WO2019076352A1 - 基于金属支架的感光组件和摄像模组 - Google Patents

基于金属支架的感光组件和摄像模组 Download PDF

Info

Publication number
WO2019076352A1
WO2019076352A1 PCT/CN2018/110912 CN2018110912W WO2019076352A1 WO 2019076352 A1 WO2019076352 A1 WO 2019076352A1 CN 2018110912 W CN2018110912 W CN 2018110912W WO 2019076352 A1 WO2019076352 A1 WO 2019076352A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive member
light
metal bracket
photosensitive
molded base
Prior art date
Application number
PCT/CN2018/110912
Other languages
English (en)
French (fr)
Inventor
赵波杰
梅哲文
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN201880057898.2A priority Critical patent/CN111345021A/zh
Publication of WO2019076352A1 publication Critical patent/WO2019076352A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/22Undercarriages with or without wheels with approximately constant height, e.g. with constant length of column or of legs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/006Filter holders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the invention relates to the field of a camera module, in particular to a photosensitive component and a camera module based on a filter element mounted by a metal bracket.
  • the camera module is one of the indispensable components of the smart electronic device, such as but not limited to smart phones, cameras, computer devices, wearable devices and the like.
  • the requirements for camera modules are getting higher and higher.
  • camera modules must adapt to development, and more and more require multi-functional integration, thin and light, and miniaturization, so that the camera module is assembled.
  • the volume required for the intelligent electronic device can be correspondingly reduced, and the imaging requirements of the device for the camera module are met. Therefore, camera module manufacturers continue to design and manufacture camera modules that meet these requirements.
  • the molding and packaging process is a packaging technology that has been developed on the basis of the traditional COB (Chip on Board) packaging process.
  • FIG. 1A it is a circuit board assembly prepared by an existing molding and packaging process.
  • a molding portion 1 is packaged on a circuit board 2 by means of a molded package to integrally cover at least a portion of the circuit board and electronic components assembled to the circuit board, such as a photosensitive chip.
  • Passive electronic components and the like, and a filter 4 is mounted on the top side of the molding part 1, thereby reducing the space occupied by the electronic components of the camera module and the reserved safety space reserved during the assembly process. And solve the problem that the dust attached to the electronic component affects the imaging quality of the camera module.
  • this technical solution has also brought about some new technical problems.
  • the filter 4 is an extremely important component in the camera module, which can filter the stray light such as infrared light in the light, so that the final imaging effect is better than the visual effect observed by the human eye. Since the filter 4 is a fragile and highly sensitive precision electronic device, it accounts for a large proportion in the cost of the entire camera module. Therefore, in the molding and packaging technology, the filter 4 becomes a difficult point of implementation.
  • the molding portion 1 prepared by the molding and packaging process is integrally provided with electronic components mounted on the circuit board 2, and the electronic components are utilized, compared to the conventional COB packaging method. Spatial location. Therefore, the installation space provided to the filter 4 by the molding portion 1 is correspondingly increased as compared with the lens holder in the conventional COB packaging technology.
  • the filter 4 is selected to be directly mounted to the corresponding region of the top surface of the molding portion, the area required for the filter 4 is large. Accordingly, the cost of the filter is proportional to the area required, and as the area of the filter increases, the preparation accuracy is more difficult to control and its hardness is correspondingly reduced. Therefore, when the area required for the filter 4 is increased, it means not only an increase in cost, but also an increase in the difficulty of installation.
  • the filter 4 is directly assembled to the top side of the molding portion 1 to hold the filter 4 above the photosensitive region of the photosensitive chip 3 through the molding portion 1.
  • the filter 4 is made of a fragile material, so that when the filter 4 is assembled to the molding portion 1, the surface of the filter 4 is unevenly loaded and is liable to be broken or damaged.
  • an additional filter element mount 5 is provided to improve the mounting condition of the filter 4.
  • the filter element lens holder 5 is mounted on the top surface of the molding portion 1 to mount the filter through the filter element lens holder 5 instead of the molding portion 1.
  • Sheet 4. Accordingly, the required size of the filter 4 can be reduced by adjusting the size of the mounting groove of the filter element holder 5, and the filter 4 can be prevented from being broken by the supporting force provided by the filter element holder 5.
  • the conventional filter element lens holder 5 is produced by an integral molding process such as a molding process or an injection molding process, and has a large thickness.
  • the height of the molding portion 1 is 0.3 mm
  • the height of the circuit board 2 is 0.2 mm
  • the filter The height of the light element mirror mount 5 is about 0.3 mm, which is more than half of the overall height of the wiring board and the molded portion. Therefore, the filter element lens holder 5 improves the overall height of the circuit board assembly, so that the optical back focus of the camera module is correspondingly improved, and reducing the optical back focus is a pursuit in the optical design of the camera module.
  • An object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the camera module includes a metal bracket, and the metal bracket cooperates with a molded base of the camera module, thereby Provide support for other components of the camera module.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the metal bracket is mounted at a corresponding position on a top surface of the molded base, instead of the molded base
  • the filter elements of the camera module provide a suitable mounting location.
  • Another object of the present invention is to provide a metal stent-based photosensitive assembly and a camera module, wherein the metal bracket is made of a metal material having a relatively thin thickness relative to an existing filter element lens holder. So that the overall height dimension of the camera module can be reduced.
  • Another object of the present invention is to provide a metal stent-based photosensitive assembly and a camera module, wherein the metal bracket is made of a metal material having a relatively thin thickness relative to an existing filter element lens holder. So that the optical back focus of the camera module can be reduced.
  • Another object of the present invention is to provide a metal stent-based photosensitive assembly and a camera module, wherein in some embodiments, the outer edge of the metal bracket is inside the outer edge of the top surface of the molded base, thereby avoiding The metal bracket is broken by an external force of the side portion and further may cause damage of the filter element.
  • Another object of the present invention is to provide a metal stent-based photosensitive assembly and camera module, wherein in some embodiments, a portion of the outer edge of the metal stent is located on the outer edge of the top surface of the molded base and the lens/ Between the outer edges of the driver/fixed lens barrel, thereby preventing the metal bracket from being broken by the external force of the side portion to further cause damage of the filter element, and conforming to the edge of the electronic device when mounted on the electronic device Curved or sloping surface.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein an outer surface of the metal bracket is formed with a light absorbing layer to prevent incident light reflected by the metal bracket from being incident on the camera module.
  • the photosensitive area of the group affects the image quality.
  • Another object of the present invention is to provide a metal stent-based photosensitive assembly and a camera module, wherein a light-shielding region is formed between the light-absorbing layer on the outer surface of the metal bracket and the inner surface of the molded base, thereby being Light reflected from the inner surface of the molded base to the light absorbing layer is absorbed by the light absorbing layer, thereby preventing it from reaching the photosensitive member to affect image quality.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein in some embodiments, the circuit board electronic component is higher than the lead, and the step surface may be no higher than the line The height of the electronic components of the board is not lower than the height of the leads, thereby further moving the position of the metal bracket down.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the camera module is provided with a better light passage through the setting of the light passage area of the metal bracket to The angle of the structure prevents stray light from the outside from entering the photosensitive area of the camera module.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the metal bracket is made of a metal material, so that the metal is baked and cured during the subsequent curing of the camera module.
  • the bracket is less susceptible to deformation to effectively ensure that the relative positional relationship between the metal bracket and the device mounted to the metal bracket remains stable.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the metal bracket is made of a metal material, which has good thermal conductivity, so as to work in the subsequent camera module. During the process, heat generated on the circuit board can be conducted and dissipated through the metal bracket.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the metal bracket is formed with an air escaping hole, and the air escaping hole is adapted to provide air in the process of baking and fixing the camera module.
  • the port prevents the enclosed space gas in the camera module from being damaged or broken due to thermal expansion.
  • Another object of the present invention is to provide a metal stent-based photosensitive assembly and a camera module, wherein in some embodiments, the metal bracket has a support slot, and the filter element is adapted to be mounted to the filter component The support groove is such that the position of the filter element is relatively depressed.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the height of the support groove is slightly larger than the thickness of the filter element, so that when the filter element is mounted on the filter The filter element does not protrude from the top surface of the metal holder when the support groove of the optical element is disposed, thereby effectively preventing a contact between the filter element and the last optical lens of the camera module .
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the metal bracket made of a metal material has a relatively high flatness, so that when the optical lens of the camera module or A driver or a fixed barrel is supported on the metal holder instead of the molded base to facilitate mounting and calibration of the optical lens or the driver.
  • Another object of the present invention is to provide a metal stent-based photosensitive assembly and a camera module, wherein the filter element is required when the filter element is assembled to the molded base by the metal bracket
  • the size can be reduced accordingly to reduce costs.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the metal bracket is made of a metal material, the processing technology is relatively mature and simple, and the metal material cost is relatively low.
  • Another object of the present invention is to provide a metal bracket-based photosensitive assembly and a camera module, wherein the metal brackets of different specifications can be prepared by a metal processing process, such as a stamping process, to adapt to different camera modules for different metal brackets. Requirements.
  • the present invention provides a photosensitive assembly comprising:
  • the photosensitive element is electrically connected to the circuit board;
  • molded base wherein the molded base is integrally formed on the wiring board and the photosensitive member
  • a metal bracket wherein the metal bracket is mounted on a top surface of the molded base for mounting the filter element, wherein the filter element, the metal bracket, and the molded base are A light window is formed to provide a light path for the photosensitive element.
  • the metal bracket comprises an annular body, wherein the light-passing aperture is defined by the annular body, the filter element is mounted on a top side of the metal bracket, and The inside of the molded base extends.
  • the outer edge of the metal bracket is located inside the outer periphery of the molding base.
  • the metal bracket comprises an annular body, wherein the light-passing aperture is defined by the annular body, and the filter element is mounted on a bottom side of the metal bracket.
  • the metal bracket further includes at least one inner extension arm and at least a lower sinking arm, wherein the sinking arm and the inner extension arm form a sunken mounting structure, wherein the sinking arm
  • the annular body extends integrally and longitudinally to reduce a height of a mounting position of the filter element, wherein the inner extension extends integrally and laterally from the sinking arm to provide the filter element Horizontal mounting position.
  • the metal bracket includes four integrally connected inner extension arms and four integrally connected the sinking arms, wherein each of the inner extension arms and each of the corresponding sinkers The arms extend at different locations to form the sunken mounting structure.
  • the size of the light-passing aperture is smaller than the size of the light window.
  • the inner side surface of the light-passing aperture is an inclined surface, wherein the inclined surface faces the photosensitive element.
  • the metal bracket further includes a light absorbing layer, wherein the light absorbing layer is disposed on an outer surface of the metal bracket.
  • the light absorbing layer is disposed to cover the entire outer surface of the metal bracket.
  • the light absorbing layer is disposed in a region of the metal bracket adjacent to the light passing opening.
  • the light absorbing layer is disposed on a bottom surface and/or a top surface of the filter element.
  • the filter element has a light shielding layer to limit a light transmission range of the filter element through the light shielding layer, wherein the light shielding layer is disposed on a bottom surface of the filter element And / or top surface.
  • the metal bracket has an escape hole, wherein the escape hole communicates with the filter element, the metal bracket, and an internal space formed by the molded base.
  • the escape hole has a communication area and a mouth area, wherein the escape hole portion overlaps with the filter element to form the communication area and the sealing area sealing area, wherein The communication zone extends into the formed enclosed space for gas conduction, wherein the sealing zone corresponds to the top surface of the molded base for encapsulation sealing.
  • the sealing region extends integrally with the communication region, and an opening size of the sealing region is larger than an opening size of the communication region.
  • the opening depth of the sealing region is greater than the opening depth of the communicating region.
  • a top surface of the molded base has a stepped surface on an inner side, wherein the stepped surface is formed inside the molded base for supporting the metal bracket, wherein The annular body portion is overlapped and attached to the step surface.
  • an outer circumference of the metal bracket is located inside an outer peripheral portion of the optical lens, and a length of the metal bracket protruding from an outer peripheral portion of the molded base is smaller than a corresponding optical lens protrusion. The length of the molded base.
  • the metal bracket has a thickness ranging from 0.03 to 0.2 mm.
  • the present invention further provides a camera module, including:
  • the camera module further includes a driving component, wherein the driving component drives the optical lens to move to achieve optical focusing.
  • the outer edge of the metal bracket is located between the outer edge of the molded base and the outer edge of the drive element.
  • the present invention further provides an array camera module, including:
  • At least two optical lenses At least two optical lenses
  • At least one circuit board At least one circuit board
  • At least two photosensitive elements wherein the photosensitive elements are respectively electrically connected to the circuit board;
  • At least one molded base wherein the integral is formed on the wiring board and the photosensitive member, and covers the wiring board and a rim portion of each of the photosensitive members, wherein the molded base has a corresponding a light window of the photosensitive path of the photosensitive element;
  • At least one metal bracket wherein the metal bracket is mounted on a top surface of the molded base for mounting at least two filter elements, wherein the metal bracket has at least two light apertures corresponding to the light window Wherein the filter element, the metal holder and the light window of the molded base provide a light path for each of the photosensitive elements.
  • the circuit board is implemented as an integrated circuit board.
  • the circuit board is implemented as a split type circuit board, wherein the circuit boards corresponding to the respective photosensitive elements are independent of each other.
  • the molded base is embodied as an integrally molded base.
  • the molded base is implemented as a split molded base, wherein the molded bases corresponding to the respective photosensitive elements are independent of each other.
  • the metal bracket is embodied as a one-piece metal bracket.
  • the metal bracket is embodied as a split metal bracket.
  • the filter element is embodied as a split filter element.
  • the filter element is embodied as an integral filter element.
  • FIG. 1A is a cross-sectional view of a circuit board assembly of a camera module according to a prior art.
  • FIG. 1B is a cross-sectional view of a circuit board assembly of a camera module according to another prior art.
  • FIG. 2 is a cross-sectional view of a camera module in accordance with a preferred embodiment.
  • FIG 3 is a cross-sectional view of a camera module according to a variant embodiment of the preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optical path propagation of a camera module according to the above preferred embodiment of the present invention. .
  • FIG. 5 is a cross-sectional view showing another modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing another modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing another modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing another modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing another modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • Figure 10A is a cross-sectional view showing another modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • Figure 10B is a schematic cross-sectional view showing another modified embodiment of the present invention.
  • Figure 10C is a schematic cross-sectional view showing another modified embodiment of the present invention.
  • Figure 10D is a schematic cross-sectional view showing another modified embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a camera module in accordance with a second preferred embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing another modified embodiment of the camera module according to the second preferred embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a camera module in accordance with a third preferred embodiment of the present invention.
  • FIG. 14 is a perspective exploded view of a camera module according to a fourth preferred embodiment of the present invention.
  • Figure 15 is a perspective exploded view of a modified embodiment of the camera module according to the fourth preferred embodiment.
  • Fig. 16A is a schematic view showing one of manufacturing steps of the image pickup module in the above preferred embodiment.
  • FIG. 16B is a schematic diagram showing the second manufacturing step of the camera module in the above preferred embodiment.
  • Fig. 16C is a schematic view showing the third manufacturing step of the image pickup module in the above preferred embodiment.
  • 17A is a schematic view showing the fourth manufacturing step of the camera module in the above preferred embodiment.
  • 17B is a schematic view showing the fifth manufacturing step of the camera module in the above preferred embodiment.
  • Fig. 18 is a view showing the sixth manufacturing step of the image pickup module in the above preferred embodiment.
  • Fig. 19 is a view showing the seventh manufacturing step of the image pickup module in the above preferred embodiment.
  • Fig. 20 is a view showing the eighth manufacturing step of the image pickup module in the above preferred embodiment.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, while in other embodiments, the element The number may be plural, and the term “a” cannot be construed as a limitation on the quantity.
  • a camera module according to a first preferred embodiment of the present invention is illustrated, wherein the camera module can be applied to various electronic devices, such as but not limited to smart phones, wearable devices, and computer devices.
  • the television module, the vehicle, the camera, and the monitoring device cooperate with the electronic device to implement functions such as collecting and reproducing the target image.
  • the camera module includes a photosensitive component 10 and an optical lens 20, wherein the optical lens 20 is located in a photosensitive path of the photosensitive component 10 to collect a target to be measured through the optical lens 20.
  • Image information
  • the camera module is a fixed focus camera module, that is, the focal length between the optical lens 20 and the photosensitive member 10 is not adjustable.
  • the optical lens 20 is assembled to the top of the photosensitive member 10 as a lens bearing member through a lens barrel 21. It can be understood that the size of the camera module is continuously reduced as the packaging process is improved.
  • the optical lens 20 is assembled to the photosensitive component 10 in a "naked lens" manner. At the top, that is, at this time, the lens barrel 21 or the lens bearing member is not required, and the optical lens 20 is directly mounted to the top region of the photosensitive member 10 as shown in Fig. 10D.
  • the camera module can also be implemented as a focus camera module, that is, in this embodiment, the camera
  • the module further includes a driving component 30 mounted on a top side of the photosensitive component 10, the optical lens 20 being assembled to the driving component 30 such that when the driving component 30 is driven, The relative positional relationship between the optical lens 20 and a photosensitive element 12 of the photosensitive member 10 is changed, in such a manner as to realize the function of optical focusing.
  • the driving element 30 includes, but is not limited to, a voice coil motor, a stepping motor, a MEMS, and the like.
