WO2022169237A1 - 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체 - Google Patents

가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체 Download PDF

Info

Publication number
WO2022169237A1
WO2022169237A1 PCT/KR2022/001614 KR2022001614W WO2022169237A1 WO 2022169237 A1 WO2022169237 A1 WO 2022169237A1 KR 2022001614 W KR2022001614 W KR 2022001614W WO 2022169237 A1 WO2022169237 A1 WO 2022169237A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thickness
measuring sensor
lamination apparatus
pressure
Prior art date
Application number
PCT/KR2022/001614
Other languages
English (en)
French (fr)
Inventor
김동하
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22749986.0A priority Critical patent/EP4131534A1/en
Priority to US17/920,247 priority patent/US20230187679A1/en
Priority to CN202280003448.1A priority patent/CN115428211A/zh
Publication of WO2022169237A1 publication Critical patent/WO2022169237A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lamination apparatus including a pressure roll capable of adjusting a pressing force, and an electrode assembly manufactured using the same. Specifically, it relates to a lamination device including a pressure roll capable of adjusting a pressing force to prevent non-uniform adhesion between the electrodes due to a thickness deviation of the electrodes constituting the bi-cell, and an electrode assembly manufactured using the same.
  • lithium secondary batteries are being used as energy sources not only for small devices such as portable electronic devices, but also for medium and large devices such as automobiles and power storage systems.
  • the lithium secondary battery may be manufactured by a method of enclosing and sealing an electrode assembly in which a positive electrode/separator/negative electrode is sequentially stacked in a battery case.
  • the electrode assembly includes a single-cell in which a first electrode/separator is stacked, a mono-cell in which a first electrode/separator/a second electrode/separator is stacked, and a second It includes a bi-cell in which one electrode/separator/second electrode/separator/third electrode are stacked.
  • the electrodes constituting the electrode assembly are manufactured by applying an electrode mixture to one or both sides of a thin plate-shaped electrode current collector made of copper, aluminum, nickel, etc., followed by drying and pressurization.
  • the electrode manufactured in this way is laminated with a separator interposed therebetween, and is laminated and bonded.
  • FIG. 1 shows a bi-cell lamination process using a conventional lamination apparatus.
  • the electrode assembly is a bicell in which a first electrode 110 , a separator 140 , a second electrode 120 , a separator 140 , and a third electrode 130 are sequentially stacked.
  • the second electrode 120 is in a state in which the thickness of the electrode mixture layer 122 applied to both surfaces of the electrode current collector 121 is not uniformly formed, the left side is the thin electrode mixture layer, and the right side is the electrode mixture layer The thickness of the layer is formed thick.
  • a pair of pressure rolls 150 are disposed on each of the upper portion of the first electrode 110 and the lower portion of the third electrode 130 to press the electrode assembly. At this time, the pressure roll 150 applies a uniform pressure to the surface in contact with the first electrode 110 and the third electrode 130 as a whole, and the left side of the electrode mixture layer 122 of the second electrode is the first electrode. It is difficult to make close contact with the left side of 110 and the left side of the third electrode 130 .
  • one bi-cell has to be placed on a long sheet-type separation film, but there is a problem in that an electrode separated from one bi-cell is disposed together with another bi-cell. can occur
  • Such a problem may occur due to poor adhesion between the first electrode and the second electrode and the third electrode and the second electrode when the thickness of the second electrode disposed in the middle among the electrodes constituting the bi-cell is non-uniform.
  • the thickness of the electrode mixture layer of the second electrode disposed in the middle among the electrodes constituting the bi-cell is non-uniform, a technology capable of securing the bonding force of all the electrodes is required.
  • the present invention is intended to solve the above problems, and a lamination apparatus including a pressure roll capable of adjusting a pressing force so as to prevent a decrease in adhesion between the electrodes due to a deviation in the thickness of the electrode mixture layer constituting the bi-cell and an electrode assembly manufactured using the same.
  • the lamination apparatus for achieving this object is a lamination apparatus for manufacturing an electrode assembly, a pressure roll for pressing the electrodes constituting the electrode assembly, a rotation shaft for rotating the pressure roll, and the pressure roll is applied It may include a pressure cylinder for controlling the pressing force, and a thickness measuring sensor for measuring the thickness of the electrode mixture layer.
  • the pressure cylinder may include a first pressure cylinder and a second pressure cylinder coupled to both ends of the rotation shaft, respectively.
  • the pressure applied to each of the first pressure cylinder and the second pressure cylinder may be different from each other.
  • the thickness measuring sensor may include a first thickness measuring sensor and a second thickness measuring sensor disposed at both ends of the electrode, respectively.
  • a control unit for controlling the pressing force of the pressurizing cylinder may be further included.
  • the pressure roll when a difference in thickness between the electrodes measured by the first thickness measuring sensor and the second thickness measuring sensor occurs, the pressure roll may more strongly press a position where the electrode thickness is thin. .
  • the electrode assembly may be a bi-cell in which a first electrode, a separator, a second electrode, a separator, and a third electrode are stacked.
  • the lamination apparatus further includes a first electrode supply part, a second electrode supply part, and a third electrode supply part, and the thickness measuring sensor can measure the thickness of the second electrode supplied from the second electrode supply part. have.
  • the electrodes are double-sided electrodes in which an electrode mixture is coated on both surfaces of an electrode current collector, and the lamination apparatus may be disposed on an upper surface and a lower surface of the electrode, respectively.
  • the thickness measuring sensor includes an irradiator for irradiating a beta ray passing through the electrode, and a receiving part for detecting the beta ray irradiated from the irradiating part, wherein the An irradiator may be disposed, and a receiver may be disposed at the other one.
  • the magnitude of the pressing force applied to each of the first end and the second end of the upper pressure roll disposed on the upper surface of the electrode is, the first end of the lower pressure roll disposed on the lower surface of the electrode and It may be set independently of the magnitude of the pressing force applied to each of the second ends.
  • the pressure roll may be formed in a heatable form.
  • the present invention provides an electrode assembly manufactured by using the lamination device.
  • the electrode assembly is a bicell in which a first electrode, a separator, a second electrode, a separator, and a third electrode are sequentially stacked. and the first electrode and the second electrode, and the second electrode and the third electrode may be coupled to each other over the entire outer periphery.
  • the present invention can also be provided in a form in which various means for solving the above problems are combined.
  • the pressing force of the pressing roll for pressing the bicell can be adjusted, and in the portion where the electrode mixture layer is thin, the pressing force of the pressing roll is increased, thereby securing the adhesive force between the electrodes.
  • the thickness of the electrode mixture layer of the second electrode disposed in the middle of the bi-cell can be measured using the thickness sensor, and the entire interface between the first electrode and the separator and the interface between the separator and the second electrode is adhered. A face may be formed.
  • the pressure roll disposed above the first electrode of the bicell and the pressure roll disposed under the third electrode are applied from the first pressure cylinder and the second pressure cylinder coupled to both ends of the rotation shaft of the pressure rolls, respectively. Since the pressing force can be individually controlled, adhesive strength between the first electrode and the second electrode, and the third electrode and the second electrode can be secured even if there is a thickness deviation in the electrode mixture layers formed on each of both surfaces of the second electrode.
  • the productivity of the electrode assembly can be secured by reducing bicell arrangement defects.
  • FIG. 1 illustrates a bi-cell lamination process using a conventional lamination apparatus.
  • FIG. 2 is a front view showing a state of laminating a bi-cell using the lamination apparatus according to the present invention.
  • FIG 3 is a side view illustrating a state of laminating a bi-cell using a lamination apparatus according to an exemplary embodiment.
  • FIG. 4 is a perspective view of a state in which a control unit is added to the lamination apparatus of FIG. 3 .
  • FIG. 5 is a side view illustrating a state of laminating a bi-cell using a lamination apparatus according to another exemplary embodiment.
  • FIG. 6 is a perspective view of a state in which a control unit is added to the lamination apparatus of FIG. 5 .
  • FIG. 7 is a vertical cross-sectional view and a plan view of a bicell manufactured in an experimental example.
  • FIG. 2 is a front view showing a state of laminating a bi-cell using the lamination apparatus according to the present invention.
  • a pressure roll 251 is disposed on each of the upper and lower portions of the electrode assembly.
  • the electrode assembly is a bicell in which a first electrode 210, a separator 240, a second electrode 220, a separator 240, and a third electrode 230 are sequentially stacked, the first electrode 210 and the second electrode
  • the third electrode 230 is an electrode having the same polarity
  • the second electrode 220 is an electrode having a polarity different from that of the first electrode 210 and the third electrode 230 .
  • the first electrode 210 , the second electrode 220 , and the third electrode 230 are double-sided electrodes in which an electrode mixture layer is applied on both surfaces of an electrode current collector.
  • the second electrode 220 is in a state in which the thickness of the electrode mixture layers 222 applied to the upper and lower surfaces of the electrode current collector 221 is not uniform, the left side has a relatively thin thickness, and the right side has a relatively thin thickness. is thick with
  • the thickness of the electrode mixture layer 222 is relatively thin on the left side. It is difficult to remove the gap between the first electrode 210 and the second electrode 220 and the gap between the third electrode 230 and the second electrode 220 . Accordingly, a non-adhesive portion may occur on the left side of the first electrode 210 and the second electrode 220 , and on the left side of the third electrode 230 and the second electrode 220 .
  • a first pressure cylinder 253 and a second pressure cylinder 263 that can be independently controlled from each other are combined at both ends of the rotation shaft 252 for rotating the pressure roll 251.
  • the pressure applied to each of the first pressure cylinder 253 and the second pressure cylinder 263 may be different from each other, and the first pressure cylinder 253 is adjacent to a portion where the electrode mixture layer has a relatively thin thickness. is positioned, and the second pressure cylinder 263 is positioned adjacent to a portion having a relatively thick electrode mixture layer.
