WO2015046711A1 - 이차전지용 단위체 적층장치 및 적층방법 - Google Patents

이차전지용 단위체 적층장치 및 적층방법 Download PDF

Info

Publication number
WO2015046711A1
WO2015046711A1 PCT/KR2014/005021 KR2014005021W WO2015046711A1 WO 2015046711 A1 WO2015046711 A1 WO 2015046711A1 KR 2014005021 W KR2014005021 W KR 2014005021W WO 2015046711 A1 WO2015046711 A1 WO 2015046711A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
basic
size
separator
basic unit
Prior art date
Application number
PCT/KR2014/005021
Other languages
English (en)
French (fr)
Inventor
민기홍
나승호
반진호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2015539525A priority Critical patent/JP6091634B2/ja
Priority to EP14784180.3A priority patent/EP2879223B1/en
Priority to CN201480001176.7A priority patent/CN104718654B/zh
Priority to US14/499,908 priority patent/US9160028B2/en
Publication of WO2015046711A1 publication Critical patent/WO2015046711A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a unit stacking device and a stacking method for a secondary battery, and more particularly, to a unit stacking device and a stacking method for a secondary battery that can be easily stacked using a stack jig of a plurality of different basic units.
  • Secondary batteries may be classified in various ways according to the structure of the electrode assembly.
  • the secondary battery may be classified into a stack type structure, a wound type (jelly roll type) structure, or a stack / fold type structure.
  • the positive electrode, the separator, and the negative electrode are cut to a predetermined size, and then stacked in this order to form an electrode assembly.
  • the separator is disposed between the anode and the cathode.
  • the anode, the separator, the cathode, and the separator are formed in a sheet shape, and then stacked and wound up in order to form an electrode assembly.
  • a full cell or a bicell is formed, and then they are wound up through a separator sheet to form an electrode assembly.
  • the positive electrode, the separator, and the negative electrode are cut to a predetermined size, and then stacked in this order, a full cell or bicell can be formed (the full cell or bicell includes one or more positive electrode, separator, and negative electrode, respectively).
  • electrode assemblies are stacked in a multi-stage (Stepped) so as to be embedded in a miniaturized product.
  • the stacked electrode assembly 20 stacked in multiple stages according to the prior art has one or more first basic units 21 having a first size and a second larger than the first size, as shown in FIG. 1.
  • One or more second basic units 22 having a size and having a first base unit 21 stacked thereon, and one or more third having a third size larger than a second size and having a second base unit 22 stacked thereon. It includes a basic unit (23).
  • the stacked electrode assembly 20 stacked in multiple stages according to the prior art is difficult to accurately position the stacking positions of the basic units when the first, second and third basic units 21, 22, 23 are stacked.
  • a situation in which the stacking positions of the first, second and third basic units 21, 22 and 23 are adjusted through a separate process is used.
  • the present invention has been made in an effort to provide a secondary battery unit stacking apparatus and a stacking method for increasing work efficiency and productivity by stacking a plurality of units having different sizes using a stack jig. .
  • the present invention is a secondary battery for laminating one or more first basic unit having a first size and one or more second basic unit having a second size larger than the first size
  • a unit stacking device comprising: a first internal space having a size corresponding to the first size, and a second internal space having a size corresponding to the second size and communicating with the first internal space above the first internal space; And a stack jig provided therein, wherein the first basic unit is stacked in the first inner space through the second inner space, and then the second basic unit is stacked in the second inner space.
  • the basic unit may further include a basic unit alignment unit for stacking and then aligning the basic unit for each basic unit having the same size.
  • the base unit alignment unit may include a fixture supporting one side of the base unit or two adjacent sides of the base unit, and a press body for pressing the sides of the base unit not supported by the fixture. Can be.
  • the apparatus may further include a basic unit transfer unit configured to transfer the basic units having the same size aligned by the basic unit alignment unit to the stack jig.
  • One inner surface of the first inner space may extend vertically from one inner surface of the second inner space.
  • a side surface of the stack jig may be cut from an upper surface of the stack jig to a lower surface of the stack jig along a height direction of the stack jig to communicate with the first and second internal spaces.
  • the basic unit may form a four-layer structure by sequentially stacking a first electrode, a first separator, a second electrode, and a second separator.
  • the basic unit may be formed by adhering the electrode and the separator to each other.
  • the electrode and the separator may be adhered by applying pressure to the electrode or the separator, or by applying pressure and heat to the electrode and the separator.
  • the separator may be coated with a coating material having an adhesive force on the surface.
  • the coating material may be a mixture of inorganic particles and a binder polymer.
  • the basic unit may be formed by repeatedly stacking the four-layer structure.
  • the lamination method using the unit cell stacking device for a secondary battery of the present invention to manufacture one or more first basic unit having a first size and one or more second basic unit having a second size larger than the first size, respectively Manufacturing step; And a laminating step of inserting and stacking the first basic unit and the second basic unit into a stack jig, wherein the stack jig includes a first internal space having a size corresponding to the first size and the first internal space. A second internal space having a size corresponding to the second size and communicating with the first internal space at an upper side thereof, wherein the stacking step includes the first basic unit through the second internal space and the first internal space; The second basic unit is laminated in the second internal space.
  • the method may further include an alignment step of stacking the basic units for each basic unit having the same size and then aligning the basic units.
  • the aligning step may support one side of the base unit or two adjacent sides of the base unit to the fixture, and then press the sides of the base unit not supported by the fixture through a press body
  • the basic unit may be aligned.
  • the method may further include a transfer step of transferring the basic units of the same size aligned by the alignment step to the stack jig.
  • One inner surface of the first inner space may extend vertically from one inner surface of the second inner space.
  • the basic unit may be manufactured in a four-layer structure in which a first electrode, a first separator, a second electrode, and a second separator are sequentially stacked.
  • the basic unit may be manufactured by adhering the electrode and the separator to each other.
  • the basic unit may be manufactured by adhering the electrode and the separator to each other by laminating.
  • the separator may be coated with a coating material having an adhesive force on the surface, the coating material may be a mixture of inorganic particles and a binder polymer.
  • the basic unit may be manufactured by repeatedly stacking the four-layer structure.
  • FIG. 1 is a view showing a stacked electrode assembly stacked in multiple stages according to the prior art.
  • FIG. 2 is a view showing a first structure of an electrode assembly according to the present invention.
  • FIG. 3 is a view showing a second structure of an electrode assembly according to the present invention.
  • FIG. 4 is a process chart showing a manufacturing process of the electrode assembly according to the present invention.
  • FIG. 5 is a view showing a unit stacking device for a secondary battery according to the present invention.
  • Figure 6 is a view showing the basic unit alignment portion of the unit stacking device for a secondary battery according to the present invention.
  • FIG. 7 is a view illustrating a state of use of the basic unit alignment portion of the unit stacking device for a secondary battery according to the present invention.
  • FIG. 8 is a plan view showing a stack jig of the unit stacking device for a secondary battery according to the present invention.
  • FIG. 9 is a cross-sectional view showing a stack jig of the unit stacking device for a secondary battery according to the present invention.
  • FIG. 10 is a flowchart illustrating a method of stacking unit cells for a secondary battery according to the present invention.
  • FIG. 11 is a view showing a basic unit stacking step of the method for stacking unit cells for a secondary battery according to the present invention.
  • FIG. 12 is a view showing a basic unit attachment step of the method for stacking unit cells for a secondary battery according to the present invention.
  • FIG. 13 is a view showing an electrode assembly stacked by the method for stacking unit cells for a secondary battery according to the present invention.
  • FIG. 14 is a cross-sectional view showing another embodiment of a unit stacking device for a secondary battery according to the present invention.
  • the unit stacking device for a secondary battery according to the present invention can be easily stacked in multiple stages by inserting a plurality of basic units having different sizes into a stack jig, thereby increasing work efficiency and productivity.
  • a configuration in which at least one first basic unit having a first size and at least one second basic unit having a second size larger than the first size is laminated in one embodiment
  • a plurality of basic units having different sizes may be stacked using a stack jig.
  • the electrode assembly 100 of the present invention includes one or more first basic units 110 having a first size, and a second having a second size larger than the first size. It includes two basic unit 120, the first and second basic unit 110, 120 is laminated in multiple stages through the unit stacking device 200 for secondary batteries.
  • the first and second basic units 110 and 120 are formed by sequentially stacking a first electrode, a first separator, a second electrode, and a second separator, and thus, the first and second basic units 110. 120 basically has a four-layer structure.
  • the first basic unit 110 has a first size, and includes a first electrode 111, a first separator 112, a second electrode 113, and a second separator 114.
  • first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 are disposed from the upper side to the lower side. It can be formed sequentially stacked.
  • the first electrode 111 and the second electrode 113 are opposite electrodes.
  • the first electrode 111 is an anode
  • the second electrode 113 is a cathode. Of course, this may be the opposite.
  • the second basic unit 120 has a second size larger than the first size of the first basic unit 110.
  • the first electrode 121, the first separator 122, The second electrode 123 and the second separator 124 are sequentially stacked from the upper side to the lower side, or referring to FIG. 3, the first electrode 121, the first separator 122, and the second electrode 123.
  • the second separator 124 may be formed by being sequentially stacked from the lower side to the upper side.
  • the first electrode 121 and the second electrode 123 are opposite electrodes.
  • the first electrode 121 is an anode
  • the second electrode 123 is a cathode. Of course, this may be the opposite.
  • the first and second basic units 110 and 120 when the first and second basic units 110 and 120 are stacked, electrodes opposite to each other are disposed with a separator interposed therebetween.
  • the first and second basic units 110 and 120 may include the first electrode 111, the first separator 112, the second electrode 113, the second separator 114, and the first electrode ( 121, the first separator 122, the second electrode 123, and the second separator 124 are sequentially stacked.
  • first basic unit and a second basic unit are illustrated in FIGS. 2 and 3, a plurality of first basic units and a plurality of second basic units may be stacked.
  • the positive electrode, the negative electrode, and the separator usually have different sizes, but the separator has the largest size for insulation. Accordingly, the size of the basic unit described herein is based on the size of the separator. (If you make another element larger, it can be explained based on that element.)
  • the base unit having such a laminated structure may be formed by the following process (see FIG. 4).
  • the first basic unit 110 prepares a first electrode material 131, a first separator material 132, a second electrode material 133, and a second separator material 134.
  • the electrode materials 131 and 133 are cut to a predetermined size to form the electrodes 111 and 113 as will be described below.
  • separator materials 132 and 134 In order to automate the process, the electrode material and the separator material preferably have a form wound on a roll.
  • the first electrode material 131 is cut into a predetermined size through the cutter C 1 .
  • the second electrode material 133 is also cut into a predetermined size through the cutter C 2 .
  • a first electrode material 131 of a predetermined size is supplied onto the first separator material 132.
  • a second electrode material 133 of a predetermined size is also supplied over the second separator material 134. Then all materials are fed together into the laminators (L 1 , L 2 ).
  • the first basic unit 110 is formed.
  • Several first basic units may be stacked. However, if the electrode and the separator constituting the first basic unit 110 are separated from each other, it will be very difficult to repeatedly stack the first basic unit 110. Therefore, when forming the first basic unit 110, it is preferable to adhere the electrode and the separator to each other.
  • the laminators L 1 and L 2 are used to adhere the electrodes and the separators to each other as described above with reference to FIG. 4. That is, the laminators L 1 and L 2 apply pressure to the materials or heat and pressure to bond the electrode material and the separator material to each other. As such, the electrode material and the separator material are adhered to each other in the laminators L 1 and L 2 . By such adhesion, the first basic unit 110 may maintain its shape more stably.
  • first separator material 132 and the second separator material 134 are cut together to a first size through the cutter C 3 .
  • the first basic unit 110 may be formed.
  • various tests may be performed on the first basic unit 110 as necessary. For example, inspections such as thickness inspection, vision inspection, and short inspection may be additionally performed.
  • the separator may be coated with a coating material having an adhesive force.
  • the coating material may be a mixture of inorganic particles and a binder polymer.
  • the inorganic particles may improve thermal stability of the separator. That is, the inorganic particles can prevent the membrane from shrinking at a high temperature.
  • the binder polymer may fix the inorganic particles. Due to the inorganic particles, a predetermined pore structure may be formed on the coating layer formed on the surface of the separator. Due to the pore structure, even when the inorganic particles are coated on the separator, ions can smoothly move from the positive electrode to the negative electrode.
  • the binder polymer may stably maintain the inorganic particles in the separator to improve the mechanical stability of the separator. Moreover, the binder polymer can more stably bond the separator to the electrode. (This coating is called an SRS coating.)
  • the separator may be formed of a polyolefin-based separator substrate.
  • electrodes 111 and 113 are positioned on both surfaces of the first separator 112, whereas electrodes 113 are positioned only on one surface of the second separator 114. Therefore, a coating material may be coated on both surfaces of the first separator 112, and a coating material may be coated on only one surface of the second separator 114. That is, the first separator 112 may be coated with a coating material on both sides facing the first electrode 111 and the second electrode 113, and the second separator 114 may face the second electrode 113. The coating material can be coated only on one side.
