고, 히터(미도시) 등으로 통해 미리 정해진 온도로 가열될 수 있게 구성된다.
이 실시예에서, 상기 하부롤러(10)는 60 내지 110℃ 범위까지 가열될 수 있다. 상기의 온도 범위로 한정된 이유는 60℃ 미만인 경우에는 분리막(3)의 효율적인 열융착이 이뤄지기 어렵기 때문이고 110℃ 를 초과하는 경우에는 분리막(3)이 용융되어(또는 변형이나 손상이 발생하여) 실링이 어려울 수 있기 때문이다.
그리고, 상부롤러(20)는 윗층 분리막(3a) 위에서 상기 하부롤러(10)와 수직으로 정렬되도록 배치되며, 단축과 장축을 갖는 타원형 모양을 갖도록 구성된다. 상기 상부롤러(20) 또한 외부 히터(미도시) 등을 통해 60 내지 110℃ 범위까지 가열될 수 있다.
따라서, 도 3 에 나타난 바와 같이, 장축이 수직으로 세워졌을 때, 상기 상부롤러(20)와 하부롤러(10) 사이의 간격은 상대적으로 작아지고, 단축이 수직으로 세워졌을 때, 상기 상부롤러(20)와 하부롤러(10) 사이의 간격은 상대적으로 커지게 된다. 즉, 상부롤러(20)의 회전 위치에 따라서 상기 상부롤러(20)와 하부롤러(10) 사이의 간격은 가변된다.
상기 상부롤러(20)와 하부롤러(10)은 도 2 에 나타난 바와 같이, 각각의 모터들(M1, M2)에 의해 축회전하되, 폭방향(도 2 에서 좌우방향)을 따라 간격을 일정하게 유지되게 배치된다. 상기 모터들(M1, M2)의 회전속도는 분리막들(3a, 3b)의 이송속도에 따라서 조절될 수 있으며, 하나의 모터로, 하부롤러(10)와 상부롤러(20)를 동시에 회전시키도록 구성될 수도 있다.
한편, 상기 상부롤러(20)가 윗층 분리막(3a)과 맞닿게 될 때, 분리막(3a, 3b)의 손상을 방지할 수 있도록 상부롤러(20)가 윗층 분리막(3a)과 맞닿게 되는 부분은 탄성을 갖는 재질로 제조된다.,
즉, 상기 상부롤러(20)는 상대적으로 더 높은 경도를 갖는 재질로 제조된 코어부(21) 및 상기 코어부(21)의 표면을 덮도록 결합되며 상대적으로 더 높은 탄성력을 갖는 재질로 제조되고 윗층 분리막(3a)과 접촉하는 표면부(22)를 포함할 수 있다.
상기 표면부(22)는 적절한 탄성을 갖는 고무재 또는 실리콘재로 제조되어 HS20 내지 HS40 범위의 쇼어경도(shore hardness)를 가질수 있다. 그리고, 상기 코어부(21)는 표면부의 탄성변형이 발생할 때 이를 지지할 수 있도록 더 높은 경도를 갖는 금속재로 제조된다.
도 4 는 상부롤러(20)와 하부롤러(10) 사이에 전극이 위치할 때, 상기 상부롤러(20)의 단축이 하부롤러(10)와 수직을 이루는 모습이 도시된 도면이고, 도 5 는 상부롤러(20)와 하부롤러(10) 사이에 분리막들(3a, 3b)만 위치할 때, 상기 상부롤러(20)의 장축이 하부롤러(10)와 수직을 이루며 분리막들(3a, 3b)을 가압하는 모습이 도시된 도면이다. 그리고, 도 6 은 상부롤러는 가열되고 하부롤러는 미가열된 모습(i), 상부롤러는 미가열되고 하부롤러는 가열된 모습(ii), 상부롤러와 하부롤러 모두 가열된 모습(iii)이 각각 도시된 도면이다.
도 4 및 5 를 참조하면, 이 실시예에서 제공되는 단위셀의 제조장치의 상부롤러(20)와 하부롤러(10)는 분리막들(3)이 커터(8)에 도달하기 전에 설치되되, 상기 상부롤러(20)가 회전하는 동안 전극(1, 2)이 지날때 상부롤러(20)는 윗층 분리막(3a)과 접촉하지 않으며, 전극(1, 2)이 지난 후 상부롤러(20)는 윗층 분리막(3a)과 아래층 분리막(3b)을 하부롤러(10)의 표면에 가압한다.