  • the first electrode 210 and the third electrode 230 are moved toward the second electrode 220 by making the pressing force applied to the first pressing cylinder 253 greater than the pressing force applied to the second pressing cylinder 263 . You can push it deep. Accordingly, the electrodes may be completely adhered not only to the right portion where the electrode mixture layer 222 is relatively thick, but also to the left portion where the electrode mixture layer 222 is relatively thin.
  • FIG. 3 is a side view illustrating a state of laminating a bi-cell using a lamination apparatus according to an exemplary embodiment
  • FIG. 4 is a perspective view of a state in which a controller is added to the lamination apparatus of FIG. 3 .
  • the lamination apparatus is for manufacturing a bi-cell, and a pressure roll 351 for pressing the electrodes constituting the electrode assembly, a rotation shaft for rotating the pressure roll 351 352, a first pressure cylinder 353 and a second pressure cylinder 363 for adjusting the pressure applied to the pressure roll 351, and a first thickness sensor 381 and a second pressure sensor for measuring the thickness of the electrode and a thickness measurement sensor 382 .
  • the electrode assembly has a bi-cell type in which a first electrode 310 , a separator 340 , a second electrode 320 , a separator 340 , and a third electrode 330 are sequentially stacked.
  • the first electrode 310 has an electrode mixture layer 312 formed on both sides of the electrode current collector 311
  • the second electrode 320 has an electrode mixture layer 322 on both sides of the electrode current collector 321 .
  • the third electrode 330 has an electrode mixture layer 332 formed on both surfaces of the electrode current collector 331 .
  • the first electrode 310 and the third electrode 330 are electrodes having the same polarity, and the second electrode 320 is an electrode having a different polarity from the first electrode 310 and the third electrode 330 . That is, when the first electrode and the third electrode are anodes, the second electrode is a cathode, and when the first electrode and the third electrode are cathodes, the second electrode is an anode.
  • the first electrode 310 has a separator 340 attached to the outer surface of the electrode mixture layer 312 facing the second electrode 320 , and in the pre-lamination stage, the first electrode 310 and the separator 340 are The unit electrode is cut by the cutter 390 .
  • the third electrode 330 has a separator 340 attached to the outer surface of the electrode mixture layer 332 facing the second electrode 320 , and in the pre-lamination step, the third electrode 330 and the separator 340 are The unit electrode is cut by the cutter 390 .
  • the second electrode 320 Since the second electrode 320 is in a state in which the separator 340 is not attached to the outer surface of the electrode mixture layer 322 , the second electrode 320 is cut into unit electrodes by a cutter 390 before lamination. .
  • the pressure cylinder includes a first pressure cylinder 353 and a second pressure cylinder 363 coupled to both ends of the rotation shaft 352, respectively, and they can be individually controlled to have different amounts of pressure on the pressure roll.
  • a first thickness measurement sensor 381 and a second thickness measurement sensor 382 for detecting the thickness of the electrode mixture layer is disposed on each of both ends of the second electrode 320 .
  • the first thickness measuring sensor 381 and the second thickness measuring sensor 382 are disposed at both ends of the second electrode along the y-axis direction perpendicular to the traveling direction (x) of the electrode, respectively.
  • the thickness deviation of the second electrode In order to secure the adhesion of the electrodes constituting the bi-cell, if the thickness deviation of the second electrode is known, the size of the gap between the first electrode and the second electrode and the size of the gap between the third electrode and the second electrode can be known. have. Therefore, it is important to check the thickness deviation of the second electrode.
  • Each of the first thickness measuring sensor 381 and the second thickness measuring sensor 382 may include an upper sensor positioned above the second electrode and a lower sensor positioned below the second electrode as a pair. Beta rays emitted from the lower sensor pass through the second electrode to reach the upper sensor. As the loading amount of the electrode mixture layer of the second electrode increases, the remaining amount of beta rays reaching the upper sensor decreases. As described above, the thickness of the electrode mixture layer of the second electrode can be measured on the principle of calculating the loading amount of the electrode mixture layer according to the remaining amount of beta rays measured by the upper sensor.
  • the pressure applied to the first pressure cylinder 353 and the second pressure cylinder 363 Since the difference occurs, a stronger pressing force is applied to the pressing roll from the pressing cylinder located on the side where the electrode mixture layer has a thinner thickness. Accordingly, the first electrode and the third electrode adjacent to the thin portion of the electrode mixture layer of the second electrode can be pressed more deeply in the direction of the second electrode, the adhesive force between the first electrode and the second electrode, and the third electrode Adhesion between the electrode and the second electrode may be improved.
  • the pressing force of the first pressure cylinder 353 and the second pressure cylinder 363 according to the thickness of the electrode mixture layer measured by the first thickness measurement sensor 381 and the second thickness measurement sensor 382 . It may include a control unit 370 for controlling the. Accordingly, even without operator intervention, the values measured by the first and second thickness measuring sensors are calculated in real time to adjust the pressing force of the pressurizing cylinder.
  • the first thickness measuring sensor 381 and the second thickness measuring sensor 382 may be disposed on the electrode entering the cutter 390, for example, as shown in FIG. 3 , or in FIG. 4 . As shown, it may be disposed between the cutter 390 for cutting the unit electrode from the electrode sheet and the pressure roll.
  • the first thickness measuring sensor 381 and the second thickness measuring sensor 382 may be disposed on the upper and lower surfaces of the second electrode 320 , respectively. Accordingly, the thickness of each of both ends in the y-axis direction of the electrode mixture layer 322 applied on the upper surface of the second electrode 320 is measured, and the electrode mixture layer 322 applied to the lower surface of the second electrode 320 is applied. It is possible to measure the thickness of each of both ends in the y-axis direction.
  • the pressing force of the first pressing cylinder 353 and the second pressing cylinder 363 of the lamination apparatus on the upper surface of the second electrode 320 is the first pressing force of the lamination apparatus on the lower surface of the second electrode 320 ( 353) and the pressure of the second pressure cylinder 363 may be controlled independently of the pressure.
  • the magnitude of the pressing force applied to each of the first and second ends of the upper pressure roll disposed on the upper surface of the second electrode 320 is the first end of the lower pressure roll disposed on the lower surface of the second electrode 320 . And it can be set independently of the magnitude of the pressing force applied to each of the second end.
  • a first electrode 310 , a second electrode 320 , and a third electrode 330 are stacked between the pressure rolls 351 with a separator (not shown) interposed therebetween.
  • the pressure force of the first pressure cylinder 353 is greater than the pressure force of the second pressure cylinder 363 . Accordingly, the first pressure cylinder 353 and the second pressure cylinder 363 press the pressure rolls 351 to be in close contact with the outermost electrode of the bi-cell, but the rotation shaft 352 connected to the first pressure cylinder 353 The side adjacent to the pressing roll 351 presses more strongly while moving in parallel to the z-axis to be more closely contacted with the bi-cell.
  • the first electrode, the second electrode, and the third electrode are in a state with the separator interposed therebetween, and non-adhesion does not occur with each other.
  • the pressure rolls 351 may be made in a form capable of heating, and may press the bi-cell in a heated state. Accordingly, the adhesion between the electrodes may be further improved.
  • FIG. 5 is a side view illustrating a state of laminating a bi-cell using a lamination apparatus according to another exemplary embodiment
  • FIG. 6 is a perspective view illustrating a state in which a controller is added to the lamination apparatus of FIG. 5 .
  • the thickness measuring sensor shown in FIGS. 5 and 6 includes a first thickness measuring sensor 383 and a second thickness measuring sensor 384 at both ends of the second electrode 320 parallel to the y-axis direction, respectively. When the bar is disposed, the thickness of the electrode mixture layer 322 may be measured at the corresponding position.
  • the first thickness measuring sensor 383 and the second thickness measuring sensor 384 are irradiating units 383a and 384a for irradiating beta rays passing through the second electrode 320, irradiating units 383a and 384a to detect beta rays irradiated from and receiving units 383b and 384b.
  • Radiating parts 383a and 384a are disposed on the upper surface of the second electrode 320
  • receiving parts 383b and 384b are disposed on the lower surface of the second electrode 320 .
  • the positions of the irradiation unit and the receiving unit may be disposed opposite to the positions shown in the drawings.
  • the thickness of the second electrode increases, the remaining amount of beta rays reaching the receiver decreases. It is possible to measure the thickness of the entire electrode mixture layer applied to each.
  • the thickness of the second electrode may be measured by disposing a laser sensor on each of the upper and lower portions of the second electrode and measuring the reflection time of the irradiated laser.
  • the first electrode and the second electrode; and the second electrode and the third electrode may be adhered to each other over the entire outer surface.
  • the bi-cell has a first electrode 310 , an upper separator 441 , a second electrode 320 , a lower separator 442 , and a third electrode 330 sequentially stacked.
  • the first electrode 310 and the third electrode 330 are an anode
  • the second electrode 320 is a cathode.
  • the first test in which the pressing force of the pressing roll for lamination was set to 190 kgf to proceed with lamination at 90 ° C, and the pressing force of the pressing roll was set to 170 kgf and lamination was carried out at 90 ° C.
  • a second test was conducted.
  • the bicell was divided into three zones on the plane.
  • the second electrode 320 is fixed to a horizontal plate, and the first electrode 310 and the upper separator 441 are vertically fixed to a grip-type jig.
  • the adhesive force was measured while pulling and peeling.
  • the second electrode 320 is fixed to a horizontal plate, and the third electrode 330 and the lower separator 441 are vertically fixed to a grip-type jig.
  • the adhesive force was measured while pulling and peeling.
  • the first electrode 310 was fixed to a horizontal plate, and the upper separator 441 was fixed to the grip-type jig and pulled vertically to measure the adhesive force while peeling.
  • the third electrode 330 was fixed to a horizontal plate, and the lower separator 442 was fixed to the grip-type jig and pulled vertically to measure the adhesive force while peeling.
  • the adhesive force in (A) to (D) was measured twice for each tab part, lower part, and center part in each of the first test and the second test, and the results and average values were described in the table below.
  • the unit of the adhesive force size described in the table below is gf/20mm.
  • the pressing force of the pressing roll is increased during lamination, it can be expected that the adhesion between the electrode and the separator can be improved. Even if a gap is formed between the separator and the electrode, the separator is Adhesion between the electrode and the electrode can be secured.
  • control unit 370 control unit