  • the second separator 114 may be coated on only one surface thereof.
  • the plurality of first basic units 110 may be bonded to each other by a heat press method, or the first basic units 110 and the second basic bodies 120 may be bonded to each other by a method of heat press. Therefore, the second separator 114 may be coated on both surfaces as necessary. That is, the second separator 114 may also be coated with a coating material on one surface facing the second electrode 113 and the opposite surface thereof. In this case, the first basic unit 110 positioned above and the second basic unit 120 positioned directly below may be adhered to each other through a coating material on the outer surface of the second separator 114.
  • a coating material having an adhesive force is applied to the separator, it is not preferable to directly press the separator with a predetermined object.
  • the separator typically extends longer than the electrode. Therefore, an attempt may be made to couple the ends of the first separator 112 and the ends of the second separator 114 with each other. For example, an attempt may be made to fuse the end of the first separator 112 and the end of the second separator 114 with ultrasonic welding. However, such ultrasonic welding needs to press the object directly with a horn. However, when the end of the separator is directly pressed by the horn in this manner, the horn may adhere to the separator due to the coating material having the adhesive force. This can lead to device failure. Therefore, when a coating material having an adhesive force is applied to the separator, it is not preferable to apply a process of directly applying pressure to the separator with a predetermined object.
  • the first basic unit 110 does not have to have a four-layer structure.
  • the first basic unit 110 may include a first electrode 111, a first separator 112, a second electrode 113, a second separator 114, a first electrode 111, and a first separator.
  • the second layer 113, the second electrode 113, and the second separator 114 may be formed to have an eight-layer structure that is sequentially stacked. That is, the first basic unit 110 may have a structure in which a four-layer structure is repeatedly stacked.
  • the second basic unit 120 is formed in the same manner as the manufacturing process of the first basic unit 110 described above, but is formed in a second size larger than the first size of the first basic unit 110.
  • the second basic unit 120 is different in that it is formed in a second size larger than the first size of the first basic unit 110, overlapping the same as the manufacturing process of the first basic unit 110 The description will be omitted.
  • the first and second basic units 110 and 120 manufactured by the above method are transferred to the secondary battery unit stacking apparatus 200 of the present invention through the vacuum conveyor 30.
  • the secondary battery unit stacking apparatus 200 inserts a plurality of basic units having different sizes from small to large in order and stacks them in multiple stages, thereby stacking the basic units in multiple stages without additional position control. have.
  • the first and second basic units 110 and 120 are stacked by the basic units having the same size, and then aligned. And a stack jig 230 for inserting and stacking the aligned first and second units 110 and 120 in the order of the smallest to the largest.
  • the basic unit alignment unit 210 supports a side of one side of the basic unit 110 and 120 or two adjacent sides of the basic unit 110 and 120. 211, and a pressing body 212 for pressing side surfaces of the base unit 110 and 120 not supported by the fixing body 211.
  • the fixed body 211 supports a main body 211a in which the basic units 110 and 120 are disposed, and one side or two adjacent sides of the basic unit bodies 110 and 120 disposed in the main body 211a. And a supporting member 211b.
  • the pressurizing member 212 is provided on the side of the main body 211a without the support piece 211b and pressurizes the side surfaces of the basic units 110 and 120 that are not supported by the fixing member 211. And a forward device 212b for advancing the pressing member 212a to pressurize the side surfaces of the basic units 110 and 120.
  • the basic unit alignment unit 210 arranges the basic units 110 and 120 on the main body 211a of the fixed body 211, and then supports the basic units 110 and 120 to the support member 211b. (See FIG. 6). Then, the forwarding device 212b of the pressing body 212 is operated to advance the pressing member 212a, whereby the pressing unit 212a is not supported by the fixing body 211. ) By pressing the side of the base unit 110 (120) (see Figure 7).
  • the base unit alignment unit 210 may insert the base unit 110, 120 in the stack jig 230 by inserting the base unit 110, 120 at the same angle and position. .
  • the pressing body 212 is set to operate at the same time when two or more are formed in the fixed body 211, this can be more quickly and accurately aligned the basic unit (110, 120).
  • the pressing body 212 may further include a spring between the pressing member 212a and the forwarding device 212b, the pressing member 212a is advanced by the forwarding device 212b through the spring is the basic unit 110 By pressing elastically 120) to prevent the occurrence of defects such as damage and folding of the basic unit (110, 120).
  • a basic unit alignment unit 210 for example, after aligning a plurality of first basic units, and transferred them to a stack jig 230 to be described later, and then aligning a plurality of second basic units Next, they can be transferred to the stack jig.
  • it may further include a basic unit transfer unit 220 for transferring the basic unit (110, 120) of the same size aligned by the basic unit alignment unit 210 to the stack jig 230.
  • the basic unit transfer unit 220 absorbs the aligned basic units 110 and 120 using a vacuum suction force, and then transfers the stacked unit 110 to the stack jig 230. When the suction force is removed, the basic units 110 and 120 fall into the stack jig 230 while falling vertically.
  • the basic unit transfer part 220 may use a robot arm having a vacuum suction force, and stack the basic unit 110 and 120 aligned by the basic unit alignment unit 210 using the robot arm. 230 can be stably transferred.
  • the robot device having a vacuum adsorption force is widely used in the industrial field, a detailed description thereof will be omitted.
  • the stack jig 230 includes one or more first basic units 110 having a first size and one or more second basic units having a second size larger than the first size.
  • the first internal space 231 having a size corresponding to the first size, and the first internal space 231 above the first internal space 231 and communicate with the second A second inner space 232 having a size corresponding to the size is provided.
  • the stack jig 230 may easily stack the first and second units 110 and 120 through the first internal space 231 and the second internal space 232.
  • one inner surface of the first inner space 231 may extend vertically from one inner surface of the second inner space 232. That is, one side inner surfaces of the first inner space 231 and the second inner space 232 corresponding to each other extend in a vertical shape, vertically and vertically, as shown in FIG. One surface of the units 110 and 120 may be aligned on the same line.
  • the side surface of the stack jig 230 is cut from the top surface of the stack jig 230 to the bottom surface along the height direction of the stack jig 230 to cut through the first and second internal spaces 231 and 232 ( 233 may be formed, and a plurality of cutting holes 233 may be formed on the side surface of the stack jig 230.
  • the fixing tape 240 is attached to the first and second units 110 and 120 stacked in the first and second internal spaces 231 and 232 through the cutting hole 233 to attach the first and second
  • the two units 110 and 120 may be fixed so as not to move in a stacked state.
  • the secondary battery unit stacking apparatus 200 having the configuration as described above is based on the first basic unit 110 having a first size and the second basic unit 120 having a second size larger than the first size.
  • the unit alignment unit 210 the basic unit transfer unit 220 and the stack jig 230 can be easily laminated, thereby increasing the efficiency and productivity of the work.
  • At least one first basic unit 110 having a first size and at least one second having a second size larger than the first size A manufacturing step (S10) for manufacturing the basic unit 120, respectively, and a stacking step (S40) for laminating the first basic unit 110 and the second basic unit 120 in a stack jig.
  • the basic unit (110, 120) is stacked by the basic unit of the same size and then aligned by the alignment step (S20) and the alignment step (S20) It may further include a transfer step (S30) for transferring the basic unit (110, 120) of the same size to the stack jig of the stacking step (S40).
  • the manufacturing step S10 includes the basic units 110 and 120 having a four-layer structure in which the first electrode, the first separator, the second electrode, and the second separator are sequentially stacked.
  • the manufacturing step (S10) it is possible to manufacture the basic unit (110, 120) by adhering the electrode and the separator to each other, thereby maintaining the basic unit (110, 120) more stably in its shape. .
  • the first and second basic units 110 and 120 may be manufactured by adhering an electrode and a separator to each other by laminating (L 1 , L 2 ). have.
  • first and second separators which are the separators in the basic units 110 and 120, are coated with a coating material having an adhesive force on the surface thereof, and the separators may be bonded to each other without a separate adhesive material.
  • the coating material coated on the first and second separators which is a separator
  • the coating material coated on the first and second separators is a mixture of inorganic particles and a binder polymer, and when the first and second separators are heated in close contact with each other, the binder is melted and the first and second separators are melted. 2
  • the separator can be bonded.
  • the four-layer structure is repeatedly stacked to manufacture the first and second basic units 110 and 120 which are basic units, and the manufactured first and second basic units 110 and 120.
  • the alignment step S20 supports one side of the base unit 110 and 120 or two adjacent sides of the base unit 110 and 120 to the fixture 211. As illustrated in FIG. 7, the side surfaces of the base units 110 and 120 that are not supported by the fixture 210 are pressed through the press body 221 to align the base units 110 and 120.
  • the basic units 110 and 120 when the basic units 110 and 120 are inserted into the stack jig 230 without being aligned, the basic units 110 and 120 may not be inserted into the correct insertion space of the stack jig 230 and may be caught in other spaces. As the stacking failure occurs, the process may need to be checked and corrected by the operator at any time.
  • the transfer step S30 of transferring the aligned basic units having the same size to the stack jig 230 is performed using the basic unit transfer unit 220.
  • the transfer step S30 includes vacuum adsorption of the first basic unit 110 aligned through the basic unit transfer unit 220, and then removes the adsorptive force while transferring the stack unit 230 to the stack jig 230. 1 the basic unit 110 is dropped toward the upper surface of the stack jig 230.
  • the aligned second basic unit 110 is vacuum-adsorbed and then the suction force is removed while being transferred to the stack jig 230 to drop the second basic unit 110 toward the upper surface of the stack jig 230. .
  • the first basic unit 110 and the second basic unit 120 sequentially transferred by the transfer step S30 are inserted into the stack jig 230 to perform the stacking step S40.
  • the stack jig 230 may include a first internal space 231 having a size corresponding to the first size of the first basic unit 110 and a first internal space 231 above the first internal space 231. And a second internal space 232 having a size corresponding to the second size of the second basic unit 120.
  • the first basic unit 110 transferred by the basic unit transfer unit 220 is transferred to the first inner space 231 through the second inner space 232.
  • the second basic unit 120 which is transferred by the basic unit transfer unit 220, is then stacked in the second internal space 232.
  • the stacking step S40 may further include an attaching step S50 for fixing the first and second basic units 110 and 120 stacked on the stack jig 230.
  • FIG. 12 the upper surface of the first and second basic units 110 and 120 stacked on the stack jig 230 through the cutting holes 233 of the stack jig 230 is illustrated in FIG. 12.
  • the fixing tape 240 is attached to be connected to the bottom surface, and the first and second basic units 110 and 120 are fixed by the fixing tape 240 so as not to be separated.
  • the electrode assembly 100 having the first and second basic units 110 and 120 stacked in multiple stages as illustrated in FIG. 13 may be manufactured.
  • FIG. 14 is a view showing another embodiment of a unit stacking device for a secondary battery according to the present invention.
  • the unit stacking device for a secondary battery may stack n or more basic units having different sizes from each other by using a stack jig having n internal spaces, thereby manufacturing an electrode assembly having a structure of at least n steps.
  • the secondary battery unit stacking apparatus further includes n internal spaces communicating with each other while gradually increasing in size to the upper side of the second internal space of the stack jig of the above-described embodiment, and corresponding to the n internal spaces.
  • the n basic units having a size to be stacked are sequentially stacked in the n inner spaces after the first and second basic units of the above-described embodiment in the order of the small basic units to the large basic units.
  • the stack jig 230 ′ has a third internal space 234 increasing in size above the second internal space 232. Further provided, and further manufacturing a third unit 130 having a size corresponding to the third internal space (234).
  • the third unit 130 manufactured as described above is stacked in the third internal space 234 after the first and second basic units 110 ′ and 120 ′, and thus, the first unit 130 is stacked in the stack jig 230 ′.
  • the second and third basic units 110 ′, 120 ′ and 130 may be stacked in three stages, and when the fixing tape 240 ′ is attached, the electrode assemblies stacked in three stages may be manufactured.
  • the stacking method using the unit stacking device for a secondary battery according to the present embodiment having such a configuration is the same as the stacking method of the above-described embodiment, except that in the manufacturing step added to the n inner space of the stack jig 230 ′ Further manufacturing n basic units having a corresponding size, and in the stacking step, the n basic units are sequentially ordered from the small basic units to the large basic units in the order of the first and second basic units, followed by the n internal spaces. Laminated.
  • a unit stacking device for a secondary battery may have a size corresponding to the first, second, and third internal spaces 231, 232, 234 of the stack jig 230 ′.
  • the first, second and third units 110 ′, 120 ′ and 130, respectively, are manufactured.
  • the fixing tape 240 ' is attached to the first, second and third units 110', 120 ', 130 to be connected from the upper surface to the lower surface, thereby manufacturing an electrode assembly stacked in three stages. do.
  • this example has described a secondary battery unit stacking device and a laminating method for manufacturing an electrode assembly stacked in three stages, the secondary cell unit stacking device and a stacking method for manufacturing an electrode assembly stacked in three or more steps in this way Also, it should be construed that all fall within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 제1 크기를 가지는 한 개 이상의 제1 기본 단위체와 상기 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체를 적층하는 이차전지용 단위체 적층장치로서, 상기 제1 크기에 대응되는 크기의 제1 내부 공간과, 상기 제1 내부 공간의 상측에서 상기 제1 내부 공간과 통하고 상기 제2 크기에 대응되는 크기의 제2 내부 공간을 구비하는 스택 지그를 포함하며, 상기 제1 기본 단위체는 상기 제2 내부 공간을 통해 상기 제1 내부 공간에 적층되고, 이어서 상기 제2 기본 단위체는 상기 제2 내부 공간에 적층된다.