  • the photosensitive member 10 includes a wiring board 11, a photosensitive member 12, and a molding base 13.
  • the photosensitive element 12 is conductively connected to the wiring board 11, wherein light from the object to be measured passes through the photosensitive assembly 10 and reaches the photosensitive element 12 to further pass the photosensitive element 12
  • the reaction converts the optical signal of the target to be converted into an electrical signal recognizable and operable by the electronic device, and realizes functions such as image acquisition and reproduction of the target to be measured.
  • the molding base 13 is integrally formed on the wiring board 11 and the photosensitive member 12, and covers at least a portion of the wiring board 11 and the photosensitive member 12 such that the photosensitive member 10 and the
  • the camera module has a compact and compact structure.
  • the photosensitive member 12 can be mounted to a corresponding region of the wiring board 11 by, for example, SMT (Surface Mounting Technology), and further realized by a set of leads 14.
  • SMT Surface Mounting Technology
  • the photosensitive member 10 further includes a set of leads 14 extending between the photosensitive member 12 and the wiring board 11 to pass the The lead 14 turns on the wiring board 11 and the photosensitive member 12.
  • the way of the forward "gold wire” may be selected, that is, the lead wire 14 extends from the circuit board 11 to the photosensitive element 12, or the reverse “gold wire” is selected.
  • the manner in which the lead wire 14 extends from the photosensitive member 12 to the wiring board 11 and conducts the photosensitive member 12 and the wiring board 11 is not limited by the present invention.
  • the manner in which the photosensitive element 12 is mounted on the circuit board 11 may be by other means, such as embedding, FC (Flip Chip), and the like. It will be appreciated by those skilled in the art that in the present invention, the manner of mounting and conducting between the photosensitive member 12 and the wiring board 11 is not a limitation of the present invention.
  • the molded base 13 is integrally formed on the photosensitive member 12 and the wiring board 11, and covers at least a portion of the photosensitive member 12 and a series of the wiring board 11 mounted thereon.
  • the electronic component not only effectively reduces the overall size of the photosensitive member 10, but also effectively prevents dust and foreign matter from adhering to the electronic component from contaminating the photosensitive member 12 in a conventional camera module. Affects imaging results.
  • the molding base 13 includes a molded base body 131 and a light window 132 formed by the molded base body 131, wherein the light window is a closed space and corresponds to At least the photosensitive area of the photosensitive element 12 is such that light from the outside is allowed to enter the photosensitive element 12 through the light window 132 to complete image acquisition.
  • the molded base body 131 has a closed annular structure to provide a closed inner environment for the photosensitive element 12 to prevent external stray light from entering the photosensitive light from the side. Element 12.
  • the molded base body 131 has a centrally symmetrical structure having an inner surface 1311 defined as an inner surface 1311 of the molded base.
  • the molded base inner surface 1311 may extend upward from the wiring board 11 and the photosensitive member 12 at a fixed slope, or the molded base inner surface 1311 may have no slope from the wiring board 11 and
  • the photosensitive element 12 extends upwardly, that is, the molded base inner surface 1311 is substantially perpendicular to the wiring board 11.
  • the molded base inner surface 1311 has a plurality of sections of surface wherein the sections of the sections are not in the same planar extent such that the molded base
  • the 13 has a multi-segment structure, for example, it may have a sloped extension and a vertical extension.
  • the photosensitive assembly 10 further includes a filter element 40 disposed on the optical lens 20 and the photosensitive element 12 For filtering the optical signal of the target to be measured collected by the optical lens 20.
  • the filter element 40 is held on the photosensitive path formed by the optical lens 20 and the photosensitive element 12, so that light passing through the optical lens 20 is filtered by the filter element 40,
  • the light incident on the photosensitive element 12 is free from stray light such as infrared light, so that the final imaging effect is closer to the visual effect of the human eye.
  • the filter element 40 is exemplified by, but not limited to, an infrared cut filter, a blue glass filter, and a wafer level infrared cut filter. In other embodiments, it may also be a full or visible light filter.
  • the photosensitive assembly 10 further includes a metal bracket 50 disposed on the filter element 40 and the molding base. Between the seats 13, the mounting conditions and the installation environment of the filter element 40 are improved by the metal bracket 50. More specifically, the metal bracket 50 is mounted to the top surface of the molded base 13 for mounting the filter element 40. Therefore, in the preferred embodiment of the invention, the filter element 40 is not directly contact-mounted to the top surface of the molding base 13, so that the molding quality and size of the top surface of the molding base 13 There is no direct impact on the installation of the filter element 40.
  • the metal bracket 50 provides a mounting position for the filter element 40 instead of the molding base 13, and therefore, the mounting environment of the filter element 40 And the mounting conditions depend on the characteristics of the metal bracket 50.
  • the metal bracket 50 has a thickness of 0.03-0.2 mm, and generally can be lowered to a height of 0.1 mm or less, for example, about 0.08 mm, thereby significantly reducing the height of the photosensitive member.
  • the metal bracket 50 is made of a metallic material having a relatively high flatness.
  • the force is evenly distributed between the contact faces of the filter element 40 and the metal bracket 50, thereby effectively reducing the filter element 40, The probability of breakage or damage due to uneven force during installation.
  • the filter element 40 and the metal bracket 50 are disposed to overlap each other, and therefore, the flatness of the filter element 40 depends on the flatness of the metal bracket 50.
  • the filter element 40 has a relatively high flatness such that light passing through the optical lens 20 can be effectively filtered at the filter element 40.
  • the metal bracket 50 has a closed planar annular structure including an annular body 51 and a light-passing opening 52 formed by the annular body 51, wherein the metal bracket 50 is mounted on the
  • the annular body 51 is partially overlapped to the top surface of the molding susceptor 13, and the light vent 52 corresponds to the molded base body 131.
  • Light window 132 to form a complete light path.
  • the annular body 51 is partially overlapped to the top surface of the molded base 13 and extends toward the inner side of the molded base 13 so that the metal bracket 50 is mounted
  • the required area of the filter element 40 of the annular body 51 can be correspondingly reduced to reduce cost and ease of installation.
  • the light-passing opening 52 of the metal bracket 50 corresponds to the light window 132 of the molding base 13, thereby adjusting the characteristics of the light-passing opening 52 of the metal bracket 50, and the The photosensitive angle and the photosensitive range of the photosensitive member 12 are described. More specifically, in the preferred embodiment of the present invention, the metal bracket 50 is partially suspended in support of the top surface of the molded base 13, and therefore, the light passage 52 of the metal bracket 50 The size is slightly smaller than the light window 132 of the molded base 13, so that the light passing opening 52 can further limit the photosensitive angle and the photosensitive range of the photosensitive member 12. Preferably, as shown in FIG.
  • the inner surface of the light-passing opening 52 is an inclined surface 511, and the inclined surface 511 faces the photosensitive element 12, and in this way, the light-input angle and the light-input range are defined.
  • the light-passing opening 52 may be processed by a metal etching process or a metal etching process, so that the inclined surface 511 of the light-passing opening 52 has a relatively high leveling. degree.
  • the light-passing port 52 of the filter element 40 can also be prepared by a metal stamping process, however, the light-passing port may be generated because a relatively large burr may be generated.
  • the inner edge of 52 and the inclined surface 511 need to be further finished.
  • the outer edge of the metal bracket 50 is located on the molded base.
  • the metal bracket 50 is prevented from being subjected to a bending force by the side of the metal bracket 50 during subsequent installation and use, resulting in a bending force causing the filter element 40.
  • Broken or broken That is, in the preferred embodiment of the invention, the outer edge of the metal bracket 50 does not protrude beyond the outer periphery of the molded base 13, such that the metal bracket is used during subsequent installation and use.
  • the side of the 50 is always in an unstressed state to avoid damage of the filter element 40 due to deformation of the metal bracket 50.
  • the outer edge of the metal bracket 50 is adjacent to the outer periphery of the molded base 13, so that, on the one hand, the metal bracket 50 can be stably mounted to the molding.
  • the top surface of the pedestal 13 (relatively large contact area), on the other hand, the molded pedestal 13 can effectively block external installations, such as the housing of the smartphone, and the side of the metal bracket 50 The touch is such that the side of the metal bracket 50 is always in an unstressed state, so that the filter element 40 can be effectively prevented from being broken or damaged by the metal bracket 50 being bent.
  • the edge of the metal bracket 50 is close to the outer circumference of the molding base 13, that is, the metal bracket 50 covers almost all areas of the top surface of the molding base 13, so that In the subsequent assembly of the optical lens 20, the optical lens 20 can be directly assembled to the metal bracket 50 instead of being conventionally assembled to the top surface of the molded base 13.
  • the metal bracket 50 is made of a metallic material that has a relatively high flatness and, thus, facilitates calibration and adjustment of the optical lens 20. This part will be explained in more detail in the description of the optical lens 20 described later.
  • the metal bracket 50 may be disposed on the top surface of the molding base 13 and located inside the optical lens 20, At this time, the optical lens 20 is assembled to the top surface of the molded base 13, and the metal bracket 50 is effectively isolated from the inner side of the optical lens 20. That is, in the modified embodiment of the present invention, the metal bracket 50 does not provide the mounting support surface for the optical lens 20.
  • a modified embodiment of the metal bracket 50 has a recessed mounting structure 53 such that the mounting position of the filter element 40 is deep into the light window 132. That is, in this modified embodiment of the invention, the metal bracket 50 has a three-dimensional structure. More specifically, in this embodiment of the invention, the metal bracket 50 includes an annular body 51, at least one inner extension arm 531 and at least a lower sinking arm 532, wherein the sinking arm 532 and the inner extension The arm 531 forms the sinking mounting structure 53. As shown in FIG.
  • the sinker arm 532 extends integrally and longitudinally from the annular body 51 to reduce the height of the mounting position of the filter element 40, so that the filter element 40 is relatively far from the
  • the optical lens 20 prevents contact between the last lens of the optical lens 20 and is closer to the photosensitive element 12 to facilitate filtering of stray light.
  • the inner extension arm 531 is steerably and laterally extended from the sinker arm 532 to provide a horizontally mounted mounting position for the filter element 40 such that the filter element 40 and the photosensitive element 12
  • the optical axes are identical.
  • the metal bracket 50 includes four integrally connected inner extension arms 531 and four integrally connected the lowering arms 532, each of the inner extension arms 531 and each The lower arm 532 extends at different locations to form the sunken mounting structure 53.
  • the metal bracket 50 is made of a metal material, it has relatively good ductility. Therefore, in the process of actually forming the metal bracket 50, for example, by a metal stamping process, the metal bracket 50 can be stamped to form various height differences to meet the requirements of different specifications of the camera module. Therefore, it is not necessary to replace the molding die of the filter member 40 of the filter member 40 in the prior art, so that the filter member 40 of different specifications can be prepared, so that the cost can be further reduced.
  • the metal bracket 50 is made of a metal material having a relatively thin thickness, so that the height of the camera module can be further reduced as a whole.
  • the thickness of the metal bracket 50 made of a metal material can be greatly reduced to reduce the optical of the camera module compared to the existing filter member 40 formed by the injection molding process. Back focus and its overall height.
  • the metal bracket 50 is made of a metal material such as, for example, an iron-based, aluminum-based or copper-based material or the like.
  • a metal material such as, for example, an iron-based, aluminum-based or copper-based material or the like.
  • it is implemented as a steel sheet.
  • metallic materials have higher light reflection properties and produce more reflected stray light.
  • a light absorbing layer 54 is further disposed in a corresponding region between the filter elements 40 to prevent light from being reflected on the surface of the metal holder 50 to enter the photosensitive element 12, Thereby affecting the final imaging effect.
  • the light absorbing layer 54 covers the outer surface of the metal bracket 50 such that the light passing through the optical lens 20 partially passes.
  • the light passing opening 52 enters the photosensitive element 12, and light partially falling on the surface of the metal bracket 50 is absorbed by the light absorbing layer 54. In this way, the surface of the metal bracket 50 is effectively prevented from falling.
  • the light rays are reflected into the photosensitive member 12 a plurality of times, affecting the image quality.
  • the light absorbing layer 54 is simultaneously disposed on the bottom surface and the top surface of the filter element 40, so that the stray light falling on the top surface of the metal bracket 50 and incident on the metal The stray light on the bottom surface of the bracket 50 can be effectively absorbed.
  • the stray light incident on the inner surface of the molded base 13 and reflected to the bottom surface of the metal bracket 50 can also be absorbed by the light absorbing layer 54, so that the inner surface of the molded base 13 and the metal bracket A light-shielding region is formed between the light-absorbing layers 54 on the bottom surface of the 50.
  • the light absorbing layer 54 is disposed to cover the entire outer surface of the metal bracket 50.
  • the light absorbing layer 54 may be disposed only on the metal bracket 50 adjacent to the light passing opening 52 . a region to reduce the probability of the reflected stray light entering the photosensitive element 12.
  • the light absorbing layer 54 can be formed on a corresponding region of the metal bracket 50 by a plating or filming process.
  • the manner in which the light absorbing layer 54 is formed is not a limitation of the present invention. It should be appreciated that the process of forming the light absorbing layer 54 is performed after the metal stent 50 is stamped to prevent the light absorbing layer 54 from being scratched during stamping of the metal stent 50 to make it integral. destroyed.
  • the light absorbing layer 54 is made of a black absorbing opaque material.
  • the filter element 40 includes a filter element body 41 and a light shielding layer 42, which can be selected for the filter.
  • a corresponding light shielding layer 42 is additionally disposed in a corresponding region of the element 40 to limit the light transmission range of the filter element 40 through the light shielding layer 42.
  • the light shielding layer 42 is formed on a top surface of the filter element 40 such that the filter element body 41 of the filter element 40 has a periphery An outer peripheral portion 411 and a filter portion 412, wherein light collected by the optical lens 20 can pass through the filter portion 412 into the photosensitive element 12. Therefore, the relative positional relationship between the outer peripheral portion 411 and the filter portion 412 can be set to further define the lighting range and the lighting angle.
  • the light shielding layer 42 may be made of a light absorbing material or a material capable of reducing reflection, and the manufacturing process may be a photoresist or silk screen printing process, and the black absorption is not A light transmissive material is formed on the surface of the filter element main body 41.
  • the position of the outer peripheral portion 411 can be adjusted accordingly according to actual needs.
  • the light shielding layer 42 may be formed on a bottom surface of the filter element body 41 of the filter element 40, as shown in FIG. 10B. That is, in this embodiment, the bottom surface of the filter element 40 is provided with a light shielding layer 42.
  • the inner edge of the light shielding layer 42 exceeds or aligns with the inner edge of the metal bracket 50 to define the size of the light passing region of the camera module. The stray light incident on the inner surface of the molded base 13 is absorbed when being reflected to the light shielding layer 42, thereby reducing stray light reaching the photosensitive member 12.
  • the light shielding layer 42 may be simultaneously disposed on the front and back sides of the filter element 40, and preferably, the light shielding layer formed on the front and back sides. 42 corresponds to further ensuring that the filter element 40 can meet certain stray light requirements by a double insurance mechanism.
  • the filter element 40 when the metal bracket 50 is adhered to a corresponding position of the top surface of the molded base 13 by a sticky medium such as glue, and the filter element 40 is mounted on After the metal holder 50, the photosensitive member 10 is subjected to baking curing to fix the metal holder 50 to the molding base 13. It is to be noted that the filter element 40, the metal bracket 50 and the molding base 13 form a closed space, that is, the light window, so as to be located in the sealed space during baking curing. The gas impinges on the filter element 40 due to thermal expansion, which may cause the filter element 40 to be broken or broken.
  • the metal bracket 50 is further provided with an air escaping hole 55, wherein the air escaping hole 55 and the The sealed space formed by the light window 132 is electrically connected, so that the heat-expanded gas can be diffused to the outside through the escape hole 55 during the baking and solidification, so as to effectively prevent the internal air pressure from being surged to cause the filtering. Unnecessary impact of element 40.
  • the escape hole 55 is disposed adjacent to the light passing opening 52 of the metal bracket 50, and when the metal bracket 50 is attached to the molding The escape hole 55 is in communication with the sealed space formed by the light window 132 when the corresponding position of the susceptor 13 is at the same position. Further, when the filter element 40 is mounted on the metal bracket 50, the escape hole 55 is partially covered by the filter element 40, partially exposed to the outside, so that the light window 132 is formed. The gas in the confined space can be diffused to the outside through the naughty port area exposed to the outside.
  • the escape hole 55 is preferably reclosed to prevent external dust from penetrating into the photosensitive member 10 through the naughty port, thereby affecting image quality.
  • the escape hole 55 has a communication zone 551 and a mouth zone 552.
  • the escape hole 55 partially overlaps the filter element 40 to form the communication zone 551 and the seal zone 552, wherein the communication A region 551 extends into the enclosed space formed by the light window 132 for gas conduction, the sealing region 552 corresponding to the top surface of the molded base 13 for encapsulation sealing.
  • the sealing area 552 extends integrally with the communication area 551, and the opening size of the sealing area 552 is larger than the opening size of the communication area 551 to facilitate subsequent
  • the sealing area 552 is glued to fix the seal. More preferably, the opening depth of the sealing region 552 is greater than the opening depth of the communicating region 551 to prevent the glue applied to the sealing region 552 from overflowing to the sealed space, thereby preventing the photosensitive member 12 from being contaminated. .
  • the escape passage may be disposed on top of the molded base 13. More specifically, the escape passage is recessedly formed at the top of the molding base 13 such that one end of the escape passage communicates with a closed space formed by the light window 132, the escape passage The opposite end is connected to the outside, so that during the baking and fixing process, the gas located in the sealed space formed by the light window 132 can circulate along the escape passage to prevent the air pressure from increasing. The original price caused damage.
  • the escape passage is provided on a soft board side of the photosensitive member 10 because the molded base 13 on the side is relatively narrow and is easy to be described. Processing of escape routes.
  • the metal bracket 50 is made of a metal material, so that the metal bracket 50 is not easily deformed during baking curing to effectively ensure the metal bracket 50 and the metal bracket.
  • the relative positional relationship between the devices of the holder 50 remains stable.
  • the optical lens 20 is assembled on the top side of the molding base 13.
  • the metal bracket 50 can be assembled to the metal bracket 50 instead of the molded base 13. Therefore, the molding quality of the molded base 13 has no direct influence on the mounting and calibration of the optical lens 20.
  • the metal bracket 50 is made of a metal material and has a relatively high flatness
  • the optical lens 20 can be assembled to the metal bracket 50 by mechanical fixing, and has a relatively high degree. Accuracy, which can greatly reduce the installation and calibration costs of the optical lens 20.
  • the optical lens 20 can also be assembled to the metal bracket 50 by means of Active Alignment to ensure the installation accuracy of the optical lens 20.
  • the metal bracket 50 when the optical lens 20 is assembled to the metal bracket 50, the metal bracket 50 is confined between the molding base 13 and the optical lens 20 to prevent, during subsequent use.
  • the metal bracket 50 is displaced due to vibration of the camera module.
  • the optical lens 20 is assembled to the metal bracket 50 by a driving element 30.
  • the metal bracket 50 having a relatively high degree of flatness also facilitates the mounting and alignment of the drive member 30.