Abstract

본 발명은 전극조립체 제조를 위한 라미네이션 장치에 대한 것으로서, 상세하게는, 상기 전극조립체를 구성하는 전극들을 가압하는 가압롤, 상기 가압롤을 회전시키기 위한 회전축, 상기 가압롤에 인가되는 가압력을 조절하는 가압 실린더, 및 전극의 두께를 측정하는 두께측정 센서를 포함하는 바, 전극합제층의 두께 편차가 있더라도 전극조립체를 구성하는 전극들 간의 접착력을 확보할 수 있다.

Description

가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체
본 출원은 2021년 2월 5일자 한국 특허 출원 제 2021-0016895 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본원 발명은 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체에 대한 것이다. 구체적으로, 바이셀을 구성하는 전극들의 두께 편차로 인하여 전극들 간의 접착력이 불균일해지는 것을 방지할 수 있도록 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체에 대한 것이다.
리튬 이차전지의 용량 증가 및 에너지 밀도 향상이 가속화됨에 따라, 휴대용 전자기기와 같은 소형 장치뿐만 아니라, 자동차나 전력저장시스템과 같은 중대형 장치의 에너지원으로 리튬 이차전지가 이용되고 있다.
상기 리튬 이차전지는 양극/분리막/음극이 순차적으로 적층되는 형태의 전극조립체를 전지케이스에 수납하여 밀봉하는 방법으로 제조될 수 있다.
상기 전극조립체는 제1전극/분리막이 적층된 형태로 이루어지는 싱글셀(single-cell), 제1전극/분리막/제2전극/분리막이 적층된 형태로 이루어지는 모노셀(mono-cell), 및 제1전극/분리막/제2전극/분리막/제3전극이 적층된 형태로 이루어지는 바이셀(bi-cell)을 포함한다.
상기 전극조립체를 구성하는 전극들은 구리, 알루미늄, 니켈 등으로 이루어진 박판 형태의 전극집전체의 일면 또는 양면에 전극합제를 도포한 후, 건조 및 가압하여 제조된다.
이와 같이 제조되는 전극은 분리막을 사이에 개재한 상태로 적층하고 라미네이션하여 결합하는 과정을 거치는데, 상기 전극에 도포된 전극합제의 두께 편차가 발생하는 경우 전극들 간의 결합이 불균일하게 일어나는 문제가 생길 수 있다.
이와 관련하여, 도 1은 종래의 라미네이션 장치를 이용한 바이셀의 라미네이션 과정을 도시하고 있다.
도 1을 참조하면, 전극조립체는 제1전극(110), 분리막(140), 제2전극(120), 분리막(140) 및 제3전극(130)이 순차적으로 적층된 바이셀이다. 제2전극(120)은 전극집전체(121)의 양면에 도포된 전극합제층(122)의 두께가 균일하게 형성되지 않은 상태인 바, 좌측은 전극합제층의 두께가 얇고, 우측은 전극합제층의 두께가 두껍게 형성되어 있다.
제1전극(110)의 상부와 제3전극(130)의 하부 각각에는 한 쌍의 가압롤(150)이 배치되어 전극조립체를 가압한다. 이 때 가압롤(150)은 제1전극(110) 및 제3전극(130)과 접하는 면에 전체적으로 균일한 압력을 인가하는 바, 제2전극의 전극합제층(122)의 좌측은 제1전극(110)의 좌측 및 제3전극(130)의 좌측과 밀착이 이루어지기 어렵다.
이와 같이 전극과 전극의 계면에서 접착이 이루어지지 않는 경우에는, 전극의 불균일 퇴화가 일어날 수 있고, 리튬 이온이 이동하기 어려워 저항이 증가함에 따라 리튬 이차전지의 성능이 저하될 수 있다.
또한, 스택/폴딩형 전극조립체를 제조하기 위한 생산 과정에서, 긴 시트형의 분리필름에 바이셀이 한 개씩 배치되어야 하는데, 하나의 바이셀 내에서 이탈된 전극이 다른 바이셀과 함께 배치되는 문제가 발생할 수 있다.
이와 같은 문제는, 바이셀을 구성하는 전극들 중, 가운데에 배치되는 제2전극의 두께가 불균일한 경우에 제1전극과 제2전극, 및 제3전극과 제2전극 간의 접착 불량에 의해 발생할 수 있다.
따라서, 바이셀을 구성하는 전극들 중, 가운데에 배치되는 제2전극의 전극합제층 두께가 불균일한 경우에, 모든 전극들의 결합력을 확보할 수 있는 기술이 필요하다.
본원 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 바이셀을 구성하는 전극합제층의 두께 편차가 발생하여 전극들 간의 접착력이 저하되는 것을 방지할 수 있도록 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체를 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 본원 발명에 따른 라미네이션 장치는, 전극조립체 제조를 위한 라미네이션 장치로서, 상기 전극조립체를 구성하는 전극들을 가압하는 가압롤, 상기 가압롤을 회전시키기 위한 회전축, 상기 가압롤에 인가되는 가압력을 조절하는 가압 실린더, 및 전극합제층의 두께를 측정하는 두께측정 센서를 포함할 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 가압 실린더는 상기 회전축의 양측 끝단 각각에 결합되는 제1가압 실린더와 제2가압 실린더를 포함할 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 제1가압 실린더와 상기 제2가압 실린더 각각에서 인가되는 가압력이 서로 다를 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 두께측정 센서는 전극의 양측 끝단부 각각에 배치되는 제1두께측정 센서와 제2두께측정 센서를 포함할 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 제1두께측정 센서와 상기 제2두께측정 센서에서 측정된 전극의 두께 차이가 발생하는 경우, 상기 가압 실린더의 가압력을 제어하는 제어부를 더 포함할 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 제1두께측정 센서와 상기 제2두께측정 센서에서 측정된 전극의 두께 차이가 발생하는 경우, 상기 가압롤은 전극 두께가 얇은 위치를 더 강하게 가압할 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 전극조립체는 제1전극, 분리막, 제2전극, 분리막 및 제3전극이 적층된 형태의 바이셀일 수 있다.