Description

이차전지용 단위체 적층장치 및 적층방법
본 발명은 이차전지용 단위체 적층장치 및 적층방법에 관한 것으로서, 보다 상세하게는 크기가 다른 다수의 기본 단위체를 스택 지그를 이용하여 간편하게 적층할 수 있는 이차전지용 단위체 적층장치 및 적층방법에 관한 것이다.
이차전지는 전극조립체의 구조에 따라 다양하게 분류될 수 있다. 일례로 이차전지는 스택형 구조, 권취형(젤리롤형) 구조 또는 스택/폴딩형 구조로 분류될 수 있다. 스택형 구조의 경우 양극, 분리막, 음극을 소정 크기로 절단한 다음에 이들을 차례로 적층하여 전극조립체를 형성한다. 이때 분리막은 양극과 음극의 사이마다 배치된다. 권취형 구조의 경우 양극, 분리막, 음극, 분리막을 시트 형상으로 형성한 다음에 이들을 차례로 적층하고 권취하여 전극조립체를 형성한다. 스택/폴딩형 구조의 경우 우선 풀셀 또는 바이셀을 형성한 다음에 이들을 분리막 시트를 통해 권취하여 전극조립체를 형성한다. 양극, 분리막, 음극을 소정 크기로 절단한 다음에 이들을 차례로 적층하면, 풀셀 또는 바이셀을 형성할 수 있다(풀셀 또는 바이셀은 각각 1개 이상의 양극, 분리막, 음극을 포함한다.).
한편, 스택형 구조를 가지는 전극조립체에 대한 자세한 내용은 본 출원인의 한국 특허등록번호 제10-1163053호에 개시되어 있다.
그리고, 최근에는 소형화되는 제품에 내장할 수 있도록 다단(Stepped)으로 적층되는 전극조립체가 제작되고 있다.
즉, 종래기술에 따른 다단으로 적층된 스택형 전극조립체(20)는 도 1에 도시된 바와 같이, 제1 크기를 가지는 한 개 이상의 제1 기본 단위체(21)와, 제1 크기보다 큰 제2 크기를 가지고 제1 기본 단위체(21)가 적층되는 한 개 이상의 제2 기본 단위체(22)와, 제2 크기 보다 큰 제3 크기를 가지고 제2 기본 단위체(22)가 적층되는 한 개 이상의 제3 기본 단위체(23)를 포함한다.
그러나 종래기술에 따른 다단으로 적층된 스택형 전극조립체(20)는 제1, 제2 및 제3 기본 단위체(21)(22)(23)의 적층시 기본 단위체들의 적층 위치를 정밀하게 위치시키기 어려운 문제가 있으며, 더욱이 제1 및 제2 기본 단위체(21)(22)의 유동현상으로 인해 불량이 발생하는 문제가 있었다. 이와 같은 문제를 해결하기 위해 별도의 공정을 통해 제1, 제2 및 제3 기본 단위체(21)(22)(23)의 적층 위치를 조절하고 있는 실정이다.
전술한 문제점을 해결하기 위한 본 발명이 이루고자 하는 기술적 과제는, 크기가 다른 다수의 단위체를 스택 지그를 이용하여 적층함으로써 작업 효율성과 생산성을 증대시키는 이차전지용 단위체 적층장치 및 적층방법을 제공하기 위한 것이다.
전술한 기술적 과제를 달성하기 위한 수단으로서, 본 발명은 제1 크기를 가지는 한 개 이상의 제1 기본 단위체와 상기 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체를 적층하는 이차전지용 단위체 적층장치로서, 상기 제1 크기에 대응되는 크기의 제1 내부 공간과, 상기 제1 내부 공간의 상측에서 상기 제1 내부 공간과 통하고 상기 제2 크기에 대응되는 크기의 제2 내부 공간을 구비하는 스택 지그를 포함하며, 상기 제1 기본 단위체는 상기 제2 내부 공간을 통해 상기 제1 내부 공간에 적층되고, 이어서 상기 제2 기본 단위체는 상기 제2 내부 공간에 적층되는 것을 특징으로 한다.
상기 기본 단위체를 같은 크기의 기본 단위체별로 적층한 다음 정렬시키는 기본 단위체 정렬부를 더 포함할 수 있다.
상기 기본 단위체 정렬부는 상기 기본 단위체의 한 개의 측면 또는 상기 기본 단위체의 서로 인접한 두 개의 측면을 지지하는 고정체, 및 상기 고정체에 의해 지지되지 않는 상기 기본 단위체의 측면들을 가압하는 가압체를 포함할 수 있다.
상기 기본 단위체 정렬부에 의해 정렬된 같은 크기의 기본 단위체들을 상기 스택 지그로 이송하는 기본 단위체 이송부를 더 포함할 수 있다.
상기 제1 내부 공간의 일측 내면은 상기 제2 내부 공간의 일측 내면으로부터 수직하게 연장될 수 있다.
상기 스택 지그의 측면에는 상기 스택 지그의 높이 방향을 따라 상기 스택 지그의 상면으로부터 하면까지 절개되어 상기 제1 및 제2 내부 공간과 통하는 절개홀이 형성될 수 있다.
상기 기본 단위체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층되어 4층 구조를 형성할 수 있다.
상기 기본 단위체는 상기 전극과 상기 분리막이 서로 접착되어 형성될 수 있다.
상기 전극과 상기 분리막의 접착은, 상기 전극과 상기 분리막에 압력을 가하는 것에 의한 접착, 또는 상기 전극과 상기 분리막에 압력과 열을 가하는 것에 의한 접착할 수 있다.
상기 분리막은 접착력을 가지는 코팅 물질이 표면에 코팅될 수 있다.
상기 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물일 수 있다.
상기 기본 단위체는 상기 4층 구조가 반복적으로 적층되어 형성될 수 있다.
한편, 본 발명의 이차전지용 단위체 적층장치를 이용한 적층 방법은 제1 크기를 가지는 한 개 이상의 제1 기본 단위체와 상기 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체를 각각 제조하는 제조 단계; 및 상기 제1 기본 단위체와 상기 제2 기본 단위체를 스택 지그에 삽입하여 적층하는 적층 단계를 포함하며, 상기 스택 지그는 상기 제1 크기에 대응되는 크기의 제1 내부 공간과, 상기 제1 내부 공간의 상측에서 상기 제1 내부 공간과 통하고 상기 제2 크기에 대응되는 크기의 제2 내부 공간을 구비하고, 상기 적층 단계는 상기 제1 기본 단위체를 상기 제2 내부 공간을 통해 상기 제1 내부 공간에 적층하고, 이어서 상기 제2 기본 단위체를 상기 제2 내부 공간에 적층하는 것을 특징으로 한다.
상기 기본 단위체를 같은 크기의 기본 단위체별로 적층한 다음 정렬시키는 정렬 단계를 더 포함할 수 있다.
상기 정렬 단계는, 상기 기본 단위체의 한 개의 측면 또는 상기 기본 단위체의 서로 인접한 두 개의 측면을 고정체에 지지시킨 다음, 상기 고정체에 의해 지지되지 않는 상기 기본 단위체의 측면들을 가압체를 통해 가압하여 상기 기본 단위체를 정렬시킬 수 있다.
상기 정렬 단계에 의해 정렬된 같은 크기의 기본 단위체들을 상기 스택 지그로 이송하는 이송 단계를 더 포함할 수 있다.
상기 제1 내부 공간의 일측 내면은 상기 제2 내부 공간의 일측 내면으로부터 수직하게 연장될 수 있다.
상기 스택 지그의 측면에서 상기 스택 지그의 높이 방향을 따라 상기 스택 지그의 상면으로부터 하면까지 절개되어 형성되는 절개홀을 통해 상기 스택 지그에 적층된 기본 단위체들에 고정 테이프를 부착하는 부착 단계를 더 포함할 수 있다.
상기 제조 단계는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층되는 4층 구조로 상기 기본 단위체를 제조할 수 있다.
상기 제조 단계는 상기 전극과 상기 분리막을 서로 접착시켜 상기 기본 단위체를 제조할 수 있다.
상기 제조 단계는 라미네이팅에 의해 상기 전극과 상기 분리막을 서로 접착시켜 상기 기본 단위체를 제조할 수 있다.
상기 분리막은 접착력을 가지는 코팅 물질이 표면에 코팅될 수 있으며, 상기 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물일 수 있다.
상기 제조 단계는 상기 4층 구조를 반복적으로 적층하여 상기 기본 단위체를 제조할 수 있다.
본 발명에 따르면, 크기가 다른 다수의 기본 단위체를 스택 지그에 삽입하여 적층시킴으로써 작업의 효율성과 생산성을 증대시킬 수 있는 효과가 있다.
도 1은 종래기술에 따른 다단으로 적층된 스택형 전극조립체를 도시한 도면.
도 2는 본 발명에 따른 전극조립체의 제1 구조를 도시한 도면.
도 3은 본 발명에 따른 전극조립체의 제2 구조를 도시한 도면.
도 4는 본 발명에 따른 전극조립체의 제조공정을 도시한 공정도.
도 5는 본 발명에 따른 이차전지용 단위체 적층장치를 도시한 도면.
도 6은 본 발명에 따른 이차전지용 단위체 적층장치의 기본 단위체 정렬부를 도시한 도면.
도 7은 본 발명에 따른 이차전지용 단위체 적층장치의 기본 단위체 정렬부의 사용상태를 도시한 도면.
도 8은 본 발명에 따른 이차전지용 단위체 적층장치의 스택 지그를 도시한 평면도.
도 9는 본 발명에 따른 이차전지용 단위체 적층장치의 스택 지그를 도시한 단면도.
도 10은 본 발명에 따른 이차전지용 단위체 적층방법을 도시한 순서도.
도 11은 본 발명에 따른 이차전지용 단위체 적층방법의 기본 단위체 적층단계를 도시한 도면.
도 12는 본 발명에 따른 이차전지용 단위체 적층방법의 기본 단위체 부착단계를 도시한 도면.
도 13은 본 발명에 따른 이차전지용 단위체 적층방법에 의해 적층된 전극조립체를 도시한 도면.
도 14는 본 발명에 따른 이차전지용 단위체 적층장치의 다른 실시예를 나타낸 단면도.