  • the metal bracket 50 can provide a corresponding solution for solving the dual lens installation calibration of the dual camera module.
  • a camera module according to a second preferred embodiment of the present invention is illustrated, wherein the structure of the camera module shown in the second preferred embodiment is substantially as shown in the first preferred embodiment.
  • the structure is identical except for the mounting position of the metal bracket 50A.
  • the top surface of the molded base 13A has a stepped surface 133A on the inner side, and the stepped surface 133A is formed on the molded base.
  • the inside of the 13A is for supporting the metal bracket 50.
  • the metal bracket 50A includes an annular body 51A and a light passing opening 52A formed by the annular body 51, wherein the annular body 51A portion is mounted when the metal bracket 50A is mounted on the molding base 13A.
  • the stepped surface 133A of the molding base 13A is overlapped, and the light-passing opening 52A corresponds to the light window 132A of the molded base body 131A to form a complete light path. .
  • the metal bracket 50A is mounted to the stepped surface 133A such that the metal bracket 50A is spaced away from the optical lens 20A, thereby effectively avoiding the filter element.
  • a touch occurs between 40A and the last lens of the optical lens 20A.
  • the use of the circuit board electronic component is higher than the characteristics of the lead, the step surface 133A may be no higher than the height of the electronic component of the circuit board and not lower than the height of the lead wire, thereby making the metal bracket The position of 50A is further moved down.
  • the light-passing opening 52A of the metal bracket 50A corresponds to the light window 132A of the molding base 13A, thereby adjusting the characteristics of the light-passing opening 52A of the metal bracket 50A, and the photosensitive light can be changed.
  • the photosensitive angle and the photosensitive range of the element 12A More specifically, in the preferred embodiment of the present invention, the metal bracket 50A is partially supported by the stepped surface 133A of the molded base 13A, and therefore, the light passing opening 52A of the metal bracket 50A
  • the size is slightly smaller than the light window 132A of the molded base 13A, so that the light passing port 52A can further restrict the photosensitive angle and the photosensitive range of the photosensitive element 12A.
  • the inner side surface of the light-passing opening 52A is an inclined surface 511A, and the inclined surface 511A faces the photosensitive element 12A, in such a manner that the light incident angle and the light-in entering range correspond to the photosensitive element 12A. Photosensitive area.
  • the metal bracket 50A is mounted to the stepped surface 133A of the molded base 13A such that the metal bracket 50A is protectively located at the The inside of the molded base 13A is prevented in such a manner that the metal bracket 50A is subjected to a bending force due to compression or impact on its side during subsequent mounting and use, resulting in the filtering. Element 40A is broken or chipped.
  • the metal bracket 50A has a sinking mounting structure 53A such that the mounting position of the filter element 40A penetrates the light window. 132A. That is, in this modified embodiment of the invention, the metal bracket 50A has a three-dimensional structure. More specifically, in this embodiment of the invention, the metal bracket 50A includes an annular body 51A, at least one inner extension arm 531A and at least a lower arm 532A, wherein the sinker arm 532A and the inner extension The arm 531A forms the sinking mounting structure 53A. As shown in FIG.
  • the sinker arm 532A integrally extends longitudinally from the annular body 51A to reduce the height of the mounting position of the filter element 40A, so that the filter element 40A is relatively far from the
  • the optical lens 20A prevents contact between the last lens of the optical lens 20A and is closer to the photosensitive element 12A to facilitate filtering of stray light.
  • the inner extension arm 531A is steered integrally laterally from the sinker arm 532A to provide a horizontally mounted mounting position for the filter element 40A such that the filter element 40A and the photosensitive element 12A
  • the optical axes are identical.
  • the metal bracket 50A includes four integrally connected inner extension arms 531A and four integrally connected said sinking arms 532A, each of said inner extension arms 531A and each The lower arm 532A extends at different positions to form the sunken mounting structure 53A.
  • the filter element 40A since the filter element 40A is made of a metal material, it has relatively good ductility. Therefore, in the process of actually forming the metal bracket 50A, for example, by a metal stamping process, the metal bracket 50A can be stamped to form various height differences to meet the requirements of different specifications of the camera module. Therefore, it is not necessary to replace the molding die of the filter member 40A with the lens holder of the filter member 40A in the prior art, so that the filter member 40A of different specifications can be prepared, so that the cost can be further reduced.
  • FIG. 13 a camera module according to a third preferred embodiment of the present invention is illustrated, wherein the structure of the camera module shown in the third preferred embodiment is substantially the same as that of the first preferred embodiment.
  • the structure is identical except for the structural configuration of the metal bracket 50B.
  • the size of the photosensitive member 10B after molding becomes smaller and smaller, and even some optical lenses 20B are already larger in size than the photosensitive member 10B.
  • the optical lens 20B is assembled on the top side of the molded base 13B, the optical lens 20B is partially suspended, and the structure is unstable.
  • the metal bracket 50B protrudes from the outer peripheral portion of the molded base 13B for supporting the partially suspended optical lens. 20B, in order to reinforce the support structure of the optical lens 20B. That is, in the preferred embodiment of the present invention, the metal bracket 50B provides a support platform for the optical lens 20B.
  • the outer peripheral edge of the metal bracket 50B is located inside the outer peripheral portion of the optical lens 20B, such that when the camera module is assembled to an electronic device, such as a smart phone, The side surface of the metal bracket 50B does not collide with the electronic device to prevent the metal bracket 50B from deforming to generate a bending force to damage the filter element 40B. That is, in the preferred embodiment of the present invention, the metal holder 50B protrudes from the outer peripheral portion of the molded base 13B by a length smaller than the length of the optical lens 20B protruding from the molded base 13B.
  • the camera module provided by the third preferred embodiment of the present invention is adapted to conform to the installation of the non-flat surface of the electronic device.
  • the camera module is mounted on an electronic device, wherein the housing 80B of the electronic device has a curved curved surface.
  • the conventional square-shaped camera module obviously cannot adapt to the installation conditions at this time.
  • the molding base 13B is disposed on one side of the housing 80B, and the optical lens 20B of the camera module is disposed in a dislocated manner and is The other side of the housing 80B opposes to form a stable fixed structure.
  • the image capturing module includes a plurality of photosensitive components 10C and a plurality of optical lenses 20C, wherein the optical lens 20C is located in a photosensitive path of the photosensitive component 10C to be collected by the optical lens 20C. Image information of the target being measured.
  • the camera module is implemented as a binocular camera module or even a more purpose camera module, that is, the camera module includes two or more optical lenses 20C. This aspect is not limited by the invention.
  • the binocular camera module can be implemented as a fixed focus dual camera module, that is, the focal length between the optical lens 20C and the photosensitive component 10C is not adjustable.
  • the optical lens 20C can be assembled to the top of the photosensitive member 10C through a lens barrel 21C as a lens bearing member. It can be understood that, as the packaging process is improved, the size of the camera module is continuously reduced.
  • the optical lens 20C is assembled to the photosensitive component 10C in a "naked lens" manner. At the top, that is, at this time, the lens barrel 21C or the lens bearing member is not required, and the optical lens 20C is directly mounted to the top region of the photosensitive member 10C.
  • the dual camera module is a dynamic focus camera module, and the optical lens 20C is assembled to a corresponding driver.
  • the photosensitive member 10C includes at least one wiring board 11C, two photosensitive members 12C, and at least one molding base 13C.
  • the photosensitive elements 12C are respectively electrically connected to the wiring board 11C, wherein light from the object to be measured passes through the photosensitive member 10C and reaches each of the photosensitive elements 12C to further pass through the photosensitive elements
  • the photoreaction of 12C converts the optical signal of the target to be converted into an identifiable and operable electrical signal of the electronic device, and realizes functions such as image acquisition and reproduction of the target image to be measured.
  • the molding base 13C is integrally formed on the wiring board 11C and the photosensitive member 12C, and covers at least a portion of the wiring board 11C and the photosensitive member 12C such that the photosensitive member 10C and the
  • the camera module has a compact and compact structure.
  • the circuit board 11C may be an integrated circuit board or a split circuit board, wherein when the circuit board 11C is an integrated circuit board, the photosensitive element 12C is correspondingly attached. A corresponding area is mounted on the wiring board 11C to provide a flat mounting surface for the photosensitive member 12C through the integrated wiring board 11C.
  • the circuit board 11C is a split type circuit board, the circuit board 11C includes two separate circuit boards, and the separate circuit boards are respectively adapted to mount the photosensitive element 12C. At this time, the assembly and working space between the two separated circuit boards are relatively independent.
  • the photosensitive elements 12C may be respectively mounted to respective regions of the wiring board 11C by, for example, SMT (Surface Mounting Technology), and further implemented by a set of leads 14C.
  • a forward "gold wire” manner may be selected, that is, the lead wire 14C extends from the circuit board 11C to the photosensitive element 12C, or the reverse "gold wire” is selected.
  • the manner in which the lead 14C extends from the photosensitive member 12C to the wiring board 11C, and the photosensitive member 12C and the wiring board 11C are turned on is not limited by the present invention.
  • the molding base 13C is integrally formed on the photosensitive member 12 and the wiring board 11C, and covers at least a portion of the photosensitive member 12 and a series of electronic components mounted on the wiring board 11C, thereby The overall size of the photosensitive member 10C is effectively reduced, and dust and foreign matter adhering to the electronic component like the conventional camera module are effectively prevented from contaminating the photosensitive member 12C, thereby affecting the imaging effect.
  • the molded base may be a one-piece molded base, that is, the molded base is integrally formed on the circuit board (integrated circuit board or split circuit board) and The photosensitive element is described. It is also possible that the molded base is a split molded base, that is, the molded base includes two separate molded bases, and the split molded bases are integrally formed on the lines, respectively. a plate and the photosensitive member.
  • the molded base 13C includes a molded base body 131C and at least one light window 132C formed by the molded base body 131C, wherein the light window 132C is a closed space, and Corresponding to at least the photosensitive area of the photosensitive element 12C, respectively, to allow light from the outside to be radiated to the photosensitive element 12C through the light window 132C to complete image acquisition.
  • the molded base body 131C has a closed annular structure to provide a closed inner environment for the photosensitive element 12C to prevent external stray light from entering the photosensitive light from the side. Element 12C.
  • the photosensitive assembly 10C further includes two filter elements 40C, and the filter elements 40C are respectively disposed on the optical lens 20C and the photosensitive element 12C. Between the light signals for filtering the object to be measured collected by the optical lens 20C.
  • the filter element 40C is held on the photosensitive path formed by the optical lens 20C and the photosensitive element 12C, so that light passing through the optical lens 20C is filtered by the filter element 40C to The light radiated to the photosensitive element 12C is free from stray light such as infrared light, so that the final imaging effect is closer to the visual effect of the human eye.
  • the photosensitive member 10C further includes at least one metal bracket 50C disposed between the filter element 40C and the molding base 13C to improve the metal bracket 50C.
  • the mounting conditions and installation environment of the filter element 40C That is, at this time, the filter element is not directly contact-mounted on the top surface of the molded base, and therefore, the molding quality and size of the top surface of the molded base are to the filter element. Installation will not have a direct impact.
  • the metal bracket is made of a metallic material having a relatively high flatness, thereby facilitating the filter element 40C and
  • the mounting of the optical lens 20C is calibrated. More specifically, when the filter element 40C is mounted on the metal bracket 50C, the force is evenly distributed between the contact faces of the filter element 40C and the metal bracket 50C, thereby effectively reducing the filter.
  • the optical element 40C has a chance of being broken or damaged due to uneven force during the mounting process.
  • the filter element 40C and the metal holder 50C are disposed to overlap each other, and therefore, the flatness of the filter element 40C depends on the flatness of the metal holder 50C. Therefore, in the preferred embodiment of the invention, the filter element 40C has a relatively high flatness such that light passing through the optical lens 20C can be effectively filtered at the filter element 40C.
  • the metal bracket When the optical lens is assembled to the metal bracket, since the metal bracket has a high flatness, it can be assembled to the metal bracket 50C by mechanical fixing to greatly reduce the installation of the optical lens 20C. And calibration costs.
  • the optical lens 20C can also be assembled to the metal bracket 50C by means of Active Alignment to ensure the mounting precision of the optical lens 20C.
  • the metal bracket 50C has a unitary structure, that is, the metal bracket 50C includes an annular body 51C and has two light ports 52C.
  • the metal bracket 50C is assembled on the top surface of the molding base 13C, the annular body 51C is attached to the top surface of the molding base 13C, and the light passing openings 52C correspond to the respective The light window 132C and the photosensitive element 12C are described.
  • the metal bracket 50C has a split structure, that is, the photosensitive assembly 10C includes two independent metal brackets 50C.
  • the metal brackets 50C are respectively adapted to be attached to the top surface of the molding base 13C, and the light passing openings 52C of the metal brackets 50C correspond to the light window 132 and the photosensitive element 13C, respectively.
  • the filter elements 40C of the plurality of photosensitive members may also be of a unitary structure or independent of each other.
  • the metal bracket 50C is made of a metal material such as an iron-based, aluminum-based or copper-based material or the like.
  • a metal material such as an iron-based, aluminum-based or copper-based material or the like.
  • it is implemented as a steel sheet.
  • metallic materials have higher light reflection properties and produce more reflected stray light.
  • a light absorbing layer 54C is further disposed in a corresponding region between the filter elements 40C to prevent light from being reflected on the surface of the metal holder 50C to enter the photosensitive element 12C. Thereby affecting the final imaging effect.
  • the light absorbing layer 54C covers the outer surface of the metal bracket 50C such that a portion of the light collected by the optical lens 20C passes through the light passing port. 52C enters the photosensitive member 12C, and light partially falling on the surface of the metal holder 50C is absorbed by the light absorbing layer 54C, and in this way, light rays falling on the surface of the metal holder 50C are effectively prevented from being repeatedly passed. Reflection into the photosensitive element 12C affects the image quality.
  • the light absorbing layer 54C is simultaneously disposed on the bottom surface and the top surface of the filter element 40C, so that the stray light falling on the top surface of the metal bracket 50C and the radiation radiated to the bottom surface of the metal bracket 50C are mixed. Light can be effectively absorbed. More preferably, in order to further secure the light absorbing effect of the light absorbing layer 54C, the light absorbing layer 54C is disposed to cover the entire outer surface of the metal bracket 50C.
  • the light absorbing layer 54C may be disposed only in a region of the metal bracket 50C close to the light passing opening 52C to reduce the The probability of reflected stray light entering the photosensitive element 12C.
  • the light absorbing layer 54C can be formed in a corresponding region of the metal bracket 50C by a plating or filming process. It will be understood by those skilled in the art that in the present invention, the manner in which the light absorbing layer 54C is formed is not a limitation of the present invention. It should be appreciated that the process of forming the light absorbing layer 54C is performed after the metal bracket 50C is press-formed to prevent the light absorbing layer 54C from being scratched during the stamping of the metal bracket 50C to make it integral. destroyed.
  • the present invention further describes a method for manufacturing a camera module, which is applicable to the above-described metal bracket-based camera module, and achieves the objects and advantages of the present invention.
  • Step 101 A circuit board 11 accommodating a photosensitive member 10 and at least one photosensitive member 12 are formed in a molding space 903 of a molding die 900, wherein a semi-finished product of the photosensitive member 10 is fixed to a lower mold 902, wherein the photosensitive member The photosensitive member 12 of 10 is attached to the inner bottom surface of an upper mold 901.
  • the photosensitive member 12 is electrically conductively attached to the surface of the wiring board 11 to form a semi-finished product of the photosensitive member 10.
  • the circuit board 11 can be implemented as a circuit board board or an integrated circuit board, and the plurality of light sensitive elements 12 can be correspondingly installed, that is, the imposition of a plurality of semi-finished products. It is accommodated in the molding space 903.
  • Step 102 Injecting a molding material in a fluid state into the molding space 903.
  • the fluid state forming material is not limited and may be a transparent material, a light absorbing material or the like. Manufacturers can use different materials depending on their needs.
  • Step 103 curing the molding material to form a molding base 13, wherein the molding base 13 is coated on an outer edge of the photosensitive member 12, wherein the molding base 13 has a corresponding The light window 132 of the photosensitive member 12.
  • the formed molding base 13 covers the circuit board board or the integrated circuit board, and the corresponding formation is performed.
  • a plurality of light windows 132 correspond to the photosensitive elements 12.
  • the formed imposition product can be divided into a plurality of single structures as described above by a cutting, or a joint structure required for a dual camera module or the like.
  • Step 104 forming a metal bracket 50, wherein the metal bracket 50 is a planar annular structure, wherein the metal bracket 50 has a light passing hole 52, wherein the light passing hole 52 is smaller in size than the light window 132, wherein The metal bracket 50 has an air vent 55 that communicates with a space formed by the light window 132.
  • the structure of the metal bracket 50 is not limited, and may be the above-mentioned sinking mounting structure or flat structure, which will not be described herein.
  • the height dimensions of the metal bracket 50 are various specifications according to different product size requirements and the like, and are not limited herein.
  • Step 105 partially overlapping the metal bracket 50 on the top surface of the molding base 13, wherein the light passing hole 52 corresponds to the light window 132, wherein the metal bracket 50 faces the mold The inside of the plastic base 13 extends.
  • a part of the outer edge of the metal bracket 50 may be located inside the top surface of the molding base 13, or may be located outside the top surface of the molding base 13, but in subsequent Mount the lens, drive, or the inside of the outer edge of the fixed barrel.
  • Step 106 A light absorbing layer 54 is disposed on the outer surface of the metal bracket 50 for absorbing light.
  • the light absorbing layer 54 may be disposed on the entire outer surface of the metal bracket 50 or may be disposed in a region of the metal bracket 50 adjacent to the light passing hole 52. It will be appreciated that step 106 is not a necessary step and the manufacturer can choose whether or not to perform according to the needs.
  • Step 107 Install a filter element 40 on the metal bracket 50, and close The light passing hole 52 forms the photosensitive member 10.
  • the order of the steps 105 and 107 is not fixed.
  • the filter element 40 may be installed first, and then the metal bracket 50 may be installed. The sequence may be reversed.
  • the metal bracket 50 is first installed, and then the filter is installed. Element 40.
  • the filter element 40 can be mounted on the top side or the bottom side of the metal bracket 50.
  • a step may also be performed; the light shielding layer is disposed on an outer surface of the filter element 40. For example, they are simultaneously disposed on the bottom surface and the top surface of the filter element 40 to form the light-shielding region.
  • This step is not an essential step and can be performed either with the step 106 or both.
  • Step 108 Baking the photosensitive member 10, wherein the air inside the photosensitive member 10 is thermally expanded and diffused to the outside through the escape hole 55.
  • Step 109 Sealing the escape hole 55.
  • Step 110 Install an optical component 20 on the top side of the photosensitive component 10 corresponding to the photosensitive path of the photosensitive component 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)