본 발명에 따른 라미네이션 장치는, 제1전극 공급부, 제2전극 공급부, 및 제3전극 공급부를 더 포함하고, 상기 두께측정 센서는 상기 제2전극 공급부에서 공급부되는 제2전극의 두께를 측정할 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 전극들은 전극집전체의 양면에 전극합제가 코팅되는 양면 전극들이고, 상기 라미네이션 장치는 상기 전극의 상면과 하면 각각에 배치될 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 두께측정 센서는 상기 전극을 투과하는 베타선을 조사하는 조사부, 및 상기 조사부에서 조사한 베타선을 감지하는 수신부를 포함하고, 상기 전극의 상면과 하면 중 어느 하나에 상기 조사부가 배치되고, 다른 하나에 수신부가 배치될 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 전극의 상면에 배치되는 상부 가압롤의 제1끝단과 제2끝단 각각에 인가되는 가압력 크기는, 상기 전극의 하면에 배치되는 하부 가압롤의 제1끝단과 제2끝단 각각에 인가되는 가압력 크기와 독립적으로 설정될 수 있다.
본 발명에 따른 라미네이션 장치에 있어서, 상기 가압롤은 가열 가능한 형태로 이루어질 수 있다.
본 발명은 상기 라미네이션 장치를 이용하여 제조된 전극조립체를 제공하는 바, 상세하게는, 상기 전극조립체는 제1전극, 분리막, 제2전극, 분리막 및 제3전극이 순차적으로 적층된 형태의 바이셀이고, 상기 제1전극과 제2전극, 및 상기 제2전극과 상기 제3전극은 외주변 전체에서 서로 간에 결합된 상태로 이루어질 수 있다.
본원발명은 또한, 상기 과제의 해결 수단을 다양하게 조합한 형태로도 제공이 가능하다.
이상에서 설명한 바와 같이, 본원 발명은 바이셀을 가압하는 가압롤의 가압력을 조절할 수 있는 바, 전극합제층의 두께가 얇은 부분에서는 가압롤의 가압력을 증가함으로써 전극들 간의 접착력을 확보할 수 있다.
또한, 두께측정 센서를 이용하여 바이셀에서 중간에 배치되는 제2전극의 전극합제층 두께를 측정할 수 있는 바, 제1전극과 분리막 사이의 경계면과 분리막과 제2전극 사이의 경계면 전체에서 접착면이 형성될 수 있다.
또한, 바이셀의 제1전극의 상부에 배치되는 가압롤과 제3전극의 하부에 배치되는 가압롤은, 가압롤들의 회전축 양측 끝단 각각에 결합되는 제1가압 실린더와 제2가압 실린더에서 인가되는 가압력의 조절이 개별적으로 가능한 바, 제2전극의 양면 각각에 형성된 전극합제층들에 두께 편차가 있더라도 제1전극과 제2전극, 및 제3전극과 제2전극의 접착력을 확보할 수 있다.
또한, 온도 증가가 가능한 가압롤을 적용함으로써 전극들 간의 접착력을 더욱 향상시킬 수 있다.
이와 같이, 전극들의 접착력을 확보함으로써, 저항이 낮은 전지셀을 제공할 수 있다. 또한, 전극조립체의 불균일 퇴화를 방지함으로써 수명이 향상된 전지셀을 제공할 수 있다.
또한, 스택/폴딩형 전극조립체 제조시, 분리 시트 상에 바이셀을 한 개씩 배치할 수 있는 바, 바이셀 배치 불량을 줄임으로써 전극조립체의 생산성을 확보할 수 있다.
도 1은 종래의 라미네이션 장치를 이용한 바이셀의 라미네이션 과정을 도시하고 있다.
도 2는 본원발명에 따른 라미네이션 장치를 이용하여 바이셀을 라미네이션하는 상태를 나타내는 정면도이다.
도 3은 하나의 실시예에 따른 라미네이션 장치를 이용하여 바이셀을 라미네이션하는 상태를 나타내는 측면도이다.
도 4는 도 3의 라미네이션 장치에 제어부가 추가된 상태의 사시도이다.
도 5는 다른 하나의 실시예에 따른 라미네이션 장치를 이용하여 바이셀을 라미네이션하는 상태를 나타내는 측면도이다.
도 6은 도 5의 라미네이션 장치에 제어부가 추가된 상태의 사시도이다.
도 7은 실험예에서 제조된 바이셀의 수직 단면도와 평면도이다.
이하 첨부된 도면을 참조하여 본원 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본원 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본원 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본원 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 구성요소를 한정하거나 부가하여 구체화하는 설명은, 특별한 제한이 없는 한 모든 발명에 적용될 수 있으며, 특정한 발명에 대한 설명으로 한정되지 않는다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 단수로 표시된 것은 별도로 언급되지 않는 한 복수인 경우도 포함한다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 "또는"은 별도로 언급되지 않는 한 "및"을 포함하는 것이다. 그러므로 "A 또는 B를 포함하는"은 A를 포함하거나, B를 포함하거나, A 및 B를 포함하는 상기 3가지 경우를 모두 의미한다.
본원 발명을 도면에 따라 상세한 실시예와 같이 설명한다.
도 2는 본원발명에 따른 라미네이션 장치를 이용하여 바이셀을 라미네이션하는 상태를 나타내는 정면도이다.
도 2를 참조하면, 전극조립체의 상부 및 하부 각각에 가압롤(251)이 배치하고 있다.
전극조립체는 제1전극(210), 분리막(240), 제2전극(220), 분리막(240) 및 제3전극(230)이 순차적으로 적층된 바이셀이며, 제1전극(210)과 제3전극(230)은 동일한 극성을 갖는 전극이고, 제2전극(220)은 제1전극(210) 및 제3전극(230)과 상이한 극성을 갖는 전극이다.
제1전극(210), 제2전극(220), 제3전극(230)은 전극집전체의 양면에 전극합제층이 도포된 양면 전극이다.
제2전극(220)은 전극집전체(221)의 상면과 하면에 도포된 전극합제층들(222)의 두께가 균일하지 않은 상태인 바, 좌측은 두께가 상대적으로 얇고, 우측은 두께가 상대적으로 두꺼운 상태이다.
이와 같은 경우, 도 1에 도시된 바와 같이 가압롤들(251)의 회전축들(252)이 서로 평행한 상태가 되도록 전극조립체를 가압한다면 전극합제층(222)의 두께가 상대적으로 얇은 좌측에서는 제1전극(210)과 제2전극(220) 사이에 있는 갭과 제3전극(230)과 제2전극(220) 사이에 있는 갭이 제거되기 어렵다. 따라서, 제1전극(210)과 제2전극(220)의 좌측 부분, 및 제3전극(230)과 제2전극(220)의 좌측 부분에서 미접착 부분이 발생할 수 있다.
이에, 본원 발명은, 가압롤(251)을 회전시키기 위한 회전축(252)의 양측 끝단 각각에 서로 독립적으로 제어될 수 있는 제1가압 실린더(253)와 제2가압 실린더(263)를 결합한 형태를 포함한다.
구체적으로, 제1가압 실린더(253)와 제2가압 실린더(263) 각각에 인가되는 가압력은 서로 다를 수 있는 바, 전극합제층의 두께가 상대적으로 얇은 부분에 인접하게 제1가압 실린더(253)가 위치하고, 전극합제층의 두께가 상대적으로 두꺼운 부분에 인접하게 제2가압 실린더(263)가 위치한다.
이에, 제1가압 실린더(253)에 인가되는 가압력을 제2가압 실린더(263)에 인가되는 가압력 보다 크게 함으로써 제1전극(210)과 제3전극(230)을 제2전극(220) 방향으로 깊게 밀어줄 수 있다. 따라서, 상대적으로 전극합제층(222)의 두께가 두꺼운 우측 부분뿐만 아니라, 상대적으로 전극합제층(222)의 두께가 얇은 좌측 부분에서도 전극들을 완전히 접착시킬 수 있다.