본 발명에 따른 이차전지용 단위체 적층장치는 서로 다른 크기를 가지는 다수의 기본 단위체들을 스택 지그에 삽입하여 간편하게 다단으로 적층시킬 수 있으며, 이에 작업의 효율성과 생산성을 증대시키는 구성이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
여기서, 본 발명에서는 제1 크기를 가지는 한 개 이상의 제1 기본 단위체와, 상기 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체를 적층하는 구성을 하나의 실시예로 설명하는 한편, 서로 다른 크기를 가지는 여러 개의 기본 단위체들을 스택 지그를 이용하여 적층할 수도 있다.
[본 발명에 따른 전극조립체]
한편, 본 발명의 전극조립체(100)는 도 2 및 도 3에 도시된 바와 같이, 제1 크기를 가지는 한 개 이상의 제1 기본 단위체(110)와, 제1 크기보다 큰 제2 크기를 가지는 제2 기본 단위체(120)를 포함하며, 제1 및 제2 기본 단위체(110)(120)는 이차전지용 단위체 적층장치(200)를 통해 다단으로 적층된다.
여기서 제1 및 제2 기본 단위체(110)(120)는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층되어 형성되며, 이와 같이 제1 및 제2 기본 단위체(110)(120)는 기본적으로 4층 구조를 가진다.
보다 구체적으로 제1 기본 단위체(110)는 도 2를 참조하면, 제1 크기를 가지는 것으로, 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 상측에서 하측으로 순차적으로 적층되어 형성되거나, 또는 도 3을 참조하면 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 하측에서 상측으로 순차적으로 적층되어 형성될 수 있다. 이때 제1 전극(111)과 제2 전극(113)은 서로 반대되는 전극이다. 예를 들어, 제1 전극(111)이 양극이면 제2 전극(113)은 음극이다. 물론 이의 반대일 수도 있다.
또한, 제2 기본 단위체(120)는 도 2를 참조하면, 제1 기본 단위체(110)의 제1 크기보다 큰 제2 크기를 가지는 것으로, 제1 전극(121), 제1 분리막(122), 제2 전극(123) 및 제2 분리막(124)이 상측에서 하측으로 순차적으로 적층되어 형성되거나, 또는 도 3을 참조하면 제1 전극(121), 제1 분리막(122), 제2 전극(123) 및 제2 분리막(124)이 하측에서 상측으로 순차적으로 적층되어 형성될 수 있다. 이때 제1 전극(121)과 제2 전극(123)은 서로 반대되는 전극이다. 예를 들어, 제1 전극(121)이 양극이면 제2 전극(123)은 음극이다. 물론 이의 반대일 수도 있다.
여기서 제1 및 제2 기본 단위체(110)(120)의 적층 시 분리막을 사이에 두고 서로 반대되는 전극이 배치된다. 예를 들면, 제1 및 제2 기본 단위체(110)(120)는 제1 전극(111), 제1 분리막(112), 제2 전극(113), 제2 분리막(114), 제1 전극(121), 제1 분리막(122), 제2 전극(123) 및 제2 분리막(124)이 순차적으로 위치하게 적층된다.
참고로, 도 2 및 도 3에는 각각 한 개의 제1 기본 단위체와 제2 기본 단위체가 예시되고 있으나, 여러 개의 제1 기본 단위체와 여러 개의 제2 기본 단위체가 적층될 수도 있다. 그리고 양극, 음극, 분리막은 통상 서로 다른 크기를 가지나 절연을 위해 분리막이 가장 큰 크기를 가진다. 이에 따라 본 명세서에서 설명하고 있는 기본 단위체의 크기는 분리막의 크기를 기준으로 한다. (다른 요소를 더 크게 만든다면 그 요소를 기준으로 설명될 수 있을 것이다.)
이와 같은 적층 구조를 가지는 기본 단위체는 다음과 같은 공정으로 형성될 수 있다(도 4 참조).
먼저, 제1 기본 단위체(110)는 제1 전극 재료(131), 제1 분리막 재료(132), 제2 전극 재료(133) 및 제2 분리막 재료(134)를 준비한다. 여기서 전극 재료(131, 133)는 이하에서 살펴볼 바와 같이 소정 크기로 절단되어 전극(111, 113)을 형성한다. 이는 분리막 재료(132, 134)도 동일하다. 공정의 자동화를 위해 전극 재료와 분리막 재료는 롤에 권취되어 있는 형태를 가지는 것이 바람직하다. 이와 같이 재료들을 준비한 다음에 제1 전극 재료(131)를 커터(C1)를 통해 소정 크기로 절단한다. 그리고 제2 전극 재료(133)도 커터(C2)를 통해 소정 크기로 절단한다. 그런 다음 소정 크기의 제1 전극 재료(131)를 제1 분리막 재료(132) 위로 공급한다. 그리고 소정 크기의 제2 전극 재료(133)도 제2 분리막 재료(134) 위로 공급한다. 그런 다음 재료들을 모두 함께 라미네이터(L1, L2)로 공급한다.
그러면, 제1 기본 단위체(110)가 형성된다. 이와 같은 제1 기본 단위체는 여러 개가 적층될 수도 있다. 그런데 제1 기본 단위체(110)를 구성하는 전극과 분리막이 서로 분리된다면, 제1 기본 단위체(110)를 반복적으로 적층하는 것이 매우 어려워질 것이다. 따라서 제1 기본 단위체(110)를 형성할 때, 전극과 분리막을 서로 접착하는 것이 바람직하다. 라미네이터(L1, L2)는 도 4를 참조하면, 이와 같이 전극과 분리막을 서로 접착하기 위해 사용된다. 즉, 라미네이터(L1, L2)는 재료들에 압력을 가하거나, 또는 열과 압력을 가하여 전극 재료와 분리막 재료를 서로 접착한다. 이와 같이 전극 재료와 분리막 재료는 라미네이터(L1, L2)에서 서로 접착된다. 이와 같은 접착으로 제1 기본 단위체(110)는 보다 안정적으로 자신의 형상을 유지할 수 있다.
마지막으로 제1 분리막 재료(132)와 제2 분리막 재료(134)를 함께 커터(C3)를 통해 제1 크기로 절단한다. 이와 같은 절단으로 제1 기본 단위체(110)가 형성될 수 있다. 추가적으로 필요에 따라 제1 기본 단위체(110)에 대한 각종 검사를 수행할 수도 있다. 예를 들어, 두께 검사, 비전 검사, 쇼트 검사와 같은 검사를 추가적으로 수행할 수도 있다.
한편, 분리막(분리막 재료)은 접착력을 가지는 코팅 물질로 표면이 코팅될 수 있다. 이때 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물일 수 있다. 여기서 무기물 입자는 분리막의 열적 안정성을 향상시킬 수 있다. 즉, 무기물 입자는 고온에서 분리막이 수축하는 것을 방지할 수 있다. 그리고 바인더 고분자는 무기물 입자를 고정시킬 수 있다. 이와 같은 무기물 입자들로 인해 분리막 표면에 형성되는 코팅층에는 소정의 기공 구조가 형성될 수 있다. 이와 같은 기공 구조로 인해 무기물 입자가 분리막에 코팅되어 있더라도 양극으로부터 음극으로 이온이 원활하게 이동할 수 있다. 또한 바인더 고분자는 무기물 입자를 분리막에 안정적으로 유지시켜 분리막의 기계적 안정성도 향상시킬 수 있다. 더욱이 바인더 고분자는 분리막을 전극에 보다 안정적으로 접착시킬 수 있다. (이와 같은 코팅을 SRS 코팅이라 한다.) 참고로, 분리막은 폴리올레핀 계열의 분리막 기재로 형성될 수 있다.
그런데 도 2 및 도 3에서 도시된 바와 같이, 제1 분리막(112)은 양면에 전극(111, 113)이 위치하는데 반해, 제2 분리막(114)은 일면에만 전극(113)이 위치한다. 따라서 제1 분리막(112)은 양면에 코팅 물질이 코팅될 수 있고, 제2 분리막(114)은 일면에만 코팅 물질이 코팅될 수 있다. 즉, 제1 분리막(112)은 제1 전극(111)과 제2 전극(113)을 바라보는 양면에 코팅 물질이 코팅될 수 있고, 제2 분리막(114)은 제2 전극(113)을 바라보는 일면에만 코팅 물질이 코팅될 수 있다.
이와 같이 코팅 물질에 의한 접착은 기본 단위체 내에서 이루어지는 것으로 충분하다. 따라서 앞서 살펴본 바와 같이 제2 분리막(114)은 일면에만 코팅이 이루어져도 무방하다. 다만, 여러 개의 제1 기본 단위체(110)가 heat press 등의 방법으로 서로 접착되거나, 또는 제1 기본 단위체(110)와 제2 기본 기본체(120)가 heat press 등의 방법으로 서로 접착될 수 있으므로, 필요에 따라 제2 분리막(114)도 양면에 코팅이 이루어질 수 있다. 즉, 제2 분리막(114)도 제2 전극(113)을 바라보는 일면과 그 반대면에 코팅 물질이 코팅될 수 있다. 이와 같은 경우 상측에 위치하는 제1 기본 단위체(110)와 이의 바로 아래에 위치하는 제2 기본 단위체(120)는 제2 분리막(114) 외면의 코팅 물질을 통해 서로 접착될 수 있다.