즉, 상부롤러(20) 아래로 전극(1, 2)이 지나는 동안에는 상기 상부롤러(20)는 단축이 수직방향(상하로 놓이는 방향)을 향하는 자세가 된다. 이에 따라 상부롤러(20)는 최상층의 양극(1)과 접촉하지 않는다. 그리고, 분리막(3)이 (도 4 에서 오른쪽 방향으로) 이동할 때, 상기 상부롤러(20)도 (반시계방향으로) 회전하여, 상기 상부롤러(20)는 장축이 수직방향(상하로 놓인는 방향)에 놓이도록 회전하면, 윗층 분리막(3a)이 아래층 분리막(3b)에 맞닿도록 가압하기 시작한다.
이때, 아래층 분리막(3b) 아래에서 회전하던 하부롤러(10) 및/또는 윗층 분리막(3a) 위에서 회전하던 상부롤러(20) 중 적어도 어느 하나는 소정의 온도로 가열된 상태이고, 상기 하부롤러(10)의 표면에 윗층 분리막(3a)과 아래층 분리막(3b)이 가압되므로, 상기 아래층 분리막(3b)는 열과 압력에 의해 윗층 분리막(3a)에 열융착되어 실링이 이뤄진다.
그리고, 분리막들(3a, 3b)의 열융착이 이뤄지면 상기 상부롤러(20)는 도 5 기준으로 반시계 방향으로 회전하여 도 4 와 같이 회전하게 되고 그 다음 번 전극들(1, 2)이 통과하면 다시 윗층 분리막(3a)과 아랫층 분리막(3b)을 동일한 방식으로 열융착 시킨다.
이와 같이 열융착이 이뤄진 지점은 도 1 에 도시된 커터(8)에 의해 절단이 이뤄져 단위셀(4)로 제조된다.
한편, 상기 상부롤러(20)의 재질과 상부롤러(20)와 하부롤러(10) 사이의 간격에 따라서, 분리막(3)에 가해지는 압력은 달라질 수 있다. 이때, PE(폴리에틸렌) 재질의 분리막을 기준으로 두께가 8 내지 20㎛ 일 때, 상기 하부롤러(10)와 상부롤러(20)에 의해 아래층 분리막과 윗층 분리막에 가해지는 압력은 단위면적(1㎠ 또는 1㎡) 당 100 ~1000kg 범위로 정해지는 것이 바람직하다.
아울러, 상기 하부롤러(10)는 원통형 형상을 갖되, 내부에 포함된 히터(11)의 열이 하우징(12)의 표면으로 효율적으로 전달되도록 구성될 수 있다면, 특정 구조로 제한되지 않으나, 실링되는 부분의 실링품질을 고르게 유지할 수 있도록 직진도는 5/1000 이하, 표면거칠기는 Ra 0.8 이하, 원심도는 8/1000 이하를 유지하도록 제조되는 것이 바람직하다.
본 발명에 따른 단위셀의 제조방법은 분리막들(3a, 3b)의 재질이나 두께 전극 사이의 간격, 가열온도 등을 고려하여 상부롤러(20)가 가열되거나 하부롤러(10)가 가열되도록 구성될 수 있다.
즉, 도 6 에 도시된 바와 같이, 좌측 그림(i)에 도시된 바와 같이 하부롤러(10)는 미가열된 상태에서 상부롤러(20)만 가열되도록 구성될 수 있다. 이 경우에는 (가열된 하부롤러에 의해) 전극(1, 2)에 불필요하게 열이 전달되지 않으므로, 상기 전극(1, 2)의 열해를 방지할 수 있다.
그리고, 중간 그림(ii)에 도시된 바와 같이 하부롤러(10)는 가열된 상태에서 상부롤러(20)는 미가열되도록 구성될 수 있다. 이 경우에는 아랫층 분리막(3b)이 길이방향을 따라 전체적으로 가열이 이뤄진 상태이므로, 상부롤러(20)를 통한 가압력 조절을 통해 열융착 품질을 조절할 수 있다. 특히, 표면부의 재질에 따라 상부롤러(20)를 통한 열전달이 어려운 경우 이와 같은 방식으로 구성될 수 있다.