도 3은 하나의 실시예에 따른 라미네이션 장치를 이용하여 바이셀을 라미네이션하는 상태를 나타내는 측면도이고, 도 4는 도 3의 라미네이션 장치에 제어부가 추가된 상태의 사시도이다.
도 3 및 도 4를 참조하면, 본원 발명에 따른 라미네이션 장치는, 바이셀의 제조를 위한 것으로서, 전극조립체를 구성하는 전극들을 가압하는 가압롤(351), 가압롤(351)을 회전시키기 위한 회전축(352), 가압롤(351)에 인가되는 가압력을 조절하는 제1가압 실린더(353)와 제2가압 실린더(363), 및 전극의 두께를 측정하는 제1두께측정 센서(381)와 제2두께측정 센서(382)를 포함한다.
제1전극(310)을 공급하는 제1전극 공급부, 제2전극(320)을 공급하는 제2전극 공급부, 제3전극(330)을 공급하는 제3전극 공급부를 포함하고, 두께측정 센서는 제2전극 공급부에서 공급되는 제2전극(320)의 두께를 측정한다.
전극조립체는 제1전극(310), 분리막(340), 제2전극(320), 분리막(340) 및 제3전극(330)이 순차적으로 적층된 바이셀 형태이다. 제1전극(310)은 전극집전체(311)의 양면에 전극합제층(312)이 형성되어 있고, 제2전극(320)은 전극집전체(321)의 양면에 전극합제층(322)이 형성되어 있으며, 제3전극(330)은 전극집전체(331)의 양면에 전극합제층(332)이 형성되어 있다.
제1전극(310)과 제3전극(330)은 동일한 극성을 갖는 전극이고, 제2전극(320)은 제1전극(310) 및 제3전극(330)과 상이한 극성을 갖는 전극이다. 즉, 제1전극과 제3전극이 양극인 경우 제2전극은 음극이며, 제1전극과 제3전극이 음극인 경우 제2전극은 양극이다.
제1전극(310)은 제2전극(320)과 대면하는 전극합제층(312)의 외면에 분리막(340)이 부착되어 있고, 라미네이션 전 단계에서 제1전(310)과 분리막(340)은 컷터(390)에 의해 단위 전극으로 절단된다.
제3전극(330)은 제2전극(320)과 대면되는 전극합제층(332)의 외면에 분리막(340)이 부착되어 있고, 라미네이션 전 단계에서 제3전극(330)과 분리막(340)은 컷터(390)에 의해 단위 전극으로 절단된다.
제2전극(320)은 전극합제층(322)의 외면에 분리막(340)이 부착되지 않은 상태인 바, 라미네이션 전 단계에서 제2전극(320)은 컷터(390)에 의해 단위 전극으로 절단된다.
가압 실린더는 회전축(352)의 양측 끝단 각각에 결합되는 제1가압 실린더(353) 및 제2가압 실린더(363)를 포함하고, 이들은 서로 개별적으로 가압롤에 대한 가압력 크기가 다르게 제어될 수 있다
제2전극(320)은 전극합제층(322)의 두께가 일정하게 도포되지 않을 수 있는 바, 전극합제층의 두께를 검출하기 위한 제1두께측정 센서(381)와 제2두께측정 센서(382)가 제2전극(320)의 양측 끝단부 각각에 배치된다. 구체적으로, 전극의 주행 방향(x)에 대해 수직인 y축 방향에 따른 제2전극의 양측 끝단부 각각에 제1두께측정 센서(381)와 제2두께측정 센서(382)가 배치된다.
바이셀을 구성하는 전극들의 접착력을 확보하기 위하여, 제2전극의 두께 편차를 알게 되면, 제1전극과 제2전극 사이의 갭 크기, 및 제3전극과 제2전극 사이의 갭 크기를 알 수 있다. 따라서, 제2전극의 두께 편차를 확인하는 것이 중요하다.
제1두께측정 센서(381)와 제2두께측정 센서(382) 각각은 제2전극의 상부에 있는 상부 센서와 제2전극의 하부에 있는 하부 센서가 한 쌍으로 구성될 수 있다. 상기 하부 센서에서 방출된 베타선이 제2전극을 투과하여 상기 상부 센서에 도달하게 되는데, 제2전극의 전극합제층 로딩량이 클수록 상기 상부 센서에 도달하는 베타선 잔량이 적어진다. 이와 같이 상부 센서에서 측정된 베타선 잔량에 따라 전극합제층의 로딩량을 산출하는 원리로 제2전극의 전극합제층 두께를 측정할 수 있다.
제1두께측정 센서(381)와 제2두께측정 센서(382)에서 측정된 전극합제층의 두께 차이가 발생하는 경우, 제1가압 실린더(353)와 제2가압 실린더(363)에 인가되는 가압력 차이가 발생하게 되는 바, 전극합제층의 두께가 더 얇은 측에 위치하는 가압 실린더에서 더 강한 가압력을 가압롤에 인가한다. 이에 따라 제2전극의 전극합제층 가운데 두께가 얇은 부분에 인접한 제1전극과 제3전극이 제2전극 방향으로 더욱 깊게 가압될 수 있는 바, 제1전극과 제2전극 간의 접착력, 및 제3전극과 제2전극 간의 접착력이 향상될 수 있다.
하나의 구체적인 예에서, 제1두께측정 센서(381)와 제2두께측정 센서(382)에서 측정된 전극합제층의 두께에 따라 제1가압 실린더(353)와 제2가압 실린더(363)의 가압력을 제어하는 제어부(370)를 포함할 수 있다. 따라서, 작업자의 개입이 없더라도, 제1두께측정 센서 및 제2두께측정 센서를 통해 측정된 값이 실시간으로 계산되어 가압 실린더의 가압력을 조절할 수 있다.
제1두께측정 센서(381)와 제2두께측정 센서(382)는, 예를 들어, 도 3에 도시된 바와 같이, 컷터(390)에 진입하는 전극 상에 배치될 수 있고, 또는 도 4에 도시된 바와 같이, 전극시트에서 단위 전극을 컷팅하는 컷터(390)와 가압롤 사이에 배치될 수 있다.
다른 하나의 구체적인 예에서, 제1두께측정 센서(381)와 제2두께측정 센서(382)는 제2전극(320)의 상면과 하면 각각에 배치될 수 있다. 따라서, 제2전극(320)의 상면에 도포된 전극합제층(322)의 y축 방향 양 끝단부 각각의 두께를 측정하고, 제2전극(320)의 하면에 도포된 전극합제층(322)의 y축 방향 양 끝단부 각각의 두께를 측정할 수 있다.
즉, 제2전극(320)의 상면과 하면에 도포된 전극합제층의 두께 편차를 각각 측정할 수 있으므로, 제1전극(310)과 제2전극(320) 사이에 형성된 갭(gap), 및 제3전극(330)과 제2전극(320) 사이에 형성된 갭(gap)을 정밀하게 측정할 수 있다. 제2전극(320)의 상면에 있는 라미네이션 장치의 제1가압 실린더(353)와 제2가압 실린더(363)의 가압력은, 제2전극(320)의 하면에 있는 라미네이션 장치의 제1가압 실린더(353)와 제2가압 실린더(363)의 가압력과 독립적으로 제어될 수 있다.
따라서, 제2전극(320)의 상면에 배치되는 상부 가압롤의 제1끝단과 제2끝단 각각에 인가되는 가압력 크기는, 제2전극(320)의 하면에 배치되는 하부 가압롤의 제1끝단과 제2끝단 각각에 인가되는 가압력 크기와 독립적으로 설정될 수 있다.
도 4에서, 가압롤들(351) 사이에는 제1전극(310), 제2전극(320) 및 제3전극(330)이 분리막(도시하지 않음)을 사이에 개재한 상태로 적층되어 있다.
도 4의 경우에는, 제1가압 실린더(353)와 인접한 전극의 두께가 상대적으로 얇기 때문에, 제1가압 실린더(353)의 가압력이 제2가압 실린더(363)의 가압력보다 크게 작용하고 있다. 따라서, 제1가압 실린더(353)와 제2가압 실린더(363)는 가압롤들(351)이 바이셀의 최외측 전극에 밀착되도록 가압하되, 제1가압 실린더(353)와 연결된 회전축(352)과 인접한 가압롤(351)측은 z축과 평행하게 바이셀과 더 밀착되도록 이동하면서 더 강하게 가압한다.
