WO2019083003A1 - 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置 - Google Patents

硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置

Info

Publication number
WO2019083003A1
WO2019083003A1 PCT/JP2018/039821 JP2018039821W WO2019083003A1 WO 2019083003 A1 WO2019083003 A1 WO 2019083003A1 JP 2018039821 W JP2018039821 W JP 2018039821W WO 2019083003 A1 WO2019083003 A1 WO 2019083003A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
group
cured resin
carbon atoms
formula
Prior art date
Application number
PCT/JP2018/039821
Other languages
English (en)
French (fr)
Inventor
西谷 佳典
南 昌樹
樹生 佐藤
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to EP18869515.9A priority Critical patent/EP3702390B1/en
Priority to JP2019550312A priority patent/JP7086982B2/ja
Priority to US16/759,677 priority patent/US11897998B2/en
Priority to CN201880069463.XA priority patent/CN111278883B/zh
Priority to KR1020207011955A priority patent/KR102427036B1/ko
Publication of WO2019083003A1 publication Critical patent/WO2019083003A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/24Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with mixtures of two or more phenols which are not covered by only one of the groups C08G8/10 - C08G8/20
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Definitions

  • the present invention relates to a composition for a cured resin for obtaining a highly heat-resistant cured product, a cured product thereof, a composition for the cured resin, and a method for producing the cured product. Furthermore, the present invention relates to a semiconductor device using the cured product as a sealing material.
  • Cured resins are used in various applications such as semiconductor sealing materials and fiber reinforced plastics, and benzoxazine compounds are used as one of the raw materials.
  • the benzoxazine compound refers to a compound containing a benzoxazine ring having a benzene skeleton and an oxazine skeleton, and a benzoxazine resin which is a cured product (polymer) thereof is excellent in physical properties such as heat resistance and mechanical strength, It is used as a high-performance material in various applications.
  • Patent Document 1 discloses a novel benzoxazine compound having a specific structure and a method for producing the same, wherein the benzoxazine compound has a high thermal conductivity, and a benzoxazine resin cure having a high thermal conductivity by the benzoxazine compound. It is stated that it is possible to manufacture an object.
  • Patent Document 2 discloses a thermosetting resin in which a part or all of reactive ends of a polybenzoxazine resin having a specific benzoxazine ring structure in the main chain is sealed, and the thermosetting resin is a solvent. It describes that the storage stability when dissolved is excellent.
  • this invention makes it a subject to provide the composition for cured resin which is excellent in the rapid curing property in the low temperature for obtaining a highly heat-resistant cured
  • Another object of the present invention is to provide a cured product obtained by curing the composition for cured resin, a composition for the cured resin, and a method for producing the cured product.
  • Another object of the present invention is to provide a semiconductor device using the cured product as a sealing material.
  • the present inventors developed the composition for cured resin which contains a polyfunctional benzoxazine compound and two types of specific epoxy compounds, and this composition for cured resin However, the inventors have found that it is excellent in rapid curing at low temperatures and the cured product is excellent in heat resistance, and the present invention has been completed.
  • a polyfunctional benzoxazine compound having at least two benzoxazine rings which is a polyfunctional benzoxazine compound having a structural unit of formula (1), and a polyfunctional compound represented by the structure of formula (2) At least one polyfunctional benzoxazine compound selected from benzoxazine compounds, (B) an epoxy compound having at least one norbornane structure and at least two epoxy groups, (C) trisphenol methane type epoxy compound, (D) A composition for cured resin containing a curing agent.
  • R represents a linear alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, or an aryl group having 6 to 14 carbon atoms, and the aryl group is a halogen as a substituent Alternatively, it may have a linear alkyl group having 1 to 12 carbon atoms.
  • Z represents hydrogen, a hydrocarbon group having 1 to 8 carbon atoms and / or a linking group, each of which may be the same or different, and at least one of which is a linking group; The oxazine rings are linked.
  • L is a divalent organic group having 1 to 5 aromatic rings or an alkylene group having 2 to 10 carbon atoms, and the organic group and the alkylene group contain oxygen and / or sulfur It may be ]
  • the substituents R each independently represent an alkyl group having 1 to 6 carbon atoms, an allyl group, or a phenyl group.
  • m is the number of substituents R and represents an integer of 0 to 3, respectively.
  • n is an average value, and 0 ⁇ n ⁇ 10.
  • [3] The composition for cured resin according to [1] or [2], which further contains (E) an inorganic filler.
  • [6] A semiconductor device, wherein a semiconductor element is provided in a cured product obtained by curing the composition for cured resin according to any one of [1] to [4].
  • a method for producing a composition for cured resin which is (A) A polyfunctional benzoxazine compound having at least two benzoxazine rings, which is a polyfunctional benzoxazine compound having a structural unit of the formula (1), and a polyfunctional benzoxazine compound represented by a structure of the formula (2) At least one polyfunctional benzoxazine compound selected from (B) an epoxy compound having at least one norbornane structure and at least two epoxy groups, (C) trisphenol methane type epoxy compound, (D) mixing with a curing agent to obtain a mixture, A method for producing a composition for a cured resin, comprising the step of processing the mixture into a powder, pellet or granular composition for a cured resin.
  • R represents a linear alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, or an aryl group having 6 to 14 carbon atoms, and the aryl group is a halogen as a substituent Alternatively, it may have a linear alkyl group having 1 to 12 carbon atoms.
  • Z represents hydrogen, a hydrocarbon group having 1 to 8 carbon atoms and / or a linking group, each of which may be the same or different, and at least one of which is a linking group; The oxazine rings are linked.
  • L is a divalent organic group having 1 to 5 aromatic rings or an alkylene group having 2 to 10 carbon atoms, and the organic group and the alkylene group contain oxygen and / or sulfur It may be ] [8]
  • the substituents R each independently represent an alkyl group having 1 to 6 carbon atoms, an allyl group, or a phenyl group.
  • m is the number of substituents R and represents an integer of 0 to 3, respectively.
  • n is an average value, and 0 ⁇ n ⁇ 10.
  • a cured product comprising a step of curing the composition for a cured resin produced by the method according to any one of [7] to [9] at 150 to 300 ° C. for 20 seconds to 1 hour for curing. Production method.
  • the composition for cured resin of the present invention is a novel composition for cured resin containing the components (A) to (D), and optionally the components (E) and (F), and the composition is low temperature
  • the cured product is characterized by having a high glass transition temperature and excellent heat resistance while having excellent fast curing properties.
  • the composition for cured resin also has a feature of excellent fluidity. Therefore, the composition for cured resin of the present invention is required to have heat resistance while being required to be rapidly cured at low temperature and optionally flowability, for example, adhesives, sealants, paints, composites It can be used for applications such as matrix resin. In particular, while exhibiting the sealing performance excellent as a semiconductor element sealing material, it can contribute to the high reliability of a semiconductor device.
  • the method for producing a cured product of the present invention it is possible to form a cured product which has the above-mentioned excellent performance and can be applied to the above-mentioned application in a short time.
  • composition for cured resin composition for cured resin
  • the “compound” in the components (A) to (C) of the present invention is not only a monomer represented by each formula but also an oligomer obtained by polymerizing a small amount of the monomer, ie, a pre-formed before forming a cured resin. It also includes polymers.
  • Component A constituting the composition for cured resin is at least one selected from a polyfunctional benzoxazine compound having a structural unit of formula (1), and a polyfunctional benzoxazine compound represented by the structure of formula (2) It is a multi-functional benzoxazine compound having at least two benzoxazine rings.
  • Z represents hydrogen, a substituent and / or a linking group (spacer), which may be the same or different, and at least one is a linking group,
  • the benzoxazine rings are linked by a linking group.
  • the linking group also includes one in which two benzoxazine rings are directly bonded without passing through another group.
  • examples of the substituent include a hydrocarbon group having 1 to 8 carbon atoms. Accordingly, the above formula (1) represents a structural unit of a compound in which two or more benzoxazine rings are linked in the benzene ring portion among the options of the component (A).
  • the polyfunctional benzoxazine compound of the formula (1) can be represented as a structure represented by the formula (1a).
  • R represents a linear alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, or an aryl group having 6 to 14 carbon atoms, and the aryl group is a halogen as a substituent Alternatively, it may have a linear alkyl group having 1 to 12 carbon atoms. R may be the same or different.
  • X is hydrogen or a hydrocarbon group having 1 to 8 carbon atoms, and they may be the same or different.
  • Y is an alkylene group having 1 to 6 carbon atoms, oxygen, sulfur, SO 2 group or a carbonyl group.
  • m is 0 or 1; n is an integer of 1 to 10.
  • R in formulas (1) and (1a) the following groups can be exemplified.
  • the chain alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group.
  • the cyclic alkyl group having 3 to 8 carbon atoms include a cyclopentyl group and a cyclohexyl group.
  • Examples of the aryl group having 6 to 14 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, phenanthryl group and biphenyl group.
  • the aryl group having 6 to 14 carbon atoms may be substituted, and examples of the substituent include a linear alkyl group having 1 to 12 carbon atoms or a halogen.
  • substituents include a linear alkyl group having 1 to 12 carbon atoms or a halogen.
  • the C1-C12 linear alkyl group or the C6-C14 aryl group substituted with halogen include, for example, o-tolyl group, m-tolyl group, p-tolyl group, xylyl group, o- Ethylphenyl group, m-ethylphenyl group, p-ethylphenyl group, o-t-butylphenyl group, m-t-butylphenyl group, p-t-butylphenyl group, o-chlorophenyl group, o-bromophenyl group Can be mentioned.
  • R is preferably selected from a methyl group, an ethyl group, a propyl group, a phenyl group and a p-tolyl group.
  • the component (A) may be a mixture of a plurality of compounds represented by formula (1) or (1a) each having different R.
  • Examples of the hydrocarbon group having 1 to 8 carbon atoms as X in the formulas (1) and (1a) include an alkyl group, an aryl group, an aralkyl group and the like, with preference given to an aryl group.
  • Examples of the polyfunctional benzoxazine compound represented by the formula (1) or (1a) include a compound represented by the following formula (1X) and an oligomer in which the compound is polymerized in a small amount.
  • the polyfunctional benzoxazine compound of the formula (2) which is another option of the component (A) is a compound in which nitrogen atoms (N atoms) of two benzoxazine rings are linked via a linking group L.
  • L is a divalent organic group having 1 to 5 aromatic rings or an alkylene group having 2 to 10 carbon atoms, and the organic group and the alkylene group contain oxygen and / or sulfur It may be ]
  • the composition of the present invention may contain, as component (A), a plurality of polyfunctional benzoxazine compounds represented by formula (2) and having different L's.
  • L in the formula (2) is a group having an aromatic ring
  • the number of aromatic rings is 1 to 5, and examples thereof include a monocyclic compound, a polycyclic compound, and a fused ring compound.
  • L may contain at least one selected from the group consisting of oxygen and sulfur.
  • a group represented by the following formula (2a) can be mentioned.
  • L in the formula (2) is an alkylene group
  • the carbon number thereof is from 1 to 10, preferably from 1 to 6.
  • a methylene group, ethylene group, isopropylidene group etc. are mentioned as a specific example of the said alkylene group, Preferably, it is a methylene group.
  • Examples of the polyfunctional benzoxazine compound of the formula (2) include a compound represented by the following formula (2X) and an oligomer obtained by polymerizing the compound, for example, an oligomer obtained by small amount polymerization.