또한, 우측 그림(iii)에 도시된 바와 같이, 하부롤러(10) 및 상부롤러(20) 모두가 가열될 수 있다. 이 경우에는 윗층 분리막(3a) 및 아랫층 분리막(3b)에 균등하게 열이 전달될 수 있으므로 열융착 효율이 증대될 수 있다.
따라서, 이 실시예에서 제공된 단위셀의 제조장치는 요구되는 열융착 스펙, 상부롤러(20)와 하부롤러(10)의 구성, 분리막(3a, 3b)의 두께나 종류 등에 따라 상부롤러(20)와 하부롤러(10) 중 적어도 어느 하나 또는 두 개 모두가 가열되도록 구성될 수 있다.
제2실시예
본 발명에서는 위에서 설명된 제조장치를 이용하여 단위셀을 제조할 수 있는 단위셀의 제조방법을 제2실시예로써 제공한다.
이 실시예에서 제공되는 제조방법은, 분리막(3)과 전극(1, 2)이 정해진 순서데로 적층된 후 라미네이팅되어 전극(1, 2)과 분리막(3)이 제공되는 단계 및 상부롤러(2)와 하부롤러(10) 사이를 분리막(3)이 통과하는 단계를 포함하여 구성된다.
즉, 전극(1, 2)과 분리막(3)이 제공되는 단계에서는 아래층 분리막(3b)과 윗층 분리막(3a)이 길이방향을 따라 계속적으로 이동하고, 상기 아랫층 분리막(3b)과 윗층 분리막(3a) 사이 및 윗층 분리막(3a) 위에 전극(1, 2)이 각각 적층된 상태로 전극(1, 2)과 분리막(3)이 제공되도록 구성된다.
그리고, 상부롤러(20)와 하부롤러(10) 사이를 분리막(3)이 통과하는 단계에서는 아래층 분리막(3b) 아래에 배치된 하부롤러(10)와 윗층 분리막(3a) 위에서 상기 하부롤러(10)와 수직으로 정렬되도록 배치되며, 단축과 장축을 갖는 타원형 모양을 갖는 상부롤러(20) 사이를 상기 전극(1, 2)과 분리막(3)이 통과하도록 구성된다.
이때, 상기 상부롤러(20)가 회전하는 동안 전극(1, 2)이 지날 때는 상부롤러(20)는 윗층 분리막(3a) 및 최상층에 적층된 양극(1)과 접촉하지 않으며, 전극(1, 2)이 지난 후 상부롤러(20)는 윗층 분리막(3a)과 아래층 분리막(3b)을 하부롤러(10)의 표면에 가압하여 열융착시킨다. 이때, 상기 상부롤러(20)는 탄성을 갖는 재질로 제조되어 윗층 분리막(3a)을 가압할 때 재질의 탄성력으로 가압한다. 이때, 상부롤러(20)와 하부롤러(10) 중 적어도 어느 하나는 가열되어 분리막들(3a, 3b)이 가압된 지점에서 열융착이 이뤄진다.
상기 상부롤러(20)와 하부롤러(10)를 통해 열융착이 이뤄진 지점은 다음 위치로 이동하고 커터(8)에 의해 절단이 이뤄진다.
전술한 바와 같은 구성을 갖는 본 발명은, 타원형 모양을 갖는 상부롤러(20) 및 원형 모양을 갖는 하부롤러(10)를 포함하고, 상기 상부롤러(20)와 하부롤러(10) 중 적어도 어느 하나는 미리 정해진 온도까지 가열되어, 상기 상부롤러(20)의 장축이 분리막들(3a, 3b)을 가압하여 윗층 분리막(3a)과 아래층 분리막(3b)을 접합(열융착)시킬 수 있다. 이에 따라, 절단이 이뤄지는 지점의 실링이 이뤄지므로, 절단이 이뤄진 후에 분리막(3a, 3b)이 고정되어 접힘을 방지할 수 있다.
상기 상부롤러(20)가 분리막(3)과 맞닿게 되는 부분은 탄성을 갖는 재질로 제조되어 가압이 이뤄질 때 분리막(3)의 손상을 방지할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 실시가 가능하다.
[부호의 설명]
1 : 양극
2 : 음극
3 : 분리막(3a: 윗층 분리막, 3b: 아래층 분리막)
10 : 하부롤러
11 : 히터
12 : 하우징
20 : 상부롤러
21 : 코어부
22 : 표면부