따라서, 제1전극, 제2전극 및 제3전극은 분리막을 사이에 개재한 상태로, 서로 간에 미접착이 발생하지 않게 된다.
하나의 구체적인 예에서, 가압롤들(351)은 가열이 가능한 형태로 이루어질 수 있는 바, 가열된 상태에서 바이셀을 가압할 수 있다. 따라서, 전극들 사이의 접착력을 더욱 향상시킬 수 있다.
도 5는 다른 하나의 실시예에 따른 라미네이션 장치를 이용하여 바이셀을 라미네이션하는 상태를 나타내는 측면도이고, 도 6은 도 5의 라미네이션 장치에 제어부가 추가된 상태의 사시도이다.
도 5와 도 6을 참조하면, 바이셀을 구성하는 제1전극(310), 제2전극(320), 제3전극(330)과 분리막(340), 및 가압롤(351), 회전축(352), 제1가압 실린더(353), 제2가압 실린더(363)를 포함하는 구성은 도 3 및 도 4에 도시된 것과 동일한 것을 사용할 수 있는 바, 이들에 대한 설명은 도 3 및 도 4의 설명과 동일하게 적용된다.
도 5 및 도 6에 도시된 두께측정 센서는, y축 방향과 평행한 제2전극(320)의 양 끝단부 각각에 제1두께측정 센서(383)와 제2두께측정 센서(384)가 각각 배치되는 바, 해당 위치에서 전극합제층(322)의 두께를 측정할 수 있다.
제1두께측정 센서(383)와 제2두께측정 센서(384)는 제2전극(320)을 투과하는 베타선을 조사하는 조사부(383a, 384a), 조사부(383a, 384a)에서 조사한 베타선을 감지하는 수신부(383b, 384b)를 포함한다. 제2전극(320)의 상면에 조사부(383a, 384a)가 배치되고 하면에 수신부(383b, 384b)가 배치된다.
또는, 이와 달리, 조사부와 수신부의 위치는 도면에 도시된 위치와 서로 반대 위치에 배치될 수 있다.
제2전극의 두께가 두꺼울수록 수신부에 도달하는 베타선의 잔량이 줄어들게 되는 바, 제1두께측정 센서(383)와 제2두께측정 센서(384)를 이용하여 제2전극(320)의 상면과 하면 각각에 도포된 전극합제층 전체의 두께 측정이 가능하다.
또는 제2전극의 상부 및 하부 각각에 레이저 센서를 배치하고 조사된 레이저의 반사 시간을 측정하여 제2전극의 두께를 측정할 수 있다.
이와 같이, 본원발명에 따른 라미네이션 장치를 이용하여 제1전극, 분리막, 제2전극, 분리막 및 제3전극이 순차적으로 적층된 형태의 바이셀을 제조하는 경우, 상기 제1전극과 제2전극, 및 상기 제2전극과 상기 제3전극은 외면 전체에서 서로 간에 접착이 이루어질 수 있다.
이하에서는, 본원 발명의 실시예를 참조하여 설명하지만, 이는 본원 발명의 더욱 용이한 이해를 위한 것으로, 본원 발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실험예>
바이셀을 라미네이션할 때의 가압력이 전극과 분리막 간의 접착력에 어떤 영향을 미치는지 확인하기 위하여, 바이셀을 제조하였다.
도 7은 실험예에서 제조된 바이셀의 수직 단면도와 평면도이다.
도 7을 참조하면, 바이셀은 제1전극(310), 상부 분리막(441), 제2전극(320), 하부 분리막(442) 및 제3전극(330)이 순차적으로 적층된 형태로서, 제1전극(310)과 제3전극(330)은 양극이고, 제2전극(320)은 음극이다.
이와 같이 제조된 바이셀에 대해, 라미네이션을 위한 가압롤의 가압력을 190 kgf로 설정하여 90 ℃로 라미네이션을 진행하는 제1테스트, 및 가압롤의 가압력을 170 kgf로 설정하고 90 ℃로 라미네이션을 진행하는 제2테스트를 진행하였다.
바이셀의 평면도에 표시한 바와 같이, 바이셀을 평면 상 3개의 구역으로 구분하였다.
구체적으로, 전극 탭과 인접한 부분인 탭부(tab), 탭부의 반대쪽인 하부(bottom), 및 상기 탭부와 하부 사이에 있는 중심부(M)로 구획하였다. 각 구역에서 (A)제2전극(320)과 상부 분리막(441), (B)제2전극(320)과 하부 분리막(442), (C)제1전극(310)과 상부 분리막(441), 및 (D)제3전극(330)과 하부 분리막(442)의 접착력을 측정하였다.
상기 (A)에서의 접착력을 측정하기 위하여, 제2전극(320)을 수평 plate에 고정하고, 제1전극(310)과 상부 분리막(441)을 Grip형 지그(Jig)에 고정한 상태로 수직으로 잡아당겨 박리하면서 접착력을 측정하였다.
상기 (B)에서의 접착력을 측정하기 위하여, 제2전극(320)을 수평 plate에 고정하고, 제3전극(330)과 하부 분리막(441)을 Grip형 지그(Jig)에 고정한 상태로 수직으로 잡아당겨 박리하면서 접착력을 측정하였다.
상기 (C)에서의 접착력을 측정하기 위하여, 제1전극(310)을 수평 plate에 고정하고, 상부 분리막(441)을 Grip형 지그에 고정한 상태로 수직으로 잡아당겨 박리하면서 접착력을 측정하였다.
상기 (D)에서의 접착력을 측정하기 위하여, 제3전극(330)을 수평 plate에 고정하고, 하부 분리막(442)을 Grip형 지그에 고정한 상태로 수직으로 잡아당겨 박리하면서 접착력을 측정하였다.
접착력 측정 실험은, 상기 제1테스트와 상기 제2테스트 각각에서 탭부, 하부, 및 중심부 별로 상기 (A) 내지 (D)에서의 접착력을 2회씩 측정하였으며, 그 결과와 평균값을 하기 표에 기재하였다. 하기 표에 기재된 접착력 크기의 단위는 gf/20mm이다.
접착력을 측정한 장치로, Amtek 사에서 제조한 UTM을 사용하였다.
하기 표를 참조하면, 가압력이 높은 경우에는 가압력이 낮은 경우 보다 접착력이 높은 것으로 측정되는 것을 알 수 있다.
따라서, 라미네이션할 때 가압롤의 가압력을 증가하는 경우에는, 전극과 분리막의 접착력이 향상될 수 있음을 예상할 수 있는 바, 분리막과 전극 사이에 갭이 형성되더라도, 가압롤의 가압력을 증가함으로써 분리막과 전극 간의 접착력을 확보할 수 있다.
Figure PCTKR2022001614-appb-img-000001
본원 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
(부호의 설명)
110, 210, 310: 제1전극
120, 220, 320: 제2전극
121, 221, 311, 321, 331: 전극집전체
122, 222, 312, 322, 332: 전극합제층
130, 230, 330: 제3전극
140, 240, 340, 441, 442: 분리막
150, 251, 351: 가압롤
252, 352: 회전축
253, 353: 제1가압 실린더
263, 363: 제2가압 실린더
370: 제어부
381, 383: 제1두께측정 센서
382, 384: 제2두께측정 센서
383a, 384a: 조사부
383b, 384b: 수신부
390: 커터
441: 상부 분리막
442: 하부 분리막

Claims (13)

  1. 전극조립체 제조를 위한 라미네이션 장치로서,
    상기 전극조립체를 구성하는 전극들을 가압하는 가압롤,
    상기 가압롤을 회전시키기 위한 회전축;
    상기 가압롤에 인가되는 가압력을 조절하는 가압 실린더; 및
    전극합제층의 두께를 측정하는 두께측정 센서;
    를 포함하는 라미네이션 장치.
  2. 제 1 항에 있어서, 상기 가압 실린더는 상기 회전축의 양측 끝단 각각에 결합되는 제1가압 실린더와 제2가압 실린더를 포함하는 라미네이션 장치.
  3. 제 2 항에 있어서, 상기 제1가압 실린더와 상기 제2가압 실린더 각각에서 인가되는 가압력이 서로 다른 라미네이션 장치.
  4. 제 1 항에 있어서, 상기 두께측정 센서는 전극의 양측 끝단부 각각에 배치되는 제1두께측정 센서와 제2두께측정 센서를 포함하는 라미네이션 장치.
  5. 제 4 항에 있어서, 상기 제1두께측정 센서와 상기 제2두께측정 센서에서 측정된 전극의 두께 차이가 발생하는 경우 상기 가압 실린더의 가압력을 제어하는 제어부를 더 포함하는 라미네이션 장치.
  6. 제 4 항에 있어서, 상기 제1두께측정 센서와 상기 제2두께측정 센서에서 측정된 전극의 두께 차이가 발생하는 경우, 상기 가압롤은 전극 두께가 얇은 위치를 더 강하게 가압하는 라미네이션 장치.
  7. 제 1 항에 있어서, 상기 전극조립체는 제1전극, 분리막, 제2전극, 분리막 및 제3전극이 적층된 형태의 바이셀인 라미네이션 장치.
  8. 제 1 항에 있어서, 제1전극 공급부, 제2전극 공급부, 및 제3전극 공급부를 더 포함하고,
    상기 두께측정 센서는 상기 제2전극 공급부에서 공급부되는 제2전극의 두께를 측정하는 라미네이션 장치.
  9. 제 1 항에 있어서, 상기 전극들은 전극집전체의 양면에 전극합제가 코팅되는 양면 전극들이고,
    상기 라미네이션 장치는 상기 전극의 상면과 하면 각각에 배치되는 라미네이션 장치.
  10. 제 9 항에 있어서, 상기 두께측정 센서는 상기 전극을 투과하는 베타선을 조사하는 조사부, 및 상기 조사부에서 조사한 베타선을 감지하는 수신부를 포함하고,
    상기 전극의 상면과 하면 중 어느 하나에 상기 조사부가 배치되고, 다른 하나에 수신부가 배치되는 라미네이션 장치.
  11. 제 9 항에 있어서, 상기 전극의 상면에 배치되는 상부 가압롤의 제1끝단과 제2끝단 각각에 인가되는 가압력 크기는, 상기 전극의 하면에 배치되는 하부 가압롤의 제1끝단과 제2끝단 각각에 인가되는 가압력 크기와 독립적으로 설정되는 라미네이션 장치.
  12. 제 1 항에 있어서, 상기 가압롤은 가열 가능한 형태로 이루어진 라미네이션 장치.
  13. 제 1 항 내지 제 12 항 중 어느 한 항에 따른 라미네이션 장치를 이용하여 제조된 전극조립체에 있어서,
    상기 전극조립체는 제1전극, 분리막, 제2전극, 분리막 및 제3전극이 순차적으로 적층된 형태의 바이셀이고,
    상기 제1전극과 제2전극, 및 상기 제2전극과 상기 제3전극은 외주변 전체에서 서로 간에 결합된 상태로 이루어진 전극조립체.
PCT/KR2022/001614 2021-02-05 2022-01-28 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체 WO2022169237A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22749986.0A EP4131534A1 (en) 2021-02-05 2022-01-28 Lamination device comprising pressure roll capable of adjusting pressing force and electrode assembly manufactured by using same
US17/920,247 US20230187679A1 (en) 2021-02-05 2022-01-28 Lamination Apparatus Including Pressing Roll Configured Such that Pressing Force Thereof is Adjustable and Electrode Assembly Manufactured Using the Same
CN202280003448.1A CN115428211A (zh) 2021-02-05 2022-01-28 包括配置为其按压力可调节的按压辊的层压设备及使用该层压设备制造的电极组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210016895A KR20220113110A (ko) 2021-02-05 2021-02-05 가압력 조절이 가능한 라미네이션 롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체
KR10-2021-0016895 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022169237A1 true WO2022169237A1 (ko) 2022-08-11

Family

ID=82742307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001614 WO2022169237A1 (ko) 2021-02-05 2022-01-28 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체

Country Status (5)

Country Link
US (1) US20230187679A1 (ko)
EP (1) EP4131534A1 (ko)
KR (1) KR20220113110A (ko)
CN (1) CN115428211A (ko)
WO (1) WO2022169237A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102617497B1 (ko) * 2022-09-15 2023-12-27 주식회사 엘지에너지솔루션 음극용 자성 정렬 장치 및 이를 이용한 음극의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134310A (ko) * 2013-03-26 2015-12-01 제온 코포레이션 리튬 이온 이차 전지 전극용 시트의 제조 방법
KR20160085812A (ko) * 2013-11-11 2016-07-18 만츠 이태리 에스.알.엘. 라미네이팅 방법
KR20160143587A (ko) * 2015-06-04 2016-12-14 주식회사 엘지화학 전극 조립체의 라미네이션용 보호 부재 및 이를 이용한 이차 전지의 제조 방법
KR101962526B1 (ko) * 2014-03-17 2019-03-26 닛산 지도우샤 가부시키가이샤 배터리 셀의 가압 장치
KR20200066901A (ko) * 2018-12-03 2020-06-11 주식회사 엘지화학 전극 조립체 제조장치 및 전극 조립체 제조방법
KR20210016895A (ko) 2019-08-06 2021-02-17 한국전력공사 간접활선용 완철을 이용한 간접활선 작업방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150134310A (ko) * 2013-03-26 2015-12-01 제온 코포레이션 리튬 이온 이차 전지 전극용 시트의 제조 방법
KR20160085812A (ko) * 2013-11-11 2016-07-18 만츠 이태리 에스.알.엘. 라미네이팅 방법
KR101962526B1 (ko) * 2014-03-17 2019-03-26 닛산 지도우샤 가부시키가이샤 배터리 셀의 가압 장치
KR20160143587A (ko) * 2015-06-04 2016-12-14 주식회사 엘지화학 전극 조립체의 라미네이션용 보호 부재 및 이를 이용한 이차 전지의 제조 방법
KR20200066901A (ko) * 2018-12-03 2020-06-11 주식회사 엘지화학 전극 조립체 제조장치 및 전극 조립체 제조방법
KR20210016895A (ko) 2019-08-06 2021-02-17 한국전력공사 간접활선용 완철을 이용한 간접활선 작업방법

Also Published As

Publication number Publication date
EP4131534A1 (en) 2023-02-08
US20230187679A1 (en) 2023-06-15
CN115428211A (zh) 2022-12-02
KR20220113110A (ko) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2018182129A1 (ko) 전극적층방법 및 이를 수행하는 전극적층장치
WO2015046711A1 (ko) 이차전지용 단위체 적층장치 및 적층방법
WO2015046803A1 (ko) 전극조립체 및 이차전지의 제조방법
WO2015046703A1 (ko) 테이프를 이용한 전극조립체의 고정방법
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2015046894A1 (ko) 전극조립체의 제조방법
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
WO2021194285A1 (ko) 셀 제조 장치 및 방법
WO2021080210A1 (ko) 가열과 가압을 동시에 적용하는 단계를 포함하는 전극조립체 제조방법
WO2019190145A1 (ko) 배터리 셀 및 그 제조 방법
WO2022169237A1 (ko) 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체
WO2015030333A1 (ko) 폴리머 2차전지 셀용 전극조립체
WO2020231149A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2022092616A1 (ko) 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
WO2021194237A1 (ko) 파우치형 배터리의 충방전 장치
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2021141311A1 (ko) 이차전지 제조장치 및 이차전지 제조방법
WO2023003263A1 (ko) 전극 적층체 가열 유닛 및 이를 포함하는 라미네이션 장치
WO2020106017A1 (ko) 전극 조립체 제조장치 및 전극 조립체 제조방법
WO2022164257A1 (ko) 분리막 접착장치
WO2023003247A1 (ko) 전극 시트 가공 방법 및 가공 장치
WO2023075343A1 (ko) 전극 조립체 합지 롤러
WO2023106745A1 (ko) 전극조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2023055100A1 (ko) 전극 조립체 제조방법 및 제조장치
WO2023282610A1 (ko) 파우치 실링장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022749986

Country of ref document: EP

Effective date: 20221101

NENP Non-entry into the national phase

Ref country code: DE