참고로, 접착력을 가지는 코팅 물질을 분리막에 도포한 경우, 소정의 물체로 분리막에 직접 압력을 가하는 것은 바람직하지 않다. 분리막은 통상적으로 전극보다 외측으로 길게 연장된다. 따라서 제1 분리막(112)의 말단과 제2 분리막(114)의 말단을 서로 결합시키려는 시도가 있을 수 있다. 예를 들어, 제1 분리막(112)의 말단과 제2 분리막(114)의 말단을 초음파 융착으로 서로 융착시키려는 시도가 있을 수 있다. 그런데 이와 같은 초음파 융착은 혼(horn)으로 대상을 직접 가압할 필요가 있다. 그러나 이와 같이 혼으로 분리막의 말단을 직접 가압하면, 접착력을 가지는 코팅 물질로 인해 분리막에 혼이 들러붙을 수 있다. 이로 인해 장치의 고장이 초래될 수 있다. 따라서 접착력을 가지는 코팅 물질을 분리막에 도포한 경우, 소정의 물체로 분리막에 직접 압력을 가하는 공정을 적용하는 것은 바람직하지 않다.
추가적으로, 제1 기본 단위체(110)가 반드시 4층 구조를 가져야만 하는 것은 아니다. 예를 들어, 제1 기본 단위체(110)는 제1 전극(111), 제1 분리막(112), 제2 전극(113), 제2 분리막(114), 제1 전극(111), 제1 분리막(112), 제2 전극(113) 및 제2 분리막(114)이 순차적으로 적층되어 형성되는 8층 구조를 가질 수도 있다. 즉, 제1 기본 단위체(110)는 4층 구조가 반복적으로 적층되어 형성되는 구조를 가질 수도 있다.
제2 기본 단위체(120)는 전술한 제1 기본 단위체(110)의 제조 공정과 동일하게 형성하되, 제1 기본 단위체(110)의 제1 크기보다 큰 제2 크기로 형성한다.
한편, 제2 기본 단위체(120)는 제1 기본 단위체(110)의 제1 크기보다 큰 제2 크기로 형성하는 것에서 차이가 있을 뿐, 제1 기본 단위체(110)의 제조 공정과 동일하기에 중복되는 설명은 생략한다.
[본 발명에 따른 이차전지용 단위체 적층장치]
이와 같은 방법으로 제조된 제1 및 제2 기본 단위체(110)(120)은 도 5에 도시된 바와 같이, 진공 컨베이어(30)를 통해 본 발명의 이차전지용 단위체 적층장치(200)로 이송된다.
본 발명에 따른 이차전지용 단위체 적층장치(200)는 크기가 서로 다른 다수의 기본 단위체들을 작은 크기에서 큰 크기 순서로 삽입하여 다단으로 적층하며, 이에 별도의 위지 조절 없이도 기본 단위체들을 다단으로 적층할 수 있다.
즉, 본 발명에 따른 이차전지용 단위체 적층장치(200)는 도 5 내지 도 9에 도시된 바와 같이, 제1 및 제2 기본 단위체(110)(120)를 같은 크기의 기본 단위체별로 적층한 다음 정렬시키는 기본 단위체 정렬부(210)와, 정렬된 제1 및 제2 단위체(110)(120)를 작은 크기에서 큰 크기 순서로 삽입하여 적층하는 스택 지그(230)를 포함한다.
기본 단위체 정렬부(210)는 도 6 및 도 7을 참조하면, 기본 단위체(110)(120)의 한 개의 측면 또는 기본 단위체(110)(120)의 서로 인접한 두 개의 측면을 지지하는 고정체(211), 및 고정체(211)에 의해 지지되지 않는 기본 단위체(110)(120)의 측면들을 가압하는 가압체(212)를 포함한다.
고정체(211)는 기본 단위체(110)(120)가 배치되는 본체(211a)와, 본체(211a)에 배치된 기본 단위체(110)(120)의 한 개의 측면 또는 서로 인접한 두 개의 측면을 지지하는 지지부재(211b)를 포함한다.
가압체(212)는 지지편(211b)이 없는 본체(211a)의 측부에 구비되고 고정체(211)에 의해 지지되지 않는 기본 단위체(110)(120)의 측면을 가압하는 가압부재(212a)와, 상기 가압부재(212a)를 기본 단위체(110)(120)의 측면을 가압하도록 전진시키는 전진장치(212b)를 포함한다.
이와 같은 기본 단위체 정렬부(210)는 고정체(211)의 본체(211a)에 기본 단위체(110)(120)를 배치한 다음, 지지부재(211b)에 기본 단위체(110)(120)를 지지시킨다(도 6 참조). 그런 다음, 가압체(212)의 전진장치(212b)를 작동시켜서 가압부재(212a)를 전진시키며, 이에 가압부재(212a)가 고정체(211)에 의해 지지되지 않는 기본 단위체(110)(120)의 측면을 가압하여 기본 단위체(110)(120)를 정렬시킨다(도 7 참조).
따라서 기본 단위체 정렬부(210)는 기본 단위체(110)(120)를 동일한 각도와 위치로 정렬시킴으로써 기본 단위체(110)(120)를 스택 지그(230)에 삽입할 시 정확한 위치에 삽입할 수 있다.
한편, 가압체(212)는 고정체(211)에 2개 이상이 형성될 경우 동시에 작동하도록 설정되며, 이에 기본 단위체(110)(120)를 보다 신속하고 정확하게 정렬시킬 수 있다.
또한 가압체(212)는 가압부재(212a)와 전진장치(212b) 사이에 스프링을 더 포함할 수 있으며, 스프링을 통해 전진장치(212b)에 의해 전진하는 가압부재(212a)가 기본 단위체(110)(120)를 가압할 시 탄력적으로 가압함으로써 기본 단위체(110)(120)의 훼손 및 접힘 등의 불량 발생을 방지한다.
이와 같은 기본 단위체 정렬부(210)를 통해, 예를 들어 여러 개의 제1 기본 단위체를 정렬시킨 다음, 이들을 후술할 스택 지그(230)로 이송하고, 그 다음으로 여러 개의 제2 기본 단위체를 정렬시킨 다음, 이들을 스택 지그로 이송할 수 있다.
한편, 기본 단위체 정렬부(210)에 의해 정렬된 같은 크기의 기본 단위체(110)(120)들을 스택 지그(230)로 이송하는 기본 단위체 이송부(220)를 더 포함할 수 있다.
기본 단위체 이송부(220)는 도 5를 참조하면, 진공 흡입력을 이용하여 정렬된 기본 단위체(110)(120)를 흡착한 후, 스택 지그(230)로 이송한다. 그리고 흡착력을 제거하면 기본 단위체(110)(120)가 수직으로 낙하하면서 스택 지그(230)에 삽입된다.
예를 들면, 기본 단위체 이송부(220)는 진공 흡착력을 가지는 로봇팔을 사용할 수 있으며, 이 로봇팔을 이용하여 기본 단위체 정렬부(210)에 의해 정렬된 기본 단위체(110)(120)를 스택 지그(230)로 안정적으로 이송할 수 있다.
한편, 진공 흡착력을 가지는 로봇 장치는 산업현장에서 널리 사용하는 것으로, 이에 구체적인 설명은 생략한다.
스택 지그(230)는 도 8 및 도 9에 도시된 바와 같이, 제1 크기를 가지는 한 개 이상의 제1 기본 단위체(110)와 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체(120)를 다단으로 적층하기 위한 것으로, 제1 크기에 대응되는 크기의 제1 내부 공간(231)과, 제1 내부 공간(231)의 상측에서 제1 내부 공간(231)과 통하고 제2 크기에 대응되는 크기의 제2 내부 공간(232)을 구비한다.
즉, 스택 지그(230)는 제1 내부 공간(231)과 제2 내부 공간(232)을 통해 제1 및 제2 단위체(110)(120)를 간편하게 다단으로 적층할 수 있다.
여기서 제1 내부 공간(231)의 일측 내면은 제2 내부 공간(232)의 일측 내면으로부터 수직하게 연장될 수 있다. 즉, 상호 대응하는 제1 내부 공간(231)과 제2 내부 공간(232)의 일측 내면은 도 9에 도시된 바와 같이, 상하로 수직한 1자 형태로 연장하며, 이에 제1 및 제2 기본 단위체(110)(120)의 일면을 동일 선상에 맞출 수 있다.
한편, 스택 지그(230)의 측면에는 스택 지그(230)의 높이 방향을 따라 스택 지그(230)의 상면으로부터 하면까지 절개되어 제1 및 제2 내부 공간(231)(232)과 통하는 절개홀(233)이 형성될 수 있으며, 절개홀(233)은 스택 지그(230)의 측면에 다수개가 형성될 수 있다.
즉, 절개홀(233)을 통해 제1 및 제2 내부 공간(231)(232)에 적층된 제1 및 제2 단위체(110)(120)에 고정 테이프(240)를 부착하여 제1 및 제2 단위체(110)(120)를 적층된 상태로 움직이지 않게 고정할 수 있다.
이와 같은 구성을 가지는 본 발명에 따른 이차전지용 단위체 적층장치(200)는 제1 크기를 가지는 제1 기본 단위체(110)와 제1 크기 보다 큰 제2 크기를 가지는 제2 기본 단위체(120)를 기본 단위체 정렬부(210), 기본 단위체 이송부(220) 및 스택 지그(230)를 이용하여 간편하게 적층시킬 수 있으며, 이에 작업의 효율성과 생산성을 증대시킬 수 있다.
[본 발명에 따른 이차전지용 단위체 적층방법]
한편, 본 발명에 따른 이차전지용 단위체 적층장치(200)를 이용한 적층방법을 설명하면 다음과 같다.
본 발명에 따른 이차전지용 단위체 적층방법은 도 10에 도시된 바와 같이, 제1 크기를 가지는 한 개 이상의 제1 기본 단위체(110)와 상기 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체(120)를 각각 제조하는 제조 단계(S10), 및 제1 기본 단위체(110)와 제2 기본 단위체(120)를 스택 지그에 적층하는 적층 단계(S40)를 포함한다.
여기서 제조 단계(S10)와 적층 단계(S40) 사이에는 기본 단위체(110)(120)를 같은 크기의 기본 단위체별로 적층한 다음 정렬시키는 정렬 단계(S20)와, 정렬 단계(S20)에 의해 정렬된 같은 크기의 기본 단위체(110)(120)들을 적층 단계(S40)의 스택 지그로 이송하는 이송 단계(S30)를 더 포함할 수 있다.