Claims (13)

  1. 아래층 분리막과 윗층 분리막이 길이방향을 따라 계속적으로 이동하고, 상기 아랫층 분리막과 윗층 분리막 사이 및 윗층 분리막 위에 전극이 각각 적층된 상태로 제공되는 단위셀의 제조공정 중, 이웃 하는 전극들 사이에서 아래층 분리막과 윗층 분리막을 커팅하는 단위셀의 제조장치로써,
    아래층 분리막 아래에 배치된 하부롤러; 및
    윗층 분리막 위에서 상기 하부롤러와 수직으로 정렬되도록 배치되며, 단축과 장축을 갖는 타원형 모양을 갖는 상부롤러;를 포함하고,
    상기 상부롤러가 회전하는 동안 전극이 지날때는 상부롤러는 윗층 분리막과 접촉하지 않으며, 전극이 지난 후 상부롤러는 윗층 분리막과 아래층 분리막을 하부롤러의 표면으로 가압하되,
    상기 하부롤러와 상부롤러 중 적어도 어느 하나는 미리 정해진 온도로 가열되어 윗층 분리막과 아랫층 분리막이 가압된 지점을 열융착시키는 단위셀의 제조장치.
  2. 제 1 항에 있어서,
    상기 상부롤러와 하부롤러는 윗층 분리막과 아래층 분리막의 커팅이 이뤄지기 전에 윗층 분리막과 아래층 분리막을 열융착시키도록 배치된 것을 특징으로 하는 단위셀의 제조장치.
  3. 제 1 항에 있어서,
    상기 상부롤러가 분리막과 맞닿게 되는 부분은 탄성을 갖는 재질로 제조된 것을 특징으로 하는 단위셀의 제조장치.
  4. 제 3 항에 있어서,
    상기 상부롤러는 상대적으로 더 높은 경도를 갖는 재질로 제조된 코어부 및 상기 코어부의 표면을 덮도록 결합되며 상대적으로 더 높은 탄성력을 갖는 재질로 제조되고 윗층 분리막과 접촉하는 표면부를 포함하는 것을 특징으로 하는 단위셀의 제조장치.
  5. 제 4 항에 있어서,
    상기 표면부는 HS20 내지 HS40 범위의 쇼어경도(shore hardness)를 갖는 재질로 제조된 것을 특징으로 하는 단위셀의 제조장치.
  6. 제 1 항에 있어서,
    상기 하부롤러와 상부롤러 중 어느 하나 이상은 60 내지 110℃ 범위까지 가열된 것을 특징으로 하는 단위셀의 제조장치.
  7. 제 4 항에 있어서,
    상기 하부롤러와 상부롤러가 아래층 분리막과 윗층 분리막을 가압할 때 상기 하부롤러와 상부롤러 사이에서 가해지는 압력은 100 ~1000kg 범위로 정해지는 것을 특징으로 하는 단위셀의 제조장치.
  8. 제 1 항에 있어서,
    상기 하부롤러는 가열되고 상기 상부롤러는 가열되지 않는 것을 특징으로 하는 단위셀의 제조장치.
  9. 제 1 항에 있어서,
    상기 하부롤러는 가열되지 않고 상기 상부롤러는 가열되는 것을 특징으로 하는 단위셀의 제조장치.
  10. 제 1 항에 있어서,
    상기 하부롤러와 상기 상부롤러는 모두 가열되는 것을 특징으로 하는 단위셀의 제조장치.
  11. 아랫층 분리막과 윗층 분리막 사이 및 윗층 분리막 위에 전극이 각각 적층된 단위셀의 제조방법에 있어서,
    아래층 분리막과 윗층 분리막이 길이방향을 따라 계속적으로 이동하고, 상기 아랫층 분리막과 윗층 분리막 사이 및 윗층 분리막 위에 전극이 각각 적층된 상태로 전극과 분리막이 제공되는 단계; 및
    아래층 분리막 아래에 배치된 하부롤러와 윗층 분리막 위에서 상기 하부롤러와 수직으로 정렬되도록 배치되며 단축과 장축을 갖는 타원형 모양을 갖는 상부롤러 사이를 상기 전극과 분리막이 통과하는 단계;을 포함하고,
    상기 상부롤러가 회전하는 동안 전극이 지날 때는 상부롤러는 윗층 분리막과 접촉하지 않으며, 전극이 지난 후 상부롤러는 윗층 분리막과 아래층 분리막을 하부롤러의 표면으로 가압하되, 상기 하부롤러와 상부롤러 중 적어도 어느 하나는 미리 정해진 온도로 가열되어 윗층 분리막과 아랫층 분리막이 가압된 지점이 열융착되는 단위셀의 제조방법.
  12. 제 11 항에 있어서,
    상기 상부롤러와 하부롤러는 윗층 분리막과 아래층 분리막의 커팅이 이뤄지기 전에 윗층 분리막과 아래층 분리막을 열융착시키도록 배치된 것을 특징으로 하는 단위셀의 제조방법.
  13. 제 11 항에 있어서,
    상기 상부롤러는 탄성을 갖는 재질로 제조되어 윗층 분리막을 가압할 때 재질의 탄성력으로 가압하는 것을 특징으로 하는 단위셀의 제조방법.
PCT/KR2021/019761 2020-12-23 2021-12-23 단위셀의 제조방법과 제조장치 WO2022139519A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21911584.7A EP4270567A1 (en) 2020-12-23 2021-12-23 Unit cell preparation method and apparatus
US18/032,734 US20230387447A1 (en) 2020-12-23 2021-12-23 Method And Apparatus For Manufacturing Unit Cell
CN202180067371.XA CN116325257A (zh) 2020-12-23 2021-12-23 制造单元电池的方法和设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0182655 2020-12-23
KR20200182655 2020-12-23
KR10-2021-0184173 2021-12-21
KR1020210184173A KR20220091399A (ko) 2020-12-23 2021-12-21 단위셀의 제조방법과 제조장치