Abstract

基于金属支架的感光组件和摄像模组,该感光组件包括一线路板、一感光元件、一模塑基座,其中所述感光元件电连接于所述线路板,所述模组一体成型于所述线路板和所述感光元件。所述感光组件还包括一滤光元件和一金属支架,其中所述金属支架安装于所述模塑基座的顶表面,以供安装所述滤光元件,其中所述滤光元件、所述滤光元件支架和所述模塑基座之间形成为所述感光元件提供光线通路的一光窗。

Description

基于金属支架的感光组件和摄像模组 技术领域
本发明涉及一摄像模组领域,尤其涉及一基于一利用金属支架安装滤光元件的感光组件和摄像模组。
背景技术
摄像模组是智能电子设备的不可或缺的部件之一,举例地但不限于智能手机、相机、电脑设备、可穿戴设备等智能电子设备。而在智能设轻薄化、集成化的发展潮流中,对于摄像模组的要求也越来越高。特别地,随着智能设备的普及和发展,其日益趋向轻薄化,相应地摄像模组要适应发展,也越来越要求多功能集成化,轻薄化,小型化,以使得摄像模组组装于智能电子设备所需占据的体积能相应减小,且满足设备对于摄像模组的成像要求。因此摄像模组生产厂商持续致力于设计、生产制造满足这些要求的摄像模组。
模塑封装工艺是在传统的COB(Chip on Board)封装工艺基础上新兴发展起来的一种封装技术。如图1A所示,是利用现有的模塑封装工艺制备而得的电路板组件。在这种结构中,将一模塑部1通过模塑封装的方式封装于一电路板2,以一体包覆该电路板的至少一部分和组装于所述电路板的电子元器件,例如感光芯片3,被动电子元器件等,并且一滤光片4贴装于该模塑部1的顶侧,从而减少摄像模组的电子元器件所独立占据的空间和组装过程中预留的配合安全空间,且解决了电子元器件上附着的灰尘影响摄像模组成像质量的问题。然而,这种技术方案也带来了一些新的技术问题。
本领域的技术人员应知晓,滤光片4是摄像模组中极其重要的元件,其能够过滤光线中的红外光等杂光,使得最终的成像效果更佳接近人眼所观察的视觉效果。由于,该滤光片4是脆弱且高敏感度的精密电子器件,其在整个摄像模组的造价中所占的比重较大。因此,在模塑封装技术中,该滤光片4成为一个实施的难点。
更具体地说,相较于传统的COB封装方式,通过模塑封装工艺所制备的该模塑部1被设置一体包覆安装于该电路板2的电子元器件,并利用该电子元器件的空间位置。因此,相对于传统的COB封装技术中的镜座,该模塑部1提供给该滤光片4的安装空间相应地增加。此时,如果选择将该滤光片4直接安装于该模塑部顶表面的相应区域,该滤光片4所需的面积较大。相应地,滤光片的造价与其所需的面积成正比,且随着滤光片面积的增加,其制备精度越难控制且其硬度相应降低。因此,当该滤光片4所需的面积增加时,不光意味着成本的提升,更意味着安装实施难度的加剧。
进一步地,通常,该滤光片4被直接组装于该模塑部1的顶侧,以通过该模塑部1将滤 光片4保持于该感光芯片3的感光区域的上方。该滤光片4由易碎材料制成,导致当该滤光片4组装于该模塑部1时,该滤光片4表面受力不均易发生破碎或损坏。
为了解决该滤光片4安装难度高,容易破碎且成本高的问题,现有技术中存在一种改进方案:额外提供一滤光元件镜座5以改善该滤光片4的安装条件。如图1B所示,在具体的实施过程中,该滤光元件镜座5安装于该模塑部1的顶表面,以通过该滤光元件镜座5替代该模塑部1安装该滤光片4。相应地,可通过调整该滤光元件镜座5的安装槽尺寸来缩减该滤光片4所需尺寸,以及通过该滤光元件镜座5提供支撑力而防止该滤光片4的破碎。
然而,现有的该滤光元件镜座5通过一体成型工艺,例如模塑工艺或注塑工艺,制成而得,具有较大的厚度。例如,在现有的摄像模组的该电路板组件中,通常,例如在一个具体实施方案中,该模塑部1的高度为0.3mm,该电路板2的高度为0.2mm,而该滤光元件镜座5的高度为0.3mm左右,超过该线路板和该模塑部整体高度的一半。因此,该滤光元件镜座5提高了电路板组件的整体高度,使得该摄像模组的光学后焦被相应地提高,而减小光学后焦是摄像模组光学设计中一直的追求。
发明内容
本发明的一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述摄像模组包括一金属支架,所述金属支架与所述摄像模组的一模塑基座相配合,从而为所述摄像模组的其他部件提供支撑。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架安装于所述模塑基座的顶表面相应位置,以替代所述模塑基座为所述摄像模组的滤光元件提供适宜的安装位置。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架由金属材料制成,其相对现有的滤光元件镜座而言,具有相对较薄的厚度,以使得所述摄像模组的整体高度尺寸可被缩减。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架由金属材料制成,其相对现有的滤光元件镜座而言,具有相对较薄的厚度,以使得所述摄像模组的光学后焦可被缩减。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中在一些实施例中,所述金属支架外边缘在所述模塑基座顶表面的外边缘的内侧,从而避免所述金属支架受到侧部的外力冲击而碎裂而进一步可能导致所述滤光元件的损坏。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中在一些实施 例中,所述金属支架的一部分外边缘位于所述模塑基座顶表面的外边缘和镜头/驱动器/固定镜筒的外边缘之间,从而避免所述金属支架受到侧部的外力冲击而碎裂而进一步可能导致所述滤光元件的损坏,并且在安装于电子设备时顺应电子设备边缘的弧形或倾斜面。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架外表面形成有一吸光层,以防止被所述金属支架所反射的杂光入射至所述摄像模组的感光区域,影响成像质量。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架外表面的吸光层和所述模塑基座内表面之间形成一遮光区域,从而被所述模塑基座内表面反射到达所述吸光层的光被所述吸光层吸收,从而防止其到达所述感光元件而影响成像质量。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中在一些实施例中,用线路板电子元器件高于引线的特点,所述台阶面可以不高于所述线路板的电子元器件的高度而不低于所述引线的高度,从而使所述金属支架的位置进一步下移。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中通过对所述金属支架通光区域的设置,为所述摄像模组提供较优的通光通道,以从物理结构的角度防止外界的杂散光进入所述摄像模组的感光区域。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架由金属材料制成,从而在后续的所述摄像模组烘烤固化的过程中,所述金属支架不易发生形变,以有效地确保所述金属支架和安装于所述金属支架的器件之间的相对位置关系保持稳定。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架由金属材料制成,其具有良好的导热性,以使得在后续的所述摄像模组的工作过程中,产生于所述线路板的热量可通过所述金属支架进行传导和散热。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架形成有一逃气孔,所述逃气孔适于在所述摄像模组烘烤固定的过程中提供出气通口,防止所述摄像模组内的封闭空间气体,因受热膨胀导致所述滤光元件发生损坏或破碎。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中在一些实施例中,所述金属支架具有一支撑槽,所述滤光元件适于安装于所述滤光元件的所述支撑槽,以使得所述滤光元件的位置相对下沉。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述支撑槽的高度略大于所述滤光元件的厚度,以使得当所述滤光元件安装于所述滤光元件的所述支撑槽时,所述滤光元件不会突出所述金属支架的顶部表面,从而有效地防止所述滤光元件与所 述摄像模组的最后一光学透镜之间发生触碰。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中由金属材料制成的所述金属支架具有相对较高的平整度,从而当所述摄像模组的光学镜头或驱动器或固定镜筒被支持于所述金属支架而非所述模塑基座时,以易于所述光学镜头或所述驱动器的安装和校准。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中当所述滤光元件通过所述金属支架组装于所述模塑基座时,所需的所述滤光元件的尺寸可相应减少,以降低成本。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中所述金属支架由金属材料制成,其加工工艺相对成熟且简单,且金属材料成本相对较低。
本发明的另一个目的在于提供一基于金属支架的感光组件和摄像模组,其中通过金属加工工艺,例如冲压加工工艺,可制备不同规格的所述金属支架以适应不同摄像模组对于不同金属支架的要求。
通过下面的描述,本发明的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为达到本发明的至少一发明目的,实现以上至少一个目的,本发明提供一感光组件,其包括:
一线路板;
一感光元件,所述感光元件电连接于所述线路板;
一模塑基座,其中所述模塑基座一体成型于所述线路板和所述感光元件;
一滤光元件;以及
一金属支架,其中所述金属支架安装于所述模塑基座的顶表面,以供安装所述滤光元件,其中所述滤光元件、所述金属支架和所述模塑基座之间形成为所述感光元件提供光线通路的一光窗。
根据本发明的一个实施例,所述金属支架包括一环形主体,其中所述通光孔由所述环形主体所界定,所述滤光元件贴装于所述金属支架顶侧,并向所述模塑基座的内侧延伸。
根据本发明的一个实施例,所述金属支架的外边缘位于所述模塑基外周缘的内侧。
根据本发明的一个实施例,所述金属支架包括一环形主体,其中所述通光孔由所述环形主体所界定,所述滤光元件贴装于所述金属支架的底侧。
根据本发明的一个实施例,所述金属支架进一步包括至少一内延臂和至少一下沉臂,其中所述下沉臂和所述内延臂形成一下沉安装结构,其中所述下沉臂自所述环形主体转向地、纵 向地一体延伸,以降低所述滤光元件的安装位置高度,其中所述内延自所述下沉臂转向地、横向地一体延伸,以为所述滤光元件提供水平方向的安装位置。
根据本发明的一个实施例,所述金属支架包括四个一体连接的所述内延臂和四个一体连接的所述下沉臂,其中各所述内延臂和各对应的所述下沉臂在不同位置延伸,形成所述下沉安装结构。
根据本发明的一个实施例,所述通光孔的尺寸小于所述光窗的尺寸。
根据本发明的一个实施例,所述通光孔的的内侧表面为倾斜面,其中所述倾斜面朝向所述感光元件。
根据本发明的一个实施例,所述金属支架进一步包括一吸光层,其中所述吸光层被设置于所述金属支架外表面。
根据本发明的一个实施例,所述吸光层被设置于覆盖所述金属支架的整个外表面。
根据本发明的一个实施例,所述吸光层被设置于所述金属支架靠近所述通光口的区域。
根据本发明的一个实施例,所述吸光层被设置于所述滤光元件的底表面和\或顶表面。
根据本发明的一个实施例,所述过滤元件具有一遮光层,以通过所述遮光层限制所述滤光元件的透光范围,其中所述遮光层被设置于所述滤光元件的底表面和\或顶表面。
根据本发明的一个实施例,所述金属支架具有一逃气孔,其中所述逃气孔与所述滤光元件、所述金属支架以及所述模塑基座所形成的内部空间相连通。
根据本发明的一个实施例,所述逃气孔具有一连通区和一封口区,其中所述逃气孔部分与所述滤光元件相重叠,形成所述连通区和所述封口区封口区,其中所述连通区延伸入形成的密闭空间,以用于气体导通,其中所述封口区对应于所述模塑基座顶表面,以用于封胶密封。
根据本发明的一个实施例,所述封口区一体延伸于所述连通区,且所述封口区的开口尺寸大于所述连通区的开口尺寸。
根据本发明的一个实施例,所述封口区的开口深度大于所述连通区的开口深度。
根据本发明的一个实施例,所述模塑基座的顶表面具有位于内侧的一台阶面,其中所述台阶面形成于所述模塑基座内侧,以供支撑所述金属支架,其中所述环形主体部分重叠地贴合于所述台阶面。
根据本发明的一个实施例,所述金属支架的外侧周缘位于所述光学镜头外周部的内侧,且所述金属支架突出所述模塑基座外周部的长度小于一对应的光学镜头突出所述模塑基座的长度。
根据本发明的一个实施例,所述金属支架厚度范围为0.03~0.2mm。
另一方面,本发明进一步提供一摄像模组,包括:
一光学镜头;和
一如上所述的感光组件,其中所述光学镜头被安装于所述感光组件顶侧,对应于所述感光元件的感光路径。
根据本发明的一个实施例,所述摄像模组进一步包括一驱动元件,其中所述驱动元件驱动所述光学镜头移动,以实现光学调焦。
根据本发明的一个实施例,所述金属支架的外边缘位于所述模塑基座外边沿和所述驱动元件外边沿之间。
另一方面,本发明进一步提供一阵列摄像模组,包括:
至少两光学镜头;
至少一线路板;
至少两感光元件,其中所述感光元件分别可导通地连接于所述线路板;
至少一模塑基座,其中所述一体成型于所述线路板和所述感光元件,并包覆所述线路板和各所述感光元件的边沿部分,其中所述模塑基座具有对应于个感光元件的感光路径的光窗;以及
至少一金属支架,其中所述金属支架被安装于所述模塑基座的顶表面,以供安装至少两滤光元件,其中所述金属支架具有对应于所述光窗的至少两通光孔,其中所述滤光元件、所述金属支架和所述模塑基座的光窗之间为各个所述感光元件提供光线通路。
根据本发明的一个实施例,所述线路板被实施为一体式线路板。
根据本发明的一个实施例,所述线路板被实施为分体式线路板,其中各感光元件对应的所述线路板相互独立。
根据本发明的一个实施例,所述模塑基座被实施为一体式模塑基座。
根据本发明的一个实施例,所述模塑基座被实施为分体式模塑基座,其中各感光元件对应的所述模塑基座相互独立。
根据本发明的一个实施例,所述金属支架被实施为一体式金属支架。
根据本发明的一个实施例,所述金属支架被实施为分体式金属支架。
根据本发明的一个实施例,所述过滤元件被实施为分体式过滤元件。
根据本发明的一个实施例,所述过滤元件被实施为一体式过滤元件。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1A是根据一种现有技术的一摄像模组的一电路板组件的剖视示意图。
图1B是根据另一种现有技术的一摄像模组的一电路板组件的剖视示意图。
图2是根据一个较佳实施例的一摄像模组的剖视示意图。
图3是根据本发明上述较佳实施例的一变形实施方式的一摄像模组剖视示意图。
图4是根据本发明上述较佳实施例的摄像模组的一光路传播示意图。。
图5是根据本发明上述较佳实施例的摄像模组的另一变形实施例的剖视示意图。
图6是根据本发明上述较佳实施例的摄像模组的另一变形实施例的剖视示意图。
图7是根据本发明上述较佳实施例的摄像模组的另一变形实施例的剖视示意图。
图8是根据本发明上述较佳实施例的摄像模组的另一变形实施例的剖视示意图。
图9是根据本发明上述较佳实施例的摄像模组的另一变形实施例的剖视示意图。图10A
是根据本发明一变形实施例的剖视示意图。
图10B是根据本发明另一变形实施例的剖视示意图。
图10C是根据本发明另一变形实施例的剖视示意图。
图10D是根据本发明另一变形实施例的剖视示意图。
图11是根据本发明一第二较佳实施例的摄像模组的剖视示意图。
图12是根据本发明上述第二较佳实施例的摄像模组的另一变形实施例的剖视示意图。
图13是根据本发明一第三优选实施例的一摄像模组的剖视示意图。
图14是根据本发明一第四优选实施例的一摄像模组的立体爆炸示意图。
图15是根据上述第四优选实施例的摄像模组的一变形实施例的立体爆炸示意图。
图16A是上述优选实施例中的所述摄像模组的制造步骤之一的示意图。
图16B是上述优选实施例中的所述摄像模组的制造步骤之二的示意图。
图16C是上述优选实施例中的所述摄像模组的制造步骤之三的示意图。
图17A是上述优选实施例中的所述摄像模组的制造步骤之四的示意图。
图17B是上述优选实施例中的所述摄像模组的制造步骤之五的示意图。
图18是上述优选实施例中的所述摄像模组的制造步骤之六的示意图。
图19是上述优选实施例中的所述摄像模组的制造步骤之七的示意图。
图20是上述优选实施例中的所述摄像模组的制造步骤之八的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施 例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一或多个”,即在一实施例中,一元件的数量可以为一,而在另外的实施例中,所述元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参照附图2,依据本发明一第一优选实施例的一摄像模组被阐明,其中所述摄像模组可以被应用于各种电子设备,举例但不限于智能手机、可穿戴设备、电脑设备、电视机、交通工具、照相机、监控设备,所述摄像模组配合该电子设备实现对目标图像的采集和再现等功能。
如图2所示,所述摄像模组包括一感光组件10和一光学镜头20,其中所述光学镜头20位于所述感光组件10的感光路径,以通过所述光学镜头20采集被测目标的图像信息。特别地,在本发明的该优选实施中,所述摄像模组为定焦摄像模组,即,所述光学镜头20和所述感光组件10之间的焦距不可调节。特别地,所述光学镜头20通过一镜筒21,作为镜头承载元件,组装于所述感光组件10的顶部。可以理解的是,随着封装工艺的改善,摄像模组的体型尺寸被不断缩减,在另外的变形实施例中,所述光学镜头20以“裸镜头”的方式组装于所述感光组件10的顶部,即,此时,无需所述镜筒21或所述镜头承载元件,所述光学镜头20被直接安装于所述感光组件10的顶部区域,如图10D所示。
本领域的技术人员应知晓,在本发明另外的实施例中,如图3所示,所述摄像模组还可被实施为动焦摄像模组,即,在该实施例中,所述摄像模组还包括一驱动元件30,所述驱动元件30安装于所述感光组件10的顶侧,所述光学镜头20组装于所述驱动元件30,从而当所述驱动元件30被驱动时,所述光学镜头20与所述感光组件10的一感光元件12之间的相对位置关系发生改变,通过这样的方式,以实现光学调焦的功能。值得一提的是,所述驱动元件30包括但不限于,音圈马达、步进马达、MEMS等。
更具体地说,如图2所示,所述感光组件10包括一线路板11,一感光元件12,和一模塑基座13。所述感光元件12可导通地连接于所述线路板11,其中来自被测目标的光线 穿过所述感光组件10并到达所述感光元件12,以进一步地通过所述感光元件12的感光反应将被测目标的光信号转化为电子设备可识别且可操作的电信号,实现被测目标图形采集和再现等功能。所述模塑基座13一体成型于所述线路板11和所述感光元件12,并包覆所述线路板11和所述感光元件12的至少一部分,以使得所述感光组件10和所述摄像模组具有紧凑且小型化的结构。