  • a commercial item can also be used as a polyfunctional benzoxazine compound of a component (A).
  • Examples of commercially available products include bisphenol F-aniline (Fa) type benzoxazine, phenol-diaminodiphenylmethane (Pd) type benzoxazine (all manufactured by Shikoku Kasei Co., Ltd.), and the like.
  • the component (B) constituting the composition for cured resin is an epoxy compound having at least one norbornane structure and at least two epoxy groups (hereinafter, also simply referred to as "polyfunctional epoxy compound”).
  • the composition of the present invention may contain a plurality of polyfunctional epoxy compounds as component (B).
  • an alicyclic epoxy compound is preferable, and it is more preferable to have an epoxy structure couple
  • the preparation example of the polyfunctional epoxy compound of a component (B) is demonstrated.
  • a compound of the following formula (5-1) for example, a compound (a) having the following norbornane structure is synthesized by Diels-Alder reaction of butadiene and dicyclopentadiene, and then, as shown in the following formula (6) Can be produced by reacting compound (a) with metachloroperbenzoic acid.
  • the compound of the following formula (5-2) is, for example, a compound (b) (tricyclopentadiene) having the following norbornane structure synthesized by the Diels-Alder reaction of cyclopentadiene and dicyclopentadiene, and then the following formula It can be produced by reacting compound (b) with metachloroperbenzoic acid as shown in (7).
  • the compound of the following formula (5-3) synthesizes a compound (c) having the following norbornane structure, for example, by Diels-Alder reaction of butadiene and cyclopentadiene, and then, as shown in the following formula (8) It can be produced by reacting compound (c) with metachloroperbenzoic acid.
  • the compound of the following formula (5-4) can be produced, for example, by reacting dicyclopentadiene with potassium peroxymonosulfate (oxone).
  • Dicyclopentadiene diepoxide which is a compound of the formula (5-4) may be a commercial product, and as a commercial product, dicyclopentadiene diepoxide manufactured by SHANDONG QIHUAN BIOCHEMICAL CO., LTD. Can be exemplified.
  • the component (C) which comprises the composition for cured resin is a trisphenol methane-type epoxy compound. It is more preferable that it is an epoxy compound shown by the structure of following formula (3) as said trisphenol methane type epoxy compound.
  • R represents a substituent and each independently represents an alkyl group having 1 to 6 carbon atoms, an allyl group, or a phenyl group.
  • m is the number of substituents R and represents an integer of 0 to 3, respectively.
  • n is an average value, and 0 ⁇ n ⁇ 10.
  • M in the formula (3) is preferably 0 to 2, more preferably 0.
  • N of Formula (3) is preferably 0 or more and 5 or less.
  • the alkyl group having 1 to 6 carbon atoms in the substituent R of the formula (3) include a methyl group, an ethyl group, a propyl group, a butyl group and a cyclohexyl group.
  • a substituent R a methyl group is preferable.
  • component (C) may be a mixture of compounds represented by formula (3) in which R, m and n are different.
  • a commercial item can also be used as a trisphenol methane type epoxy compound of a component (C).
  • EPPN-501H (trade name, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 162 to 172 g / eq, softening point 51 to 57 ° C.)
  • EPPN-501HY (trade name, Nippon Kayaku Co., Ltd., epoxy) Equivalent weight: 163 to 175 g / eq, softening point: 57 to 63 ° C.
  • EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 158 to 178 g / eq, softening point: 60 to 72 ° C.) Name, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 170 to 190 g / eq, softening point 80 to 100 ° C., and the like. You may use these 1 type or in combination of 2 or more types.
  • the epoxy equivalent of the trisphenol methane type epoxy compound of the component (C) is preferably 50 g / eq or more and 400 g / eq or less, more preferably 100 g / eq or more and 300 g / eq or less from the viewpoint of improving the reactivity.
  • the softening point of the trisphenol methane epoxy compound is preferably 40 to 100 ° C., more preferably 50 to 90 ° C.
  • the compounding ratio of the component (A) polyfunctional benzoxazine compound to the total of the component (B) polyfunctional epoxy compound and the component (C) trisphenol methane epoxy compound is the component relative to 100 parts by mass of the component (A).
  • the blending ratio of the components (A) and the sum of (B) and (C) is within the above range, better heat resistance can be obtained.
  • the composition of this invention contains multiple types of polyfunctional benzoxazine compounds as a component (A), the sum total of these compounds is considered to be 100 mass parts.
  • the above-mentioned “blending ratio of the component (B)” means the ratio of the total of the plural types of compounds. Furthermore, when the composition of the present invention contains a plurality of trisphenol methane epoxy compounds as the component (C), the above-mentioned “blending ratio of the component (C)” means the ratio of the total of the plurality of compounds.
  • the compounding ratio (mass ratio) of the component (B) polyfunctional epoxy compound to the component (C) trisphenolmethane epoxy compound is preferably 95 5 to 5:95, more preferably 90:10 to 10:90, still more preferably 90:10 to 50:50.
  • the compounding ratio of the components (B) and (C) is in the above range, a cured resin composition having more excellent rapid curability and fluidity at low temperature and a cured product having more excellent heat resistance are obtained.
  • the compounding quantity of the said component (B) means the compounding quantity of the sum total of several types of compounds.
  • the compounding quantity of the said component (C) means the compounding quantity of the sum total of several types of compounds.
  • Component D constituting the composition for cured resin is a curing agent.
  • Specific examples of the component (D) include, for example, aromatic amines (eg, diethyltoluenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, metaxylenediamine, and derivatives thereof), aliphatic amines (Eg, triethylenetetramine, isophorone diamine, etc.), imidazoles (eg, imidazole, imidazole derivatives, etc.), dicyandiamide, tetramethylguanidine, carboxylic acid anhydride (eg, methyl hexahydrophthalic acid anhydride, etc.), carboxylic acid hydrazide (Eg, adipic acid hydrazide etc.), carboxylic acid amide, monofunctional phenol, polyfunctional phenol compound (eg, bisphenol A, bisphenol F, di
  • Component (D) is contained in a range of 1 part by mass or more and 30 parts by mass or less based on 100 parts by mass in total of components (A), (B), and (C). 5 mass parts or more and 25 mass parts or less are more preferable. By containing the component (D) in this range, the curing reaction can be advanced more efficiently, and a more excellent cured product of high heat resistance can be obtained.
  • epoxy equivalent ratio in the composition for cured resin means [total number of epoxy groups of components (B) and (C)] / [number of cyanato groups of component (A) + number of hydroxyl groups of component (D)] Represents].
  • the epoxy equivalent ratio in the composition for cured resin is preferably 0.5 or more and 1.5 or less, and more preferably 0.7 or more and 1.2 or less. When the epoxy equivalent ratio is in the above range, a cured resin composition having more excellent rapid curability and fluidity at low temperature and a cured product having more excellent heat resistance can be obtained.
  • the composition for cured resin of the present invention may further optionally contain (E) an inorganic filler.
  • an inorganic filler for example, when using the composition for cured resin of this invention for sealing material applications, such as a semiconductor element, it is preferable to contain a component (E).
  • the inorganic filler used in the present invention is not particularly limited, and can be selected in consideration of the use of the composition for cured resin or the cured product thereof or the property to be imparted. Hereinafter, this inorganic filler is referred to as component (E).
  • component (E) examples include silica, alumina, titanium oxide, zirconium oxide, magnesium oxide, cerium oxide, yttrium oxide, calcium oxide, antimony trioxide, zinc oxide, oxides such as iron oxide; calcium carbonate, magnesium carbonate , Carbonates such as barium carbonate and strontium carbonate; sulfates such as barium sulfate, aluminum sulfate and calcium sulfate; nitrides such as aluminum nitride, silicon nitride, titanium nitride, boron nitride and manganese nitride; calcium silicate and magnesium silicate Silicon compounds such as aluminum silicate; Boron compounds such as aluminum borate; Zirconium compounds such as barium zirconate and calcium zirconate; Phosphorus compounds such as zirconium phosphate and magnesium phosphate; Strontium titanate, calcium titanate Titanium compounds such as magnesium titanate, bismuth titanate, barium titanate and potassium titanate; mica,
  • Component (E) is preferably silica or alumina.
  • the silica include fused silica, spherical silica, crystalline silica, amorphous silica, synthetic silica, hollow silica and the like, preferably spherical silica and crystalline silica.
  • Component (E) may be used alone or in combination of two or more.
  • the component (E) may be particulate, and the average particle diameter in that case is not particularly limited, but for example, 0.01 ⁇ m or more and 150 ⁇ m or less can be mentioned, and preferably 0.1 ⁇ m or more and 120 ⁇ m or less Preferably they are 0.5 micrometer or more and 75 micrometers or less. Within this range, for example, when the composition of the present invention is used for a sealing material application of a semiconductor element, the filling property to the mold cavity becomes better.
  • the average particle size of the component (E) can be measured by a laser diffraction / scattering method.
  • the particle size distribution of the inorganic filler can be prepared on a volume basis by a laser diffraction type particle size distribution measuring apparatus, and the median diameter can be measured as an average particle size.
  • the measurement sample one in which an inorganic filler is dispersed in water by ultrasonic waves can be preferably used.
  • a laser diffraction type particle size distribution measuring apparatus “LA-500”, “LA-750”, “LA-950”, “LA-960” or the like manufactured by Horiba, Ltd. can be used.
  • the compounding ratio of the component (E) is not particularly limited as long as a highly heat-resistant cured product of the composition for cured resin can be obtained, and can be appropriately set according to the application.
  • the blending ratio shown below is preferable.
  • the lower limit of the blending ratio of the component (E) is, for example, 150 parts by mass or more, and 400 parts by mass or more with respect to 100 parts by mass in total of the components (A), (B), (C) and (D) Is preferable, and 500 parts by mass or more is more preferable.
  • the upper limit of the compounding ratio of a component (E) is 1150 mass parts or less, preferable, and its 950 mass parts or less are more preferable. If the lower limit value of the compounding ratio of the component (E) is 400 parts by mass or more, the increase in the amount of moisture absorption and the decrease in strength due to the curing of the composition for cured resin can be further suppressed, and thus more excellent solder crack resistance The cured product can be obtained. Moreover, if the upper limit value of the compounding ratio of the component (F) is 1300 parts by mass or less, the flowability of the composition for cured resin becomes better, filling to the mold becomes easy, and the cured product is better sealed. Demonstrates stopping performance.
  • the composition for cured resin of the present invention may further contain (F) a curing accelerator, if desired.
  • a curing accelerator known curing accelerators can be used, and tributylamine, amine compounds such as 1,8-diazabicyclo (5,4,0) undecen-7, 2-methylimidazole, 2-ethyl Imidazole, imidazole compounds such as 1,2-dimethylimidazole, organophosphorus compounds in which phosphorus is bound only by covalent bond such as triphenylphosphine, phosphorus bound by covalent bond and ionic bond such as tetraphenylphosphonium tetraphenylborate Examples include organic phosphorus compounds such as organic phosphorus compounds of the salt type, and the like, but are not limited thereto.
  • the above-mentioned hardening accelerator may be used independently and may be used in combination of 2 or more types.
  • organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate are preferable because they have a large effect of improving the curing rate.
  • the organic phosphorus compound exhibits a function of promoting the crosslinking reaction of an epoxy group and a phenolic hydroxyl group, as described in JP-A-55-157594.
  • the organic phosphorus compound also exhibits a function of promoting the reaction between the hydroxyl group and the epoxy group generated when the (A) polyfunctional benzoxazine compound is subjected to a cleavage reaction at a high temperature.
  • the organophosphorus compound of the present invention is not particularly limited as long as it has the above-mentioned function.