Publications (1)

Publication Number Publication Date
WO2022139519A1 true WO2022139519A1 (ko) 2022-06-30

Family

ID=82159684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019761 WO2022139519A1 (ko) 2020-12-23 2021-12-23 단위셀의 제조방법과 제조장치

Country Status (4)

Country Link
US (1) US20230387447A1 (ko)
EP (1) EP4270567A1 (ko)
CN (1) CN116325257A (ko)
WO (1) WO2022139519A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200314731Y1 (ko) * 2003-03-11 2003-05-27 연일화섬공업(주) 방수시트의 점융착 장치
KR101749148B1 (ko) * 2014-10-23 2017-06-20 주식회사 엘지화학 고주파 유도 가열을 이용한 라미네이션 장치 및 이를 이용하여 생산되는 이차전지
JP2019029267A (ja) * 2017-08-01 2019-02-21 株式会社豊田自動織機 セパレータ付き電極の製造装置
KR20190056812A (ko) * 2017-11-17 2019-05-27 주식회사 엘지화학 이차전지용 라미네이션 장치 및 방법
JP2019135699A (ja) * 2018-02-05 2019-08-15 パナソニックIpマネジメント株式会社 電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200314731Y1 (ko) * 2003-03-11 2003-05-27 연일화섬공업(주) 방수시트의 점융착 장치
KR101749148B1 (ko) * 2014-10-23 2017-06-20 주식회사 엘지화학 고주파 유도 가열을 이용한 라미네이션 장치 및 이를 이용하여 생산되는 이차전지
JP2019029267A (ja) * 2017-08-01 2019-02-21 株式会社豊田自動織機 セパレータ付き電極の製造装置
KR20190056812A (ko) * 2017-11-17 2019-05-27 주식회사 엘지화학 이차전지용 라미네이션 장치 및 방법
JP2019135699A (ja) * 2018-02-05 2019-08-15 パナソニックIpマネジメント株式会社 電池の製造方法

Also Published As

Publication number Publication date
US20230387447A1 (en) 2023-11-30
CN116325257A (zh) 2023-06-23
EP4270567A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2014123362A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지 및 상기 전극 조립체 제조방법
WO2018097606A1 (ko) 전극조립체 제조 장치 및 그 전극조립체 제조 장치에 의한 전극조립체 제조 방법
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2014042424A1 (ko) 2차 전지 내부 셀 스택 방법 및 이를 이용하여 제조되는 셀 스택
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2021080210A1 (ko) 가열과 가압을 동시에 적용하는 단계를 포함하는 전극조립체 제조방법
WO2012074218A2 (ko) 전지셀 제조 장치
WO2021194285A1 (ko) 셀 제조 장치 및 방법
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2021015601A1 (ko) 이차전지 분리막 접힘 방지를 위한 분리막 실링 장치 및 실링 방법
WO2016056764A1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
WO2022164257A1 (ko) 분리막 접착장치
WO2020231149A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2018212466A1 (ko) 전극 조립체 제조 장치 및 전극 조립체 제조방법
WO2021118197A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2018207999A1 (ko) 이차전지, 그의 제조장치 및 방법
WO2022139519A1 (ko) 단위셀의 제조방법과 제조장치
WO2022169292A1 (ko) 이차전지용 테이프의 부착 장치 및 이를 이용한 부착 방법
WO2021080239A1 (ko) 전극 조립체 제조방법 및 이를 통해 제조된 전극 조립체
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2022010237A1 (ko) 이차전지
WO2022139518A1 (ko) 단위셀의 제조방법과 제조장치
WO2022139211A1 (ko) 단위셀의 제조방법 및 제조장치
WO2022139520A2 (ko) 단위셀, 단위셀의 제조방법과 제조장치
WO2022065709A1 (ko) 접착력을 개선한 단위구조체 제조용 라미네이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18032734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911584

Country of ref document: EP

Effective date: 20230724