이하, 본 발명에 따른 이차전지용 단위체 적층방법을 하나의 실시예로 보다 상세히 설명한다.
제조 단계(S10)는 도 2 및 도 3에 도시된 바와 같이, 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층되는 4층 구조로 기본 단위체(110)(120)를 제조한다.
여기서, 제1 및 제2 기본 단위체(110)(120) 제조 단계는 전술한 이차전지용 단위체 적층장치에서 자세히 설명하였기에 여기서는 자세한 설명을 생략한다.
한편, 제조 단계(S10)에서 전극과 분리막을 서로 접착시켜 기본 단위체(110)(120)를 제조할 수 있으며, 이에 기본 단위체(110)(120)를 보다 안정적으로 자신의 형상을 유지시킬 수 있다.
예를 들면, 제조 단계(S10)는 도 4를 참조하면, 라미네이팅(L1, L2)에 의해 전극과 분리막을 서로 접착시켜 제1 또는 제2 기본 단위체(110)(120)를 제조할 수 있다.
한편, 기본 단위체(110)(120)에서 분리막인 제1 및 제2 분리막은 접착력을 가지는 코팅 물질이 표면에 코팅되며, 이에 별도의 접착물질 없이도 분리막끼리 접착시킬 수 있다.
일례로, 분리막인 제1 및 제2 분리막에 코팅된 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물이며, 이에 제1 및 제2 분리막을 밀착시킨 상태로 열을 가하면, 바인더가 용융되면서 제1 및 제2 분리막을 접착시킬 수 있다.
이와 같은 제조 단계(S10)는 4층 구조를 반복적으로 적층하여 기본 단위체인 제1 및 제2 기본 단위체(110)(120)를 제조하며, 제조된 제1 및 제2 기본 단위체(110)(120)는 기본 단위체 정렬부(210)를 이용하여 정렬시키는 정렬 단계(S20)를 수행한다.
여기서 기본 단위체 정렬부(210)는 전술한 이차전지용 단위체 적층장치에서 자세히 설명하였기에 여기서는 자세한 설명을 생략한다.
정렬 단계(S20)는 도 6에 도시된 바와 같이, 기본 단위체(110)(120) 한 개의 측면 또는 기본 단위체(110)(120)의 서로 인접한 두 개의 측면을 고정체(211)에 지지시킨 다음, 도 7에 도시된 바와 같이 고정체(210)에 의해 지지되지 않는 기본 단위체(110)(120)의 측면들을 가압체(221)를 통해 가압하여 기본 단위체(110)(120)를 정렬시킨다.
여기서 기본 단위체(110)(120)들을 정렬시키지 않은 상태로 스택 지그(230)에 삽입할 경우 기본 단위체(110)(120)가 스택 지그(230)의 정확한 삽입 공간에 삽입되지 못하고 다른 공간에 걸림되면서 적층 불량이 발생하며, 이에 작업자가 수시로 확인하여 수정해야 하는 공정이 추가될 수 있다.
이에 적층 단계(S40) 전에 기본 단위체(110)(120)들을 일정한 각도를 가지도록 정렬 단계(S20)를 수행함으로써 기본 단위체(110)(120)를 스택 지그(230)의 정확한 위치에 삽입하여 적층시킬 수 있다.
이와 같이 정렬 단계(S20)가 완료되면, 정렬된 같은 크기의 기본 단위체들을 기본 단위체 이송부(220)를 이용하여 스택 지그(230)로 이송하는 이송 단계(S30)를 수행한다.
한편, 기본 단위체 이송부(220)는 전술한 이차전지용 단위체 적층장치에서 자세히 설명하였기에 여기서는 자세한 설명을 생략한다.
이송 단계(S30)는 도 5를 참조하면, 기본 단위체 이송부(220)를 통해 정렬된 제1 기본 단위체(110)를 진공 흡착한 후, 스택 지그(230)로 이송한 상태로 흡착력을 제거하여 제1 기본 단위체(110)를 스택 지그(230)의 상면을 향해 낙하시킨다.
그런 다음, 정렬된 제2 기본 단위체(110)를 진공 흡착한 후 스택 지그(230)로 이송한 상태로 흡착력을 제거하여 제2 기본 단위체(110)를 스택 지그(230)의 상면을 향해 낙하시킨다.
이와 같이 이송 단계(S30)에 의해 순차적으로 이송된 제1 기본 단위체(110)와 제2 기본 단위체(120)는 스택 지그(230)에 삽입되면서 적층 단계(S40)를 수행한다.
여기서 상기 스택 지그(230)는 제1 기본 단위체(110)의 제1 크기에 대응되는 크기의 제1 내부 공간(231)과, 제1 내부 공간(231)의 상측에서 제1 내부 공간(231)과 통하고 제2 기본 단위체(120)의 제2 크기에 대응되는 크기의 제2 내부 공간(232)을 구비한다.
한편, 스택 지그(230)는 전술한 이차전지용 단위체 적층장치에서 자세히 설명하였기에 여기서는 자세한 설명을 생략한다.
즉, 적층 단계(S40)는 도 11에 도시된 바와 같이, 기본 단위체 이송부(220)에 의해 이송된 제1 기본 단위체(110)를 제2 내부 공간(232)을 통해 제1 내부 공간(231)에 적층하고, 이어서 기본 단위체 이송부(220)에 의해 이송된 제2 기본 단위체(120)를 제2 내부 공간(232)에 적층한다.
이와 같이 적층 단계(S40)가 완료되면, 스택 지그(230)에 적층된 제1 및 제2 기본 단위체(110)(120)를 고정하는 부착 단계(S50)를 더 포함할 수 있다.
부착 단계(S50)는 도 12에 도시된 바와 같이, 스택 지그(230)의 절개홀(233)을 통해 스택 지그(230)에 적층된 제1 및 제2 기본 단위체(110)(120)의 상면에서 하면까지 연결되게 고정 테이프(240)를 부착하며, 고정 테이프(240)에 의해 제1 및 제2 기본 단위체(110)(120)를 분리되지 않게 고정한다.
이와 같이 부착 단계(S50)가 완료되면 도 13에 도시된 바와 같은 제1 및 제2 기본 단위체(110)(120)가 다단으로 적층된 전극조립체(100)를 제조할 수 있다.
이하, 본 발명에 따른 다른 실시예를 설명함에 있어 전술한 실시예와 동일한 구성과 기능을 가지는 구성에 대해서는 동일한 구성부호를 사용하며, 중복되는 설명은 생략한다.
도 14는 본 발명에 따른 이차전지용 단위체 적층장치의 다른 실시예를 나타낸 도면이다.
본 실시예에 따른 이차전지용 단위체 적층장치는 서로 크기가 다른 n개 이상의 기본 단위체를 n개의 내부 공간을 가지는 스택 지그를 이용하여 적층하고, 이에 n단 이상의 구조를 가지는 전극조립체를 제조할 수 있다.
즉, 본 실시예에 따른 이차전지용 단위체 적층장치는 전술한 실시예의 스택 지그의 제2 내부 공간의 상측으로 점차 크기가 증가하면서 서로 통하는 n개의 내부 공간을 더 구비하며, 상기 n개의 내부 공간에 대응하는 크기를 가지는 n개의 기본 단위체는 작은 기본 단위체로부터 큰 기본 단위체의 순서로 전술한 실시예의 제1 및 제2 기본 단위체에 이어서 상기 n개의 내부 공간에 차례로 적층된다.
일례로, 본 실시예에 따른 이차전지용 단위체 적층장치는 도 14에 도시된 바와 같이, 스택 지그(230')는 제2 내부 공간(232)의 상측으로 크기가 증가하는 제3 내부 공간(234)을 더 구비하고, 제3 내부 공간(234)에 대응하는 크기를 가지는 제3 단위체(130)를 더 제조한다.
이와 같이 제조된 제3 단위체(130)는 제1 및 제2 기본 단위체(110')(120')에 이어서 제3 내부 공간(234)에 적층하며, 이에 스택 지그(230') 내에서 제1, 제2 및 제3 기본 단위체(110')(120')(130)를 3단으로 적층시킬 수 있고, 고정 테이프(240')를 부착하면 3단으로 적층된 전극조립체를 제조할 수 있다.
한편, 이와 같은 구성을 가지는 본 실시예에 따른 이차전지용 단위체 적층장치를 이용한 적층방법은 전술한 실시예의 적층방법과 동일하며, 다만 제조 단계에서 스택 지그(230')의 추가된 n개의 내부 공간에 대응하는 크기를 가지는 n개의 기본 단위체를 더 제조하고, 적층 단계에서 상기 n개의 기본 단위체를 작은 기본 단위체로부터 큰 기본 단위체의 순서로 상기 제1 및 제2 기본 단위체에 이어서 상기 n개의 내부 공간에 차례로 적층한다.
일례로, 본 실시예에 따른 이차전지용 단위체 적층장치는 도 14를 참조하면, 스택 지그(230')의 제1, 제2 및 제3 내부 공간(231)(232)(234)에 대응하는 크기를 가지는 제1, 제2 및 제3 단위체(110')(120')(130)를 각각 제조한다.
그리고 제조한 제1, 제2 및 제3 단위체(110')(120')(130)를 스택 지그(230')의 제1, 제2 및 제3 내부 공간(231)(232)(234)에 차례로 적층한다.
그런 다음, 제1, 제2 및 제3 단위체(110')(120')(130)의 상면에서 하면까지 연결되게 고정 테이프(240')를 부착하며, 이에 3단으로 적층된 전극조립체를 제조한다.
한편, 본 일례는 3단으로 적층되는 전극조립체를 제조하는 이차전지용 단위체 적층장치 및 적층방법을 설명하였으나, 이와 같은 방법으로 3단 이상으로 적층되는 전극 조립체를 제조하는 이차전지용 단위체 적층장치 및 적층방법도 가능하며, 모두 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
또한, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (26)