  • the compounding ratio of the component (F) is in the range of 0.01 parts by mass or more and 10 parts by mass or less of the component (F) with respect to a total of 100 parts by mass of the components (A), (B) and (C) It is preferable to set it as the range of 0.1 mass part or more and 7 mass parts or less. By containing a component (F) in this range, it can be set as the composition for cured resin which has more excellent rapid curability.
  • the composition of the present invention may contain a benzoxazine compound other than the component (A) as long as the effects of the present invention are not impaired.
  • a benzoxazine compound other than the component (A) may be added to the composition.
  • nanocarbons for example, nanocarbons, flame retardants, mold release agents, coloring agents, low stress additives, metal hydroxides, etc. may be blended, as long as the performance is not impaired.
  • nanocarbons include carbon nanotubes, fullerenes, and derivatives of each.
  • flame retardants include phosphates such as red phosphorus, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, resorcinol bisphenyl phosphate, bisphenol A bis diphenyl phosphate, etc.
  • boric acid esters and phosphazenes examples include natural waxes such as stearic acid ester and carnauba wax, synthetic waxes such as oxidized polyethylene wax, higher fatty acids such as stearic acid or esters thereof, metal salts such as zinc stearate, paraffin, and silicone oil Etc.
  • the colorant examples include carbon black, bengala, and titanium oxide.
  • the low stress additive includes silicone oil, silicone rubber and the like.
  • Metal hydroxides include hydroxides such as calcium hydroxide, aluminum hydroxide, and magnesium hydroxide.
  • the mixing ratio of the other components is such that the amount of the other components is in the range of 0.01 parts by weight or more and 10 parts by weight or less based on 100 parts by weight in total of the components (A), (B) and (C). Is preferably in the range of 0.1 parts by mass to 7 parts by mass.
  • the melt viscosity of the composition for cured resin of the present invention can be measured as the minimum melting torque at a rotational speed of 100 rpm at 175 ° C., and the minimum melting torque is 4.0 gf ⁇ cm or less, and from the viewpoint of fluidity Preferably, it is 3.6 gf ⁇ cm or less, more preferably 3.0 gf ⁇ cm or less.
  • the lowest melting torque is indicated by the lowest value of the torque curve drawn under a constant temperature and a constant rotational speed, and can be measured by a gel time measuring machine, a laboplast mill or the like. Specifically, it can be conveniently performed by using a commercially available gel time measuring machine (for example, manufactured by Matsuo Sangyo Co., Ltd.).
  • the curing speed of the composition for cured resin of the present invention can be measured as gel time.
  • the gel time may be 1 to 120 seconds at 175 ° C., and in view of fast curing, preferably 1 to 110 seconds, and more preferably 1 to 100 seconds.
  • the gel time can be measured in accordance with the gelation time method B (flat plate method) of JIS K 6910 (2007).
  • composition for cured resin [Method of producing composition for cured resin] Next, the manufacturing method of the composition for cured resin of this invention is demonstrated. Curing according to the present invention by appropriately kneading and mixing components (A) to (D), and optionally, other components such as components (E) to (F) and other additives, and a solvent as appropriate
  • the composition for resin can be manufactured.
  • the kneading or mixing method is not particularly limited, and for example, it can be mixed using a planetary mixer, a twin screw extruder, a mixing apparatus such as a heat roll or a kneader, or a kneader.
  • components (A), (B), and (C) are liquid or solid with high viscosity at room temperature, or contain component (E), etc., they are heated and kneaded as necessary. Or may be kneaded under pressure or reduced pressure conditions.
  • the heating temperature is preferably 80 to 120 ° C.
  • the composition for a cured resin containing the component (E) is solid at room temperature, and may be cooled and pulverized into a powder after heating and kneading, and the powder is tableted and pelletized. It is also good. Alternatively, the powder may be granulated to form granules.
  • the composition for cured resin of the present invention does not contain the component (E) and is used for FRP prepreg applications etc.
  • the composition for cured resin preferably has a viscosity of 10 to 3000 Pa ⁇ s at 50 ° C. . More preferably, it is 10 to 2500 Pa ⁇ s, further preferably 100 to 2000 Pa ⁇ s.
  • the viscosity is not particularly limited as long as there is no problem in operations such as sealing and coating.
  • the cured product of the composition for cured resin of the present invention has a feature that the glass transition temperature is high and the heat resistance is excellent.
  • the following can be considered as the reason why the composition for cured resin of the present invention forms such an excellent cured product.
  • a phenolic hydroxyl group is generated by polymerization. This phenolic hydroxyl group is considered to have low heat resistance and low glass transition temperature because high molecular weight, for example 200 ° C. or higher, via the keto-enol tautomer breaks the polymer chain. It is done.
  • the polyfunctional epoxy compound having the norbornane structure of the present invention and having two or more epoxy groups is difficult to homopolymerize, and the above-mentioned polymer chain is cut by reacting with the above-mentioned benzoxazine-derived phenolic hydroxyl group. It is believed to prevent. Therefore, it is considered that a highly heat-resistant cured product can be obtained. Moreover, since the reactivity of an epoxy group and the phenolic hydroxyl group derived from benzoxazine becomes high by using a trisphenol methane type epoxy compound in combination, the composition for cured resin of the present invention has a high curing rate at low temperature. It is considered to be.
  • the heat resistance of the cured product of the present invention can be evaluated by measuring the glass transition temperature.
  • the glass transition temperature is 190 ° C. or higher, preferably 200 ° C. or higher, and more preferably 210 ° C. or higher.
  • the glass transition temperature can be measured by differential scanning calorimetry (DSC). Such measurement can be conveniently performed by using a commercially available differential scanning calorimeter (for example, manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the cured product of the present invention can be produced by ring-opening polymerization under the same curing conditions as known benzoxazine compounds and / or epoxy compounds and curing.
  • the following method can be mentioned.
  • the composition for cured resin of the present invention is produced by the above method.
  • a cured product can be obtained by heating the obtained composition for cured resin, for example, at 150 to 300 ° C., for a curing time of, for example, 20 seconds to 5 hours, preferably 20 seconds to 1 hour.
  • the curing temperature is preferably 160 ° C. to 180 ° C. in view of curing the composition for cured resin at a low temperature.
  • a curing time of 1 to 3 minutes is sufficient, but in order to obtain higher strength, it is preferable to heat for about 5 minutes to 5 hours as a post curing.
  • the curing temperature in the post curing may be, for example, 150 to 300.degree.
  • a benzoxazine compound other than the component (A) and / or an epoxy compound other than the components (B) and (C) can be blended to obtain a cured product, as long as the effects of the present invention are not impaired.
  • a solvent may be further blended to obtain a composition having a solution viscosity suitable for thin film formation.
  • the solvent is not particularly limited as long as it can dissolve the components (A) to (D) and (F), and examples thereof include hydrocarbons, ethers, esters, and halogen-containing compounds.
  • the solution-like composition for cured resin is applied to a substrate or the like, the solvent is volatilized, and then heat curing is performed. A cured product can be obtained.
  • the semiconductor device of the present invention comprises a semiconductor in a cured product obtained by curing the composition for a cured resin of the present invention, which comprises the components (A) to (D) and optionally (E) and (F). It is a semiconductor device in which an element is installed.
  • the semiconductor element is supported and fixed by a lead frame which is a thin plate of metal material.
  • the semiconductor element is disposed in the cured product means that the semiconductor element is sealed with the cured product of the composition for cured resin, and the semiconductor element is coated with the cured product. Represents a state. In this case, the entire semiconductor element may be covered, or the surface of the semiconductor element provided on the substrate may be covered.
  • the sealing step is performed by a conventional molding method such as transfer molding, compression molding, or injection molding.
  • the semiconductor device can be manufactured by performing the following.
  • the organic layer was further washed four times with 41.6 kg of 1 N aqueous sodium hydroxide solution and then washed with 48.0 kg of saturated brine.
  • the organic layer was dried over magnesium sulfate, filtered to remove the magnesium sulfate, and the filtrate was concentrated to obtain 5.1 kg of a crude product.
  • 3.5 kg of toluene was added and dissolved at room temperature.
  • 13.7 kg of heptane was dropped and crystallized, and it was aged at 5 ° C. for 1 hour.
  • the crystallized material was collected by filtration and washed with heptane.
  • 2.8 kg of a compound represented by the following formula (5-2) was obtained as a white solid.
  • the organic layer was washed with 100 L of a mixed aqueous solution of sodium chloride and sodium thiosulfate (20 wt% of sodium chloride and 20 wt% of sodium thiosulfate), and further washed twice with 100 L of ion exchange water.
  • the organic layer after washing was dried over magnesium sulfate, then magnesium sulfate was removed by filtration, and the organic solvent was distilled off from the filtrate to obtain 11 kg of a compound represented by the following formula (5-4) as a white solid.
  • component (C) Trisphenol Methane Type Epoxy Compound> The following was used as component (C).
  • CC1 Epoxy compound represented by the following formula (9) (HP-7200, epoxy equivalent (g / eq): 254 to 264, manufactured by DIC Corporation)
  • n is an average value and is 1.41.
  • Component (E) inorganic filler>
  • component (E) fused spherical silica (FB-820, manufactured by Denka Co., Ltd.) having an average particle diameter D50 of 22 ⁇ m was used.
  • Component (F); curing accelerator> The following was used as component (F).
  • Carnauba wax manufactured by Clariant Japan Co., Ltd.
  • carbon black MA600, manufactured by Mitsubishi Chemical Co., Ltd.
  • Example 1 A composition for cured resin (hereinafter simply referred to as a composition) and a cured product are prepared as follows, and gel time as a curing rate evaluation, melting torque as a fluidity evaluation, and glass transition temperature as a heat resistance evaluation are measured. did. (A1), (B1), (C), (D1), (E), (F), carnauba wax, and carbon black in the mixing ratio shown in Table 1; surface temperatures of 90 ° C. and 100 ° C. 2 After kneading for 10 minutes under atmospheric pressure using a hot roll kneader (BR-150 HCV, Imex Co., Ltd.) having this roll, the mixture was cooled to room temperature to obtain a mixture. The mixture was pulverized to a powdery state by Mini-Speed Mill MS-09 (manufactured by Labonecto Co., Ltd.) so that the mold could be favorably filled, to obtain a composition.
  • Mini-Speed Mill MS-09 manufactured by Labonecto Co., Ltd.
  • ⁇ Minimum melting torque> The minimum melting torque [gf ⁇ cm] at a rotation number of 100 rpm at 175 ° C. of 0.60 g of the prepared composition was measured by a gel time measuring apparatus (Matsuo Sangyo automatic curing time (gel time) measuring apparatus “Madoka”). The results are shown in Table 1.
  • Tg ⁇ Glass transition temperature; Tg>
  • the prepared composition is cured using a transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 4 MPa, and a curing time of 3 minutes, and as a post curing treatment, the composition is heated in an oven at 240 ° C. for 4 hours for longitudinal A cured product of 3 mm x 3 mm x 15 mm in length was prepared.
  • Tg was measured by the following conditions by DSC. The results are shown in Table 1.
  • Example 2 to 21 The composition of each example was prepared in the same manner as in Example 1 except that the blending ratio of each component was as shown in Table 1. The gel time, the minimum melting torque, and the heat resistance (glass transition temperature) were measured in the same manner as in Example 1 for each composition. The results are shown in Table 1.
  • the composition for cured resin of each example has a gel time at 175 ° C. of 1 to 120 seconds and is excellent in rapid curing and has a minimum melting torque of 4.0 gf ⁇ cm or less at 175 ° C. The nature is good. Moreover, Tg of the hardened
  • compositions for cured resin of Comparative Examples 5 and 6 have low Tg and are inferior in heat resistance. From the above results, it can be seen that the composition for a cured resin, which is an embodiment of the present invention, achieves high heat resistance while having excellent rapid curability and fluidity at low temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

[課題]高耐熱性硬化物を得るための低温での速硬化性に優れる硬化樹脂用組成物、その硬化物、ならびに該硬化樹脂用組成物および該硬化物の製造方法を提供する。また、前記硬化物を封止材として用いた半導体装置を提供する。 [解決手段](A)ベンゾオキサジン環を二つ以上有する多官能ベンゾオキサジン化合物、(B)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物、(C)トリスフェノールメタン型エポキシ化合物、(D)硬化剤および任意に(E)無機充填剤、(F)硬化促進剤を含有する硬化樹脂用組成物、その硬化物、ならびに該硬化樹脂用組成物および該硬化物の製造方法とする。また、成分(A)~(D)、任意に(E)、(F)を含有する硬化樹脂用組成物を硬化させてなる硬化物中に半導体素子が設置されている半導体装置とする。

Description

硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置 関連出願の参照
 本特許出願は、2017年10月27日に出願された日本国特許出願2017-208602号に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。
 本発明は、高耐熱性硬化物を得るための硬化樹脂用組成物、その硬化物、ならびに該硬化樹脂用組成物および該硬化物の製造方法に関する。さらに、前記硬化物を封止材として用いた半導体装置に関する。
 硬化樹脂は半導体封止材、繊維強化プラスチック等各種用途に使用され、その一原料としてベンゾオキサジン化合物が使用されている。
 ベンゾオキサジン化合物とは、ベンゼン骨格とオキサジン骨格とを有するベンゾオキサジン環を含む化合物を指し、その硬化物(重合物)であるベンゾオキサジン樹脂は、耐熱性、機械的強度等の物性に優れ、多方面の用途において高性能材料として使用されている。
 特許文献1は、特定構造の新規なベンゾオキサジン化合物およびその製造方法を開示し、該ベンゾオキサジン化合物は高い熱伝導率を有すること、ならびに該ベンゾオキサジン化合物により高い熱伝導率を有するベンゾオキサジン樹脂硬化物を製造することが可能であることを記載している。
 特許文献2は、特定のベンゾオキサジン環構造を主鎖中に有するポリベンゾオキサジン樹脂の反応性末端の一部または全部を封止した熱硬化性樹脂を開示し、該熱硬化性樹脂は溶媒に溶解した際の保存安定性に優れることを記載している。
特開2013-60407号公報 特開2012-36318号公報
 接着剤、封止材、塗料、複合材向けマトリックス樹脂等の用途においては、依然として、より過酷な使用条件に適合し得るように高耐熱性の樹脂硬化物が求められている。さらに、成形性を向上させるために、低温(例えば、160~180℃程度)での速硬化性に優れる硬化樹脂用組成物が求められている。
 しかしながら、高耐熱性硬化物を得るための低温での速硬化性に優れる硬化樹脂用組成物は、いまだ得られていない。
 したがって、本発明は、高耐熱性硬化物を得るための低温での速硬化性に優れる硬化樹脂用組成物を提供することを課題とする。また、本発明の別の課題は、上記硬化樹脂用組成物を硬化させてなる硬化物、ならびに上記硬化樹脂用組成物および該硬化物の製造方法を提供することにある。また、本発明の別の課題は、前記硬化物を封止材として用いた半導体装置を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、多官能ベンゾオキサジン化合物および特定2種のエポキシ化合物を含有する硬化樹脂用組成物を開発し、該硬化樹脂用組成物が低温での速硬化性に優れ、その硬化物が耐熱性に優れることを見出して本発明を完成するに至った。
 すなわち、本発明によれば、以下の発明が提供される。
[1] (A)ベンゾオキサジン環を少なくとも二つ有する多官能ベンゾオキサジン化合物であって、式(1)の構造単位を有する多官能ベンゾオキサジン化合物、および式(2)の構造で示される多官能ベンゾオキサジン化合物から選択される少なくとも1種の多官能ベンゾオキサジン化合物と、
 (B)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
 (C)トリスフェノールメタン型エポキシ化合物と、
 (D)硬化剤と
を含有する、硬化樹脂用組成物。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Rは炭素数1~12の鎖状アルキル基、炭素数3~8の環状アルキル基、または炭素数6~14のアリール基を示し、該アリール基は置換基としてハロゲンまたは炭素数1~12の鎖状アルキル基を有していてもよい。Zは、水素、炭素数1~8の炭化水素基および/または連結基を表し、各々同一であっても異なっていてもよく、かつ、少なくとも一つは連結基であり、該連結基によってベンゾオキサジン環同士が連結している。]
Figure JPOXMLDOC01-appb-C000008
[式(2)中、Lは芳香環を1~5個有する2価の有機基または炭素数2~10のアルキレン基であって、該有機基およびアルキレン基は酸素および/または硫黄を含んでいてもよい。]
[2] 前記(C)トリスフェノールメタン型エポキシ化合物が、式(3)の構造で示されるエポキシ化合物である、[1]に記載の硬化樹脂用組成物。
Figure JPOXMLDOC01-appb-C000009
[式(3)中、置換基Rは、それぞれ独立して、炭素数1~6のアルキル基、アリル基、またはフェニル基を示す。mは置換基Rの数であり、0~3の整数をそれぞれ表す。nは平均値であり、0≦n≦10である。]
[3] (E)無機充填剤をさらに含有する、[1]または[2]に記載の硬化樹脂用組成物。
[4] (F)硬化促進剤をさらに含有する、[1]~[3]のいずれかに記載の硬化樹脂用組成物。
[5] [1]~[4]のいずれかに記載の硬化樹脂用組成物を硬化させてなる硬化物。
[6] [1]~[4]のいずれかに記載の硬化樹脂用組成物を硬化させてなる硬化物中に半導体素子が設置されている、半導体装置。
[7] 硬化樹脂用組成物の製造方法であって、
 (A)ベンゾオキサジン環を少なくとも二つ有する多官能ベンゾオキサジン化合物であって、式(1)の構造単位を有する多官能ベンゾオキサジン化合物、および式(2)の構造で示される多官能ベンゾオキサジン化合物から選択される少なくとも1種の多官能ベンゾオキサジン化合物と、
 (B)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
 (C)トリスフェノールメタン型エポキシ化合物と、
 (D)硬化剤と
を混合して混合物を得る工程、
 該混合物を粉体状、ペレット状、または顆粒状の硬化樹脂用組成物に加工する工程
を有する、硬化樹脂用組成物の製造方法。
Figure JPOXMLDOC01-appb-C000010
[式(1)中、Rは炭素数1~12の鎖状アルキル基、炭素数3~8の環状アルキル基、または炭素数6~14のアリール基を示し、該アリール基は置換基としてハロゲンまたは炭素数1~12の鎖状アルキル基を有していてもよい。Zは、水素、炭素数1~8の炭化水素基および/または連結基を表し、各々同一であっても異なっていてもよく、かつ、少なくとも一つは連結基であり、該連結基によってベンゾオキサジン環同士が連結している。]
Figure JPOXMLDOC01-appb-C000011
[式(2)中、Lは芳香環を1~5個有する2価の有機基または炭素数2~10のアルキレン基であって、該有機基およびアルキレン基は酸素および/または硫黄を含んでいてもよい。]
[8] 前記(C)トリスフェノールメタン型エポキシ化合物が、式(3)の構造で示されるエポキシ化合物である、[7]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000012
[式(3)中、置換基Rは、それぞれ独立して、炭素数1~6のアルキル基、アリル基、またはフェニル基を示す。mは置換基Rの数であり、0~3の整数をそれぞれ表す。nは平均値であり、0≦n≦10である。]
[9] 前記混合物を得る工程において、(E)無機充填剤および/または(F)硬化促進剤をさらに混合して混合物を得る、[7]または[8]に記載の製造方法。
[10] [7]~[9]のいずれかに記載の方法により製造した前記硬化樹脂用組成物を150~300℃にて20秒間~1時間加熱して硬化させる工程
を有する、硬化物の製造方法。
 本発明の硬化樹脂用組成物は、成分(A)~(D)、さらに所望により成分(E)、(F)を含有する新規な硬化樹脂用組成物であり、該組成物は低温での速硬化性に優れながら、その硬化物はガラス転移温度が高く、耐熱性に優れるという特徴を有している。さらに、上記硬化樹脂用組成物は流動性に優れるという特徴も有している。したがって、本発明の硬化樹脂用組成物は、低温での速硬化性および所望により流動性を要求されながら、耐熱性を必要とされる用途、例えば、接着剤、封止材、塗料、複合材向けマトリックス樹脂等の用途に使用可能である。特に、半導体素子封止材として優れた封止性能を発揮すると共に、半導体装置の高信頼性に寄与することができる。
 また、本発明の硬化物の製造方法によれば、上記優れた性能を有し、上記用途に適用可能な硬化物を短時間で形成することができる。
[硬化樹脂用組成物]
 以下、本発明について詳細に説明する。なお、本発明の成分(A)~(C)における「化合物」とは、各式に示す単量体だけでなく、該単量体が少量重合したオリゴマー、すなわち硬化樹脂を形成する前のプレポリマーも含むものとする。
(成分A)
 硬化樹脂用組成物を構成する成分(A)は、式(1)の構造単位を有する多官能ベンゾオキサジン化合物、および式(2)の構造で示される多官能ベンゾオキサジン化合物から選択される少なくとも1種の、ベンゾオキサジン環を少なくとも二つ有する多官能ベンゾオキサジン化合物である。なお、上記式(1)のZは、水素、置換基および/または連結基(スペーサー)を表し、各々同一であっても異なっていてもよく、かつ、少なくとも一つは連結基であり、該連結基によってベンゾオキサジン環同士が連結されている。なお、ここで連結基とは、二つのベンゾオキサジン環が他の基を介さずに直接結合しているものも含むものとする。また、上記置換基とは、例えば、炭素数1~8の炭化水素基が挙げられる。
 したがって、上記式(1)は、成分(A)の選択肢の内、ベンゼン環部分で二つ以上のベンゾオキサジン環が連結されている化合物についてその構造単位を表したものである。
 式(1)の多官能ベンゾオキサジン化合物を、より具体的に表すと、式(1a)に示す構造として表すことができる。
Figure JPOXMLDOC01-appb-C000013
[式(1a)中、Rは炭素数1~12の鎖状アルキル基、炭素数3~8の環状アルキル基、または炭素数6~14のアリール基を示し、該アリール基は置換基としてハロゲンまたは炭素数1~12の鎖状アルキル基を有していてもよい。Rは各々同一であっても異なっていてもよい。Xは、水素または炭素数1~8の炭化水素基であり、各々同一であっても異なっていてもよい。Yは、炭素数1~6のアルキレン基、酸素、硫黄、SO基、またはカルボニル基である。mは0または1である。nは1~10の整数である。]
 式(1)および(1a)のRの具体例としては、以下の基を例示できる。
 炭素数1~12の鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基が挙げられる。
 炭素数3~8の環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。
 炭素数6~14のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、フェナントリル基、ビフェニル基が挙げられる。
 炭素数6~14のアリール基は置換されていてもよく、その置換基としては炭素数1~12の鎖状アルキル基またはハロゲンが挙げられる。炭素数1~12の鎖状アルキル基もしくはハロゲンで置換された、炭素数6~14のアリール基としては、例えば、o-トリル基、m-トリル基、p-トリル基、キシリル基、o-エチルフェニル基、m-エチルフェニル基、p-エチルフェニル基、o-t-ブチルフェニル基、m-t-ブチルフェニル基、p-t-ブチルフェニル基、o-クロロフェニル基、o-ブロモフェニル基が挙げられる。
 取り扱い性が良好な点において、Rはメチル基、エチル基、プロピル基、フェニル基、およびp-トリル基から選択されることが好ましい。
 さらに、成分(A)は、各々Rが異なる複数種の式(1)または(1a)に示す化合物の混合物であってもよい。
 式(1)および(1a)のXにおける炭素数1~8の炭化水素基としては、例えば、アルキル基、アリール基、アラルキル基等が挙げられ、好ましくは、アリール基である。
 式(1)または(1a)で示される多官能ベンゾオキサジン化合物としては、下記式(1X)で表される化合物、および該化合物が少量重合したオリゴマーを例示できる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-I000015
 成分(A)の他の選択肢である式(2)の多官能ベンゾオキサジン化合物は、二つのベンゾオキサジン環の窒素原子(N原子)同士が連結基Lを介して結合している化合物である。
Figure JPOXMLDOC01-appb-C000016
[式(2)中、Lは芳香環を1~5個有する2価の有機基または炭素数2~10のアルキレン基であって、該有機基およびアルキレン基は酸素および/または硫黄を含んでいてもよい。]
 本発明の組成物は、式(2)で示されLが異なる複数種の多官能ベンゾオキサジン化合物を成分(A)として含有していてもよい。
 式(2)のLが芳香環を有する基である場合、芳香環の数は1~5個であり、例えば、単環化合物、多環化合物、および縮合環化合物が挙げられる。また、L中に酸素および硫黄からなる群から選択される少なくとも一つを含んでいてもよい。
 具体例として、下記式(2a)に示す基を挙げることができる。
Figure JPOXMLDOC01-appb-C000017
 式(2)のLがアルキレン基である場合、その炭素数は1~10が挙げられ、好ましくは1~6である。上記アルキレン基の具体例としては、メチレン基、エチレン基、イソプロピリデン基等が挙げられ、好ましくは、メチレン基である。
 式(2)の多官能ベンゾオキサジン化合物としては、下記式(2X)で表される化合物、および該化合物が重合したオリゴマー、例えば、少量重合したオリゴマー、を例示できる。
Figure JPOXMLDOC01-appb-C000018
 成分(A)の多官能ベンゾオキサジン化合物としては市販品を使用することもできる。
市販品としては、ビスフェノールF―アニリン(F-a)型ベンゾオキサジン、フェノール-ジアミノジフェニルメタン(P-d)型ベンゾオキサジン(いずれも四国化成株式会社製)等を例示できる。
(成分B)
 硬化樹脂用組成物を構成する成分(B)は、ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物である(以下、単に「多官能エポキシ化合物」ともいう)。本発明の組成物は成分(B)として複数種の多官能エポキシ化合物を含有していてもよい。上記エポキシ化合物としては、脂環式エポキシ化合物が好ましく、下記式(4)に示す、5員環、6員環またはノルボルナン環に結合したエポキシ構造を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000019
 具体的な脂環式エポキシ化合物としては、下記式(5)で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000020
 成分(B)の多官能エポキシ化合物の製造例を説明する。
 下記式(5-1)の化合物は、例えば、ブタジエンとジシクロペンタジエンとのディールズアルダー反応により、下記ノルボルナン構造を有する化合物(a)を合成し、次に、下記式(6)に示すように化合物(a)とメタクロロ過安息香酸とを反応させることによって製造できる。
Figure JPOXMLDOC01-appb-C000021
 下記式(5-2)の化合物は、例えば、シクロペンタジエンとジシクロペンタジエンとのディールズアルダー反応により、下記ノルボルナン構造を有する化合物(b)(トリシクロペンタジエン)を合成し、次に、下記式(7)に示すように化合物(b)とメタクロロ過安息香酸とを反応させることによって製造できる。
Figure JPOXMLDOC01-appb-C000022
 下記式(5-3)の化合物は、例えば、ブタジエンとシクロペンタジエンとのディールズアルダー反応により、下記ノルボルナン構造を有する化合物(c)を合成し、次に、下記式(8)に示すように化合物(c)とメタクロロ過安息香酸とを反応させることによって製造できる。
Figure JPOXMLDOC01-appb-C000023
 下記式(5-4)の化合物は、例えば、ジシクロペンタジエンとペルオキシ一硫酸カリウム(オキソン)とを反応させることによって製造できる。式(5-4)の化合物であるジシクロペンタジエンジエポキシドは、市販品であってもよく、市販品としてはSHANDONG QIHUAN BIOCHEMICAL CO., LTD.製のジシクロペンタジエンジエポキシドを例示できる。
Figure JPOXMLDOC01-appb-C000024
(成分C)
 硬化樹脂用組成物を構成する成分(C)は、トリスフェノールメタン型エポキシ化合物である。上記トリスフェノールメタン型エポキシ化合物としては、下記式(3)の構造で示されるエポキシ化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000025
[式(3)中、Rは置換基であり、それぞれ独立して、炭素数1~6のアルキル基、アリル基、またはフェニル基を示す。mは置換基Rの数であり、0~3の整数をそれぞれ表す。nは平均値であり、0≦n≦10である。]
 式(3)のmは、好ましくは0~2であり、より好ましくは0である。式(3)のnは、好ましくは0以上5以下である。式(3)の置換基Rにおける炭素数1~6のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、およびシクロヘキシル基などが挙げられる。置換基Rとしては、メチル基が好ましい。さらに、成分(C)は、各々R、m、nが異なる式(3)に示す化合物の混合物であってもよい。
 成分(C)のトリスフェノールメタン型エポキシ化合物としては市販品を使用することもできる。市販品としては、EPPN-501H(商品名、日本化薬株式会社製、エポキシ当量162~172g/eq、軟化点51~57℃)、EPPN-501HY(商品名、日本化薬株式会社製、エポキシ当量163~175g/eq、軟化点57~63℃)、EPPN-502H(商品名、日本化薬株式会社製、エポキシ当量158~178g/eq、軟化点60~72℃)、EPPN-503(商品名、日本化薬株式会社製、エポキシ当量170~190g/eq、軟化点80~100℃)等を例示できる。これらを1種または2種以上組み合わせて使用してもよい。
 成分(C)のトリスフェノールメタン型エポキシ化合物のエポキシ当量は、反応性良化の観点から、好ましくは50g/eq以上400g/eq以下であり、より好ましくは100g/eq以上300g/eq以下である。トリスフェノールメタン型エポキシ化合物の軟化点は、好ましくは40~100℃であり、より好ましくは50~90℃である。
 成分(A)多官能ベンゾオキサジン化合物と、成分(B)多官能エポキシ化合物および成分(C)トリスフェノールメタン型エポキシ化合物の合計との配合割合は、成分(A)100質量部に対して、成分(B)および(C)の合計として5質量部以上、150質量部以下が好ましく、30質量部以上、130質量部以下がより好ましい。
 成分(A)と(B)および(C)の合計との配合割合が当該範囲内にあると、より優れた耐熱性を得ることができる。
 なお、本発明の組成物が成分(A)として複数種の多官能ベンゾオキサジン化合物を含有する場合、これら化合物の合計を100質量部とみなす。本発明の組成物が成分(B)として複数種の多官能エポキシ化合物を含有する場合、上記「成分(B)の配合割合」は複数種の化合物の合計の割合を意味する。さらに、本発明の組成物が成分(C)として複数種のトリスフェノールメタン型エポキシ化合物を含有する場合、上記「成分(C)の配合割合」は複数種の化合物の合計の割合を意味する。
 成分(B)多官能エポキシ化合物と成分(C)トリスフェノールメタン型エポキシ化合物の配合比(質量比)(成分(B)エポキシ化合物:成分(C)トリスフェノールメタン型エポキシ化合物)は、好ましくは95:5~5:95であり、より好ましくは90:10~10:90であり、さらに好ましくは90:10~50:50である。成分(B)と(C)の配合比が当該範囲内にあると、低温における速硬化性および流動性がより優れた硬化樹脂組成物、ならびに、より優れた耐熱性を有する硬化物を得ることができる。
 なお、本発明の組成物が成分(B)として複数種の多官能エポキシ化合物を含有する場合、上記成分(B)の配合量は複数種の化合物の合計の配合量を意味する。さらに、本発明の組成物が成分(C)として複数種のトリスフェノールメタン型エポキシ化合物を含有する場合、上記成分(C)の配合量は複数種の化合物の合計の配合量を意味する。
(成分D)
 硬化樹脂用組成物を構成する成分(D)は硬化剤である。
 成分(D)の具体的例としては、例えば、芳香族アミン類(例えば、ジエチルトルエンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタキシレンジアミン、およびこれらの誘導体等)、脂肪族アミン類(例えば、トリエチレンテトラミン、イソホロンジアミン等)、イミダゾール類(例えば、イミダゾール、イミダゾール誘導体等)、ジシアンジアミド、テトラメチルグアニジン、カルボン酸無水物(例えば、メチルヘキサヒドロフタル酸無水物等)、カルボン酸ヒドラジド(例えば、アジピン酸ヒドラジド等)、カルボン酸アミド、単官能フェノール、多官能フェノール化合物(例えば、ビスフェノールA、ビスフェノールF、ジヒドロキシナフタレン、ビスフェノールスルフィド(例えば、ビス(4-ヒドロキシフェニル)スルフィド等)、ポリフェノール化合物(例えば、ピロガロール等)等)、ポリメルカプタン、カルボン酸塩、ならびにルイス酸錯体(例えば、三フッ化ホウ素エチルアミン錯体等)等が挙げられる。成分(D)は、好ましくはイミダゾール類、芳香族アミン類および多官能フェノール化合物等より選択される少なくとも1種である。これらは、単独で使用してもよく、2種類以上の混合物として使用してもよい。
 成分(D)の配合割合としては、成分(A)、(B)、および(C)の合計100質量部に対して、成分(D)を1質量部以上、30質量部以下の範囲とすることが好ましく、5質量部以上、25質量部以下がより好ましい。成分(D)をこの範囲で含有することにより、より効率的に硬化反応を進行させることができ、より優れた高耐熱性の硬化物を得ることができる。
 本発明において、硬化樹脂用組成物中の「エポキシ当量比」とは、[成分(B)および(C)の総エポキシ基数]/[成分(A)のシアナト基数+成分(D)の水酸基数]を表す。
 硬化樹脂用組成物中のエポキシ当量比は、好ましくは0.5以上1.5以下であり、より好ましくは0.7以上1.2以下である。エポキシ当量比が当該範囲内にあると、低温における速硬化性および流動性がより優れた硬化樹脂用組成物、ならびに、より優れた耐熱性を有する硬化物を得ることができる。
(成分E)
 本発明の硬化樹脂用組成物は、所望により(E)無機充填剤をさらに含有してもよい。例えば、半導体素子等の封止材用途に本発明の硬化樹脂用組成物を使用する場合は、成分(E)を含有することが好ましい。本発明で用いる無機充填剤は特に限定されず、硬化樹脂用組成物あるいはその硬化物の用途あるいは付与したい性状を考慮して選択することができる。以下、この無機充填剤を成分(E)と称する。
 成分(E)の例としては、シリカ、アルミナ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化カルシウム、三酸化アンチモン、酸化亜鉛、酸化鉄等の酸化物;炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸ストロンチウム等の炭酸塩;硫酸バリウム、硫酸アルミニウム、硫酸カルシウム等の硫酸塩;窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素、窒化マンガン等の窒化物;ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム等のケイ素化合物;ホウ酸アルミニウム等のホウ素化合物;ジルコン酸バリウム、ジルコン酸カルシウム等のジルコニウム化合物;リン酸ジルコニウム、リン酸マグネシウム等のリン化合物;チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、チタン酸バリウム、チタン酸カリウム等のチタン化合物;マイカ、タルク、カオリン、カオリンクレー、カオリナイト、ハロイサイト、コーディエライト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイト、アスベスト、ウォラストナイト、セピオライト、ゾノライト、ゼオライト、ハイドロタルサイト、水和石膏、ミョウバン、ケイ藻土、ベーマイト等の鉱物類;フライアッシュ、脱水汚泥、ガラスビーズ、ガラスファイバー、ケイ砂、マグネシウムオキシサルフェイト、シリコン酸化物、シリコンカーバイド等;銅、鉄、コバルト、ニッケル等の金属あるいはそのいずれかを含む合金;センダスト、アルニコ磁石、フェライト等の磁性材料;黒鉛、コークス等が挙げられる。成分(E)は、好ましくはシリカまたはアルミナである。シリカの例としては、溶融シリカ、球状シリカ、結晶シリカ、無定形シリカ、合成シリカ、中空シリカ等が挙げられ、好ましくは球状シリカ、結晶シリカである。成分(E)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 成分(E)は粒状であってもよく、その場合の平均粒径は、特に限定されないが、例えば、0.01μm以上、150μm以下が挙げられ、好ましくは、0.1μm以上、120μm以下、より好ましくは、0.5μm以上、75μm以下である。この範囲であれば、例えば、本発明の組成物を半導体素子の封止材用途に使用する場合、金型キャビティへの充填性がより良好となる。成分(E)の平均粒径はレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填剤の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填剤を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製「LA-500」、「LA-750」、「LA-950」、「LA-960」等を使用することができる。
 成分(E)の配合割合としては、硬化樹脂用組成物の高耐熱性の硬化物が得られる限り、特に限定されず、用途に応じて適宜設定できる。例えば、組成物を半導体封止用途に使用する場合は以下に示す配合割合が好ましい。
 成分(E)の配合割合の下限値は、成分(A)、(B)、(C)および(D)の合計100質量部に対して、例えば150質量部以上が挙げられ、400質量部以上が好ましく、500質量部以上がより好ましい。また、成分(E)の配合割合の上限値は、1300質量部以下が挙げられ、1150質量部以下が好ましく、950質量部以下がより好ましい。成分(E)の配合割合の下限値が400質量部以上であれば、硬化樹脂用組成物の硬化に伴う吸湿量の増加や強度の低下をより抑制でき、したがってより良好な耐半田クラック性を有する硬化物を得ることができる。また、成分(F)の配合割合の上限値が1300質量部以下であれば、硬化樹脂用組成物の流動性がより良くなり、金型への充填がしやすく、硬化物がより良好な封止性能を発揮する。
(成分F)
 本発明の硬化樹脂用組成物は、所望により(F)硬化促進剤をさらに含有してもよい。
硬化促進剤としては、公知の硬化促進剤を使用することができ、トリブチルアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン-7等のアミン系化合物、2-メチルイミダゾール、2-エチルイミダゾール、1,2-ジメチルイミダゾール等のイミダゾール系化合物、トリフェニルホスフィン等の共有結合のみでリンが結合している有機リン化合物、テトラフェニルホスホニウムテトラフェニルボレート等の共有結合およびイオン結合でリンが結合している塩タイプの有機リン化合物等の有機リン化合物等が挙げられるが、これらに限定されるものではない。また、上記した硬化促進剤は単独で使用してもよく、2種以上を併用して使用してもよい。これらのうち、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート等の有機リン化合物が、硬化速度向上の効果が大きく、好ましい。
 上記有機リン化合物は、特開昭55-157594号公報に記載されているように、エポキシ基とフェノール性水酸基との架橋反応を促進する機能を発揮するものである。さらに、上記有機リン化合物は、(A)多官能ベンゾオキサジン化合物が高温で開裂反応した際に発生する水酸基とエポキシ基との反応を促進する機能も発揮する。本発明の有機リン化合物は上記機能を有するものであれば、特に限定されない。
 成分(F)の配合割合としては、成分(A)、(B)および(C)の合計100質量部に対して、成分(F)を0.01質量部以上、10質量部以下の範囲とすることが好ましく、0.1質量部以上、7質量部以下の範囲とすることがより好ましい。成分(F)をこの範囲で含有することにより、より優れた速硬化性を有する硬化樹脂用組成物とすることができる。
(その他の成分)
 本発明の組成物は、本発明の効果を損なわない範囲で、成分(A)以外のベンゾオキサジン化合物を含有していてもよい。例えば、組成物の粘度を低下させたい場合、ベンゾオキサジン環が1つである単官能ベンゾオキサジン化合物を組成物に添加してもよい。
 また、本発明の硬化樹脂用組成物には、その性能を損なわない範囲で、例えば、ナノカーボンや難燃剤、離型剤、着色剤、低応力添加剤、金属水酸化物等を配合することができる。
 ナノカーボンとしては、例えば、カーボンナノチューブ、フラーレンまたはそれぞれの誘導体が挙げられる。
 難燃剤としては、例えば、赤燐、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、レゾルシノールビスフェニルホスフェート、ビスフェノールAビスジフェニルホスフェート等のリン酸エステルや、ホウ酸エステル、フォスファゼン等が挙げられる。
 離型剤としては、例えば、ステアリン酸エステル、カルナバワックス等の天然ワックス、酸化ポリエチレンワックス等の合成ワックス、ステアリン酸等の高級脂肪酸またはそのエステル、ステアリン酸亜鉛等の金属塩類、パラフィン、およびシリコーンオイル等が挙げられる。
 着色剤としては、カーボンブラック、ベンガラ、および酸化チタン等が挙げられる。
 低応力添加剤としては、シリコーンオイル、およびシリコーンゴム等が挙げられる。
 金属水酸化物としては、水酸化カルシウム、水酸化アルミニウム、および水酸化マグネシウム等の水酸化物が挙げられる。
 成分(E)無機充填剤が含まれる場合、シランカップリング剤を配合しても良い。
 その他の成分の配合割合としては、成分(A)、(B)および(C)の合計100質量部に対して、その他の成分を0.01質量部以上、10質量部以下の範囲とすることが好ましく、0.1質量部以上、7質量部以下の範囲とすることがより好ましい。
(硬化樹脂用組成物の特性)
 本発明の硬化樹脂用組成物の溶融粘度は、175℃、回転数100rpmにおける最低溶融トルクとして測定することができ、最低溶融トルクとしては4.0gf・cm以下が挙げられ、流動性の観点から、好ましくは、3.6gf・cm以下、より好ましくは3.0gf・cm以下とされる。最低溶融トルクは、一定温度、一定回転数の下に描かれるトルク曲線の最低値で示され、ゲルタイム測定機やラボプラストミル等により測定することができる。具体的には、市販のゲルタイム測定機(例えば松尾産業製)を用いることにより、簡便に行うことができる。
 本発明の硬化樹脂用組成物の硬化速度は、ゲルタイムとして測定することができる。ゲルタイムとしては、175℃において、1~120秒が挙げられ、速硬化性の観点から、好ましくは、1~110秒、より好ましくは1~100秒とされる。ゲルタイムは、JIS K6910(2007)のゲル化時間B法(平板法)に準拠して測定することができる。
[硬化樹脂用組成物の製造方法]
 次に、本発明の硬化樹脂用組成物の製造方法について説明する。
 成分(A)~(D)、さらに、所望により成分(E)~(F)、その他の添加剤等のその他の成分、および溶剤を適宜追加して混練または混合することにより、本発明の硬化樹脂用組成物を製造することができる。
 混練または混合方法は、特に限定されず、例えば、プラネタリーミキサー、2軸押出機、熱ロールまたはニーダー等の混合装置または混練機等を用いて混合することができる。また、成分(A)、(B)、(C)が室温で高粘度の液状または固体状である場合、または成分(E)を含有する場合等には、必要に応じて加熱して混練したり、さらに、加圧または減圧条件下で混練したりしても良い。加熱温度としては80~120℃が好ましい。
 成分(E)を含む硬化樹脂用組成物は室温下では固体状であるので、加熱混練後、冷却、粉砕して粉体状としてもよく、該粉体を打錠成形してペレット状にしてもよい。また、粉体を造粒して顆粒状にしてもよい。
 本発明の硬化樹脂用組成物が成分(E)を含有せず、FRP用プリプレグ用途等に使用する場合、硬化樹脂用組成物は50℃において、10~3000Pa・sの粘度を有することが好ましい。より好ましくは10~2500Pa・s、さらに好ましくは100~2000Pa・sである。封止材、塗布用途に使用する場合は、封止、塗布等の作業に支障がない限り粘度は特に限定されない。
[硬化物]
 本発明の硬化樹脂用組成物の硬化物は、ガラス転移温度が高く、耐熱性に優れるという特徴を有している。本発明の硬化樹脂用組成物がこのような優れた硬化物を形成する理由としては、次のようなことが考えられる。
 まず、ベンゾオキサジンの単独重合では、重合によりフェノール性の水酸基が生成する。このフェノール性の水酸基は、高温、例えば200℃以上にて、ケトエノ-ル互変異性体を経由し、それによって高分子鎖が切断されるため、耐熱性が低く、ガラス転移温度も低くなると考えられている。
 それに対し、本発明のノルボルナン構造を有し、エポキシ基を二つ以上有する多官能エポキシ化合物は、単独重合し難く、上記ベンゾオキサジン由来のフェノール性水酸基と反応することにより、上記高分子鎖の切断を防止すると考えられる。よって、高耐熱性の硬化物が得られると考えられる。
 また、本発明の硬化樹脂用組成物は、トリスフェノールメタン型エポキシ化合物を併用することで、エポキシ基とベンゾオキサジン由来のフェノール性水酸基との反応性が高くなるため、低温での硬化速度が速くなると考えられる。
(硬化物の特性)
 本発明の硬化物の耐熱性は、ガラス転移温度を測定することにより評価できる。ガラス転移温度は、190℃以上が挙げられ、好ましくは200℃以上、より好ましくは210℃以上とされる。ガラス転移温度は、示差走査熱量測定(DSC)により測定することができる。このような測定は、市販の示差走査熱量計(例えば株式会社日立ハイテクサイエンス製)を用いることにより、簡便に行うことができる。
[硬化物の製造方法]
 本発明の硬化物は、公知のベンゾオキサジン化合物および/またはエポキシ化合物と同様の硬化条件にて、開環重合を行い硬化することにより製造することができる。例えば、以下の方法を挙げることができる。
 まず、本発明の硬化樹脂用組成物を上記方法によって製造する。続いて、得られた硬化樹脂用組成物を、例えば150~300℃にて、硬化時間として例えば20秒間~5時間、好ましくは20秒間~1時間加熱することで、硬化物を得ることができる。特に、硬化樹脂用組成物を低温で硬化させる点では、硬化温度は、160℃~180℃が好ましい。硬化物を連続生産する場合には、硬化時間は1~3分間で十分であるが、より高い強度を得るために後硬化としてさらに5分間~5時間程度加熱することが好ましい。後硬化における硬化温度は、例えば150~300℃が挙げられる。
 また、本発明の効果を損なわない範囲で、成分(A)以外のベンゾオキサジン化合物および/または成分(B)、(C)以外のエポキシ化合物を配合して硬化物を得ることもできる。
 硬化物としてフィルム状成形物を得る場合には、さらに溶剤を配合して、薄膜形成に好適な溶液粘度を有する組成物とすることもできる。成分(A)~(D)および(F)を溶解できる溶剤であれば特に限定されず、例えば、炭化水素類、エーテル類、エステル類、含ハロゲン類等が挙げられる。
 このように、溶媒に溶解した溶液状の硬化樹脂用組成物の場合は、該溶液状の硬化樹脂用組成物を基材等に塗布後、溶媒を揮発させたのち、熱硬化を行うことで硬化物を得ることができる。
[半導体装置]
 本発明の半導体装置は、成分(A)~(D)、所望により(E)、(F)、その他の成分を含有する本発明の硬化樹脂用組成物を硬化させてなる硬化物中に半導体素子が設置されている半導体装置である。ここで、通常、半導体素子は金属素材の薄板であるリードフレームにより支持固定されている。「硬化物中に半導体素子が設置されている」とは、半導体素子が上記硬化樹脂用組成物の硬化物で封止されていることを意味し、半導体素子が該硬化物で被覆されている状態を表す。この場合、半導体素子全体が被覆されていてもよく、基板上に設置された半導体素子の表面が被覆されていてもよい。
 本発明の硬化物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造する場合は、トランスファーモールド、コンプレッションモールド、あるいはインジェクションモールド等の従来からの成形方法により封止工程を実施することによって、半導体装置を製造することができる。
 以下に実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<成分(A);多官能ベンゾオキサジン化合物>
 成分(A)として下記(A1)~(A2)を使用した。
(A1);下記式(2-1)に示すフェノール-ジアミノジフェニルメタン(P-d)型ベンゾオキサジン(四国化成株式会社製)
Figure JPOXMLDOC01-appb-C000026
 (A2);下記式(1-1)に示すビスフェノールF-アニリン(F-a)型ベンゾオキサジン(四国化成株式会社製)
Figure JPOXMLDOC01-appb-C000027
<成分(B);脂環式エポキシ化合物>
 成分(B)として下記(B1)~(B3)を使用した。
(B1)脂環式エポキシ化合物1;式(5-1)の化合物
 上記式(6)に示す化合物(a)を、『土田詔一ら、「ブタジエンとシクロペンタジエンとのDiels-Alder反応-三量体の決定-」、石油学会誌、1972年、第15巻、3号、p189-192』に記載の方法に準拠して合成した。
 次に、上記式(6)の反応を次のようにして行った。反応容器に、クロロホルム23.5kgおよび化合物(a)1.6kgを投入し、0℃で攪拌しながらメタクロロ過安息香酸4.5kgを滴下した。室温まで昇温し、12時間反応を行った。
 次に、ろ過により副生したメタクロロ安息香酸を除去した後、ろ液を1N水酸化ナトリウム水溶液で3回洗浄後、飽和食塩水で洗浄した。有機層を硫酸マグネシウムで乾燥後、ろ過により硫酸マグネシウムを除去してろ液を濃縮し、粗体を得た。
 粗体にトルエン2kgを加え、室温で溶解した。これにヘプタン6kgを滴下して晶析し、5℃で1時間熟成した。晶析物をろ取してヘキサンにより洗浄した。35℃下、24時間減圧乾燥することによって、下記式(5-1)に示す化合物を白色固体として1.4kg得た。
Figure JPOXMLDOC01-appb-C000028
(B2)脂環式エポキシ化合物2;式(5-2)の化合物(トリシクロペンタジエンジエポキシド)
 化合物(b)を化合物(a)と同様に、上記文献に記載の方法に準拠して合成した。
 次に、上記式(7)の反応を次のようにして行った。反応容器に、クロロホルム59.2kgおよび化合物(b)4.0kgを投入し、-10℃で攪拌しながらメタクロロ過安息香酸10.6kgを滴下した。室温まで昇温し、12時間反応を行った。
 次に、ろ過により副生したメタクロロ安息香酸を除去した後、ろ液を5%亜硫酸ナトリウム水溶液42.0kgで洗浄した。有機層を更に1N水酸化ナトリウム水溶液41.6kgで4回洗浄後、飽和食塩水48.0kgで洗浄した。有機層を硫酸マグネシウムで乾燥後、ろ過により硫酸マグネシウムを除去してろ液を濃縮し、粗体5.1kgを得た。
 粗体にトルエン3.5kgを加え、室温で溶解した。これにヘプタン13.7kgを滴下して晶析し、5℃で1時間熟成した。晶析物をろ取してヘプタンにより洗浄した。35℃下、12時間減圧乾燥することによって、下記式(5-2)に示す化合物を白色固体として2.8kg得た。
Figure JPOXMLDOC01-appb-C000029
(B3)脂環式エポキシ化合物3;式(5-4)の化合物(ジシクロペンタジエンジエポキシド)
 反応容器にジシクロペンタジエン10kg、重曹68kg、アセトン100Lおよびイオン交換水130Lを仕込み、10℃以下に冷却した後、反応液の温度を30℃以下に維持するように冷却を制御して、オキソン84kgを徐々に添加し、撹拌しながら10時間反応を行った。
 次に、酢酸エチル100Lによる反応生成物の抽出を2回行い、得られた有機層を分取して合わせた。続いて、上記有機層を食塩およびチオ硫酸ナトリウムの混合水溶液(食塩20wt%+チオ硫酸ナトリウム20wt%)100Lにて洗浄した後、さらに、イオン交換水100Lで2回洗浄した。
 洗浄後の有機層を硫酸マグネシウムにて乾燥後、ろ過により硫酸マグネシウムを除去し、ろ液から有機溶媒を留去して、下記式(5-4)に示す化合物を白色固体として11kg得た。
Figure JPOXMLDOC01-appb-C000030
<成分(C);トリスフェノールメタン型エポキシ化合物>
 成分(C)として下記を使用した。
(C);下記式(3-1)に示すトリスフェノールメタン型エポキシ化合物(EPPN-501H、エポキシ当量(g/eq):162~172、日本化薬株式会社製)
Figure JPOXMLDOC01-appb-C000031
(式(3-1)中、nは平均値であり、1.3である。)
 比較例用のエポキシ化合物として下記(CC1)~(CC2)を使用した。
(CC1);下記式(9)に示すエポキシ化合物(HP-7200、エポキシ当量(g/eq):254~264、DIC株式会社製)
Figure JPOXMLDOC01-appb-C000032
(式(9)中、nは平均値であり、1.41である。)
(CC2);下記式(10)に示すエポキシ化合物(HP-4710、DIC株式会社製)
Figure JPOXMLDOC01-appb-C000033
<成分(D);硬化剤>
 成分(D)として下記(D1)~(D4)を使用した。
(D1);下記式(11-1)に示すビス(4-ヒドロキシフェニル)スルフィド(TDP)(東京化成工業株式会社製)
Figure JPOXMLDOC01-appb-C000034
(D2);下記式(11-2)に示すビスフェノールF(本州化学工業株式会社製)
Figure JPOXMLDOC01-appb-C000035
(D3);下記式(11-3)に示す2,7-ジヒドロキシナフタレン(東京化成工業株式会社製)
Figure JPOXMLDOC01-appb-C000036
(D4);下記式(11-4)に示すピロガロール(東京化成工業株式会社製)
Figure JPOXMLDOC01-appb-C000037
<成分(E);無機充填剤>
 成分(E)として、平均粒径D50が22μmの溶融球状シリカ(FB-820、デンカ株式会社製)を使用した。
<成分(F);硬化促進剤>
 成分(F)として下記を使用した。
(F);トリフェニルホスフィン(TPP)(北興化学工業株式会社製)
<その他の成分>
 離型剤としてカルナバワックス(クラリアントジャパン株式会社製)、着色剤としてカーボンブラック(MA600、三菱化学株式会社製)を使用した。
(実施例1)
 硬化樹脂用組成物(以後単に組成物と称する)および硬化物を以下のようにして調製し、硬化速度評価としてのゲルタイム、流動性評価として溶融トルク、および耐熱性評価としてのガラス転移温度を測定した。
 (A1)、(B1)、(C)、(D1)、(E)、(F)、カルナバワックス、およびカーボンブラックを、表1に示す配合割合で、表面温度が90℃と100℃の2本ロールを有する熱ロール混練機(BR-150HCV、アイメックス株式会社)を用いて大気圧下で10分間混練した後、室温まで冷却して混合物を得た。該混合物をミニスピードミルMS-09(ラボネクト株式会社製)により、金型への充填が良好に行えるように粉末状に粉砕して組成物を得た。
<ゲルタイム>
 JIS K6910(2007)のゲル化時間B法(平板法)に準拠し、175℃に制御された熱板上に組成物を載せ、へらを用いて攪拌し、熱硬化反応が進行して攪拌不可能となるまでに流動性が失われるまでの時間(秒)をゲルタイムとして測定した。ゲルタイムは数値が小さい方が、硬化速度が速く、速硬化性に優れることを示す。結果を表1に示した。なお、表中の「×」とは、反応が速過ぎて測定不可であったことを示す。
<最低溶融トルク>
 調製した組成物0.60gの175℃における回転数100rpmでの最低溶融トルク[gf・cm]をゲルタイム測定機(松尾産業製自動硬化時間(ゲルタイム)測定装置「まどか」)により測定した。結果を表1に示した。
・撹拌方法:二軸偏心
・サンプル量:0.60g
<ガラス転移温度;Tg>
 トランスファー成形機を用い、金型温度175℃、注入圧力4MPa、硬化時間3分の条件で、調製した組成物を硬化させ、さらに、後硬化処理としてオーブンで240℃、4時間加熱することで縦3mm×横3mm×長さ15mmの硬化物を作成した。該硬化物を縦3mm×横3mm×長さ2mmの大きさに切断した試験片を用いて、DSCによって下記条件によりTgを測定した。結果を表1に示した。
 装置:X-DSC-7000(株式会社日立ハイテクサイエンス製)
 測定条件:N流量;20mL/分、昇温速度;20℃/分
(実施例2~21)
 各成分の配合割合を表1に示した通りとした以外は実施例1と同様にして、各実施例の組成物を調製した。各々の組成物について実施例1と同様にしてゲルタイム、最低溶融トルク、および耐熱性(ガラス転移温度)を測定した。結果を表1に示す。
(比較例1~11)
 各成分の配合割合を表2に示した通りとした以外は実施例1と同様にして、各比較例の組成物を調製した。各々の組成物について実施例1と同様にしてゲルタイム、最低溶融トルク、および耐熱性(ガラス転移温度)を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 各実施例の硬化樹脂用組成物は175℃におけるゲルタイムが1秒以上120秒以下であって速硬化性に優れ、かつ、175℃における最低溶融トルクが4.0gf・cm以下であるため、流動性が良好である。また、その硬化物のTgは190℃以上であり、高耐熱性であることが分かる。一方、比較例1~3および比較例7~11の硬化樹脂用組成物は175℃での硬化速度が遅く、また、比較例4の硬化樹脂用組成物は、硬化速度が早過ぎてゲルタイムが測定できず、かつ、流動性が劣っている。さらに、比較例5および6の硬化樹脂用組成物はTgが低くなっており耐熱性に劣っている。
 以上の結果から、本発明の実施形態である硬化樹脂用組成物は、低温での速硬化性および流動性に優れながら、その硬化物は高耐熱性を達成していることが分かる。

Claims (10)

  1.  (A)ベンゾオキサジン環を少なくとも二つ有する多官能ベンゾオキサジン化合物であって、式(1)の構造単位を有する多官能ベンゾオキサジン化合物、および式(2)の構造で示される多官能ベンゾオキサジン化合物から選択される少なくとも1種の多官能ベンゾオキサジン化合物と、
     (B)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
     (C)トリスフェノールメタン型エポキシ化合物と、
     (D)硬化剤と
    を含有する、硬化樹脂用組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは炭素数1~12の鎖状アルキル基、炭素数3~8の環状アルキル基、または炭素数6~14のアリール基を示し、該アリール基は置換基としてハロゲンまたは炭素数1~12の鎖状アルキル基を有していてもよい。Zは、水素、炭素数1~8の炭化水素基および/または連結基を表し、各々同一であっても異なっていてもよく、かつ、少なくとも一つは連結基であり、該連結基によってベンゾオキサジン環同士が連結している。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Lは芳香環を1~5個有する2価の有機基または炭素数2~10のアルキレン基であって、該有機基およびアルキレン基は酸素および/または硫黄を含んでいてもよい。]
  2.  前記(C)トリスフェノールメタン型エポキシ化合物が、式(3)の構造で示されるエポキシ化合物である、請求項1に記載の硬化樹脂用組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、置換基Rは、それぞれ独立して、炭素数1~6のアルキル基、アリル基、またはフェニル基を示す。mは置換基Rの数であり、0~3の整数をそれぞれ表す。nは平均値であり、0≦n≦10である。]
  3.  (E)無機充填剤をさらに含有する、請求項1または2に記載の硬化樹脂用組成物。
  4.  (F)硬化促進剤をさらに含有する、請求項1~3のいずれか一項に記載の硬化樹脂用組成物。
  5.  請求項1~4のいずれか一項に記載の硬化樹脂用組成物を硬化させてなる硬化物。
  6.  請求項1~4のいずれか一項に記載の硬化樹脂用組成物を硬化させてなる硬化物中に半導体素子が設置されている、半導体装置。
  7.  硬化樹脂用組成物の製造方法であって、
     (A)ベンゾオキサジン環を少なくとも二つ有する多官能ベンゾオキサジン化合物であって、式(1)の構造単位を有する多官能ベンゾオキサジン化合物、および式(2)の構造で示される多官能ベンゾオキサジン化合物から選択される少なくとも1種の多官能ベンゾオキサジン化合物と、
     (B)ノルボルナン構造を少なくとも一つ、およびエポキシ基を少なくとも二つ有するエポキシ化合物と、
     (C)トリスフェノールメタン型エポキシ化合物と、
     (D)硬化剤と
    を混合して混合物を得る工程、
     該混合物を粉体状、ペレット状、または顆粒状の硬化樹脂用組成物に加工する工程
    を有する、硬化樹脂用組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式(1)中、Rは炭素数1~12の鎖状アルキル基、炭素数3~8の環状アルキル基、または炭素数6~14のアリール基を示し、該アリール基は置換基としてハロゲンまたは炭素数1~12の鎖状アルキル基を有していてもよい。Zは、水素、炭素数1~8の炭化水素基および/または連結基を表し、各々同一であっても異なっていてもよく、かつ、少なくとも一つは連結基であり、該連結基によってベンゾオキサジン環同士が連結している。]
    Figure JPOXMLDOC01-appb-C000005
    [式(2)中、Lは芳香環を1~5個有する2価の有機基または炭素数2~10のアルキレン基であって、該有機基およびアルキレン基は酸素および/または硫黄を含んでいてもよい。]
  8.  前記(C)トリスフェノールメタン型エポキシ化合物が、式(3)で示されるエポキシ化合物である、請求項7に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    [式(3)中、置換基Rは、それぞれ独立して、炭素数1~6のアルキル基、アリル基、またはフェニル基を示す。mは置換基Rの数であり、0~3の整数をそれぞれ表す。nは平均値であり、0≦n≦10である。]
  9.  前記混合物を得る工程において、(E)無機充填剤および/または(F)硬化促進剤をさらに混合して混合物を得る、請求項7または8に記載の製造方法。
  10.  請求項7~9のいずれか一項に記載の方法により製造した前記硬化樹脂用組成物を150~300℃にて20秒間~1時間加熱して硬化させる工程
    を有する、硬化物の製造方法。
PCT/JP2018/039821 2017-10-27 2018-10-26 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置 WO2019083003A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18869515.9A EP3702390B1 (en) 2017-10-27 2018-10-26 Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
JP2019550312A JP7086982B2 (ja) 2017-10-27 2018-10-26 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置
US16/759,677 US11897998B2 (en) 2017-10-27 2018-10-26 Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
CN201880069463.XA CN111278883B (zh) 2017-10-27 2018-10-26 固化树脂用组合物、该组合物的固化物、该组合物和该固化物的制造方法、以及半导体装置
KR1020207011955A KR102427036B1 (ko) 2017-10-27 2018-10-26 경화 수지용 조성물, 상기 조성물의 경화물, 상기 조성물 및 상기 경화물의 제조방법, 및 반도체 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017208602 2017-10-27
JP2017-208602 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019083003A1 true WO2019083003A1 (ja) 2019-05-02

Family

ID=66246499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039821 WO2019083003A1 (ja) 2017-10-27 2018-10-26 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置

Country Status (8)

Country Link
US (1) US11897998B2 (ja)
EP (1) EP3702390B1 (ja)
JP (1) JP7086982B2 (ja)
KR (1) KR102427036B1 (ja)
CN (1) CN111278883B (ja)
PT (1) PT3702390T (ja)
TW (1) TWI787374B (ja)
WO (1) WO2019083003A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193819A1 (ja) * 2020-03-27 2021-09-30 Eneos株式会社 エポキシ化合物の立体異性体、これを含む硬化性組成物および硬化性組成物を硬化させた硬化物
CN115584625A (zh) * 2022-11-17 2023-01-10 成都科宜高分子科技有限公司 一种有机纤维、纤维复合材料及其制备方法、应用
US11578166B2 (en) 2017-10-27 2023-02-14 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
US11584824B2 (en) 2017-10-27 2023-02-21 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
JP7507006B2 (ja) 2020-04-30 2024-06-27 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物、ブラックマトリックス用レジスト組成物、及び、ブラックマトリックス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555092B2 (en) * 2018-08-03 2023-01-17 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
JP2022118627A (ja) * 2021-02-02 2022-08-15 Eneos株式会社 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157594A (en) 1979-05-23 1980-12-08 Dow Chemical Co Phosphonium phenoxide catalyst for accelerating reaction of epoxide and phenol and*or carboxylic acid
JPH0948839A (ja) * 1995-08-08 1997-02-18 Dainippon Ink & Chem Inc エポキシ樹脂組成物及び半導体封止材料
JPH11130937A (ja) * 1997-10-29 1999-05-18 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2012036318A (ja) 2010-08-10 2012-02-23 Gun Ei Chem Ind Co Ltd 熱硬化性樹脂
JP2013060407A (ja) 2011-09-15 2013-04-04 Sumitomo Chemical Co Ltd ベンゾオキサジン化合物およびその製造方法
JP2017045891A (ja) * 2015-08-27 2017-03-02 日立化成株式会社 半導体装置及びそれを製造する方法
JP2017165922A (ja) * 2016-03-18 2017-09-21 京セラケミカル株式会社 封止用成形材料及び電子部品装置
WO2017188448A1 (ja) * 2016-04-28 2017-11-02 Jxtgエネルギー株式会社 硬化樹脂用組成物及びその硬化物
WO2018105743A1 (ja) * 2016-12-09 2018-06-14 Jxtgエネルギー株式会社 硬化樹脂用組成物、該硬化樹脂用組成物の硬化物及び硬化方法、並びに半導体装置
WO2018181857A1 (ja) * 2017-03-31 2018-10-04 Jxtgエネルギー株式会社 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395574A (en) 1980-05-12 1983-07-26 The Dow Chemical Co. Phosphonium phenoxide catalysts for promoting reaction of epoxides with phenols and/or carboxylic acids
JP2002053643A (ja) 2000-08-10 2002-02-19 Sumikin Chemical Co Ltd エポキシ樹脂用硬化剤及びこれを用いた半導体封止用組成物
US6936646B2 (en) * 2003-04-30 2005-08-30 Henkel Corporation Flame-retardant molding compositions
JP4455114B2 (ja) 2004-03-25 2010-04-21 タムラ化研株式会社 ビルドアップ基板層間絶縁材料用の熱硬化性樹脂組成物、樹脂フィルム、製品およびビルドアップ基板の層間絶縁材料
US8431655B2 (en) * 2007-04-09 2013-04-30 Designer Molecules, Inc. Curatives for epoxy compositions
TWI491596B (zh) * 2008-10-10 2015-07-11 Sumitomo Bakelite Co 脂環二環氧化物之製備技術
JP5627196B2 (ja) 2009-04-28 2014-11-19 国立大学法人横浜国立大学 エポキシ樹脂組成物及びその硬化物
KR20140081817A (ko) * 2011-09-30 2014-07-01 제이엑스 닛코닛세키에너지주식회사 벤조옥사진 수지 조성물 및 섬유강화 복합 재료
EP2834308B1 (en) * 2012-06-27 2018-04-18 Toray Industries, Inc. Benzoxazine resin composition, prepreg, and fiber-reinforced composite material
KR102228718B1 (ko) * 2013-07-04 2021-03-18 아지노모토 가부시키가이샤 감광성 수지 조성물
KR102375986B1 (ko) 2015-03-13 2022-03-17 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 옥사졸리돈 고리 함유 에폭시 수지, 그 제조 방법, 에폭시 수지 조성물, 및 경화물
BR112018001264B1 (pt) * 2015-07-23 2022-04-19 Huntsman Advanced Materials Americas Llc Composição curável, processo para produção de uma composição curável, artigo curado, e, método para produção de um prepreg ou towpreg.
CN107365476B (zh) 2016-05-12 2019-11-08 中山台光电子材料有限公司 树脂组合物及由其制得的成品
JP6195650B2 (ja) 2016-07-06 2017-09-13 台光電子材料(昆山)有限公司Elite Electronic Material (Kunshan) Co. Ltd 樹脂組成物ならびにそれを使用した銅張積層板およびプリント回路板
CN107868399B (zh) 2016-09-23 2020-06-19 台光电子材料(昆山)有限公司 一种树脂组合物及含有该树脂组合物的制品及其制备方法
JP6925853B2 (ja) 2017-04-26 2021-08-25 本州化学工業株式会社 新規なベンゾオキサジン樹脂組成物及びその硬化物
JP6992967B2 (ja) 2017-04-28 2022-01-13 京セラ株式会社 封止成形材料用組成物及び電子部品装置
CN111278882B (zh) 2017-10-27 2022-12-30 Jxtg能源株式会社 固化树脂用组合物、该组合物的固化物、该组合物和该固化物的制造方法、以及半导体装置
CN111278884B (zh) 2017-10-27 2022-12-30 Jxtg能源株式会社 固化树脂用组合物、该组合物的固化物、该组合物和该固化物的制造方法、以及半导体装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157594A (en) 1979-05-23 1980-12-08 Dow Chemical Co Phosphonium phenoxide catalyst for accelerating reaction of epoxide and phenol and*or carboxylic acid
JPH0948839A (ja) * 1995-08-08 1997-02-18 Dainippon Ink & Chem Inc エポキシ樹脂組成物及び半導体封止材料
JPH11130937A (ja) * 1997-10-29 1999-05-18 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2012036318A (ja) 2010-08-10 2012-02-23 Gun Ei Chem Ind Co Ltd 熱硬化性樹脂
JP2013060407A (ja) 2011-09-15 2013-04-04 Sumitomo Chemical Co Ltd ベンゾオキサジン化合物およびその製造方法
JP2017045891A (ja) * 2015-08-27 2017-03-02 日立化成株式会社 半導体装置及びそれを製造する方法
JP2017165922A (ja) * 2016-03-18 2017-09-21 京セラケミカル株式会社 封止用成形材料及び電子部品装置
WO2017188448A1 (ja) * 2016-04-28 2017-11-02 Jxtgエネルギー株式会社 硬化樹脂用組成物及びその硬化物
WO2018105743A1 (ja) * 2016-12-09 2018-06-14 Jxtgエネルギー株式会社 硬化樹脂用組成物、該硬化樹脂用組成物の硬化物及び硬化方法、並びに半導体装置
WO2018181857A1 (ja) * 2017-03-31 2018-10-04 Jxtgエネルギー株式会社 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3702390A4
SHOICHI TSUCHIDA ET AL.: "Diels-Alder Reaction between Butadiene and Cyclopentadiene-Determination of Trimers", JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, vol. 15, no. 3, 1972, pages 189 - 192

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11578166B2 (en) 2017-10-27 2023-02-14 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
US11584824B2 (en) 2017-10-27 2023-02-21 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
WO2021193819A1 (ja) * 2020-03-27 2021-09-30 Eneos株式会社 エポキシ化合物の立体異性体、これを含む硬化性組成物および硬化性組成物を硬化させた硬化物
JP7507006B2 (ja) 2020-04-30 2024-06-27 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物、ブラックマトリックス用レジスト組成物、及び、ブラックマトリックス
CN115584625A (zh) * 2022-11-17 2023-01-10 成都科宜高分子科技有限公司 一种有机纤维、纤维复合材料及其制备方法、应用

Also Published As

Publication number Publication date
US20200291173A1 (en) 2020-09-17
CN111278883A (zh) 2020-06-12
TW201925330A (zh) 2019-07-01
EP3702390A4 (en) 2021-04-28
PT3702390T (pt) 2024-02-05
TWI787374B (zh) 2022-12-21
KR20200070275A (ko) 2020-06-17
EP3702390A1 (en) 2020-09-02
US11897998B2 (en) 2024-02-13
JPWO2019083003A1 (ja) 2020-11-12
EP3702390B1 (en) 2023-12-27
KR102427036B1 (ko) 2022-08-01
CN111278883B (zh) 2022-12-30
JP7086982B2 (ja) 2022-06-20

Similar Documents

Publication Publication Date Title
JP6849698B2 (ja) 硬化樹脂用組成物、該硬化樹脂用組成物の硬化物及び硬化方法、並びに半導体装置
TWI790226B (zh) 硬化樹脂用組合物、該組合物之硬化物、該組合物及該硬化物之製造方法、與半導體裝置
JP7086982B2 (ja) 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置
JP7086983B2 (ja) 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置
JP7086981B2 (ja) 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置
TW202100707A (zh) 硬化樹脂用組合物、該組合物之硬化物、該組合物及該硬化物之製造方法、以及半導體裝置
JP6946088B2 (ja) 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置
WO2020122045A1 (ja) 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550312

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20207011955

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018869515

Country of ref document: EP

Effective date: 20200527