在本发明的该优选实施例中,所述感光元件12可通过例如SMT(Surface Mounting Technology,表面贴装工艺)安装于所述线路板11的相应区域,并进一步地通过一组引线14实现所述线路板11和所述感光元件12之间的电性连接。也就是说,在本发明的该优选实施例中,所述感光组件10还包括一组引线14,所述引线14延伸于所述感光元件12和所述线路板11之间,以通过所述引线14导通所述线路板11和所述感光元件12。本领域的技术人员应知晓,该导通线路板11和所述感光元件12的方式被称为“打金线”工艺。需指出的是,在本发明中,可选择正向“打金线”的方式,即所述引线14自所述线路板11延伸至所述感光元件12,或选择反向“打金线”的方式,即所述引线14自所述感光元件12延伸至所述线路板11,导通所述感光元件12和所述线路板11,此并不为本发明所局限。当然,在本发明的另外的实施例中,所述感光元件12安装于所述线路板11的方式可以通过其他方式,例如内嵌、FC(Flip Chip,芯片倒装工艺)等。本领域的技术人员应领会的是,在本发明中,所述感光元件12和所述线路板11之间的安装和导通的方式并不是本发明的限制。
进一步地,当所述感光元件12安装于所述线路板11并与所述线路板11相导通之后,执行模塑成型工艺以形成所述模塑基座13于所述感光元件12和所述线路板11。如图2所示,所述模塑基座13一体成型于所述感光元件12和所述线路板11,并包覆所述感光元件12的至少一部分和安装于所述线路板11的一系列电子元器件,从而不仅有效的缩减了所述感光组件10的整体尺寸,而且有效地防止了类似传统摄像模组中灰尘、杂物粘附于所述电子元器件上污染所述感光元件12而影响成像效果。更具体地说,所述模塑基座13包括一模塑基座主体131和由所述模塑基座主体131所形成的一光窗132,其中所述光窗为封闭空间,且对应于所述感光元件12的至少感光区域,以允许来自外界的光能透过所述光窗132入射至所述感光元件12,以完成图像采集。特别地,在本发明的该优选实施例中,所述模塑基座主体131具有封闭环形结构,以便于为所述感光元件12提供封闭的内环境,防止外界杂光从侧面进入所述感光元件12。
值得一提的是,优选地,在本发明中,所述模塑基座主体131具有中心对称结构,具有一内表面1311,其定义为所述模塑基座的内表面1311。所述模塑基座内表面1311可呈一固定斜率自所述线路板11和所述感光元件12往上延伸,或者所述模塑基座内表面1311呈没 有斜率自所述线路板11和所述感光元件12向上延伸,即所述模塑基座内表面1311基本垂直于所述线路板11。应领会的是,在本发明的另外的实施例中,所述模塑基座内表面1311具有多段表面,其中各段表面之间呈非处于同一平面式延伸,以使得所述模塑基座13具有多段式结构,例如,可以具有倾斜延伸段和垂直延伸段。
为了使得所述摄像模组的成像效果更接近于人眼视觉,所述感光组件10还包括一滤光元件40,所述滤光元件40设置于所述光学镜头20和所述感光元件12之间,以用于过滤所述光学镜头20所采集的被测目标的光信号。特别地,所述滤光元件40保持于所述光学镜头20和所述感光元件12所形成的感光路径上,从而穿过所述光学镜头20的光线被所述滤光元件40所过滤,以使得入射至所述感光元件12的光线中不含红外光等杂光,从而最终的成像效果更接近于人眼的视觉效果。在本发明中,所述滤光元件40举例地但不限于红外截止滤光片、蓝玻璃滤光片、晶圆级红外截止滤光片。在另外的实施例中,也可能是全透片或可见光滤光片。
相应地,如图2所示,在本发明的该优选实施例中,所述感光组件10还包括一金属支架50,所述金属支架50设置于所述滤光元件40和所述模塑基座13之间,以通过所述金属支架50改善所述滤光元件40的安装条件和安装环境。更具体地说,所述金属支架50安装于所述模塑基座13的顶表面,以供安装所述滤光元件40。因此,在本发明的该优选实施例中,所述滤光元件40不直接接触地安装于所述模塑基座13的顶表面,从而所述模塑基座13顶表面的成型质量和尺寸对所述滤光元件40的安装不会造成直接的影响。也就是说,在本发明的该优选实施例中,所述金属支架50替代所述模塑基座13为所述滤光元件40提供一安装位,因此,所述滤光元件40的安装环境和安装条件取决于所述金属支架50的特征。另外,所述金属支架50厚度在0.03-0.2mm,一般可以降低高度到0.1mm以下,例如可以是0.08mm左右,从而显著减小所述感光组件的高度。
特别地,如图2所示,在本发明的该优选实施例中,所述金属支架50由金属材料制成,其具有相对较高的平整度。当所述滤光元件40安装于所述金属支架50时,所述滤光元件40和所述金属支架50的接触面之间受力均匀,从而有效地降低了所述滤光元件40,在安装过程中,由于受力不均而导致破碎或损坏的几率。同时,所述滤光元件40和所述金属支架50重叠地设置,因此,所述滤光元件40的平整度取决于所述金属支架50的平整度。因此,在本发明的该优选实施例中,所述滤光元件40具有相对较高的平整度,从而穿过所述光学镜头20的光线在所述滤光元件40处可被有效地过滤。
进一步地,如图2所示,所述金属支架50具有封闭的平面环形结构,其包括一环形主体51和由所述环形主体51形成的一通光口52,其中所述金属支架50安装于所述模塑基 座13时,所述环形主体51部分重叠地贴合于所述模塑基座13顶表面,同时,所述通光口52对应于所述模塑基座主体131的所述光窗132,以形成完整的光线通路。应领会的是,所述环形主体51部分重叠地贴合于所述模塑基座13顶表面并且向所述模塑基座13的内侧延伸,因此,安装于所述金属支架50的所述环形主体51的所述滤光元件40所需的面积可相应减少,以降低成本和降低安装难度。
此外,所述金属支架50的所述通光口52对应于所述模塑基座13的所述光窗132,因此调节所述金属支架50的所述通光口52的特征,可改变所述感光元件12的感光角度和感光范围。更具体地说,在本发明的该优选实施中,所述金属支架50被部分悬浮地支持于所述模塑基座13的顶表面,因此,所述金属支架50的所述通光口52的尺寸略小于所述模塑基座13的所述光窗132,从而所述通光口52可对所述感光元件12的感光角度和感光范围进行进一步地限制。优选地,如图2所示,所述通光口52的内侧表面为倾斜面511,且所述倾斜面511朝向所述感光元件12,通过这样的方式,限定入光角度和入光范围对应于所述感光元件12的感光区域。值得一提的是,在本发明中,所述通光口52可通过金属蚀刻工艺或金属腐蚀工艺加工而成,以使得所述通光口52的所述倾斜面511具有相对较高的平整度。当然,本领域的技术人员应知晓,所述滤光元件40的所述通光口52还可通过金属冲压工艺制备而得,然而,由于可能会产生比较大的毛刺,因此所述通光口52的内侧边缘和所述倾斜面511需进一步地精加工。
值得一提的是,在本发明的该优选实施例中,当所述金属支架50安装于所述模塑基座13顶表面时,所述金属支架50的外侧边缘位于所述模塑基座13外周缘的内侧,通过这样的方式,防止所述金属支架50,在后续的安装和使用的过程中,因受其侧面受挤压或冲击而产生一个弯折力导致所述滤光元件40被破损或碎裂。也就是说,在本发明的该优选实施例中,所述金属支架50的外侧边缘不突出于所述模塑基座13外周缘,从而,在后续安装和使用的过程中,所述金属支架50侧面始终处于不受力状态,以避免因所述金属支架50变形而造称所述滤光元件40发生破损。
更具体地说,如图2所示,所述金属支架50的外侧边缘靠近于所述模塑基座13外周缘,从而,一方面,所述金属支架50可稳固地安装于所述模塑基座13顶表面(相对较大的接触面积),另一方面,所述模塑基座13可有效地阻隔外界的安装物,例如智能手机的壳体,与所述金属支架50的侧面发生触碰,以使得所述金属支架50的侧面始终处于不受力状态,从而可有效地防止所述滤光元件40因所述金属支架50被弯折而破碎或损坏。值得一提的是,所述金属支架50边缘靠近于所述模塑基座13外周缘,也就是说,所述金属支架50近乎覆盖所述模塑基座13顶表面的所有区域,从而在后续的组装所述光学镜头20的过程中,所述 光学镜头20可被直接组装于所述金属支架50,而非传统地,组装于所述模塑基座13顶表面。应领会的是,所述金属支架50由金属材料制成,其具有相对较高的平整度,因而,更利于所述光学镜头20的校准和调整。关于这部分内容,会于后续的所述光学镜头20的描述中更为详细地阐述。
当然,本领域的技术人员应知晓,在本发明的另外的变形实施例中,所述金属支架50可设置于所述模塑基座13的顶表面,且位于所述光学镜头20的内侧,此时,所述光学镜头20被组装于所述模塑基座13顶表面,且所述金属支架50被有效地隔离于所述光学镜头20的内侧。也就是说,在本发明的该变形实施例中,所述金属支架50并不为所述光学镜头20提供安装支持面。
如图8所示的是所述金属支架50的一变形实施例,其中所述金属支架50具有一下沉安装结构53,以使得所述滤光元件40的安装位置深入所述光窗132。也就是说,在本发明的该变形实施例中,所述金属支架50具有立体结构。更具体地说,在本发明的该实施例中,所述金属支架50包括一环形主体51,至少一内延臂531和至少一下沉臂532,其中所述下沉臂532和所述内延臂531形成所述下沉安装结构53。如图8所示,所述下沉臂532自所述环形主体51转向地、纵向地一体延伸,以降低所述滤光元件40的安装位置高度,从而所述滤光元件40相对远离所述光学镜头20以防止于所述光学镜头20的最后一片透镜之间发生触碰,且更靠近于所述感光元件12,以利于过滤杂光。所述内延臂531自所述下沉臂532转向地、横向地一体延伸,以便于为所述滤光元件40提供水平方向的安装位置,使得所述滤光元件40和所述感光元件12的光轴一致。具体地,在本发明的实施中,所述金属支架50包括四个一体连接的所述内延臂531和四个一体连接的所述下沉臂532,各所述内延臂531和各所述下沉臂532在不同位置延伸以形成所述下沉安装结构53。
值得一提的是,在本发明的该变形实施例中,由于所述金属支架50由金属材料制成,其具有相对较好的延展性。因此,在实际加工形成所述金属支架50的过程中,例如通过金属冲压工艺,所述金属支架50可被冲压形成各种高度差,以满足不同规格的摄像模组的要求。从而,无需类似现有技术中,需要更换滤光元件40镜座的成型模具方能制备不同规格的滤光元件40镜座,以使得成本可被进一步地降低。
需特别指出的是,在本发明中,所述金属支架50由金属材料制成,其具有相对较薄的厚度,从而可以从整体上进一步地降低所述摄像模组的高度。特别地,相较于现有的通过注塑工艺所形成的滤光元件40镜座,由金属材料所制成的所述金属支架50的厚度可被大幅缩减,以降低所述摄像模组的光学后焦以及其整体高度。
进一步地,在本发明中,所述金属支架50由金属材料制成,例如,例如铁基、铝基或 铜基材料等。例如在一个具体示例中,其实施为一钢片。众所周知,金属材料具有较高的光反射性能,会产生比较多的反射杂光。为了消除这一因素对成像质量的影响,进一步设置一吸光层54于所述滤光元件40之间的相应区域,以防止光线在所述金属支架50表面发生反射而进入所述感光元件12,从而影响最终的成像效果。
更具体地说,如图2所示,在本发明的该优选实施例中,所述吸光层54覆盖于所述金属支架50的外表面,以使得穿过所述光学镜头20的光线部分通过所述通光口52进入所述感光元件12,而部分落于所述金属支架50表面的光线被所述吸光层54所吸收,通过这样的方式,有效地防止落于所述金属支架50表面的光线经过多次反射进入所述感光元件12,影响成像质量。优选地,如图4所示,所述吸光层54被同时设置于所述滤光元件40的底表面和顶表面,从而落于所述金属支架50顶表面的杂光和入射至所述金属支架50底表面的杂光,皆能被有效吸收。入射至所述模塑基座13内表面而被反射到达所述金属支架50底表面的杂光也能被所述吸光层54吸收,从而所述模塑基座13内表面和所述金属支架50底表面的所述吸光层54之间相当于形成一个遮光区域。更优选地,为了进一步地确保所述吸光层54的吸光效果,所述吸光层54被设置覆盖所述金属支架50的整个外表面。当然,本领域的技术人员应知晓,如图9所示,在本发明的另外的变形实施例中,所述吸光层54可仅被设置于所述金属支架50靠近所述通光口52的区域,以降低所述反射杂光进入所述感光元件12的几率。
值得一提的是,所述吸光层54可通过镀化或贴膜工艺形成于所述金属支架50的相应区域。本领域的技术人员应理解,在本发明中,所述吸光层54的形成方式并不为本发明的局限。应领会的是,形成所述吸光层54的工艺在所述金属支架50冲压成型之后执行,以防止在冲压所述金属支架50的过程中,所述吸光层54被划伤而使得其整体性被破坏。优选地,所述吸光层54是一个黑色吸收性不透光材料制成。另外,在另外的变形实施中,也有可能将所述金属支架50表面糙化,从而减少入射至所述金属支架50后被反射出去的杂光。
为了进一步地确保所述金属支架50能够满足一定杂散光的要求,如图10A所示,所述滤光元件40包括一滤光元件主体41和一遮光层42,即可选择于所述滤光元件40的相应区域额外设置一遮光层42,以通过所述遮光层42限制所述滤光元件40的透光范围。更具体地说,在本发明的该优选实施例中,所述遮光层42形成于所述滤光元件40顶表面,以使得所述滤光元件40的所述滤光元件主体41具有位于外围的一外周部411和一滤光部412,其中通过所述光学镜头20所采集的光线能够透过所述滤光部412进入所述感光元件12。因此,可设置所述外周部411和所述滤光部412的相对位置关系,实现对采光范围和采光角度的进一步限定。
值得一提的是,在本发明中,所述遮光层42可由吸光材料制成或通过能够减小反光的材料制成,其制造工艺可以是光刻胶或丝印等工艺,将黑色吸收性不透光材料形成在所述滤光元件主体41的表面。
应领会的是,在实际实施过程中,所述外周部411的位置可根据实际需求进行相应的调整。例如,在本发明另外的实施例中,所述遮光层42可形成于所述滤光元件40的所述滤光元件主体41的底表面,如图10B所示。即,在该实施例中,所述滤光元件40的底表面设有遮光层42。特别地,所述遮光层42的内边缘超过或者对齐所述金属支架50内侧边缘,以限定所述摄像模组通光区域的大小。入射至所述模塑基座13内表面的杂光被反射至所述遮光层42时被吸收,从而减少到达所述感光元件12的杂散光。
在本发明的另外的实施例中,如图10C所示,所述遮光层42可同时设置于所述滤光元件40的正面和背面,并且优选地,形成于正面和背面的所述遮光层42相对应,以通过双保险机制进一步地确保所述滤光元件40能够满足一定的杂散光要求。
进一步地,本领域的技术人员应知晓,当所述金属支架50通过粘黏介质,例如胶水,贴合于所述模塑基座13顶表面的相应位置,以及所述滤光元件40安装于所述金属支架50之后,所述感光组件10需进行烘烤固化以固定所述金属支架50于所述模塑基座13。需要注意的是,所述滤光元件40、所述金属支架50和所述模塑基座13形成一密闭空间即所述光窗,从而在进行烘烤固化的过程中,位于该密闭空间内的气体因受热膨胀而冲击所述滤光元件40,以可能导致所述滤光元件40发生破损或破碎。
相应地,为了解决该问题,参考图16A至图20的制造工艺,并且具体如图18或如图19所示,所述金属支架50还设有一逃气孔55,其中所述逃气孔55与所述光窗132形成的密闭空间相导通,从而在进行烘烤固化的过程中,受热膨胀的气体能够通过所述逃气孔55扩散到外部,以有效地防止内部气压激增造成对所述滤光元件40的不必要的冲击。更具体地说,在本发明的该优选实施例中,所述逃气孔55设置于邻近所述金属支架50的所述通光口52,并且当所述金属支架50贴装于所述模塑基座13的相应位置时,所述逃气孔55与所述光窗132形成的密闭空间相联通。进一步地,当所述滤光元件40安装于所述金属支架50时,所述逃气孔55部分被所述滤光元件40所遮蔽,部分暴露于外界,以使得位于所述光窗132形成的密闭空间内的气体可通过暴露于外界的所述淘气口区域扩散到外界。
本领域的技术人员应理解,当所述感光组件10烘烤固化完毕后,所述逃气孔55最好重新封闭,以防止外界灰尘通过所述淘气口渗入所述感光组件10内部,影响成像质量。相应地,在本发明的该优选实施例中,所述逃气孔55具有一连通区551和一封口区552。当所述滤光元件40设置于所述金属支架50时,所述逃气孔55部分与所述滤光元件40相重 叠,以形成所述连通区551和所述封口区552,其中所述连通区551延伸入所述光窗132形成的密闭空间以用于气体导通,所述封口区552对应于所述模塑基座13顶表面,以用于封胶密封。
优选地,在本发明的该优选实施例中,所述封口区552一体延伸于所述连通区551,且所述封口区552的开口尺寸大于所述连通区551的开口尺寸,以利于后续于封口区552施加胶水进行封胶固定。更优选地,所述封口区552的开口深度大于所述连通区551的开口深度,以避免施加于所述封口区552的胶水溢流至所述密封空间,从而防止所述感光元件12被污染。
本领域的技术人员应容易想到,在本发明的另外的实施例中,所述逃气通道可设置于所述模塑基座13的顶部。更具体地说,所述逃气通道凹陷地形成于所述模塑基座13顶部,以使得所述逃气通道的一端连通于所述光窗132形成的密闭空间,所述逃气通道的相对的一端连通于外界,从而当在进行烘烤固定的过程中,位于所述光窗132形成的密闭空间内的气体可缘着所述逃气通道进行流通,防止气压激增对所述滤光原价造成破坏。优选地,在本发明的该实施例中,所述逃气通道设置于所述感光组件10的一软板侧,其原因在于,该侧的所述模塑基座13比较窄,易于所述逃气通道的加工。
值得一提的是,所述金属支架50由金属材料制成,从而在烘烤固化的过程中,所述金属支架50不易发生形变,以有效地确保所述金属支架50和安装于所述金属支架50的器件之间的相对位置关系保持稳定。
进一步地,在所述感光组件10烘烤固化之后,需组装所述光学镜头20于所述模塑基座13顶侧。应领会的是,在本发明的该优选实施例中,所述金属支架50可组装于所述金属支架50而非所述模塑基座13。因此,所述模塑基座13的成型质量对所述光学镜头20的安装和校准没有直接的影响。特别地,由于所述金属支架50由金属材料制成,具有相对较高的平整度,因此,所述光学镜头20可通过机械固定的方式组装于所述金属支架50,且具有相对较高的精度,从而可大大降低所述光学镜头20的安装和校准成本。当然,本领域的技术人员应知晓,所述光学镜头20同样可通过主动校准(Active Alignment)的方式组装于所述金属支架50,以确保所述光学镜头20的安装精度。
相应地,当所述光学镜头20组装于所述金属支架50时,所述金属支架50被限位于所述模塑基座13和所述光学镜头20之间,以防止,在后续的使用过程中,所述金属支架50因摄像模组震动而发生位置偏移。
值得一提的是,在发明的另外的实施例中,所述光学镜头20通过一驱动元件30组装于所述金属支架50。同样地,具有相对较高平整度的所述金属支架50同样利于所述驱动元 件30的安装和校准。进一步地,本领域的技术人员应容易想到,所述金属支架50可为解决双摄像模组的双镜头安装校准难,提供相应的解决方案。
参照附图11,依据本发明的一第二优选实施例的一摄像模组被阐明,其中所述第二优选实施例所示的所述摄像模组的结构大体与第一优选实施例所示结构相一致,除了所述金属支架50A的安装位置。
特别地,如图11所示,在本发明的该优选实施例中,所述模塑基座13A的顶表面具有内侧的一台阶面133A,所述台阶面133A形成于所述模塑基座13A内侧,以供支撑所述金属支架50。相应地,所述金属支架50A包括一环形主体51A和由所述环形主体51形成的一通光口52A,其中所述金属支架50A安装于所述模塑基座13A时,所述环形主体51A部分重叠地贴合于所述模塑基座13A的所述台阶面133A,同时,所述通光口52A对应于所述模塑基座主体131A的所述光窗132A,以形成完整的光线通路。应领会的是,在本发明的该优选实施例中,所述金属支架50A安装于台阶面133A,以使得所述金属支架50A相对所述光学镜头20A远离,从而有效地避免所述滤光元件40A与所述光学镜头20A的最后一片透镜之间发生触碰。优选地,利用线路板电子元器件高于引线的特点,所述台阶面133A可以不高于所述线路板的电子元器件的高度而不低于所述引线的高度,从而使所述金属支架50A的位置进一步下移。
所述金属支架50A的所述通光口52A对应于所述模塑基座13A的所述光窗132A,因此调节所述金属支架50A的所述通光口52A的特征,可改变所述感光元件12A的感光角度和感光范围。更具体地说,在本发明的该优选实施中,所述金属支架50A被部分支持于所述模塑基座13A所述台阶面133A,因此,所述金属支架50A的所述通光口52A的尺寸略小于所述模塑基座13A的所述光窗132A,从而所述通光口52A可对所述感光元件12A的感光角度和感光范围进行进一步地限制。优选地,所述通光口52A的内侧表面为倾斜面511A,且所述倾斜面511A朝向所述感光元件12A,通过这样的方式,限定入光角度和入光范围对应于所述感光元件12A的感光区域。
值得一提的是,在本发明的该优选实施例中,所述金属支架50A安装于所述模塑基座13A的所述台阶面133A,以使得所述金属支架50A可保护地位于所述模塑基座13A的内部,通过这样的方式,防止所述金属支架50A,在后续的安装和使用的过程中,因受其侧面受挤压或冲击而产生一个弯折力导致所述滤光元件40A被破损或碎裂。
进一步地,如图12所示的是所述金属支架50A的一变形实施例,其中所述金属支架50A具有一下沉安装结构53A,以使得所述滤光元件40A的安装位置深入所述光窗132A。也就是说,在本发明的该变形实施例中,所述金属支架50A具有立体结构。更具体地说,在本发 明的该实施例中,所述金属支架50A包括一环形主体51A,至少一内延臂531A和至少一下沉臂532A,其中所述下沉臂532A和所述内延臂531A形成所述下沉安装结构53A。如图12所示,所述下沉臂532A自所述环形主体51A转向地、纵向地一体延伸,以降低所述滤光元件40A的安装位置高度,从而所述滤光元件40A相对远离所述光学镜头20A以防止于所述光学镜头20A的最后一片透镜之间发生触碰,且更靠近于所述感光元件12A,以利于过滤杂光。所述内延臂531A自所述下沉臂532A转向地、横向地一体延伸,以便于为所述滤光元件40A提供水平方向的安装位置,使得所述滤光元件40A和所述感光元件12A的光轴一致。具体地,在本发明的实施中,所述金属支架50A包括四个一体连接的所述内延臂531A和四个一体连接的所述下沉臂532A,各所述内延臂531A和各所述下沉臂532A在不同位置延伸以形成所述下沉安装结构53A。
值得一提的是,在本发明的该变形实施例中,由于所述滤光元件40A由金属材料制成,其具有相对较好的延展性。因此,在实际加工形成所述金属支架50A的过程中,例如通过金属冲压工艺,所述金属支架50A可被冲压形成各种高度差,以满足不同规格的摄像模组的要求。从而,无需类似现有技术中,需要更换滤光元件40A镜座的成型模具方能制备不同规格的滤光元件40A镜座,以使得成本可被进一步地降低。
参照附图13,依据本发明的一第三优选实施例的一摄像模组被阐明,其中所述第三优选实施例所示的所述摄像模组的结构大体与第一优选实施例所示结构相一致,除了所述金属支架50B的结构配置。
本领域的技术人员应知晓,随着模塑成型工艺的发展,成型后的所述感光组件10B的尺寸越来越小,甚至已经存在有些光学镜头20B的尺寸比感光组件10B的尺寸大。此时,如果将所述光学镜头20B组装于所述模塑基座13B顶侧,所述光学镜头20B部分悬空地设置,结构不稳定。
相应地,如图13所示,在本发明的该优选实施例中,所述金属支架50B突出地延伸于所述模塑基座13B的外周部,以供支持部分悬空设置的所述光学镜头20B,以便于加固所述光学镜头20B的支撑结构。也就是说,在本发明的该优选实施例中,所述金属支架50B为所述光学镜头20B提供一支撑平台。
特别地,在本发明的该优选实施中,所述金属支架50B的外侧周缘位于所述光学镜头20B外周部的内侧,以使得当所述摄像模组组装于一电子设备时,例如智能手机,所述金属支架50B的侧面不会与该电子设备发生碰撞,以避免所述金属支架50B变形产生一弯折力而破坏所述滤光元件40B。也就是说,在本发明的该优选实施例中,所述金属支架50B突出所述模塑基座13B外周部的长度小于所述光学镜头20B突出所述模塑基座13B的长度。
应领会的是,本发明第三优选实施例所提供的所述摄像模组适于顺应电子设备非平直面的安装。例如,如图13所示,所述摄像模组被安装于一电子设备,其中该电子设备的壳体80B具有一弧形曲面。此时,传统的方块形的摄像模组显然无法适应此时的安装条件。具体地,在组装所述摄像模组于该电子设备的过程中,所述模塑基座13B设置于该壳体80B的一侧,所述摄像模组的光学镜头20B错位突出地设置并与该壳体80B的另一侧相抵触,以形成稳定的固定结构。
参照附图14,依据本发明的一第四优选实施例的一阵列摄像模组被阐明。所述阵列摄像模组包括一所述摄像模组包括多个感光组件10C和多个光学镜头20C,其中所述光学镜头20C位于所述感光组件10C的感光路径,以通过所述光学镜头20C采集被测目标的图像信息。特别地,在本发明的该优选实施中,所述摄像模组被实施为双目摄像模组甚至更多目的摄像模组,即,所述摄像模组包括两个或以上光学镜头20C。此方面并不为本发明所局限。
值得一提的是,所述双目摄像模组可被实施为定焦双摄像模组,即,所述光学镜头20C和所述感光组件10C之间的焦距不可调节。特别地,所述光学镜头20C可通过一镜筒21C,作为镜头承载元件,组装于所述感光组件10C的顶部。可以理解的是,随着封装工艺的改善,摄像模组的体型尺寸被不断缩减,在另外的变形实施例中,所述光学镜头20C以“裸镜头”的方式组装于所述感光组件10C的顶部,即,此时,无需所述镜筒21C或所述镜头承载元件,所述光学镜头20C被直接安装于所述感光组件10C的顶部区域。或者所述双摄像模组为动焦摄像模组,所述光学镜头20C组装于对应一驱动器。
更具体地说,如图14所示,所述感光组件10C包括至少一线路板11C,两感光元件12C,和至少一模塑基座13C。所述感光元件12C分别可导通地连接于所述线路板11C,其中来自被测目标的光线穿过所述感光组件10C并到达各所述感光元件12C,以进一步地通过各所述感光元件12C的感光反应将被测目标的光信号转化为电子设备可识别且可操作的电信号,实现被测目标图形采集和再现等功能。所述模塑基座13C一体成型于所述线路板11C和所述感光元件12C,并包覆所述线路板11C和所述感光元件12C的至少一部分,以使得所述感光组件10C和所述摄像模组具有紧凑且小型化的结构。
值得一提的是,在本发明中,所述线路板11C可为一体式线路板或分体式线路板,其中当所述线路板11C为一体式线路板时,所述感光元件12C对应地贴装于所述线路板11C的相应区域,以通过所述一体式线路板11C为所述感光元件12C提供平整的安装面。当所述线路板11C为分体式线路板时,所述线路板11C包括两分体线路板,所述分体线路板分别适于贴装所述感光元件12C。此时,两所述分体线路板之间的装配和工作空间较为独立。
在本发明的该优选实施例中,所述感光元件12C可通过例如SMT(Surface Mounting  Technology,表面贴装工艺)分别安装于所述线路板11C的相应区域,并进一步地通过一组引线14C实现所述线路板11C和所述感光元件12C之间的电性连接。本领域的技术人员应知晓,该导通线路板11C和所述感光元件12C的方式被称为“打金线”工艺。需指出的是,在本发明中,可选择正向“打金线”的方式,即所述引线14C自所述线路板11C延伸至所述感光元件12C,或选择反向“打金线”的方式,即所述引线14C自所述感光元件12C延伸至所述线路板11C,导通所述感光元件12C和所述线路板11C,此并不为本发明所局限。
进一步地,当所述感光元件12C安装于所述线路板11C并与所述线路板11C相导通之后,执行模塑成型工艺以形成所述模塑基座13C于所述感光元件12C和所述线路板11C。所述模塑基座13C一体成型于所述感光元件12和所述线路板11C,并包覆所述感光元件12的至少一部分和安装于所述线路板11C的一系列电子元器件,从而不仅有效的缩减了所述感光组件10C的整体尺寸,而且有效地防止了类似传统摄像模组中灰尘、杂物粘附于所述电子元器件上污染所述感光元件12C而影响成像效果。相应地,在本发明中,所述模塑基座可为一体式模塑基座,即所述模塑基座一体成型于所述线路板(一体式线路板或分体式线路板)和所述感光元件。同样可行的是,所述模塑基座为分体式模塑基座,即所述模塑基座包括两独立的模塑基座,所述分体模塑基座分别一体成型于所述线路板和所述感光元件。
更具体地说,所述模塑基座13C包括一模塑基座主体131C和由所述模塑基座主体131C所形成的至少一光窗132C,其中所述光窗132C为封闭空间,且分别对应于所述感光元件12C的至少感光区域,以允许来自外界的光能透过所述光窗132C辐射至所述感光元件12C,以完成图像采集。特别地,在本发明的该优选实施例中,所述模塑基座主体131C具有封闭环形结构,以便于为所述感光元件12C提供封闭的内环境,防止外界杂光从侧面进入所述感光元件12C。
为了使得所述摄像模组的成像效果更接近于人眼视觉,所述感光组件10C还包括两滤光元件40C,所述滤光元件40C分别设置于所述光学镜头20C和所述感光元件12C之间,以用于过滤所述光学镜头20C所采集的被测目标的光信号。特别地,所述滤光元件40C保持于所述光学镜头20C和所述感光元件12C所形成的感光路径上,从而穿过所述光学镜头20C的光线被所述滤光元件40C所过滤,以使得辐射至所述感光元件12C的光线中不含红外光等杂光,从而最终的成像效果更接近于人眼的视觉效果。
进一步地,所述感光组件10C还包括至少一金属支架50C,所述金属支架50C设置于所述滤光元件40C和所述模塑基座13C之间,以通过所述金属支架50C改善所述滤光元件40C的安装条件和安装环境。也就是说,此时,所述滤光元件不直接接触地安装于所述模塑基座的顶表面,因此,所述模塑基座顶表面的成型质量和尺寸对所述滤光元件的安装不会造成直 接的影响。
特别地,在本发明的该优选实施例中,所述金属支架由金属材料制成,其具有相对较高的平整度,从而更有利于所述滤光元件40C和
Figure PCTCN2018110912-appb-000001
所述光学镜头20C的安装校准。更具体地说,当所述滤光元件40C安装于所述金属支架50C时,所述滤光元件40C和所述金属支架50C的接触面之间受力均匀,从而有效地降低了所述滤光元件40C,在安装过程中,由于受力不均而导致破碎或损坏的几率。同时,所述滤光元件40C和所述金属支架50C重叠地设置,因此,所述滤光元件40C的平整度取决于所述金属支架50C的平整度。因此,在本发明的该优选实施例中,所述滤光元件40C具有相对较高的平整度,从而穿过所述光学镜头20C的光线在所述滤光元件40C处可被有效地过滤。
当所述光学镜头组装于所述金属支架时,由于所述金属支架具有较高的平整度,从而可通过机械固定的方式组装于所述金属支架50C,以大大降低所述光学镜头20C的安装和校准成本。当然,本领域的技术人员应知晓,所述光学镜头20C同样可通过主动校准(Active Alignment)的方式组装于所述金属支架50C,以确保所述光学镜头20C的安装精度。
值得一提的是,如图14所示,在本发明的该优选实施例中,所述金属支架50C具有一体式结构,即所述金属支架50C包括一环形主体51C和具有两通光口52C,其中当所述金属支架50C组装于所述模塑基座13C顶表面时,所述环形主体51C贴合于所述模塑基座13C的顶表面,所述通光口52C分别对应于所述光窗132C和所述感光元件12C。当然,本领域的技术人员应想到,在本发明的另外的变形实施例中,如图15所示,所述金属支架50C具有分体式结构,即所述感光组件10C包括两独立金属支架50C,所述金属支架50C分别适于贴装于所述模塑基座13C的顶表面,且所述金属支架50C的所述通光口52C分别对应于所述光窗132和所述感光元件13C。另外,多个所述感光组件的所述滤光元件40C也可以是一体结构或各自独立。
进一步地,在本发明中,所述金属支架50C由金属材料制成,例如铁基、铝基或铜基材料等。例如在一个具体示例中,其实施为一钢片。众所周知,金属材料具有较高的光反射性能,会产生比较多的反射杂光。为了消除这一因素对成像质量的影响,进一步设置一吸光层54C于所述滤光元件40C之间的相应区域,以防止光线在所述金属支架50C表面发生反射而进入所述感光元件12C,从而影响最终的成像效果。
更具体地说,在本发明的该优选实施例中,所述吸光层54C覆盖于所述金属支架50C的外表面,以使得被所述光学镜头20C所采集的光线部分通过所述通光口52C进入所述感光元件12C,而部分落于所述金属支架50C表面的光线被所述吸光层54C所吸收,通过这样的方式,有效地防止落于所述金属支架50C表面的光线经过多次反射进入所述感光元件12C, 影响成像质量。优选地,所述吸光层54C被同时设置于所述滤光元件40C的底表面和顶表面,从而落于所述金属支架50C顶表面的杂光和辐射至所述金属支架50C底表面的杂光,皆能被有效吸收。更优选地,为了进一步地确保所述吸光层54C的吸光效果,所述吸光层54C被设置覆盖所述金属支架50C的整个外表面。当然,本领域的技术人员应知晓,在本发明的另外的变形实施例中,所述吸光层54C可仅被设置于所述金属支架50C靠近所述通光口52C的区域,以降低所述反射杂光进入所述感光元件12C的几率。
值得一提的是,所述吸光层54C可通过镀化或贴膜工艺形成于所述金属支架50C的相应区域。本领域的技术人员应理解,在本发明中,所述吸光层54C的形成方式并不为本发明的局限。应领会的是,形成所述吸光层54C的工艺在所述金属支架50C冲压成型之后执行,以防止在冲压所述金属支架50C的过程中,所述吸光层54C被划伤而使得其整体性被破坏。
另外,可以理解的是,上述实施例中的摄像模组单体的结构都可以应用至本发明的阵列摄像模组中。
另一方面,参照图16A至图20,本发明进一步阐述了一摄像模组制造方法,适用于上述基于金属支架的摄像模组,实现本发明的目的和优势。
步骤101:容纳一感光组件10的一线路板11和至少一感光元件12于一成型模具900的成型空间903内,其中所述感光组件10的半成品被固定于一下模具902,其中所述感光组件10的感光元件12与一上模具901的内底表面贴附。在该步骤中,所述感光元件12导电地贴合于所述线路板11的表面形成所述感光组件10的半成品。而本领域技术人员可以知道的是,此处,所述线路板11可以被实施为线路板拼板或一体式线路板,多个感光12可以被对应地安装,即可以是多个半成品的拼版被容置于所述成型空间903内。
步骤102:注入流体态的成型材料于所述成型空间903内。
所述流体态的成性材料并不限制,可以是透明材料、吸光材料等等。制造商根据需求可以采用不同的材料。
步骤103:固化所述成型材料,形成一模塑基座13,其中所述模塑基座13包覆于所述感光元件12的外边沿,其中所述模塑基座13具有对应于所述感光组件12的光窗132。
在该步骤中,当所述线路板11被实施为线路板拼板或一体式线路板时,形成的所述模塑基座13覆盖所述线路板拼板或一体式线路板,对应的形成多个光窗132对应于所述感光元件12。当所述模塑基座13形成后,可以通过裁切将形成的拼版式产品分割为多个如前述的单个结构,或者双摄像模组所需的连体结构等。
步骤104:形成一金属支架50,其中所述金属支架50为一平面环形结构,其中所述金属支架50具有一通光孔52,其中所述通光孔52的尺寸小于所述光窗132,其中所述金属支 架50具有一逃气孔55,与所述光窗132形成的空间联通。
在该步骤中,所述金属支架50的结构不限,可以是上述提到的下沉安装结构或平整结构,此处不再赘述。根据不同的产品尺寸需求等,所述金属支架50的高度尺寸是各种规格,此处并不限制。
步骤105:部分重叠地贴合所述金属支架50于所述模塑基座13的顶表面,其中所述通光孔52对应于所述光窗132,其中所述金属支架50向所述模塑基座13的内侧延伸。
正如前文所述,安装时,可以是所述金属支架50的一部分外边缘位于所述模塑基座13顶表面的内侧,也可以是位于所述模塑基座13顶表面外侧,但位于后续安装的镜头、驱动器或固定镜筒的外边缘内侧。
步骤106:设置一吸光层54于所述金属支架50的外表面,用于吸收光线。
所述吸光层54可以被设置于所述金属支架50的整个外表面,也可以被设置于所述金属支架50靠近所述通光孔52的区域。可以知道的是,步骤106并非必要步骤,生产商可以根据需求选择是否执行。
步骤107:安装一滤光元件40于所述金属支架50,封闭
Figure PCTCN2018110912-appb-000002
所述通光孔52,形成所述感光组件10。
所述步骤105和步骤107的顺序并不固定,可以先安装所述滤光元件40,再安装所述金属支架50,也可以将顺序调换,先安装所述金属支架50,再安装所述过滤元件40。所述滤光元件40可以安装于所述金属支架50顶侧或底侧。
在所述步骤107之前,还可以执行步骤;设置所述遮光层于所述滤光元件40的外表面。例如同时设置于所述滤光元件40的底表面和顶表面,以便形成所述遮光区域。该步骤并不是必须步骤,可以和所述步骤106择一执行,或均执行。
步骤108:烘烤所述感光组件10,其中所述感光组件10内部空气受热膨胀,通过所述逃气孔55扩散到外界。
步骤109:密封所述逃气孔55。
步骤110:对应于所述感光组件10的感光路径,安装一光学组件20于所述感光组件10的顶侧。
由此可以看到本发明目的可被充分有效完成。用于解释本发明功能和结构原理的所述实施例已被充分说明和描述,且本发明不受基于这些实施例原理基础上的改变的限制。因此,本发明包括涵盖在附属权利要求书要求范围和精神之内的所有修改。

Claims (45)

  1. 一感光组件,其特征在于,包括:
    一感光元件;
    一线路板,其中所述感光元件电连接于所述线路板;
    一模塑基座,其中所述模塑基座通过模塑工艺一体成型于所述线路板,包覆所述感光元件的边缘,其中所述模塑基座具有对应于所述感光元件的感光路径一光窗;以及
    一金属支架,其中所述金属支架被安装于所述模塑基座的顶表面,以供安装一滤光元件,其中所述金属支架具有对应于所述光窗的一通光孔,其中所述滤光元件、所述金属支架和所述模塑基座的光窗之间形成为所述感光元件提供光线通路。
  2. 根据权利要求1所述的感光组件,其中所述金属支架包括一环形主体,其中所述通光孔由所述环形主体所界定,所述滤光元件贴装于所述金属支架顶侧,并向所述模塑基座的内侧延伸。
  3. 根据权利要求1所述的感光组件,其中所述金属支架的外边缘位于所述模塑基外周缘的内侧。
  4. 根据权利要求1所述的感光组件,其中所述金属支架包括一环形主体,其中所述通光孔由所述环形主体所界定,所述滤光元件贴装于所述金属支架的底侧。
  5. 根据权利要求1至4任一所述的感光组件,其中所述金属支架进一步包括至少一内延臂和至少一下沉臂,其中所述下沉臂和所述内延臂形成一下沉安装结构,其中所述下沉臂自所述环形主体转向地、纵向地一体延伸,以降低所述滤光元件的安装位置高度,其中所述内延自所述下沉臂转向地、横向地一体延伸,以为所述滤光元件提供水平方向的安装位置。
  6. 根据权利要求5所述的感光组件,其中所述金属支架包括四个一体连接的所述内延臂和四个一体连接的所述下沉臂,其中各所述内延臂和各对应的所述下沉臂在不同位置延伸,形成所述下沉安装结构。
  7. 根据权利要求1至4任一所述的感光组件,其中所述通光孔的尺寸小于所述光窗的尺寸。
  8. 根据权利要求1至4任一所述的感光组件,其中所述通光孔的的内侧表面为 倾斜面,其中所述倾斜面朝向所述感光元件。
  9. 根据权利要求1至4任一所述的感光组件,其中所述金属支架进一步包括一吸光层,其中所述吸光层被设置于所述金属支架外表面。
  10. 根据权利要求9所述的感光组件,其中所述吸光层被设置于覆盖所述金属支架的整个外表面。
  11. 根据权利要求9所述的感光组件,其中所述吸光层被设置于所述金属支架靠近所述通光口的区域。
  12. 根据权利要求9所述的感光组件,其中所述吸光层被设置于所述滤光元件的底表面和\或顶表面。
  13. 根据权利要求1至4任一所述的感光组件,其中所述过滤元件具有一遮光层,以通过所述遮光层限制所述滤光元件的透光范围,其中所述遮光层被设置于所述滤光元件的底表面和\或顶表面。
  14. 根据权利要求1至4任一所述的感光组件,其中所述金属支架具有一逃气孔,其中所述逃气孔与所述滤光元件、所述金属支架以及所述模塑基座所形成的内部空间相连通。
  15. 根据权利要求14所述感光组件,其中所述逃气孔具有一连通区和一封口区,其中所述逃气孔部分与所述滤光元件相重叠,形成所述连通区和所述封口区封口区,其中所述连通区延伸入形成的密闭空间,以用于气体导通,其中所述封口区对应于所述模塑基座顶表面,以用于封胶密封。
  16. 根据权利要求14所述感光组件,其中所述封口区一体延伸于所述连通区,且所述封口区的开口尺寸大于所述连通区的开口尺寸。
  17. 根据权利要求14所述感光组件,其中所述封口区的开口深度大于所述连通区的开口深度。
  18. 根据权利要求1至4任一所述的感光组件,其中所述模塑基座的顶表面具有位于内侧的一台阶面,其中所述台阶面形成于所述模塑基座内侧,以供支撑所述金属支架,其中所述环形主体部分重叠地贴合于所述台阶面。
  19. 根据权利要求5所述的感光组件,其中所述模塑基座的顶表面具有位于内侧的一台阶面,其中所述台阶面形成于所述模塑基座内侧,以供支撑所述金属支架,其中所述环形主体部分重叠地贴合于所述台阶面。
  20. 根据权利要求1或2所述的感光组件,其中所述金属支架的外侧周缘位于 所述光学镜头外周部的内侧,且所述金属支架突出所述模塑基座外周部的长度小于一对应的光学镜头突出所述模塑基座的长度。
  21. 根据权利要求1至4任一所述的感光组件,其中所述金属支架厚度范围为0.03~0.2mm。
  22. 一摄像模组,其特征在于,包括:
    一光学镜头;和
    一如权利要求1至21任一所述的感光组件,其中所述光学镜头被安装于所述感光组件顶侧,对应于所述感光元件的感光路径。
  23. 根据权利要求22所述的摄像模组,进一步包括一驱动元件,其中所述驱动元件驱动所述光学镜头移动,以实现光学调焦。
  24. 根据权利要求23所述的摄像模组,其中所述金属支架的外边缘位于所述模塑基座外边沿和所述驱动元件外边沿之间。
  25. 一阵列摄像模组,其特征在于,包括:
    至少两光学镜头;
    至少一线路板;
    至少两感光元件,其中所述感光元件分别可导通地连接于所述线路板;
    至少一模塑基座,其中所述一体成型于所述线路板和所述感光元件,并包覆所述线路板和各所述感光元件的边沿部分,其中所述模塑基座具有对应于个感光元件的感光路径的光窗;以及
    至少一金属支架,其中所述金属支架被安装于所述模塑基座的顶表面,以供安装至少两滤光元件,其中所述金属支架具有对应于所述光窗的至少两通光孔,其中所述滤光元件、所述金属支架和所述模塑基座的光窗之间为各个所述感光元件提供光线通路。
  26. 根据权利要求25所述的阵列摄像模组,其中所述线路板被实施为一体式线路板。
  27. 根据权利要求25所述的阵列摄像模组,其中所述线路板被实施为分体式线路板,其中各感光元件对应的所述线路板相互独立。
  28. 根据权利要求25所述的阵列摄像模组,其中所述模塑基座被实施为一体式模塑基座。
  29. 根据权利要求25所述的阵列摄像模组,其中所述模塑基座被实施为分体式 模塑基座,其中各感光元件对应的所述模塑基座相互独立。
  30. 根据权利要求25所述的阵列摄像模组,其中所述金属支架被实施为一体式金属支架。
  31. 根据权利要求25所述的阵列摄像模组,其中所述金属支架被实施为分体式金属支架。
  32. 根据权利要求25所述的阵列摄像模组,其中所述过滤元件被实施为分体式过滤元件。
  33. 根据权利要求25所述的阵列摄像模组,其中所述过滤元件被实施为一体式过滤元件。
  34. 根据权利要求25至33任一所述的阵列摄像模组,其中所述金属支架包括一环形主体,其中所述通光孔由所述环形主体所界定,所述滤光元件贴装于所述金属支架顶侧,并向所述模塑基座的内侧延伸。
  35. 根据权利要求34所述的感光组件,其中所述金属支架的外边缘位于所述模塑基外周缘的内侧。
  36. 根据权利要求34所述的感光组件,其中所述金属支架包括一环形主体,其中所述通光孔由所述环形主体所界定,所述滤光元件贴装于所述金属支架的底侧。
  37. 根据权利要求35或36所述的感光组件,其中所述金属支架进一步包括至少一内延臂和至少一下沉臂,其中所述下沉臂和所述内延臂形成一下沉安装结构,其中所述下沉臂自所述环形主体转向地、纵向地一体延伸,以降低所述滤光元件的安装位置高度,其中所述内延自所述下沉臂转向地、横向地一体延伸,以为所述滤光元件提供水平方向的安装位置。
  38. 根据权利要求37所述的感光组件,其中所述金属支架包括四个一体连接的所述内延臂和四个一体连接的所述下沉臂,其中各所述内延臂和各对应的所述下沉臂在不同位置延伸,形成所述下沉安装结构。
  39. 根据权利要求35或36所述的感光组件,其中所述金属支架进一步包括一吸光层,其中所述吸光层被设置于所述金属支架外表面。
  40. 根据权利要求39所述的感光组件,其中所述吸光层被设置于覆盖所述金属支架的整个外表面。
  41. 根据权利要求39所述的感光组件,其中所述吸光层被设置于所述金属支架靠近所述通光口的区域。
  42. 根据权利要求39所述的感光组件,其中所述吸光层被设置于所述滤光元件的底表面和\或顶表面。
  43. 一感光组件制造方法,其特征在于,包括:
    (a)容纳一感光组件的一线路板和至少一感光元件于一成型模具的成型空间内,其中所述感光组件1的半成品被固定于一下模具,其中所述感光组件的感光元件与一上模具的内底表面贴附;
    (b)注入流体态的成型材料于所述成型空间内;
    (c)固化所述成型材料,形成一模塑基座,其中所述模塑基座包覆于所述感光元件的外边沿,其中所述模塑基座具有对应于所述感光组件的光窗;
    (d)形成一金属支架,其中所述金属支架为一平面环形结构,其中所述金属支架具有一通光孔,其中所述通光孔的尺寸小于所述光窗,其中所述金属支架具有一逃气孔,与所述光窗形成的空间联通;
    (e)部分重叠地贴合所述金属支架于所述模塑基座的顶表面,其中所述通光孔对应于所述光窗,其中所述金属支架向所述模塑基座的内侧延伸;
    (f)安装一滤光元件于所述金属支架,封闭所述所述通光孔,形成所述感光组件;
    (g)烘烤所述感光组件,其中所述感光组件内部空气受热膨胀,通过所述逃气孔扩散到外界;以及
    (h)密封所述逃气孔。
  44. 根据权利要求43所述的感光组件制造方法,其中所述步骤(d)之后还包括步骤:
    (i)设置一吸光层于所述金属支架的外表面,用于吸收光线。
  45. 根据权利要求43所述的感光组件制造方法,其中所述步骤(方)之前还包括步骤:
    (k)设置所述遮光层于所述滤光元件的外表面。
PCT/CN2018/110912 2017-10-20 2018-10-19 基于金属支架的感光组件和摄像模组 WO2019076352A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880057898.2A CN111345021A (zh) 2017-10-20 2018-10-19 基于金属支架的感光组件和摄像模组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710985806.4A CN109698894B (zh) 2017-10-20 2017-10-20 基于金属支架的感光组件和摄像模组
CN201710985806.4 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019076352A1 true WO2019076352A1 (zh) 2019-04-25

Family

ID=66174320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110912 WO2019076352A1 (zh) 2017-10-20 2018-10-19 基于金属支架的感光组件和摄像模组

Country Status (2)

Country Link
CN (2) CN109698894B (zh)
WO (1) WO2019076352A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493502A (zh) * 2019-08-26 2019-11-22 昆山丘钛微电子科技有限公司 摄像头模组、移动终端及摄像头模组制造方法
CN111131684A (zh) * 2020-01-15 2020-05-08 昆山丘钛微电子科技有限公司 镜头、摄像头模组及摄像头模组的制造方法
CN111988498A (zh) * 2019-05-24 2020-11-24 宁波舜宇光电信息有限公司 摄像模组及其制造方法
CN112311975A (zh) * 2019-08-02 2021-02-02 宁波舜宇光电信息有限公司 发射模块及其tof摄像模组和电子设备
TWI735070B (zh) * 2019-10-29 2021-08-01 新煒科技有限公司 底座、攝像頭模組及電子裝置
CN114520857A (zh) * 2020-10-30 2022-05-20 宁波舜宇光电信息有限公司 摄像模组和摄像模组的组装方法
US20220232150A1 (en) * 2021-01-19 2022-07-21 Triple Win Technology(Shenzhen) Co.Ltd. Camera module and electronic device having the camera module
CN114982215A (zh) * 2019-12-20 2022-08-30 宁波舜宇光电信息有限公司 光学组件、感光组件、摄像模组、光学组件和感光组件的制备方法
EP4380151A1 (en) * 2022-12-02 2024-06-05 Shine Optics Technology Company Limited Portable electronic device, and image-capturing device and assembly method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248070A (zh) * 2019-06-28 2019-09-17 信利光电股份有限公司 一种摄像头模组及终端
WO2021017746A1 (zh) * 2019-08-01 2021-02-04 宁波舜宇光电信息有限公司 感光组件、摄像模组及其制造方法
CN112492129B (zh) * 2019-09-12 2022-05-17 华为技术有限公司 摄像模组和电子设备
CN112672002B (zh) * 2019-10-15 2022-09-02 群光电子股份有限公司 影像撷取装置
WO2021143447A1 (zh) * 2020-01-19 2021-07-22 宁波舜宇光电信息有限公司 支架、感光组件、摄像模组和支架制备方法
CN113141443A (zh) * 2020-01-19 2021-07-20 宁波舜宇光电信息有限公司 支架、感光组件、摄像模组和支架制备方法
CN111405791B (zh) * 2020-03-30 2021-05-18 维沃移动通信有限公司 电子设备
CN113840056B (zh) * 2020-06-23 2022-12-06 华为技术有限公司 摄像模组和电子设备
CN114234021B (zh) * 2021-11-30 2023-10-10 苏州华电电气股份有限公司 一种自适应支撑架及电抗器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582432A (zh) * 2008-05-15 2009-11-18 胜开科技股份有限公司 具有支撑件的影像感测模组封装结构
US20120044411A1 (en) * 2010-08-19 2012-02-23 Hon Hai Precision Industry Co., Ltd. Camera module and method for assembling the same
CN105898120A (zh) * 2016-04-21 2016-08-24 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组
CN106027863A (zh) * 2016-05-27 2016-10-12 维沃移动通信有限公司 一种摄像头底座、摄像头及终端
CN205792875U (zh) * 2016-03-12 2016-12-07 宁波舜宇光电信息有限公司 摄像模组及其感光组件
CN205945961U (zh) * 2016-08-24 2017-02-08 横店集团东磁有限公司 手机摄像模组结构
CN107071252A (zh) * 2017-05-16 2017-08-18 昆山丘钛微电子科技有限公司 滤光片直接贴合式小型化摄像头装置及其制作方法
CN206422826U (zh) * 2016-08-12 2017-08-18 宁波舜宇光电信息有限公司 阵列摄像模组及其模塑感光组件以及带有阵列摄像模组的电子设备

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887162B2 (ja) * 2000-10-19 2007-02-28 富士通株式会社 撮像用半導体装置
CN100561736C (zh) * 2007-05-25 2009-11-18 鸿富锦精密工业(深圳)有限公司 影像感测器封装结构及其应用的成像模组
CN101373248A (zh) * 2007-08-24 2009-02-25 鸿富锦精密工业(深圳)有限公司 镜头座及其应用的镜头组件
JP5017406B2 (ja) * 2010-03-24 2012-09-05 株式会社東芝 カメラモジュール
KR101469902B1 (ko) * 2010-09-16 2014-12-05 삼성전기주식회사 카메라 모듈용 필터 패키지 및 카메라 모듈
JP5398759B2 (ja) * 2011-02-16 2014-01-29 富士フイルム株式会社 遮光膜及びその製造方法、並びに固体撮像素子
JP5694017B2 (ja) * 2011-03-16 2015-04-01 日本電産サンキョー株式会社 レンズ駆動装置の製造方法
CN102902137B (zh) * 2012-10-31 2015-12-02 信利光电股份有限公司 一种摄像模组及其底座
EP2927718B1 (en) * 2012-12-03 2018-09-19 FUJIFILM Corporation Ir-cut filter and manufacturing method thereof, solid state image pickup device, and light blocking film formation method
CN103402049A (zh) * 2013-07-28 2013-11-20 宁波远大成立科技股份有限公司 一种影像传感元件与制造方法
CN103700634B (zh) * 2013-11-06 2016-06-22 南昌欧菲光电技术有限公司 相机模组及其封装结构和封装方法
CN103997596A (zh) * 2014-06-10 2014-08-20 信利光电股份有限公司 摄像模组
CN104780304A (zh) * 2015-04-10 2015-07-15 南昌欧菲光电技术有限公司 底座结构及其具有该底座结构的摄像头模组
CN204598124U (zh) * 2015-04-10 2015-08-26 南昌欧菲光电技术有限公司 底座结构及其具有该底座结构的摄像头模组
CN104994259A (zh) * 2015-06-26 2015-10-21 宁波舜宇光电信息有限公司 基于金属粉末成型的摄像模组支架及其制造方法和应用
CN204993579U (zh) * 2015-08-04 2016-01-20 宁波舜宇光电信息有限公司 多镜头摄像模组连体支架和多镜头摄像模组
CN205159328U (zh) * 2015-10-29 2016-04-13 苏州晶方半导体科技股份有限公司 感光芯片封装结构
CN205792878U (zh) * 2016-04-21 2016-12-07 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组
CN105611134B (zh) * 2016-02-18 2018-11-23 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组及其模塑线路板组件及制造方法
CN105721749B (zh) * 2016-02-24 2020-07-24 宁波舜宇光电信息有限公司 摄像模组及其电气支架和线路板组件及制造方法
CN206040618U (zh) * 2016-06-16 2017-03-22 宁波舜宇光电信息有限公司 感光组件和摄像模组
CN110324516B (zh) * 2016-03-12 2021-12-31 宁波舜宇光电信息有限公司 摄像模组及其感光组件和制造方法
CN206272707U (zh) * 2016-03-15 2017-06-20 宁波舜宇光电信息有限公司 阵列摄像模组和双摄像模组及其线路板组件和电子设备
CN205883378U (zh) * 2016-03-28 2017-01-11 宁波舜宇光电信息有限公司 摄像模组的感光组件
CN111193852B (zh) * 2016-03-28 2021-10-15 宁波舜宇光电信息有限公司 摄像模组及其制造方法
CN206302476U (zh) * 2016-08-01 2017-07-04 宁波舜宇光电信息有限公司 摄像模组及其模塑电路板组件和成型模具及电子设备
CN205961279U (zh) * 2016-08-01 2017-02-15 宁波舜宇光电信息有限公司 摄像模组及其模塑感光组件和成型模具
CN206136093U (zh) * 2016-10-28 2017-04-26 宁波舜宇光电信息有限公司 一种用于摄像模组上的滤光片组件和摄像模组及终端设备
CN206339756U (zh) * 2016-12-10 2017-07-18 瑞声科技(新加坡)有限公司 镜头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582432A (zh) * 2008-05-15 2009-11-18 胜开科技股份有限公司 具有支撑件的影像感测模组封装结构
US20120044411A1 (en) * 2010-08-19 2012-02-23 Hon Hai Precision Industry Co., Ltd. Camera module and method for assembling the same
CN205792875U (zh) * 2016-03-12 2016-12-07 宁波舜宇光电信息有限公司 摄像模组及其感光组件
CN105898120A (zh) * 2016-04-21 2016-08-24 宁波舜宇光电信息有限公司 基于模塑工艺的摄像模组
CN106027863A (zh) * 2016-05-27 2016-10-12 维沃移动通信有限公司 一种摄像头底座、摄像头及终端
CN206422826U (zh) * 2016-08-12 2017-08-18 宁波舜宇光电信息有限公司 阵列摄像模组及其模塑感光组件以及带有阵列摄像模组的电子设备
CN205945961U (zh) * 2016-08-24 2017-02-08 横店集团东磁有限公司 手机摄像模组结构
CN107071252A (zh) * 2017-05-16 2017-08-18 昆山丘钛微电子科技有限公司 滤光片直接贴合式小型化摄像头装置及其制作方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988498A (zh) * 2019-05-24 2020-11-24 宁波舜宇光电信息有限公司 摄像模组及其制造方法
CN112311975A (zh) * 2019-08-02 2021-02-02 宁波舜宇光电信息有限公司 发射模块及其tof摄像模组和电子设备
CN110493502A (zh) * 2019-08-26 2019-11-22 昆山丘钛微电子科技有限公司 摄像头模组、移动终端及摄像头模组制造方法
TWI735070B (zh) * 2019-10-29 2021-08-01 新煒科技有限公司 底座、攝像頭模組及電子裝置
CN114982215A (zh) * 2019-12-20 2022-08-30 宁波舜宇光电信息有限公司 光学组件、感光组件、摄像模组、光学组件和感光组件的制备方法
CN111131684A (zh) * 2020-01-15 2020-05-08 昆山丘钛微电子科技有限公司 镜头、摄像头模组及摄像头模组的制造方法
CN114520857A (zh) * 2020-10-30 2022-05-20 宁波舜宇光电信息有限公司 摄像模组和摄像模组的组装方法
US20220232150A1 (en) * 2021-01-19 2022-07-21 Triple Win Technology(Shenzhen) Co.Ltd. Camera module and electronic device having the camera module
US11696009B2 (en) * 2021-01-19 2023-07-04 Triple Win Technology(Shenzhen) Co.Ltd. Camera module and electronic device having the camera module
EP4380151A1 (en) * 2022-12-02 2024-06-05 Shine Optics Technology Company Limited Portable electronic device, and image-capturing device and assembly method thereof

Also Published As

Publication number Publication date
CN111345021A (zh) 2020-06-26
CN109698894A (zh) 2019-04-30
CN109698894B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2019076352A1 (zh) 基于金属支架的感光组件和摄像模组
US11601576B2 (en) Array camera module having height difference, circuit board assembly and manufacturing method therefor, and electronic device
US12022180B2 (en) Array camera module and application thereof
JP6876812B2 (ja) レンズ群及びカメラモジュール並びにその製造方法
KR20190113856A (ko) 촬영모듈 및 그 몰드감광 어셈블리와 제조방법, 및 전자장치
CN113485054B (zh) 减少杂散光的摄像模组及其感光组件
WO2019029450A1 (zh) 摄像模组和具有摄像模组的电子设备及摄像模组制备方法
KR20020088364A (ko) 촬상 렌즈, 촬상 장치 및 촬상 렌즈의 성형 방법
KR102248312B1 (ko) 감광성 부품과 카메라 모듈 및 그 제조방법
US20200156295A1 (en) Camera module, molding photosensitive assembly thereof, manufacturing method thereof and electronic device
TWI706180B (zh) 減少雜散光的攝像模組及其感光組件和電子設備
EP3562136A2 (en) Image-capturing module, circuit board assembly, manufacturing method, and electronic device provided with image-capturing module
US20230207588A1 (en) Integrated photosensitive module, photosensitive assembly, camera module and preparation method therefor
JP2002350608A (ja) 撮像レンズ、撮像装置、金型及び撮像レンズの成形方法
CN110648980A (zh) 芯片封装结构及相机装置
CN110637456A (zh) 摄像模组及其模塑电路板组件和阵列摄像模组以及电子设备
JP2011120269A (ja) 撮像モジュールおよびその製造方法、電子情報機器
TW202002187A (zh) 感光晶片封裝模組及其形成方法
TWI506351B (zh) 攝影模組
TW202011101A (zh) 攝像裝置
JP4721136B2 (ja) 撮像装置
JP2009188828A (ja) 固体撮像装置とその製造方法
KR20190099282A (ko) 회로판, 조형 감광성 어셈블리 및 그의 제조 방법, 촬상 모듈 및 전자기기
JP5093324B2 (ja) 固体撮像素子ユニット及びその製造方法並びに撮像装置
TWI811032B (zh) 電路板組件、攝像頭模組及電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868770

Country of ref document: EP

Kind code of ref document: A1