  1. 제1 크기를 가지는 한 개 이상의 제1 기본 단위체와 상기 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체를 적층하는 이차전지용 단위체 적층장치로서,
    상기 제1 크기에 대응되는 크기의 제1 내부 공간과, 상기 제1 내부 공간의 상측에서 상기 제1 내부 공간과 통하고 상기 제2 크기에 대응되는 크기의 제2 내부 공간을 구비하는 스택 지그를 포함하며,
    상기 제1 기본 단위체는 상기 제2 내부 공간을 통해 상기 제1 내부 공간에 적층되고, 이어서 상기 제2 기본 단위체는 상기 제2 내부 공간에 적층되는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  2. 청구항 1에 있어서,
    상기 기본 단위체를 같은 크기의 기본 단위체별로 적층한 다음 정렬시키는 기본 단위체 정렬부를 더 포함하는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  3. 청구항 2에 있어서,
    상기 기본 단위체 정렬부는 상기 기본 단위체의 한 개의 측면 또는 상기 기본 단위체의 서로 인접한 두 개의 측면을 지지하는 고정체, 및 상기 고정체에 의해 지지되지 않는 상기 기본 단위체의 측면들을 가압하는 가압체를 포함하는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  4. 청구항 2에 있어서,
    상기 기본 단위체 정렬부에 의해 정렬된 같은 크기의 기본 단위체들을 상기 스택 지그로 이송하는 기본 단위체 이송부를 더 포함하는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  5. 청구항 1에 있어서,
    상기 제1 내부 공간의 일측 내면은 상기 제2 내부 공간의 일측 내면으로부터 수직하게 연장되는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  6. 청구항 1에 있어서,
    상기 스택 지그의 측면에는 상기 스택 지그의 높이 방향을 따라 상기 스택 지그의 상면으로부터 하면까지 절개되어 상기 제1 및 제2 내부 공간과 통하는 절개홀이 형성되는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  7. 청구항 1에 있어서,
    상기 기본 단위체는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층되어 4층 구조를 형성하는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  8. 청구항 7에 있어서,
    상기 기본 단위체는 상기 전극과 상기 분리막이 서로 접착되어 형성되는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  9. 청구항 8에 있어서,
    상기 전극과 상기 분리막의 접착은, 상기 전극과 상기 분리막에 압력을 가하는 것에 의한 접착, 또는 상기 전극과 상기 분리막에 압력과 열을 가하는 것에 의한 접착인 것을 특징으로 하는 이차전지용 단위체 적층장치.
  10. 청구항 8에 있어서,
    상기 분리막은 접착력을 가지는 코팅 물질이 표면에 코팅되는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  11. 청구항 10에 있어서,
    상기 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물인 것을 특징으로 하는 이차전지용 단위체 적층장치.
  12. 청구항 7에 있어서,
    상기 기본 단위체는 상기 4층 구조가 반복적으로 적층되어 형성되는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  13. 청구항 1에 있어서,
    상기 스택 지그는 상기 제2 내부 공간의 상측으로 점차 크기가 증가하면서 서로 통하는 n개의 내부 공간을 더 구비하며,
    상기 n개의 내부 공간에 대응하는 크기를 가지는 n개의 기본 단위체는 작은 기본 단위체로부터 큰 기본 단위체의 순서로 상기 제1 및 제2 기본 단위체에 이어서 상기 n개의 내부 공간에 차례로 적층되는 것을 특징으로 하는 이차전지용 단위체 적층장치.
  14. 제1 크기를 가지는 한 개 이상의 제1 기본 단위체와 상기 제1 크기보다 큰 제2 크기를 가지는 한 개 이상의 제2 기본 단위체를 각각 제조하는 제조 단계; 및
    상기 제1 기본 단위체와 상기 제2 기본 단위체를 스택 지그에 삽입하여 적층하는 적층 단계를 포함하며,
    상기 스택 지그는 상기 제1 크기에 대응되는 크기의 제1 내부 공간과, 상기 제1 내부 공간의 상측에서 상기 제1 내부 공간과 통하고 상기 제2 크기에 대응되는 크기의 제2 내부 공간을 구비하고,
    상기 적층 단계는 상기 제1 기본 단위체를 상기 제2 내부 공간을 통해 상기 제1 내부 공간에 적층하고, 이어서 상기 제2 기본 단위체를 상기 제2 내부 공간에 적층하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  15. 청구항 14에 있어서,
    상기 기본 단위체를 같은 크기의 기본 단위체별로 적층한 다음 정렬시키는 정렬 단계를 더 포함하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  16. 청구항 15에 있어서,
    상기 정렬 단계는, 상기 기본 단위체의 한 개의 측면 또는 상기 기본 단위체의 서로 인접한 두 개의 측면을 고정체에 지지시킨 다음, 상기 고정체에 의해 지지되지 않는 상기 기본 단위체의 측면들을 가압체를 통해 가압하여 상기 기본 단위체를 정렬시키는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  17. 청구항 15에 있어서,
    상기 정렬 단계에 의해 정렬된 같은 크기의 기본 단위체들을 상기 스택 지그로 이송하는 이송 단계를 더 포함하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  18. 청구항 14에 있어서,
    상기 제1 내부 공간의 일측 내면은 상기 제2 내부 공간의 일측 내면으로부터 수직하게 연장되는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  19. 청구항 14에 있어서,
    상기 스택 지그의 측면에서 상기 스택 지그의 높이 방향을 따라 상기 스택 지그의 상면으로부터 하면까지 절개되어 형성되는 절개홀을 통해 상기 스택 지그에 적층된 기본 단위체들에 고정 테이프를 부착하는 부착 단계를 더 포함하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  20. 청구항 14에 있어서,
    상기 제조 단계는 제1 전극, 제1 분리막, 제2 전극 및 제2 분리막이 순차적으로 적층되는 4층 구조로 상기 기본 단위체를 제조하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  21. 청구항 20에 있어서,
    상기 제조 단계는 상기 전극과 상기 분리막을 서로 접착시켜 상기 기본 단위체를 제조하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  22. 청구항 21에 있어서,
    상기 제조 단계는 라미네이팅에 의해 상기 전극과 상기 분리막을 서로 접착시켜 상기 기본 단위체를 제조하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  23. 청구항 21에 있어서,
    상기 분리막은 접착력을 가지는 코팅 물질이 표면에 코팅되는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  24. 청구항 23에 있어서,
    상기 코팅 물질은 무기물 입자와 바인더 고분자의 혼합물인 것을 특징으로 하는 이차전지용 단위체 적층방법.
  25. 청구항 20에 있어서,
    상기 제조 단계는 상기 4층 구조를 반복적으로 적층하여 상기 기본 단위체를 제조하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
  26. 청구항 14에 있어서,
    상기 스택 지그는 상기 제2 내부 공간의 상측으로 점차 크기가 증가하면서 서로 통하는 n개의 내부 공간을 더 구비하며,
    상기 제조 단계는 상기 n개의 내부 공간에 대응하는 크기를 가지는 n개의 기본 단위체를 더 제조하고,
    상기 적층 단계는, 상기 n개의 기본 단위체를 작은 기본 단위체로부터 큰 기본 단위체의 순서로 상기 제1 및 제2 기본 단위체에 이어서 상기 n개의 내부 공간에 차례로 적층하는 것을 특징으로 하는 이차전지용 단위체 적층방법.
PCT/KR2014/005021 2013-09-27 2014-06-05 이차전지용 단위체 적층장치 및 적층방법 WO2015046711A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015539525A JP6091634B2 (ja) 2013-09-27 2014-06-05 二次電池用単位体積層装置及び積層方法
EP14784180.3A EP2879223B1 (en) 2013-09-27 2014-06-05 Stack apparatus and stack method of unit for secondary battery
CN201480001176.7A CN104718654B (zh) 2013-09-27 2014-06-05 二次电池用单体的层叠装置及层叠方法
US14/499,908 US9160028B2 (en) 2013-09-27 2014-09-29 Device and method for stacking units for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130115622A KR101625717B1 (ko) 2013-09-27 2013-09-27 이차전지용 단위체 적층장치 및 적층방법
KR10-2013-0115622 2013-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/499,908 Continuation US9160028B2 (en) 2013-09-27 2014-09-29 Device and method for stacking units for secondary battery

Publications (1)

Publication Number Publication Date
WO2015046711A1 true WO2015046711A1 (ko) 2015-04-02

Family

ID=52682596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005021 WO2015046711A1 (ko) 2013-09-27 2014-06-05 이차전지용 단위체 적층장치 및 적층방법

Country Status (6)

Country Link
EP (1) EP2879223B1 (ko)
JP (1) JP6091634B2 (ko)
KR (1) KR101625717B1 (ko)
CN (1) CN104718654B (ko)
TW (1) TWI501442B (ko)
WO (1) WO2015046711A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734271B1 (ko) * 2015-06-09 2017-05-11 현대자동차 주식회사 연료전지 스택 자동 적층 장치
KR101734269B1 (ko) 2015-06-09 2017-05-11 현대자동차 주식회사 연료전지 스택 고속 적층 장치
KR102087751B1 (ko) * 2016-03-25 2020-03-12 주식회사 엘지화학 전극 조립체 제작 시스템
CN105703016B (zh) * 2016-04-14 2018-07-17 合肥国轩高科动力能源有限公司 一种用于电池极片与隔膜粘结的热复合设备
KR102089537B1 (ko) * 2016-04-15 2020-03-16 주식회사 엘지화학 이차전지용 적층시스템
KR102117662B1 (ko) * 2016-05-24 2020-06-01 주식회사 엘지화학 스택 제조용 정렬지그
KR102255705B1 (ko) * 2016-07-26 2021-05-26 엘지전자 주식회사 셀적층 및 열압착 장치, 및 셀적층 및 열압착 방법
KR102287763B1 (ko) * 2016-11-03 2021-08-10 주식회사 엘지에너지솔루션 전지셀 제조시스템
KR101932444B1 (ko) 2018-01-08 2018-12-26 세종기술 주식회사 폴리머 셀의 투입 및 배출 자동화 장치
KR102565054B1 (ko) 2019-01-02 2023-08-09 주식회사 엘지에너지솔루션 단위 셀 제조 장치 및 방법
KR102043113B1 (ko) * 2019-04-25 2019-12-02 백영진 2차전지셀 정렬지그 및 이를 포함하는 2차전지셀 적층 시스템
KR102403207B1 (ko) * 2020-04-07 2022-05-30 (주)펨트론 다열 리드탭 검사 및 적재 시스템
KR102409650B1 (ko) * 2020-04-07 2022-06-17 (주)펨트론 다열 리드탭 검사시스템
KR102598671B1 (ko) * 2020-08-24 2023-11-07 엘지전자 주식회사 이차전지 제조 장치
DE102020124040A1 (de) * 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Zellstapels für Batteriezellen
DE102020124039A1 (de) * 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Zellstapels für Batteriezellen
CN112563583B (zh) * 2020-12-10 2022-04-29 珠海冠宇电池股份有限公司 锂电池
US20230207858A1 (en) * 2021-01-11 2023-06-29 Lg Energy Solution, Ltd. Electrode Connecting Device, Electrode Connecting Method, and Notching Machine Comprising Same
IT202100009626A1 (it) 2021-04-16 2022-10-16 Manz Italy Srl Unita' impilatrice e metodo di impilamento per formare una pila di celle elettrochimiche di una batteria elettrica

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050583A (ja) * 2003-07-30 2005-02-24 Shibaura Mechatronics Corp 電極積層装置及びゲージング装置
KR20080010005A (ko) * 2006-07-25 2008-01-30 엘지전자 주식회사 전지의 단위셀 정렬장치
JP2008204706A (ja) * 2007-02-19 2008-09-04 Sony Corp 積層型非水電解質電池およびその作製方法ならびに積層装置
KR20120060702A (ko) * 2010-12-02 2012-06-12 주식회사 엘지화학 전지셀 제조 장치
KR101163053B1 (ko) 2010-04-06 2012-07-05 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
JP2012227129A (ja) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd 電極積層装置および電極積層方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993895A (en) * 1990-01-08 1991-02-19 Edward Nordstrom Apparatus for retaining a tile in a secure position to prevent rotation while an opening is drilled through the tile
US6213376B1 (en) * 1998-06-17 2001-04-10 International Business Machines Corp. Stacked chip process carrier
JP3611765B2 (ja) * 1999-12-09 2005-01-19 シャープ株式会社 二次電池及びそれを用いた電子機器
JP4644899B2 (ja) * 2000-02-23 2011-03-09 ソニー株式会社 電極及び電池、並びにそれらの製造方法
KR100440934B1 (ko) * 2002-02-06 2004-07-21 삼성에스디아이 주식회사 이차전지
WO2004097971A1 (en) * 2003-04-25 2004-11-11 Enerland Co. Ltd. Stacked lithium secondary battery and its fabrication
TW200743245A (en) * 2006-05-01 2007-11-16 Antig Tech Co Ltd Assembly method used in the assembly of flat-plate type membrane electrode assembled layer and its structure
TW200812138A (en) * 2006-08-18 2008-03-01 Antig Technology Corp Flat type membrane electrode layer structure
US8298722B2 (en) * 2009-01-07 2012-10-30 National Taiwan University Of Science And Technology Fuel cell and fabricating method thereof
KR101108839B1 (ko) * 2010-04-27 2012-02-09 삼성전기주식회사 에너지 저장장치 제조용 지그
JP5714295B2 (ja) * 2010-10-26 2015-05-07 Amaz技術コンサルティング合同会社 積層体の作製装置および作製方法
JP5997877B2 (ja) * 2011-04-07 2016-09-28 株式会社京都製作所 積層装置および積層方法
JP2012227029A (ja) * 2011-04-20 2012-11-15 Sharp Corp 照明装置および液晶表示装置
CN202196835U (zh) * 2011-09-22 2012-04-18 浙江振龙电源股份有限公司 电芯组叠加固定装置
TWI572491B (zh) * 2012-02-20 2017-03-01 Nagano Automation Co Ltd Laminated system
KR101192619B1 (ko) * 2012-03-23 2012-10-18 주식회사 엘지화학 전지케이스

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050583A (ja) * 2003-07-30 2005-02-24 Shibaura Mechatronics Corp 電極積層装置及びゲージング装置
KR20080010005A (ko) * 2006-07-25 2008-01-30 엘지전자 주식회사 전지의 단위셀 정렬장치
JP2008204706A (ja) * 2007-02-19 2008-09-04 Sony Corp 積層型非水電解質電池およびその作製方法ならびに積層装置
KR101163053B1 (ko) 2010-04-06 2012-07-05 주식회사 엘지화학 스택 타입 셀, 개선된 바이-셀, 이들을 이용한 이차 전지용 전극 조립체 및 그 제조 방법
KR20120060702A (ko) * 2010-12-02 2012-06-12 주식회사 엘지화학 전지셀 제조 장치
JP2012227129A (ja) * 2011-04-07 2012-11-15 Nissan Motor Co Ltd 電極積層装置および電極積層方法

Also Published As

Publication number Publication date
CN104718654A (zh) 2015-06-17
KR101625717B1 (ko) 2016-05-30
JP6091634B2 (ja) 2017-03-08
CN104718654B (zh) 2017-03-08
TWI501442B (zh) 2015-09-21
TW201530843A (zh) 2015-08-01
KR20150035271A (ko) 2015-04-06
EP2879223A1 (en) 2015-06-03
JP2015531988A (ja) 2015-11-05
EP2879223B1 (en) 2017-09-06
EP2879223A4 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2015046711A1 (ko) 이차전지용 단위체 적층장치 및 적층방법
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2015046703A1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2018182129A1 (ko) 전극적층방법 및 이를 수행하는 전극적층장치
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2014126432A1 (ko) 안전성이 향상된 전극 조립체 및 그 제조방법
KR101609425B1 (ko) 매거진을 이용한 전극조립체의 제조방법
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2021080210A1 (ko) 가열과 가압을 동시에 적용하는 단계를 포함하는 전극조립체 제조방법
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2022169237A1 (ko) 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체
US9160028B2 (en) Device and method for stacking units for secondary battery
WO2022164257A1 (ko) 분리막 접착장치
WO2022145905A1 (ko) 전극시트의 불량 검출 시스템
WO2018021589A1 (ko) 2차 전지 제조 방법
CN209804692U (zh) 一种太阳能薄膜发电瓦自动敷设系统
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2017191910A2 (ko) 이차전지의 제조방법 및 전극 조립체의 제조방법
JP2012195180A (ja) 燃料電池セルの組立装置および組立方法
WO2019088323A1 (ko) 전사 부재를 이용한 전자 소자의 적층 구조, 상기 전자 소자의 제작을 위한 전사 장비 및 상기 전자 소자의 제조 방법
WO2023090842A1 (ko) 전극조립체, 그의 제조장치 및 제조방법
WO2023282717A1 (en) Electrode assembly
WO2023282714A1 (en) Electrode assembly
WO2022139211A1 (ko) 단위셀의 제조방법 및 제조장치

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014784180

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014784180

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015539525

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE