WO2019076222A1 - 车辆控制方法、装置、车辆及存储介质 - Google Patents

车辆控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2019076222A1
WO2019076222A1 PCT/CN2018/109697 CN2018109697W WO2019076222A1 WO 2019076222 A1 WO2019076222 A1 WO 2019076222A1 CN 2018109697 W CN2018109697 W CN 2018109697W WO 2019076222 A1 WO2019076222 A1 WO 2019076222A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
vehicle
control mode
throttle
brake
Prior art date
Application number
PCT/CN2018/109697
Other languages
English (en)
French (fr)
Inventor
向南
苏奎峰
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP18869117.4A priority Critical patent/EP3614224B1/en
Publication of WO2019076222A1 publication Critical patent/WO2019076222A1/zh
Priority to US16/589,251 priority patent/US11214252B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0285Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile

Definitions

  • the present application relates to communication technologies, and in particular, to a vehicle control method, apparatus, vehicle, and storage medium.
  • the vehicle is usually controlled by the throttle, transmission structure, brake structure and the Electronic Stability Program (ESP).
  • ESP Electronic Stability Program
  • the smooth running speed of the vehicle affects the user's experience, and how to smoothly control the traveling speed of the vehicle is receiving more and more attention.
  • the embodiment of the present application provides a vehicle control method, device, vehicle, and storage medium, which can realize speed smoothing control of an automatically driven vehicle.
  • the embodiment of the present application provides a vehicle control method, which is executed by an in-vehicle terminal or a vehicle, and includes:
  • the determined throttle amount and brake amount are applied in the vehicle.
  • the embodiment of the present application further provides a vehicle control apparatus, including:
  • a control mode determining unit configured to determine a control mode corresponding to the comparison result in the candidate control mode based on a comparison result of the target traveling speed and the actual traveling speed; wherein the candidate control mode includes : brake control mode, acceleration control mode and parking control mode;
  • control parameter determining unit configured to determine, according to the determined manner of determining the amount of throttle and the amount of brake corresponding to the control mode, a throttle amount and a brake amount required to achieve the target traveling speed
  • an application unit configured to apply the determined throttle amount and the brake amount in the vehicle based on the application manner of the throttle amount and the brake amount corresponding to the determined control mode.
  • the embodiment of the present application further provides a vehicle, including:
  • a memory configured to store an executable program
  • the processor is configured to implement the vehicle control method of the above claims when executing an executable program stored in the memory.
  • the embodiment of the present application further provides a storage medium on which an executable program is stored, and when the executable program is executed by the processor, the steps of the foregoing method are implemented.
  • 1-1 is a schematic diagram of a vehicle interior fixed vehicle terminal provided by an embodiment of the present application.
  • 1-2 is another schematic diagram of a vehicle-mounted terminal fixed in a vehicle according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of software and hardware of an in-vehicle terminal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a vehicle provided by an embodiment of the present application.
  • 4-1 is a schematic structural diagram of a vehicle control method according to an embodiment of the present application.
  • 4-2 is a schematic structural diagram of vehicle control provided by an embodiment of the present application.
  • 4-3 is a schematic structural diagram of vehicle control provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a vehicle control method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a trajectory for automatic driving provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a linear relationship between the amount of throttle and the acceleration in the embodiment of the present application.
  • FIG. 8 is a schematic diagram showing a linear relationship between the amount of throttle and the acceleration in the embodiment of the present application.
  • 9-1 is a schematic diagram showing a linear relationship between the braking amount and the acceleration in the embodiment of the present application.
  • 9-2 is a schematic diagram showing a linear relationship between the braking amount and the acceleration in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of an update control parameter provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart diagram of a vehicle control method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of application of a vehicle control model according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a vehicle control device according to an embodiment of the present application.
  • Vehicles capable of driving on roads, such as unmanned vehicles driven by internal combustion engines, unmanned vehicles driven by electric motors, and the like.
  • Target travel speed the speed that needs to be achieved when passing the front position in the road segment planned according to the actual position and the target position during the automatic driving of the vehicle.
  • Control parameters used to control the parameters used by the vehicle to achieve the target travel speed including at least the throttle amount and the brake amount.
  • Control mode in the process of automatic driving of the vehicle, the mode applied in the vehicle to achieve the target driving speed, different control modes apply different control modes in the vehicle; the following types of control modes are involved in this paper:
  • Acceleration control mode The mode in which the throttle amount is used as the control parameter to control the acceleration of the vehicle to the target travel speed; in addition, the throttle amount and the brake amount can be used as control parameters to control the mode in which the vehicle accelerates to the target travel speed.
  • Brake control mode The control mode that controls the vehicle to decelerate to the target travel speed with the brake amount as the control parameter.
  • Parking control mode The control mode of controlling the vehicle to decelerate to zero speed with the braking amount as the control parameter.
  • control models used in the acceleration control mode include the following:
  • Powertrain Model The model used in the Accelerated Control Mode to determine the amount of throttle applied to the vehicle to accelerate to the target travel speed, based on the components of the vehicle's powertrain (including: internal combustion engine, clutch, transmission, differential, The performance of the throttle and throttle opening) represents the linear relationship between the acceleration (positive acceleration) that the vehicle can achieve when driving a different amount of throttle.
  • the powertrain model may be only a linear relationship or have segmentation properties depending on the different gear positions in which the vehicle is located, ie, including a linear relationship of sequential connections corresponding to different gear positions.
  • First damping factor model In the acceleration control mode, according to the resistance factors (including: wind resistance, mechanical friction resistance of the vehicle and road resistance), indicating different resistances during the running of the vehicle and controlling the vehicle to keep idle (ie, the engine Or the motor has no load) the linear relationship of the required throttle amount.
  • the resistance factors including: wind resistance, mechanical friction resistance of the vehicle and road resistance
  • Second damping factor model In the acceleration control mode, according to the resistance factor, it indicates the linear relationship between the different resistance encountered during the running of the vehicle and the minimum braking amount for maintaining the vehicle torque balance.
  • the control models used in the brake control mode include the following:
  • Brake system model The model used in the brake control mode to determine the amount of brake applied to the vehicle to decelerate to the target travel speed, according to the components of the vehicle's brake system (including: brake pedal, brake boost system, brake hydraulic circuit, brake) The performance of the piece and the brake disc) indicates the linear relationship of the different accelerations (the acceleration is negative, also referred to herein as deceleration) that the vehicle can achieve at a given different amount of braking.
  • the third damping factor model In the brake control mode, according to the resistance factors (including: wind resistance, mechanical friction resistance of the vehicle and road resistance), indicating the difference between the different resistance encountered by the actual driving of the vehicle and the equivalent braking amount. The linear relationship.
  • the amount of throttle for a vehicle driven by an internal combustion engine, the amount of throttle corresponds to the amount of fuel supplied by the engine; for an electrically driven vehicle, the amount of throttle corresponds to the amount of power supplied by the motor.
  • the throttle controller when controlling the self-driving vehicle, obtains a corresponding throttle control amount according to a deviation of the target traveling speed and the actual traveling speed according to the algorithm; the brake controller is based on the target traveling speed and the actual traveling speed. The speed deviation between the two, according to its own algorithm to get the corresponding brake control.
  • the vehicle is controlled by the throttle alone, or the vehicle is controlled by the brake brake alone; since the vehicle is controlled by the throttle amount or the brake amount alone, if the throttle control is selected, if the throttle control is selected In the vehicle, the brake control is in the released state, and the vehicle component for braking brake control is in the zero initial state; if the brake control vehicle is selected, the throttle control is in the released state, and the vehicle component is used for the throttle control. In zero initial state. In this way, not only the frequent switching between the brake and the throttle is easy to generate vehicle oscillation, but also has the disadvantages of poor speed control smoothness and high control difficulty, which is reflected in the shock when the vehicle accelerates and the car is decelerated.
  • the vehicle when the ESP system is used to control the stability of the vehicle in this example, the vehicle is required to have not only a high electronic configuration, such as a steering sensor, a wheel sensor, a side slip sensor, a lateral acceleration sensor, etc., but also has a lower wind resistance.
  • the coefficient and stronger dynamic performance result in high implementation cost and poor portability of the self-driving vehicle driven by the internal combustion engine, which in turn affects the promotion and application of the self-driving vehicle driven by the internal combustion engine.
  • the vehicle is individually controlled using the amount of throttle or the amount of brake used alone to achieve tracking of the target speed based on the target travel speed and the actual travel speed.
  • the control scheme for the self-driving vehicle is not only generally applicable to all of the self-driving vehicles, but also to the speed control smoothness of the self-driving vehicle.
  • a plurality of control models for controlling automatic driving of a vehicle are proposed, and a control mode matching the relationship is determined according to a relationship between a target traveling speed and an actual traveling speed, and is matched based on the matching.
  • the control model corresponding to the control mode determines the amount of throttle and brake required to control the vehicle; when the vehicle is controlled based on the two control parameters of the throttle amount and the brake amount, the frequent switching between the brake and the throttle can be avoided.
  • the vehicle oscillates and improves the smoothness of the speed control.
  • the vehicle control device may adopt a mode implemented on the vehicle-mounted terminal side, a mode implemented on the vehicle side, or an electronic device that communicates with the vehicle.
  • the mode (such as a server) is implemented; the corresponding storage medium may be disposed on the vehicle-mounted terminal side, or on the vehicle side, or on the electronic device side, corresponding to the processing on the vehicle-mounted terminal side, or the vehicle side, or the electronic device side.
  • the vehicle-mounted terminal described in the embodiment of the present application can be implemented in the form of a mobile terminal (smartphone and tablet), a driving recorder, a navigator, etc., and is fixed at any position of the vehicle by a fixing device (such as a window glass or a vehicle driving). Taiwan and other locations).
  • the fixing device can be flexibly set in any position of the vehicle interior space according to requirements, such as vacuum suction cup suction, magnetic component suction, bolt and nut fastening, snap snapping, and strap-based binding.
  • the vehicle control device described in the following embodiments of the present application can also be embedded in the interior of the vehicle to avoid occupying extra space.
  • the vehicle-mounted terminal 100 is fixed to the vehicle-mounted terminal 300 by the fixing device 300 (including the suction cup 301 and the arm 302).
  • the front window portion of the vehicle 200, the height of the in-vehicle terminal 100 can be realized by adjusting the arm 302 in the fixing device 300 to facilitate the user to view the screen of the in-vehicle terminal 100.
  • the in-vehicle terminal 100 is embedded in the front panel of the vehicle 200 and is inside the vehicle 200 The structure constitutes a streamlined whole, saving the internal space of the vehicle 200.
  • FIG. 2 is a schematic diagram showing the structure of the hardware and software of the in-vehicle terminal 100, including the hardware layer 11, the operating system layer 12, and the application layer 13, which are respectively described.
  • the hardware layer 11 includes the following structure:
  • the memory 112 can be provided in various forms of non-volatile memory, such as a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), and an Erasable Programmable Read Only Memory.
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read_Only Memory
  • the memory is used to store various types of data, and examples of the data include: any computer program for operating on the vehicle-mounted terminal 100; the vehicle control method provided by the embodiment of the present application may correspond to The execution program can be stored in advance in the memory 112.
  • the processor 111 which may be an integrated circuit chip, has signal processing capabilities. In the implementation process, each step of the vehicle control method provided by the embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 111 or an instruction in a software form.
  • the processor 111 described above may be a general purpose processor, a digital signal processor (DSP), or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • DSP digital signal processor
  • a network interface 113 for communicating with other devices (such as the vehicle 200) in a wired or wireless manner, and the network interface 113 can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G, and 4G, or their combination.
  • a communication standard such as WiFi, 2G, 3G, 4G, and 4G, or their combination.
  • the operating system layer 12 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing tasks based on the hardware layer 11, and does not exclude the use of any type in the embodiment of the present application.
  • Operating systems including Linux-based operating systems such as Android, can also include iOS and Unix-like systems.
  • the application layer 13 includes an application program 131.
  • the application program 131 corresponds to a client installed on the vehicle-mounted terminal 100, and includes a program for implementing the vehicle control method provided by the embodiment of the present application.
  • the program of the vehicle control method includes: a power system model 1, a brake system model 2, a first damping factor model 3, a second damping factor model 4, a third damping factor model 5, and a fourth damping factor model 6.
  • the in-vehicle terminal 100 acquires the traveling parameters (e.g., actual traveling speed, target traveling speed, acceleration, and vehicle posture) of the vehicle 200.
  • the components of the vehicle 200 include at least: a brake system 201, a power system 202, and a sensing system 203; the brake system 201 and the power system 202 are controlled by the controller 204 inside the vehicle 200 based on data acquired from the vehicle CAN bus 206.
  • the data acquired by the sensing system 203 is transmitted by the controller 204 to the vehicle-mounted terminal 100 based on the vehicle CAN bus 206.
  • the vehicle-mounted terminal 100 is connected to the vehicle CAN bus 206 of the vehicle 200, and can be connected to the vehicle CAN bus 206 by means of wireless communication such as short-range communication for the vehicle-mounted terminal 100 installed in the vehicle 200 in the manner of FIG. 1-1.
  • the method supports the processor 111 to read data from the vehicle CAN bus 206 in a manner that the bus inside the vehicle 200 is connected to the vehicle CAN 205 bus in such a manner that the bus inside the vehicle 200 is physically coupled.
  • the processor 111 in the in-vehicle terminal 100 reads various data of the vehicle 200 through the vehicle CAN bus 206 inside the vehicle 200, and obtains the state of each component in the vehicle 200, for example, the actual travel of the vehicle 200 can be obtained from the data output based on the sensor 201. Speed, posture, etc.
  • FIG. 3 shows a schematic diagram of a vehicle 300.
  • the components of the vehicle 300 include at least: a brake system 201, a power system 202, a sensing system 203, and a controller 204; data acquired by the sensing system 203 is sent to the controller via the vehicle CAN bus 206. 204.
  • the controller 204 runs a program running on the memory 205 based on the acquired data, and applies the obtained processing data to the vehicle 300 to control the brake system 201 and the power system 202 of the vehicle 300.
  • the memory system 205 stores a power system model 1, a brake system model 2, a first damping factor model 3, a second damping factor model 4, a third damping factor model 5, and a fourth damping factor model 6.
  • FIG. 4-1 is a schematic structural diagram of a vehicle control method provided by an embodiment of the present application.
  • the vehicle-mounted terminal stores an application program for implementing vehicle control, and the vehicle is loaded.
  • the application stored in the terminal refers to the application stored in the application layer of the vehicle terminal 100 shown in FIG.
  • the vehicle terminal obtains the target traveling speed and the actual traveling speed of the vehicle through the network server; based on the comparison result between the target traveling speed and the actual traveling speed, Determining a control mode corresponding to the comparison result in the candidate brake control mode, the acceleration control mode, and the parking control mode; determining a required amount to achieve the target traveling speed based on the throttle amount and the braking amount determining manner corresponding to the control mode
  • the amount of throttle and the amount of brake and based on the application of the amount of throttle and the amount of brake corresponding to the control mode, the network server controls the automatic driving of the vehicle based on the amount of throttle and the amount of brake.
  • FIG. 4-2 is a schematic structural diagram of the vehicle control provided by the embodiment of the present application.
  • the vehicle stores an application for implementing vehicle control, and the application stored in the vehicle. Referring to the application stored in the memory 205 of the vehicle 300 shown in FIG.
  • the vehicle obtains its own target traveling speed and actual traveling speed; using the stored application, based on the comparison result of the target traveling speed and the actual traveling speed, the candidate brake Determining a control mode corresponding to the comparison result in the control mode, the acceleration control mode, and the parking control mode; determining a throttle amount and a brake required to achieve a target traveling speed based on a throttle amount and a brake amount determination manner corresponding to the control mode And an application manner based on the amount of throttle and the amount of brake corresponding to the control mode, wherein the determined amount of throttle and the amount of brake are applied in the vehicle to cause the vehicle to automatically travel based on the amount of throttle and the amount of brake.
  • FIG. 4-3 is a schematic structural diagram of a vehicle control method provided by an embodiment of the present application.
  • An application program for implementing vehicle control is stored in an in-vehicle terminal, and an application stored in the in-vehicle terminal is shown in FIG. 2 .
  • wireless communication methods such as Bluetooth, near field communication, and Universal Serial Bus (USB)
  • USB Universal Serial Bus
  • the vehicle control device (vehicle terminal or vehicle) involved in the embodiment of the present application has been described in terms of its function.
  • the functional structure diagram of the vehicle-mounted terminal shown in FIG. 2 and the vehicle structure shown in FIG. 3 continue to be implemented in the present application.
  • the vehicle control scheme provided by the example is explained.
  • FIG. 4-1 The vehicle control scheme provided by the embodiment of the present application is described below with reference to the schematic diagram of the vehicle control shown in FIG. 4-1, FIG. 4-2, and FIG. 4-3, and FIG. 5 shows the vehicle control provided by the embodiment of the present application.
  • FIG. 5 shows the vehicle control provided by the embodiment of the present application.
  • a schematic flow diagram of the method will be described based on each step.
  • step S101 the vehicle target traveling speed and the actual traveling speed are obtained.
  • the road segment is based on the automatic driving route planning algorithm.
  • the speed and time curve ie, the acceleration curve
  • the trajectory of the current sampling point in the forward direction of the route from the current position is the current road segment; see FIG. 6 , which is a schematic diagram of a trajectory for automatic vehicle travel provided by the embodiment of the present application, and FIG. 6 shows The trajectory of the vehicle is automatically driven; the trajectory is screened based on various factors such as dynamic limit and obstacle avoidance, and the optimal trajectory to the target position is selected according to factors such as safety, comfort and time.
  • the speed corresponding to the front position adjacent to the actual position of the vehicle is the target traveling speed.
  • sampling data such as the actual traveling speed, acceleration, and body posture of the vehicle at the road section is collected; and the collected sampling data is collected.
  • the filtering process is performed to filter out erroneous data such as obvious noise, and the actual driving parameters of the vehicle in the road section, including the actual traveling speed and acceleration, are obtained.
  • Step S102 determining a control mode corresponding to the comparison result in the candidate control mode based on a comparison result between the target traveling speed and the actual traveling speed.
  • the candidate control mode includes an acceleration control mode, a brake control mode, and a parking control mode, and based on a comparison result between the target traveling speed and the actual traveling speed, among the three candidate control modes, the comparison result may be determined.
  • a corresponding control mode is
  • the acceleration control mode can be based on the throttle amount as the only control factor to achieve the actual travel speed equal to the target travel speed.
  • the acceleration control mode may also be a method in which the actual traveling speed is equal to the target traveling speed by using a plurality of control factors such as the throttle amount and the braking amount, and the throttle amount is a control factor having the largest weight among the plurality of control factors.
  • the braking control mode that achieves the target traveling speed by increasing the braking amount is determined to perform automatic driving control on the vehicle.
  • the brake control mode can be based on the brake amount as the only control factor to achieve the actual travel speed equal to the target travel speed.
  • the brake control mode may also be a method in which the actual traveling speed is equal to the target traveling speed by using a plurality of control factors such as the amount of throttle and the amount of braking, and the braking amount is a control factor having the largest weight among the plurality of control factors.
  • the vehicle is in the parking control mode in which the braking amount is used to achieve parking, and the vehicle is automatically driven.
  • the control mode of the vehicle can be quickly determined by comparing the target traveling speed with the actual traveling speed, and the vehicle control mode is comprehensively determined by the throttle control amount, the brake control amount, and the speed deviation in the prior art.
  • the implementation process is simpler than that.
  • step S103 based on the determined manner of determining the amount of throttle and the amount of brake corresponding to the control mode, the amount of throttle and the amount of brake required to achieve the target traveling speed are determined.
  • the target acceleration required to achieve the target traveling speed at the road segment is first determined, and the determined target acceleration can be used when the road segment is just finished running. Realizing the actual running speed is equal to the target driving speed; using the determined target acceleration, the actual running speed is equal to the target traveling speed when the road segment is not running, and the target traveling speed is uniform before the running of the road segment is completed. travel. Then, based on the powertrain model of the relationship between the given throttle amount and the achieved acceleration, the first throttle amount required to achieve the target acceleration at the road segment is determined, and the first throttle amount is taken as a control parameter of the vehicle.
  • the power system model obtains a given throttle amount and drives the vehicle according to the performance of the components of the vehicle's power system (including the internal combustion engine, the clutch, the transmission, the differential, the throttle, and the throttle opening).
  • the linear relationship of different accelerations that can be achieved.
  • the at least two gear positions correspond to each other, and the acceleration represented by the at least two linear relationships is positively correlated with the speed of the corresponding gear position.
  • the powertrain model includes at least two linear relationships of interconnections.
  • the linear relationship between the amount of throttle and the different accelerations that can be achieved by the driving vehicle varies depending on the gear position of the vehicle.
  • the gear position value of the vehicle is 1
  • y1 f2(x1), where x1 represents the throttle amount
  • y1 represents the acceleration reached by the given throttle amount
  • the gear position value is 3
  • y1 f3(x1), where x1 represents the throttle
  • the amount, y1, represents the acceleration achieved by a given amount of throttle.
  • the linear relationship between the amount of throttle and the different accelerations that can be achieved by the driving vehicle is a continuous linear function.
  • a second damping factor model based on a third linear relationship between the resistance and the minimum braking amount and a resistance encountered by the vehicle running are determined to be used for The minimum amount of braking that maintains the torque balance of the vehicle; the determined minimum braking amount is one of the control parameters of the vehicle in which the road segment is located.
  • the second damping factor model includes a linear relationship between the resistance and the minimum braking amount required to achieve the torque balance state, the resistance includes at least the wind resistance and the road gradient; the wind resistance is positively correlated with the traveling speed of the vehicle, under the road The degree of slope is positively related to the amount of brake; as shown in the following formula (1) and formula (2):
  • Fw is the wind resistance
  • w_gain is the drag coefficient
  • v is the running speed of the vehicle
  • P is the road gradient
  • Km is the slope coefficient
  • a is the acceleration integral; the values of w_gain and Km are different depending on the vehicle.
  • the process of determining the amount of braking of the vehicle at the road segment is the same as the implementation of determining the amount of braking of the vehicle at the road segment.
  • the difference is that after the first throttle amount is determined based on the power system model, the first damping factor model based on the second linear relationship between the vehicle offset resistance and the required throttle amount is determined, and the first required to offset the resistance of the vehicle to travel is determined.
  • the amount of the second throttle determines the sum of the first throttle amount and the second throttle amount, and uses the sum of the first throttle amount and the second throttle amount to update the control parameter, that is, the sum of the first throttle amount and the second throttle amount is used as the control The amount of throttle of the vehicle.
  • the resistance involved in the first damping factor model includes at least wind resistance, mechanical friction resistance and road resistance; mechanical friction resistance is related to the gear value of the vehicle, and the road resistance is related to the gear value of the vehicle, the weight of the vehicle, and the slope of the road, as shown in the following formula (3) ) and formula (4):
  • Ff represents the mechanical frictional resistance
  • g_gain is the mechanical frictional resistance coefficient
  • N represents the gear position value of the vehicle
  • P represents the road gradient
  • Fr represents the road resistance
  • r_gain is the road resistance coefficient
  • m represents the mass of the vehicle
  • g represents the acceleration of gravity, according to The values of the different r_gain and g_gain of the vehicle are also different.
  • the second throttle amount is determined as shown in the following formula (5):
  • Ks the value of Ks varies depending on the vehicle.
  • the sum of the first throttle amount and the second throttle amount is taken as one of the control parameters of the vehicle in the road section.
  • the acceleration control mode after determining the control parameters applied to the vehicle, first reduce the amount of braking applied in the vehicle until the brake vehicle reaches a minimum braking amount that maintains the vehicle torque balance; and then apply to the road segment in the vehicle.
  • the amount of throttle required to achieve the target acceleration first throttle amount, or the sum of the first throttle amount and the second throttle amount) until the vehicle accelerates to the target traveling speed.
  • the target acceleration required to achieve the target travel speed at the road segment is determined. Since the target travel speed is less than the actual travel speed, the target acceleration is negative. The direction of the target acceleration is opposite to the direction of the actual traveling speed, which is also called deceleration. With the determined target acceleration, the actual driving speed can be equal to the target driving speed when the road segment is just finished running; the target acceleration obtained by using the determination It is also possible to realize that the actual traveling speed is equal to the target traveling speed when the road section is not running, and to travel at a constant speed at the target traveling speed before the running of the road section is completed. Then, based on the braking system model of the vehicle in a fourth linear relationship between the different braking amounts and the achieved acceleration, the first braking amount required to achieve the target acceleration at the road segment is determined as one of the control parameters.
  • the brake system model is based on the performance of the components of the brake system of the vehicle (including: brake pedal, brake assist system, brake hydraulic circuit, brake pad and brake disc), and obtains a given amount of brake and control vehicle.
  • each brake system model corresponds to a starting speed; in different candidate braking system models, the acceleration obtained by the same braking amount is positively correlated with the starting speed of the corresponding candidate braking system model.
  • the starting speed V1 corresponding to the linear relationship between the braking amount and the acceleration shown in Figure 9-1, the starting speed V2 corresponding to the linear relationship between the braking amount and the acceleration shown in Figure 9-2, V1 is greater than V2;
  • the acceleration value realized by the linear relationship between the braking amount and the acceleration shown in Fig. 9-1 is smaller than the acceleration value realized by the linear relationship between the braking amount and the acceleration shown in Fig. 9-2.
  • the determined minimum brake amount is used as the vehicle in the vehicle.
  • the matching may be performed according to the actual traveling speed of the vehicle and the initial speed corresponding to the candidate braking system model; as an example, when the actual driving speed is the same as the starting speed of the candidate braking system model, the actual driving speed is confirmed.
  • the starting speed of the candidate brake system model matches.
  • the difference between the actual traveling speed and the starting speed of the candidate braking system model is less than a preset threshold, it is confirmed that the actual traveling speed matches the starting speed corresponding to the candidate braking system model.
  • the actual traveling speed is in the initial speed range of the candidate brake system model, it is confirmed that the actual traveling speed matches the starting speed corresponding to the candidate braking system model.
  • the braking system model corresponding to the actual traveling speed may be trained by machine learning according to sample data of the same type of vehicle. For example, braking data of different types of driving speeds of the same type of vehicle is used as a training sample, and the braking system model is trained based on the target state (acceleration) of the training sample and the training sample mark, so that the braking system model has a training sample (brake amount). Predict the performance of the corresponding target state (acceleration).
  • the relationship between the resistance and the minimum throttle amount required to maintain the idle speed may be fitted to a linear relationship;
  • a fourth damping factor model based on a sixth linear relationship between the resistance and the minimum throttle amount required to maintain the vehicle idle speed, determining a minimum throttle amount required to maintain the vehicle idle speed according to the actual running resistance of the vehicle; the determined minimum The amount of throttle is one of the control parameters of the vehicle at the road section.
  • the resistance includes at least the wind resistance and the road gradient; the wind resistance is positively correlated with the traveling speed of the vehicle, and the degree of the road downhill is positively correlated with the braking amount; as shown in the above formula (1) and formula (2).
  • the process of determining the amount of throttle of the vehicle at the road segment is the same as the implementation of determining the amount of throttle of the vehicle at the road segment.
  • the difference is that after determining the first braking amount based on the braking system model, the third damping factor model based on the fifth linear relationship between the resistance and the braking amount equivalent to the resistance is used to determine the control equivalent to the resistance encountered by the vehicle.
  • the second brake amount required for the vehicle to maintain the target travel speed is updated based on the difference between the first brake amount and the second brake amount.
  • the resistance involved in the third damping factor model includes at least wind resistance, mechanical friction resistance and road resistance; mechanical friction resistance is related to the gear value of the vehicle, and the road resistance is related to the gear value of the vehicle, the weight of the vehicle, and the gradient of the road, as in the above formula ( 3) and formula (4).
  • the second brake amount is determined as shown in the following formula (6):
  • Second brake amount Bs * (Fw + Ff + Fr) (6)
  • the value of Bs varies depending on the vehicle.
  • the difference between the first braking amount and the second braking amount is used as one of the control parameters of the vehicle in the road segment, and thus, after determining the first braking amount, the first braking amount is removed. It is equivalent to the second braking amount equivalent to the resistance during the running of the vehicle, further ensuring the accuracy of the deceleration.
  • the brake control mode first reduce the amount of throttle applied in the vehicle until the minimum throttle amount of the vehicle deceleration is maintained; and then apply the braking amount required to achieve the target acceleration in the road segment until the vehicle is decelerated The target travel speed.
  • the required amount of braking is the first amount of braking required to achieve the target acceleration at the road segment; or the first amount of braking required to achieve the target acceleration at the road segment, encountered with the vehicle traveling.
  • the difference in the second braking amount required for the target traveling speed is equal to the resistance.
  • the factors with small influence factors are neglected, and the wind resistance with large influence factors is retained.
  • Mechanical frictional resistance and road resistance fitting wind resistance, mechanical frictional resistance and road resistance to functions related to easily measurable parameters such as speed and time, avoiding the dependence of the related art on complex and expensive inertial components. Improved versatility, achievability and portability of autonomous vehicle control.
  • the brake system model and the power system model applied to the control of the self-driving vehicle are both based on the throttle amount and the brake amount to simultaneously control the self-driving vehicle, thereby avoiding Vehicle oscillations caused by frequent switching between the brakes and the throttle (such as excessive brakes and excessive braking) improve the smoothness of the speed control.
  • the matching control mode is the parking control mode
  • determine the target acceleration required to achieve zero speed at the road segment determine the braking system model based on the linear relationship between the given braking amount and the achieved acceleration of the vehicle.
  • the amount of braking required to achieve zero speed on the road segment determine the amount of braking used to maintain the parked state when zero speed is achieved.
  • the specific implementation process of determining the target acceleration and the braking amount is the same as the specific implementation process of determining the target acceleration and the first braking amount in the braking control mode.
  • the difference is that the amount of brake used to maintain the parked state when zero speed is achieved may be the maximum brake amount that the vehicle can achieve, or a predetermined ratio lower than the maximum brake amount (eg, 80% of the maximum brake amount) .
  • the braking system model in the parking control mode, is applied to control the self-driving vehicle so that the target speed of the self-driving vehicle is zero speed, and the smoothness of the speed control is greatly improved. And after the vehicle speed is zero speed, the vehicle is controlled with a brake amount exceeding a certain threshold to maintain the parking state and prevent the vehicle from slipping.
  • each control mode uses a separate algorithm to calculate the throttle amount and the brake amount. Compared with the difference between the current travel speed and the target travel speed in the prior art, the same algorithm is used to calculate the throttle amount and the brake amount. In contrast, the subdivision of the algorithm further ensures smooth control of vehicle speed.
  • the vehicle control method is implemented by a vehicle control model
  • the vehicle control model includes: a power system model, a brake system model, a parking system model, a first damping factor model, a second damping factor model, and a third damping factor model.
  • the fourth damping factor model is not implemented by the ESP system; therefore, the embodiment of the present application does not need to configure the steering sensor, the wheel sensor, the side-slip sensor, the lateral acceleration sensor, etc. required by the ESP system, and is more relevant.
  • the vehicle control method in the technology is low in cost and has better portability.
  • Step S104 applying the determined throttle amount and braking amount in the vehicle based on the application manner of the throttle amount and the brake amount corresponding to the determined control mode.
  • the control parameter determined in step S103 is applied to the actual acceleration obtained by the vehicle, and the difference between the target acceleration obtained according to the power control mode, or the brake control mode, or the parking control mode is integrated to obtain an application.
  • the correction value of the control parameter of the vehicle; the control parameter applied to the vehicle is updated based on the correction value.
  • the difference between the actual acceleration and the target acceleration is calculated, and the obtained difference is integrated by the integrator to obtain a correction value of the control parameter applied to the vehicle;
  • the controller updates the control parameters applied to the vehicle based on the correction value.
  • the correction value of the control parameter applied to the vehicle is obtained according to the following formula (7).
  • e(t) is expressed as acceleration error
  • Ti is expressed as integration time
  • Kp is expressed as proportional coefficient
  • u(x) is expressed as correction value of control parameters applied to the vehicle; based on the above method, acceleration error can be quickly corrected, that is, Convergence to the purpose of the target acceleration.
  • the braking amount applied in the vehicle is reduced based on the predetermined amplitude; when the applied braking amount is reduced to the minimum braking amount that maintains the vehicle torque balance, the application is implemented in the vehicle.
  • the amount of throttle required for the target acceleration corresponding to the control mode (the first throttle amount, or the sum of the first throttle amount and the second throttle amount) until the acceleration to the target traveling speed.
  • the amount of throttle applied in the vehicle is reduced based on a predetermined amplitude; when the applied throttle amount is reduced to a minimum throttle amount that maintains the idle speed of the vehicle, the application in the vehicle reaches the The brake amount required for the target acceleration corresponding to the mode (the first brake amount, or the difference between the first brake amount and the second brake amount) until decelerating to the target travel speed.
  • the braking amount required to reach the target acceleration corresponding to the control mode is applied in the vehicle to decelerate the vehicle to zero speed; and when decelerating to zero speed, The amount of brake required to maintain the parking state is applied to the vehicle to keep the vehicle parked and prevent the vehicle from slipping.
  • the acceleration control mode and the brake control mode included in the control mode are combined with the two control factors of the throttle amount and the brake amount to control the vehicle.
  • the throttle amount is used alone or the brake amount is used alone to control the vehicle.
  • the vehicle oscillation caused by frequent switching between the brake and the throttle is avoided, and the smoothness of the speed control is improved.
  • the vehicle control method provided by the embodiment of the present application does not depend on an ESP system, and the vehicle does not need to configure a steering sensor, a wheel sensor, a side slip sensor, a lateral acceleration sensor, and the like required by the ESP system, and is more related to vehicle control in related technologies.
  • the method achieves low cost and better portability.
  • control mode of the vehicle can be quickly determined by comparing the target traveling speed with the actual traveling speed, which is compared with the vehicle control mode by comprehensively determining the throttle control amount, the brake control amount and the speed deviation in the prior art. The process is simpler.
  • each control mode in the embodiment of the present application uses a separate algorithm to calculate the throttle amount and the brake amount. Compared with the difference between the current travel speed and the target travel speed in the prior art, the same algorithm is used to calculate the throttle amount. Compared with the brake amount, the subdivision of the algorithm further ensures smooth control of the vehicle speed.
  • FIG. 11 is a schematic diagram showing another flow of the vehicle control method provided by the embodiment of the present application. The various steps are described in conjunction with the application schematic diagram of the vehicle control model shown in FIG.
  • step A the target speed information in the bus is obtained.
  • step B the vehicle body state information collected by the automobile body sensor is filtered and fed back to the controller of the vehicle.
  • the vehicle body state information collected by the automobile body sensor includes: speed, acceleration, body posture and other information; the filtering refers to filtering out the obvious error data such as noise.
  • the power system model, the brake system model, and the damping factor model are applied to the controller, and are integrated with the vehicle body state information to form a complete vehicle control model;
  • step C the parking mode classification is judged, that is, whether it is the parking control mode or the travel control mode.
  • the travel control modes include: a brake control mode and an acceleration control mode.
  • step D it is judged whether the vehicle control result has reached the expected level, and if so, the current vehicle control flow ends, and if not, step F is performed.
  • Step E enter the parking control mode, based on the parking control model, adopt a comfortable deceleration mode according to the current vehicle condition until the speed is 0; then lock the parking state according to the current road condition to prevent slipping.
  • the amount of brake used to keep the parking state locked is the maximum amount of braking that the vehicle can achieve, or a predetermined amount of braking that is less than the maximum amount of braking that the vehicle can achieve.
  • step F the target traveling speed and the actual traveling speed are determined. If the target traveling speed is greater than the actual traveling speed, step G is performed; if the target traveling speed is smaller than the actual traveling speed, step H is performed.
  • step G the vehicle is controlled in a brake control mode.
  • a minimum throttle amount for maintaining the torque balance of the vehicle is first determined; the minimum throttle amount may be determined based on a fourth damping factor model of a sixth linear relationship between the resistance and the minimum throttle amount. Based on the braking system model of the vehicle in a fourth linear relationship between the given braking amount and the achieved acceleration, determining the first braking amount required to achieve the target acceleration at the road segment, the first braking amount and the minimum throttle amount As a control parameter.
  • a third damping factor model based on a fifth linear relationship between the resistance and the braking amount, determining a second braking amount required to control the vehicle to maintain the target traveling speed, and a sum of the first throttle amount and the second throttle amount, and a minimum
  • the brake amount is used as the updated control parameter; the difference between the first brake amount and the second brake amount, and the minimum throttle amount are taken as the updated control parameters.
  • the actual vehicle speed converges to the target vehicle speed at the integral speed, achieving the purpose of quickly tracking the target vehicle speed.
  • step H the vehicle is controlled in an acceleration control mode.
  • a minimum braking amount for maintaining the torque balance of the vehicle is first determined; the minimum braking amount may be determined based on a second damping factor model of a third linear relationship between the resistance and the minimum braking amount. And based on the powertrain model of the vehicle in a first linear relationship between the given throttle amount and the achieved acceleration, determining a first throttle amount required to achieve the target acceleration at the road segment, the first throttle amount and the minimum brake amount As a control parameter. Or a first damping factor model based on a second linear relationship between the resistance and the throttle amount, determining a second throttle amount required to control the vehicle to maintain the target traveling speed, and a sum of the first throttle amount and the second throttle amount, and a minimum The brake amount is used as the updated control parameter. In this process, the actual vehicle speed converges to the target vehicle speed at the integral speed, achieving the purpose of quickly tracking the target vehicle speed.
  • composition of the vehicle control device implementing the vehicle control method may include the following functional units:
  • Obtaining unit 10 configured to obtain a target traveling speed and an actual traveling speed of the vehicle at the road section;
  • a control mode determining unit 20 configured to determine, in a candidate control mode, a control mode corresponding to the comparison result based on a comparison result of the target traveling speed and the actual traveling speed; wherein the candidate control mode Including: brake control mode, acceleration control mode and parking control mode;
  • the control parameter determining unit 30 is configured to determine, according to the determined manner of determining the amount of throttle and the amount of brake corresponding to the control mode, the amount of throttle and the amount of braking required to achieve the target traveling speed at the road segment;
  • the application unit 40 is configured to apply the determined throttle amount and brake amount in the vehicle based on the application manner of the throttle amount and the brake amount corresponding to the determined control mode.
  • the obtaining unit 10 is specifically configured to apply a speed and time curve from a road segment from an actual position of the vehicle to a target position, and obtain time and speed corresponding to different front positions in the road segment;
  • the speed corresponding to the front position adjacent to the actual position of the vehicle is determined as the target traveling speed.
  • the application unit 40 is specifically configured to reduce a brake amount applied in the vehicle based on a predetermined amplitude when the control mode is an acceleration control mode;
  • the applied braking amount is reduced to a minimum braking amount that maintains the vehicle torque balance, the amount of throttle required to achieve the target acceleration corresponding to the control mode is applied to the vehicle until acceleration to the target traveling speed.
  • the application unit 40 is specifically configured to reduce a throttle amount applied in the vehicle based on a predetermined amplitude when the control mode is a brake control mode;
  • the applied throttle amount is reduced to a minimum throttle amount that maintains the vehicle idle speed, the amount of braking required to reach the target acceleration corresponding to the control mode is applied to the vehicle until deceleration to the target travel speed.
  • the application unit 40 is specifically configured to apply, when the control mode is the parking control mode, a braking amount required to achieve a target acceleration corresponding to the control mode in the vehicle;
  • the application unit 40 is specifically configured to apply a control parameter applied to the vehicle to the vehicle to obtain an actual acceleration, and the actual acceleration and the target acceleration obtained according to the control mode. Integrating the difference to obtain a correction value applied to the control parameter of the vehicle;
  • the control parameter is a throttle amount or a brake amount.
  • control parameter determining unit 30 is configured to determine, when the control mode is the acceleration control mode, a target acceleration required to achieve the target traveling speed at the road segment;
  • the sum of the first throttle amount and the second throttle amount is determined, and the sum of the first throttle amount and the second throttle amount is used as the throttle amount required to achieve the target traveling speed. .
  • control parameter determining unit 30 is specifically configured to: the first linear relationship includes at least two linear relationships corresponding to different gear positions of the vehicle that are sequentially connected;
  • a first throttle amount required in the corresponding target gear position is determined based on a linear relationship corresponding to the target gear position in the first linear relationship.
  • control parameter determining unit 30 is specifically configured to use a third linear relationship between the resistance and the minimum braking amount required to achieve the torque balance state when the control mode is the acceleration control mode, and The resistance encountered by the vehicle running determines a minimum braking amount for maintaining the vehicle torque balance, and the minimum braking amount is used as the braking amount required to achieve the target traveling speed.
  • control parameter determining unit 30 is configured to determine, when the control mode is the brake control mode, a target acceleration required to achieve the target traveling speed at the road segment;
  • Determining a difference between the first braking amount and the second braking amount using a difference between the first braking amount and the second braking amount as the braking amount required to achieve the target traveling speed . .
  • the candidate fourth linear relationship determining a fourth linear relationship in which the starting speed matches the actual traveling speed of the vehicle; wherein, in the fourth linear relationship of the different candidates, the same braking
  • the acceleration obtained by the quantity is positively correlated with the initial velocity of the corresponding fourth linear relationship.
  • control parameter determining unit 30 is specifically configured to: when the control mode is the brake control mode, a sixth linear relationship between the resistance and the minimum throttle amount required to maintain the idle speed, and the The resistance encountered by the vehicle travel determines the minimum throttle amount required to maintain the vehicle idle speed, and the minimum throttle amount is used as the throttle amount required to achieve the target travel speed.
  • the embodiment of the present application further provides a vehicle, including:
  • a memory configured to store an executable program
  • the processor configured to implement the above-described vehicle control method of the embodiment of the present application, by executing an executable program stored in the memory.
  • An embodiment of the present application provides a storage medium storing an executable program, when the executable program is executed by a processor, executing:
  • the control mode includes: a brake control mode, an acceleration control mode, and a parking control mode; determining a throttle amount and a brake required to achieve the target traveling speed based on a determined manner of determining a throttle amount and a brake amount corresponding to the control mode The amount of throttle amount and brake amount determined in the vehicle based on the application manner of the throttle amount and the brake amount corresponding to the determined control mode.
  • a variety of vehicle control models are proposed, including a powertrain model, a brake system model, a parking system model, a first resistance factor model, a second resistance factor model, a third resistance factor model, and a fourth resistance factor model for determining automatic driving.
  • the vehicle's control parameters have the following advantages:
  • Both the power system model and the brake system model can determine the two control parameters of the throttle amount and the brake amount based on the target travel speed and the actual travel speed, and simultaneously control the self-driving vehicle based on the throttle amount and the brake amount, avoiding the brake and the throttle Vehicle oscillations caused by frequent switching (such as excessive brakes and excessive braking) improve the smoothness of speed control.
  • the parking mode is taken as a mode different from the normal driving mode, and the self-driving vehicle is controlled based on the braking system model, so that the target speed of the self-driving vehicle is zero speed, and the smoothness of the speed control is greatly improved.
  • the control of the self-driving vehicle is realized by the proposed vehicle control model, and is not dependent on the ESP system; therefore, the embodiment of the present application does not need to configure the steering sensor, the wheel sensor, and the side required for the ESP system when controlling the self-driving vehicle.
  • the device such as the sliding sensor and the lateral acceleration sensor has lower cost and better portability than the vehicle control method in the related art.
  • the dynamic system model simplifies the linear relationship between the components (internal combustion engine, clutch, gearbox, differential, throttle and throttle opening) in the dynamic system of the self-driving vehicle to a linear relationship, reducing the determination The difficulty of controlling parameters.
  • the factors with small impact factors are neglected, and the wind resistance, mechanical friction resistance and the large impact factors are retained.
  • Road resistance fitting the wind resistance, mechanical friction resistance and road resistance to functions related to easily measurable parameters such as speed and time, avoiding the dependence on the complex and expensive inertial components in the related art, and improving the automatic driving The versatility, achievability and portability of vehicle control.
  • the second throttle amount is used to compensate the resistance existing during the running, so as to avoid the application of the first throttle amount to the vehicle. , the situation in which the target travel speed is delayed, and the situation in which the target travel speed cannot be achieved due to the resistance factor occurs.
  • the second braking amount equivalent to the resistance during the running of the vehicle is removed in the first braking amount, further ensuring the accuracy of the deceleration.
  • the vehicle control mode can be quickly determined. Compared with the prior art, the throttle control amount, the brake control amount and the speed deviation are comprehensively judged by the vehicle control mode, and the implementation process is more simple.
  • each control mode uses a separate algorithm to calculate the throttle amount and the brake amount. Compared with the difference between the current travel speed and the target travel speed in the prior art, the same algorithm is used to calculate the throttle amount and Compared with the brake amount, the subdivision of the algorithm further ensures smooth control of the vehicle speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

一种车辆控制方法,由车载终端(100)或车辆(200)执行,包括:获得车辆(200)的目标行驶速度和实际行驶速度(S101);基于目标行驶速度与实际行驶速度的比较结果,在候选的控制模式中确定与比较结果相对应的控制模式(S102);其中,候选的控制模式包括:刹车控制模式、加速控制模式和停车控制模式;基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现目标行驶速度时所需要的油门量和刹车量(S103);以及,基于所确定的控制模式对应的油门量和刹车量的应用方式,在车辆(200)中应用所确定的油门量和刹车量(S104)。还包括一种车辆控制装置、车辆及存储介质。

Description

车辆控制方法、装置、车辆及存储介质
本申请要求于2017年10月19日提交中国专利局、申请号为201710980290.4、申请名称为“车辆控制方法、装置、车辆及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种车辆控制方法、装置、车辆及存储介质。
背景技术
对于内燃机或电机驱动的自动驾驶车辆,通常采用油门、传动结构、刹车结构及车身电子稳定系统(Electronic Stability Program,ESP)对车辆进行控制。在自动驾驶的车辆中,车辆的行驶速度的平稳影响用户的体验,如何将车辆的行驶速度进行平滑地控制,受到越来越多的关注。
技术内容
本申请实施例提供一种车辆控制方法、装置、车辆及存储介质,能够实现自动驾驶车辆的速度平滑控制。
本申请实施例的技术方案是这样实现的:
本申请实施例提供一种车辆控制方法,由车载终端或车辆执行,包括:
获得车辆的目标行驶速度和实际行驶速度;
基于所述目标行驶速度和所述实际行驶速度的比较结果,在候选的控制模式中确定与所述比较结果相对应的控制模式;其中,所述候选的控制模式包括:刹车控制模式、加速控制模式和停车控制模式;
基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的油门量和刹车量;以及,
基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量。
本申请实施例还提供一种车辆控制装置,包括:
获得单元,用于获得车辆的目标行驶速度和实际行驶速度;
控制模式确定单元,用于基于所述目标行驶速度与所述实际行驶速度的比较结果,在候选的控制模式中确定与所述比较结果相对应的控制模式;其中,所述候选的控制模式包括:刹车控制模式、加速控制模式和停车控制模式;
控制参数确定单元,用于基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的油门量和刹车量;
应用单元,用于基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量。
本申请实施例还提供一种车辆,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过执行所述存储器中存储的可执行程序时,实现权利要求上述的车辆控制方法。
本申请实施例还提供一种存储介质,其上存储有可执行程序,该可执行程序被处理器执行时实现上述方法的步骤。
附图说明
图1-1是本申请实施例提供的车辆内部固定车载终端的示意图;
图1-2是本申请实施例提供的在车辆内部固定车载终端的另一示意图;
图2是本申请实施例提供的车载终端的软硬件结构示意图;
图3是本申请实施例提供的车辆的示意图;
图4-1是本申请实施例提供的车辆控制方法的架构示意图;
图4-2是本申请实施例提供的车辆控制的架构示意图;
图4-3是本申请实施例提供的车辆控制的架构示意图;
图5是本申请实施例提供的车辆控制方法的流程示意图;
图6是本申请实施例提供的用于自动行驶的轨迹的示意图;
图7是本申请实施例油门量与加速度之间的线性关系的示意图;
图8是本申请实施例油门量与加速度之间的线性关系的示意图;
图9-1是本申请实施例刹车量与加速度的线性关系的示意图;
图9-2是本申请实施例刹车量与加速度的线性关系的示意图;
图10本申请实施例提供的更新控制参数的示意图;
图11为本申请实施例提供的车辆控制方法的流程示意图;
图12为本申请实施例提供的车辆控制模型的应用示意图;
图13为本申请实施例车辆控制装置的组成结构示意图。
具体实施方式
以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
对本申请进行进一步详细说明之前,对本申请实施例中涉及的名词和术语进行说明,本申请实施例中涉及的名词和术语适用于如下的解释。
1)车辆,能够在道路上行驶的自动驾驶交通工具,如内燃机驱动的无人驾驶汽车、电动机驱动的无人驾驶汽车等。
2)目标行驶速度,在车辆的自动驾驶过程中,根据实际位置和目标位置规划的路段中,在经过前方位置时所需要实现的速度。
3)实际行驶速度,在车辆自动行驶过程中,根据各种方式如传感器或卫星定位实时测得的行驶速度。
4)控制参数,用于控制车辆实现目标行驶速度所使用的参数,至少包括油门量和刹车量。
5)控制模式,在车辆自动驾驶的过程中,为实现目标行驶速度而在车辆中应用的模式,不同控制模式在车辆中应用控制参数的方式不同;本文中涉及以下类型的控制模式:
5.1)加速控制模式:以油门量为控制参数控制车辆加速至目标行驶速度的模式;此外,还可以使用油门量和刹车量为控制参数控制车辆加速至目标行驶速度的模式。
5.2)刹车控制模式:以刹车量为控制参数控制车辆减速至目标行驶速度的控制模式。
5.3)停车控制模式:以刹车量为控制参数控制车辆减速至零速度的控制模式。
6)控制模型,表示为实现目标行驶速度而在车辆中应用的控制参数、以及应用控制参数的方式,与前述的控制模式对应。
加速控制模式使用的控制模型包括以下几种:
6.1)动力系统模型:加速控制模式使用的用于确定应用于车辆的油门量以加速 到目标行驶速度的模型,根据车辆的动力系统的组件(包括:内燃机、离合器、变速箱、差速器、节气门及油门开度)的性能,表示车辆在给定不同的油门量时驱动车辆所能实现的加速度(加速度为正值)之间的线性关系。
作为示例,动力系统模型可以只是一种线性关系,或者,根据车辆所处的不同档位而具有分段属性,即包括与不同档位对应的依次连接的线性关系。
6.2)第一阻尼因素模型:在加速控制模式中,根据阻力因素(包括:风阻、车辆的机械摩擦阻力及道路阻力),表示车辆行驶过程中的不同阻力与用于控制车辆保持怠速(即发动机或电机没有负荷)所需油门量的线性关系。
6.3)第二阻尼因素模型:在加速控制模式中,根据阻力因素,表示车辆行驶过程中遇到的不同阻力与用于保持车辆力矩平衡的最小刹车量的线性关系。
刹车控制模式使用的控制模型包括以下几种:
6.4)刹车系统模型:刹车控制模式使用的用于确定应用于车辆的刹车量减速到目标行驶速度的模型,根据车辆的刹车系统的组件(包括:刹车踏板、刹车助力系统、刹车液压回路、刹车片及刹车盘)的性能,表示车辆在给定的不同刹车量时车辆所能实现的不同加速度(加速度为负值,本文中也称为减速度)的线性关系。
6.5)第三阻尼因素模型:在刹车控制模式中,根据阻力因素(包括:风阻、车辆的机械摩擦阻力及道路阻力),表示车辆实际行驶时遇到的不同阻力与等效的刹车量之间的线性关系。
6.6)第四阻尼因素模型:在刹车控制模式中,根据阻力因素,表示车辆行驶时遇到的不同阻力与于保持车辆力矩平衡的最小油门量之间的关系。
7)油门量,对于内燃机驱动的车辆,油门量对应发动机的供油量;对于电力驱动的车辆,油门量对应电机的供电量。
在一些实例中,对自动驾驶车辆进行控制时,油门控制器根据目标行驶速度和实际行驶速度的偏差,根据自身的算法得到相应的油门控制量;刹车控制器根据目标行驶速度和实际行驶速度之间的速度偏差,根据自身的算法得到相应的刹车控制量。根据得到的油门控制量、刹车控制量及速度偏差选择单独通过油门控制车辆,或单独通过刹车制动控制车辆;由于是单独使用油门量或刹车量对车辆进行控制,因此,若选择了油门控制车辆,则刹车制动控制处于释放状态,用于进行刹车制动控制的车辆组件处于零初始状态;若选择了刹车制动控制车辆,则油门控制处于释 放状态,用于进行油门控制的车辆组件处于零初始状态。如此,不仅刹车和油门之间的频繁切换容易产生车辆震荡,而且存在速度控制平滑性差、控制难度高的缺点,体现为车辆加速时震荡、车辆减速时卡顿。并且,在该实例中利用ESP系统对车辆进行稳定性控制时,要求车辆不仅具备较高的电子配置,如转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等设备,并具备更低的风阻系数和更强的动力性能,导致内燃机驱动的自动驾驶车辆的实现成本高、可移植性弱,进而影响了内燃机驱动的自动驾驶车辆的推广和应用。
在一些实例中,根据目标行驶速度和实际行驶速度选择单独使用油门量或单独使用刹车量对车辆进行控制,以实现对目标速度的跟踪。在该实例中,对自动驾驶车辆的控制方案,不仅不能普遍适用于全部的自动驾驶车辆,而且对自动驾驶车辆的速度控制平滑性差。
针对上述问题,本申请实施例中,提出了多种用于控制车辆自动驾驶的控制模型,并根据目标行驶速度与实际行驶速度满足的关系,确定与所述关系匹配的控制模式,并基于匹配的控制模式对应的控制模型确定用于控制车辆所需的油门量和刹车量;基于油门量和刹车量两个控制参数同时对车辆进行控制时,能够避免由于刹车和油门之间的频繁切换产生的车辆震荡,提高了速度控制的平滑性。
下面首先对实现本申请实施例的车辆控制装置进行说明。
就车辆控制装置的实施而言,在本申请实施例中,车辆控制装置可以采用在车载终端侧实施的模式,也可以采用在车辆侧实施的模式,还可以采用在与车辆进行通信的电子设备(如服务器)实施的模式;相应的存储介质可以设置在车载终端侧、或车辆侧、或电子设备侧,对应完成在车载终端侧、或车辆侧、或电子设备侧的处理。
作为一个示例,下面结合附图描述实现本申请实施例车辆控制方法的车载终端。
本申请实施例记载的车载终端可以采用如移动终端(智能手机和平板电脑)、行车记录仪、导航仪等形式实施,并通过固定装置固定在车辆的任意位置(如车窗玻璃、或车辆驾驶台等位置)。固定装置可以采用真空吸盘吸合、基于磁性元件吸合、基于螺栓螺母紧固、基于卡扣咬合和基于束带方式绑定等方式,根据需求灵活设置在车辆内部空间的任意位置。当然,本申请以下各实施例记载的车辆控制装置也可以嵌入车辆内部以避免占用额外的空间。
作为车辆控制装置的实施形态的一个示例,在图1-1示出的车辆内部固定车载终端的示意图中,车载终端100通过固定装置300(包括吸盘301和支臂302)以吸盘的方式固定于车辆200的前窗部位,车载终端100的高度可以通过调节固定装置300中支臂302实现以便于用户观看车载终端100的屏幕。作为在车辆内部设置移动终端的另一个示例,在图1-2示出的在车辆内部固定车载终端的另一个示意图中,车载终端100嵌入在车辆200的前置面板中并与车辆200的内部结构构成流线型的整体,节省车辆200的内部空间。
图2示出了车载终端100的软硬件结构示意图,包括硬件层11、操作系统层12、应用层13,分别进行说明。
硬件层11,包括以下结构:
存储器112,可以提供为各种形式的非易失性存储器,例如可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read_Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read_Only Memory)等用于存储各种类型的数据,这些数据的示例包括:用于在车载终端100上操作的任何计算机程序;本申请实施例提供的车辆控制方法对应的可执行程序可以预先存储在存储器112中。
处理器111,可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例提供的车辆控制方法的各步骤可以通过处理器111中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器111可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
网络接口113,用于与其他设备(如车辆200)以有线或无线方式的通信,网络接口113可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G和4G的演进或它们的组合。
操作系统层12,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件层11的任务,本申请实施例中不排除使用任意类型的操作系统,包括基于Linux内核的操作系统如安卓系统,还可以包括iOS系统和类Unix系统。
应用层13,包含应用程序131;其中,应用程序131对应安装于车载终端100 上的客户端,包括用于实施本申请实施例提供的车辆控制方法的程序;用于实施本申请实施例提供的车辆控制方法的程序包括:动力系统模型1、刹车系统模型2、第一阻尼因素模型3、第二阻尼因素模型4、第三阻尼因素模型5和第四阻尼因素模型6。
下面对车载终端100获取车辆200的行驶参数(如、实际行驶速度、目标行驶速度、加速度、车姿)进行说明。参见图2,车辆200的组件至少包括:刹车系统201、动力系统202、传感系统203;刹车系统201和动力系统202由车辆200内部的控制器204基于从车辆CAN总线206获取的数据进行控制;传感系统203获取的数据由控制器204基于车辆CAN总线206发送至车载终端100。
车载终端100与车辆200的车辆CAN总线206连接,对于以图1-1方式在车辆200设置的车载终端100可以通过近距离通信等无线通信方式与车辆CAN总线206连接,对于以图1-2的方式在车辆200内部设置的车载终端100,车载终端100内部的总线与车辆CAN205总线可以物理耦接的方式支持处理器111从车辆CAN总线206读取数据。车载终端100中的处理器111通过车辆200内部的车辆CAN总线206读取车辆200的各种数据,得到车辆200中各部件的状态,例如从基于传感器201输出的数据可以得到车辆200的实际行驶速度、车姿等。
作为另一个示例,下面结合附图描述实现本申请实施例车辆控制方法的车辆。
图3示出了车辆300的示意图,车辆300的组件至少包括:刹车系统201、动力系统202、传感系统203、控制器204;传感系统203获取的数据经由车辆CAN总线206发送至控制器204,控制器204基于获取的数据运行存储器205上运行的程序,并将得到的处理数据应用于车辆300,对车辆300的刹车系统201和动力系统202进行控制。本申请实施例中,存储器205上存储有动力系统模型1、刹车系统模型2、第一阻尼因素模型3、第二阻尼因素模型4、第三阻尼因素模型5和第四阻尼因素模型6。
作为一个示例,车辆控制装置在车载终端侧和车辆侧实施,图4-1示出了本申请实施例提供的车辆控制方法的架构示意图,车载终端中存储有用于实现车辆控制的应用程序,车载终端中存储的应用程序参见图2所示车载终端100应用层所存储的应用程序;车载终端通过网络服务器获得车辆的目标行驶速度和实际行驶速度;基于目标行驶速度和实际行驶速度的比较结果,在候选的刹车控制模式、加速控制模式和停车控制模式中确定与所述比较结果相对应的控制模式;基于所述控制模式 对应的油门量和刹车量确定方式,确定实现目标行驶速度时需要的油门量和刹车量;以及基于所述控制模式对应的油门量和刹车量的应用方式,网络服务器基于油门量和刹车量来控制车辆自动驾驶。
作为又一个示例,车辆控制装置在车辆侧实施,图4-2示出了本申请实施例提供的车辆控制的架构示意图,车辆中存储有用于实现车辆控制的应用程序,车辆中存储的应用程序参见图3所示车辆300的存储器205所存储的应用程序;车辆获得自身的目标行驶速度和实际行驶速度;利用存储的应用程序,基于目标行驶速度和实际行驶速度的比较结果,在候选的刹车控制模式、加速控制模式和停车控制模式中确定与所述比较结果相对应的控制模式;基于所述控制模式对应的油门量和刹车量确定方式,确定实现目标行驶速度时需要的油门量和刹车量;以及基于所述控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量,以使车辆基于油门量和刹车量自动行驶。
作为再一个示例,图4-3示出了本申请实施例提供的车辆控制方法的架构示意图,车载终端中存储有用于实现车辆控制的应用程序,车载终端中存储的应用程序参见图2所示车载终端100应用层所存储的应用程序;车载终端通过蓝牙、近场通信、通用串行总线(Universal Serial Bus,USB)等无线通信方式从车辆处获得车辆的目标行驶速度和实际行驶速度;基于目标行驶速度和实际行驶速度的比较结果,在候选的刹车控制模式、加速控制模式和停车控制模式中确定与所述比较结果相对应的控制模式;基于所述控制模式对应的油门量和刹车量确定方式,确定实现目标行驶速度时所需要的油门量和刹车量;车载终端采用无线通信的方式,基于所确定的油门量和刹车量来控制车辆自动行驶。
至此,已经按照其功能描述了本申请实施例中涉及的车辆控制装置(车载终端或车辆),基于图2示出的车载终端的功能结构示意图以及图3示出的车辆结构,继续对本申请实施例提供的车辆控制的方案进行说明。
下面结合图4-1、图4-2及图4-3示出的车辆控制的架构示意图对本申请实施例提供的车辆控制的方案进行说明,图5示出了本申请实施例提供的车辆控制方法的流程示意图,将基于各个步骤进行说明。
步骤S101,获得车辆目标行驶速度和实际行驶速度。
路段是基于自动驾驶的路线规划算法,基于从车辆的实际位置到目的位置的路 段,应用速度和时间曲线(即加速度曲线),得到到达路段中不同前方位置对应的时间和速度。其中,从当前位置到达路线中前方最近的采样点的轨迹即为当前所处路段;参见图6,图6是本申请实施例提供的用于车辆自动行驶的轨迹的示意图,图6中示出了车辆自动行驶的不同轨迹;基于动力学限制、障碍物避让等多种因素对轨迹进行筛选,结合安全性、舒适性、时间等因素选出到达目标位置的最优轨迹。最优轨迹中,对应车辆实际位置相邻的前方位置对应的速度为目标行驶速度。
在一个实施例中,利用车辆中设置的传感器,如速度传感器、加速度传感器、车身传感器等采集到车辆在所处路段的实际行驶速度、加速度、车身姿态等采样数据;并对采集到的采样数据进行滤波处理,滤除明显的噪声等错误数据,得到车辆在所处路段的实际行驶参数,包括实际行驶速度、加速度等。或利用卫星定位等方式实时测量车辆的实际行驶速度。
步骤S102,基于目标行驶速度与实际行驶速度的比较结果,在候选的控制模式中确定与所述比较结果相对应的控制模式。
在一实施例中,候选的控制模式包括加速控制模式、刹车控制模式和停车控制模式,基于目标行驶速度与实际行驶速度的比较结果,能够在候选的三种控制模式中,确定与比较结果相对应的一种控制模式。
当车辆在所处路段的目标行驶速度大于车辆的实际行驶速度时,确定通过增大油门量实现目标行驶速度的加速控制模式对车辆进行自动驾驶控制。加速控制模式可以是以油门量作为唯一的控制因子,实现实际行驶速度等于目标行驶速度的方式。加速控制模式也可以是以油门量、刹车量等多个控制因子,实现实际行驶速度等于目标行驶速度的方式,且油门量是多个控制因子中权重最大的控制因子。
当车辆在所处路段的目标行驶速度小于车辆的实际行驶速度时,确定通过增大刹车量实现目标行驶速度的刹车控制模式对车辆进行自动驾驶控制。刹车控制模式可以是以刹车量作为唯一的控制因子,实现实际行驶速度等于目标行驶速度的方式。刹车控制模式也可以是以油门量、刹车量等多个控制因子,实现实际行驶速度等于目标行驶速度的方式,且刹车量是多个控制因子中权重最大的控制因子。
当车辆的目标行驶速度为零速度、且车辆的实际行驶速度非零速度时,确定车辆处于使用刹车量实现停车的停车控制模式对车辆进行自动驾驶控制。
本申请实施例中,通过比较目标行驶速度和实际行驶速度的方式,即可迅速地 确定车辆的控制模式,较现有技术中通过油门控制量、刹车控制量及速度偏差综合判断车辆控制模式相比,实现过程更简单。
步骤S103,基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现目标行驶速度时需要的油门量和刹车量。
当匹配的控制模式为加速控制模式时,在一实施例中,首先确定在所处路段实现目标行驶速度所需要的目标加速度,利用确定得到的目标加速度,可以在所处路段恰好行驶完毕时,实现实际行驶速度等于目标行驶速度;利用确定得到的目标加速度,也可以在所处路段未行驶完毕时,实现实际行驶速度等于目标行驶速度,并在所处路段行驶完毕之前,以目标行驶速度匀速行驶。然后,基于车辆在给定油门量与所实现的加速度之间关系的动力系统模型,确定在所处路段实现目标加速度所需要的第一油门量,将第一油门量作为车辆的一个控制参数。
本申请实施例中,动力系统模型为根据车辆的动力系统的组件(包括内燃机、离合器、变速箱、差速器、节气门和油门开度)的性能,得到给定的油门量与驱动车辆所能实现的不同加速度的线性关系。通过将车辆中的动力学系统中各组件之间的非线性关系简化为线性关系,降低了确定控制参数的难度。对于给定的油门量与车辆所实现的不同加速度的线性关系,根据车辆所处的不同档位而具有分段属性;即包括与不同档位对应的依次连接的至少两种线性关系,与车辆的至少两种档位对应,且至少两个线性关系所表示的加速度与相应档位的速度正相关。对于特定的加速度,需确定实现目标加速度时所需要依次使用的目标档位,基于所述目标档位对应的线性关系,确定在相应的目标档位中所需的第一油门量,以实现对自动驾驶车辆速度的平滑控制。动力系统模型包括的相互连接的至少两种线性关系。对于同一车辆来说,根据车辆所处档位的不同,油门量与驱动车辆所能实现的不同加速度之间的线性关系也不同。如图7所示,在车辆的档位值为1时,油门量与加速度的线性关系为y1=f1(x1),其中,x1表示油门量,y1表示给定油门量所达到的加速度;档位值为2时,y1=f2(x1),其中,x1表示油门量,y1表示给定油门量所达到的加速度;档位值为3时,y1=f3(x1),其中,x1表示油门量,y1表示给定油门量所达到的加速度。
当然,对于给定的油门量与驱动车辆所能实现的不同加速度的线性关系,也可以不具有分段属性,即油门量与驱动车辆所能实现的不同加速度之间的线性关系为 连续线性函数,如图8所示,油门量与加速度的线性关系为y1=f4(x1),其中,x1表示油门量,y1表示给定油门量所达到的加速度。
在加速控制模式中,对车辆应用实现目标行驶速度的油门量之前,基于阻力与最小刹车量之间的第三线性关系的第二阻尼因素模型以及所述车辆行驶遇到的阻力,确定用于保持车辆的力矩平衡的最小刹车量;将确定的最小刹车量作为车辆在所处路段的控制参数之一。本申请实施例中,第二阻尼因素模型包括阻力与实现力矩平衡状态时所需的最小刹车量之间的线性关系,阻力至少包括风阻和道路坡度;风阻与车辆的行驶速度正相关,道路下坡程度与刹车量正相关;如下公式(1)和公式(2)所示:
Fw=w_gain*v*v       (1)
P=Km*a             (2)
其中,Fw表示风阻,w_gain为风阻系数,v表示车辆的行驶速度,P表示道路坡度,Km为坡度系数,a表示加速度积分;根据车辆的不同w_gain和Km的值也不同。
当匹配的控制模式为加速控制模式时,在另一实施例中,确定车辆在所处路段的刹车量的实现过程与上述实施例确定车辆在所处路段的刹车量的实现过程相同。不同之处在于,基于动力系统模型确定第一油门量之后,基于车辆抵消阻力与所需的油门量之间的第二线性关系的第一阻尼因素模型,确定抵消车辆行驶的阻力所需的第二油门量,确定第一油门量和第二油门量的加和,利用第一油门量和第二油门量的加和更新控制参数,即将第一油门量和第二油门量的加和作为控制车辆的油门量。车辆在实际行驶过程中,不可避免地会存在行驶阻力,因此利用第二油门量对行驶过程中存在的阻力进行补偿,避免只应用第一油门量对车辆进行控制时,出现的实现目标行驶速度延迟的情况,以及避免由于阻力因素导致的无法实现目标行驶速度的情况。第一阻尼因素模型涉及的阻力至少包括风阻、机械摩擦阻力及道路阻力;机械摩擦阻力与车辆的档位值相关,道路阻力与车辆的档位值、车身重量、道路坡度相关,如下公式(3)和公式(4)所示:
Ff=g_gain/N          (3)
Fr=r_gain*N*mg*P    (4)
其中,Ff表示机械摩擦阻力,g_gain为机械摩擦阻力系数,N表示车辆的档位 值,P表示道路坡度,Fr表示道路阻力,r_gain为道路阻力系数,m表示车身质量;g表示重力加速度,根据车辆的不同r_gain和g_gain的值也不同。
基于公式(1)、公式(3)和公式(4)得到的风阻、机械摩擦阻力和道路阻力,确定第二油门量,如下公式(5)所示:
第二油门量=Ks*(Fw+Ff+Fr)     (5)
其中,Ks的值根据车辆的不同而发生变化。
确定第二油门量之后,将第一油门量与第二油门量之和作为车辆在所处路段的控制参数之一。
在加速控制模式中,确定应用于车辆的控制参数之后,首先减小在该车辆中应用的刹车量,直至刹车辆达到保持车辆力矩平衡的最小刹车量;再在该车辆中应用在所处路段实现目标加速度所需要的油门量(第一油门量,或第一油门量与第二油门量的加和),直至车辆加速至目标行驶速度。
当匹配的控制模式为刹车控制模式时,在一实施例中,确定在所处路段实现目标行驶速度所需要的目标加速度,由于目标行驶速度小于实际行驶速度,因此,目标加速度的大小为负数,目标加速度的方向与实际行驶速度的方向相反,也称为减速度;利用确定得到的目标加速度,可以在所处路段恰好行驶完毕时,实现实际行驶速度等于目标行驶速度;利用确定得到的目标加速度,也可以在所处路段未行驶完毕时,实现实际行驶速度等于目标行驶速度,并在所处路段行驶完毕之前,以目标行驶速度匀速行驶。然后,基于车辆在给定的不同刹车量与所实现的加速度之间的第四线性关系的刹车系统模型,确定在所处路段实现目标加速度所需要的第一刹车量作为控制参数之一。
本申请实施例中,刹车系统模型为根据车辆的刹车系统的组件(包括:刹车踏板、刹车助力系统、刹车液压回路、刹车片和刹车盘)的性能,得到给定的刹车量与控制车辆所能实现的不同加速度的线性关系。
可以理解为,存在多个刹车系统模型,每个刹车系统模型对应一个起始速度;不同候选刹车系统模型中,相同刹车量所获得的加速度与相应候选刹车系统模型的起始速度正相关。图9-1所示的刹车量与加速度的线性关系对应的起始速度V1,图9-2所示的刹车量与加速度的线性关系对应的起始速度V2,V1大于V2;在给定相同刹车量时,利用图9-1所示的刹车量与加速度的线性关系所实现的加速度值,小 于利用图9-2所示的刹车量与加速度的线性关系所实现的加速度值。因此,需要在多个候选刹车系统模型中确定一个刹车系统模型,以便利用确定的刹车系统模型,确定在所处路段实现目标加速度所需要的第一刹车量;确定的最小刹车量作为车辆在所处路段的控制参数之一。
本申请实施例中,可根据车辆的实际行驶速度与候选刹车系统模型对应的起始速度进行匹配;作为一个示例,实际行驶速度与候选刹车系统模型的起始速度相同时,确认实际行驶速度与候选刹车系统模型对应的起始速度匹配。作为另一个示例,实际行驶速度与候选刹车系统模型的起始速度的差值小于预设的阈值时,确认实际行驶速度与候选刹车系统模型对应的起始速度匹配。作为又一个示例,实际行驶速度处于候选刹车系统模型的起始速度区间时,确认实际行驶速度与候选刹车系统模型对应的起始速度匹配。
在一实施例中,实际行驶速度对应的刹车系统模型,可以根据同类型车辆的样本数据通过机器学习的方式训练得到。举例来说,将同类型车辆基于不同行驶速度的刹车量数据作为训练样本,基于训练样本及训练样本标记的目标状态(加速度)训练刹车系统模型,使得刹车系统模型具有根据训练样本(刹车量)预测相应的目标状态(加速度)的性能。
在刹车控制模式中,对车辆应用实现目标行驶速度的刹车量之前,为进一步实现车辆控制的平滑性,可将阻力与保持怠速时所需的最小油门量之间的关系拟合为线性关系;基于阻力与保持车辆怠速时所需的最小油门量之间的第六线性关系的第四阻尼因素模型,确定根据车辆实际行驶的阻力,用于保持车辆怠速所需的最小油门量;确定的最小油门量作为车辆在所处路段的控制参数之一。本申请实施例中,阻力至少包括风阻和道路坡度;风阻与车辆的行驶速度正相关,道路下坡程度与刹车量正相关;如上述公式(1)和公式(2)所示。
当匹配的控制模式为刹车控制模式时,在另一实施例中,确定车辆在所处路段的油门量的实现过程与上述实施例确定车辆在所处路段的油门量的实现过程相同。不同之处在于,基于刹车系统模型确定第一刹车量之后,基于阻力与等同于阻力的刹车量之间的第五线性关系的第三阻尼因素模型,确定与车辆行驶遇到的阻力等同的控制车辆保持目标行驶速度所需的第二刹车量,基于第一刹车量和第二刹车量的之差值,更新控制参数。第三阻尼因素模型涉及的阻力 至少包括风阻、机械摩擦阻力及道路阻力;机械摩擦阻力与车辆的档位值相关,道路阻力与车辆的档位值、车身重量、道路坡度相关,如上述公式(3)和公式(4)所示。
基于公式(1)、公式(3)和公式(4)得到的风阻、机械摩擦阻力和道路阻力,确定第二刹车量,如下公式(6)所示:
第二刹车量=Bs*(Fw+Ff+Fr)     (6)
其中,Bs的值根据车辆的不同而发生变化。
确定第二刹车量之后,将第一刹车量与第二刹车量的差值作为车辆在所处路段的控制参数之一,如此,在确定第一刹车量后,在第一刹车量中剔出等同于车辆行驶过程中等同于阻力的第二刹车量,进一步保证减速的精确性。
在刹车控制模式中,首先减小在车辆中应用的油门量,直至保持车辆减速的最小油门量;再在车辆中应用在所处路段实现所述目标加速度所需的刹车量,直至减速至所述目标行驶速度。所需的刹车量是在所处路段实现所述目标加速度所需要的第一刹车量;或者,在所处路段实现所述目标加速度所需要的第一刹车量,与所述车辆行驶遇到的阻力等同的所述目标行驶速度所需的第二刹车量的差值。
本申请实施例提出的第一阻力因素模型、第二阻力因素模型、第三阻力因素模型及第四阻力因素模型中,均忽略了影响因子较小的因素,保留了影响因子较大的风阻、机械摩擦阻力和道路阻力;并将风阻、机械摩擦阻力和道路阻力拟合成与速度、时间等易测量的参数相关的函数,避免了相关技术中对结构复杂、价格昂贵的惯性元件的依赖,提高了自动驾驶车辆控制的通用性、可实现性和可移植性。本申请实施例中,在刹车控制模式和加速控制模式中,对自动驾驶车辆进行控制所应用的刹车系统模型和动力系统模型,均是基于油门量和刹车量同时控制自动驾驶车辆,避免了由于刹车和油门之间的频繁切换产生的车辆震荡(如刹车过急、刹车过猛),提高了速度控制的平滑性。
当匹配的控制模式为停车控制模式时,确定在所处路段实现零速度所需要的目标加速度;基于车辆在给定刹车量与所实现的加速度之间线性关系的刹车系统模型,确定在所处路段实现零速度所需要的刹车量;确定在实现零速度时用于保持停车状态所使用的刹车量。在一实施例中,确定目标加速度及刹车量的具体实现过程,与上述刹车控制模式时确定目标加速度及第一刹车量的具体 实现过程相同。不同之处在于,确定在实现零速度时用于保持停车状态所使用的刹车量可以为车辆所能实现的最大刹车量,或低于最大刹车量的预定比例(如最大刹车量的80%)。
本申请实施例中,在停车控制模式中,应用刹车系统模型对自动驾驶车辆进行控制,以使自动驾驶车辆的目标速度为零速度,极大地提高了速度控制的平滑性。并在车辆速度为零速度后,以超过特定阈值的刹车量控制车辆,以保持停车状态,防止车辆滑移。
本申请实施例中,每种控制模式均使用单独的算法来计算油门量和刹车量,与现有技术中单纯依据当前行驶速度和目标行驶速度的差值,采用同一算法计算油门量和刹车量相比,算法的细分进一步保证了车辆速度的平滑控制。
由于本申请实施例提出对车辆控制方法通过车辆控制模型实现,车辆控制模型包括:动力系统模型、刹车系统模型、停车系统模型、第一阻尼因素模型、第二阻尼因素模型、第三阻尼因素模型和第四阻尼因素模型,不依赖于ESP系统实现;因此,本申请实施例对车辆进行控制时,无需配置ESP系统需要的转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等设备,较相关技术中的车辆控制方法实现成本低,并且具有更好的可移植性。
步骤S104,基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量。
本申请实施例中,将步骤S103中确定的控制参数应用于车辆得到的实际加速度,与根据动力控制模式、或刹车控制模式、或停车控制模式需要得到的目标加速度的差值进行积分,得到应用于车辆的控制参数的修正值;基于修正值更新应用于车辆的控制参数。如图10所示,传感器采集到车辆的实际加速度后,计算得到实际加速度与目标加速度的差值,并利用积分器对得到的差值进行积分,得到应用于车辆的控制参数的修正值;执行器基于修正值更新应用于车辆的控制参数。根据下述公式(7)获得应用于车辆的控制参数的修正值。
Figure PCTCN2018109697-appb-000001
e(t)表示为加速度误差,Ti表示为积分时间,Kp表示为比例系数,u(x)表示为应用于车辆的控制参数的修正值;基于上述方式可以对加速度误差进行 快速修正,即实现收敛于目标加速度的目的。
在车辆的控制模式为加速控制模式时,基于预定幅度减小在车辆中应用的刹车量;当所应用的刹车量减少到保持所述车辆力矩平衡的最小刹车量时,在车辆中应用实现所述控制模式对应的目标加速度所需要的油门量(第一油门量,或第一油门量与第二油门量的加和),直至加速至所述目标行驶速度。
在车辆的控制模式为刹车控制模式时,基于预定幅度减小在车辆中应用的油门量;当所应用的油门量减小到保持所述车辆怠速的最小油门量时,在车辆中应用达到所述控制模式对应的目标加速度所需的刹车量(第一刹车量,或第一刹车量与第二刹车量的差值),直至减速至所述目标行驶速度。
在车辆的控制模式为停车控制模式时,在所述车辆中应用达到所述控制模式对应的目标加速度所需的刹车量,以使车辆减速至零速度;并在减速至零速度时,在所述车辆中应用用于保持停车状态所需的刹车量,以使车辆保持停车状态,防止车辆滑移。
本申请实施例具有以下有益效果:
第一方面,控制模式包括的加速控制模式、刹车控制模式,均结合油门量和刹车量两个控制因素对车辆进行控制,较现有技术中单独采用油门量或单独采用刹车量对车辆进行控制相比,避免了由于刹车和油门之间的频繁切换产生的车辆震荡,提高了速度控制的平滑性。
第二方面,本申请实施例提供的车辆控制方法不依赖于ESP系统实现,车辆无需配置ESP系统需要的转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等设备,较相关技术中的车辆控制方法实现成本低、具有更好的可移植性。
第三方面,通过比较目标行驶速度和实际行驶速度的方式即可迅速地确定车辆的控制模式,较现有技术中通过油门控制量、刹车控制量及速度偏差综合判断车辆控制模式相比,实现过程更简单。
第四方面,本申请实施例中每种控制模式均使用单独的算法来计算油门量和刹车量,与现有技术中单纯依据当前行驶速度和目标行驶速度的差值,采用同一算法计算油门量和刹车量相比,算法的细分进一步保证了车辆速度的平滑控制。
图11示出了本申请实施例提供的车辆控制方法的另一个流程示意图,结合图12所示的车辆控制模型的应用示意图,对各个步骤进行说明。
步骤A,获取总线中的目标速度信息。
步骤B,汽车车身传感器采集到的车身状态信息经过滤波反馈到车辆的控制器。
其中,汽车车身传感器采集到的车身状态信息包括:速度、加速度、车身姿态等信息;滤波指的是滤除掉噪声等明显的错误数据。
这里,将动力系统模型、刹车系统模型、阻尼因素模型应用到控制器中,同车身状态信息融合,形成完整的车辆控制模型;
步骤C,判断停车模式分类,即判断是停车控制模式,还是行进控制模式。
行进控制模式包括:刹车控制模式和加速控制模式。
步骤D,判断车辆控制结果是否达到预期,如果是,则本次车辆控制流程结束,如果不是,执行步骤F。
步骤E,进入停车控制模式,基于停车控制模型,根据当前车辆状况采取一种舒适的减速方式直至速度为0;然后根据当前道路状况将停车状态锁定,防止滑移。
保持停车状态锁定所使用的刹车量为车辆能够实现的最大刹车量,或小于车辆能够实现的最大刹车量的预定比例的刹车量。
步骤F,判断目标行驶速度与实际行驶速度的大小,如果目标行驶速度大于实际行驶速度,执行步骤G;如果目标行驶速度小于实际行驶速度,执行步骤H。
步骤G,以刹车控制模式控制车辆。
在刹车控制模式中,首先确定用于保持车辆的力矩平衡的最小油门量;最小油门量可基于阻力与最小油门量之间的第六线性关系的第四阻尼因素模型来确定。再基于车辆在给定刹车量与所实现的加速度之间的第四线性关系的刹车系统模型,确定在所处路段实现目标加速度所需要的第一刹车量,将第一刹车量和最小油门量作为控制参数。或基于阻力与刹车量之间的第五线性关系的第三阻尼因素模型,确定控制车辆保持目标行驶速度所需的第二刹车量,将第一油门量和第二油门量之和、及最小刹车量作为更新后的控制参数;将第一刹车量和第二刹车量之差、及最小油门量作为更新后的控制参数。在此过程中实际车速以积分速度收敛于目标车速,达到快速跟踪目标车速的目的。
步骤H,以加速控制模式控制车辆。
在加速控制模式中,首先确定用于保持车辆的力矩平衡的最小刹车量;最小刹 车量可基于阻力与最小刹车量之间的第三线性关系的第二阻尼因素模型来确定。再基于车辆在给定油门量与所实现的加速度之间的第一线性关系的动力系统模型,确定在所处路段实现目标加速度所需要的第一油门量,将第一油门量和最小刹车量作为控制参数。或基于阻力与油门量之间的第二线性关系的第一阻尼因素模型,确定控制车辆保持目标行驶速度所需的第二油门量,将第一油门量和第二油门量之和、及最小刹车量作为更新后的控制参数。在此过程中实际车速以积分速度收敛于目标车速,达到快速跟踪目标车速的目的。
基于前述的说明,可以理解地,实现车辆控制方法的车辆控制装置的组成结构,如图13所示,可以包括如下功能单元:
下面对各单元的功能进行说明。
获得单元10,用于获得车辆在所处路段的目标行驶速度和实际行驶速度;
控制模式确定单元20,用于基于所述目标行驶速度与所述实际行驶速度的比较结果,在候选的控制模式中确定与所述比较结果相对应的控制模式;其中,所述候选的控制模式包括:刹车控制模式、加速控制模式和停车控制模式;
控制参数确定单元30,用于基于所确定的控制模式对应的油门量和刹车量的确定方式,确定在所处路段实现所述目标行驶速度时需要的油门量和刹车量;
应用单元40,用于基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量。
在一实施例中,所述获得单元10,具体用于将从所述车辆的实际位置到目标位置的路段应用速度和时间曲线,得到到达所述路段中不同前方位置对应的时间和速度;
确定与所述车辆的实际位置相邻的前方位置对应的速度为所述目标行驶速度。
在一实施例中,所述应用单元40,具体用于所述控制模式为加速控制模式时,基于预定幅度减小在所述车辆中应用的刹车量;
当所应用的刹车量减少到保持所述车辆力矩平衡的最小刹车量时,在所述车辆中应用实现所述控制模式对应的目标加速度所需要的油门量,直至加速至所述目标行驶速度。
在一实施例中,所述应用单元40,具体用于所述控制模式为刹车控制模式时,基于预定幅度减小在所述车辆中应用的油门量;
当所应用的油门量减小到保持所述车辆怠速的最小油门量时,在所述车辆中应用达到所述控制模式对应的目标加速度所需的刹车量,直至减速至所述目标行驶速度。
在一实施例中,所述应用单元40,具体用于所述控制模式为停车控制模式时,在所述车辆中应用达到所述控制模式对应的目标加速度所需的刹车量;
在减速至零速度时,在所述车辆中应用用于保持停车状态所需的刹车量。
在一实施例中,所述应用单元40,具体用于将应用于所述车辆的控制参数应用于所述车辆,得到实际加速度,将所述实际加速度与根据所述控制模式得到的目标加速度的差值进行积分,得到应用于所述车辆的控制参数的修正值;
基于所述修正值更新应用于所述车辆的所述控制参数;
所述控制参数为油门量或刹车量。
在一实施例中,所述控制参数确定单元30,具体用于所述控制模式为加速控制模式时,确定在所处路段实现所述目标行驶速度所需要的目标加速度;
基于所述车辆的油门量与加速度之间的第一线性关系,确定在所处路段实现所述目标加速度所需要的第一油门量;
基于所述车辆抵消阻力与所需的油门量之间的第二线性关系,确定抵消所述车辆行驶的阻力所需的第二油门量;
确定所述第一油门量和所述第二油门量的加和,将所述第一油门量和所述第二油门量的加和作为实现所述目标行驶速度时所需要的油门量。。
在一实施例中,所述控制参数确定单元30,具体用于所述第一线性关系包括至少两个依次连接的对应所述车辆的不同档位的线性关系;
确定实现所述目标加速度时所需要依次使用的目标档位;
基于所述目标档位在所述第一线性关系中所对应的线性关系,确定在相应目标档位中所需的第一油门量。
在一实施例中,所述控制参数确定单元30,具体用于所述控制模式为加速控制模式时,基于阻力与实现力矩平衡状态时所需的最小刹车量之间的第三线性关系、以及所述车辆行驶遇到的阻力,确定用于保持所述车辆力矩平衡的最小刹车量,将所述最小刹车量作为所述实现所述目标行驶速度时所需要的刹车量。
在一实施例中,所述控制参数确定单元30,具体用于所述控制模式为刹车控制 模式时,确定在所处路段实现所述目标行驶速度所需要的目标加速度;
基于所述车辆的刹车量与加速度之间的第四线性关系,确定在所处路段实现所述目标加速度所需要的第一刹车量;
基于阻力与等同于所述阻力的刹车量之间的第五线性关系,确定与所述车辆行驶遇到的阻力等同的所述目标行驶速度所需的第二刹车量;
确定所述第一刹车量和所述第二刹车量的差值,将所述第一刹车量和所述第二刹车量的差值作为所述实现所述目标行驶速度时所需要的刹车量。。
在一实施例中,在候选的第四线性关系中,确定起始速度与所述车辆的实际行驶速度匹配的第四线性关系;其中,不同的所述候选的第四线性关系中,相同刹车量所获得的加速度与相应第四线性关系的起始速度正相关。
在一实施例中,所述控制参数确定单元30,具体用于所述控制模式为刹车控制模式时,基于阻力与保持怠速时所需的最小油门量之间的第六线性关系、以及所述车辆行驶遇到的阻力,确定用于保持所述车辆怠速所需的最小油门量,将所述最小油门量作为实现所述目标行驶速度时所需要的油门量。
本申请实施例还提供一种车辆,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过执行所述存储器中存储的可执行程序时,实现本申请实施例上述的车辆控制方法。
本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器运行时,执行:
获得车辆的目标行驶速度和实际行驶速度;基于所述目标行驶速度与所述实际行驶速度的比较结果,在候选的控制模式中确定与所述比较结果相对应的控制模式;其中,所述候选的控制模式包括:刹车控制模式、加速控制模式和停车控制模式;基于所确定的控制模式对应的油门量和刹车量的确定方式,,确定实现所述目标行驶速度时所需要的油门量和刹车量;基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量。
综上所述,本申请实施例具有如下技术效果:
提出了多种车辆控制模型,包括动力系统模型、刹车系统模型、停车系统模型、 第一阻力因素模型、第二阻力因素模型、第三阻力因素模型和第四阻力因素模型,用于确定自动驾驶车辆的控制参数,具有以下优点:
1)动力系统模型和刹车系统模型均能够基于目标行驶速度和实际行驶速度,确定油门量和刹车量两个控制参数,并基于油门量和刹车量同时控制自动驾驶车辆,避免了由于刹车和油门之间的频繁切换产生的车辆震荡(如刹车过急、刹车过猛),提高了速度控制的平滑性。
2)将停车模式作为区别于正常行驶的模式,并基于刹车系统模型对自动驾驶车辆进行控制,以使自动驾驶车辆的目标速度为零速度,极大地提高了速度控制的平滑性。
3)基于与目标行驶速度和实际行驶速度所匹配的控制模式,确定在所处路段实现目标行驶速度的控制参数之后,将控制参数应用于车辆,得到实际加速度,与根据控制模式需要得到的目标加速度的差值进行积分,得到应用于车辆的控制参数的修正值,基于修正值更新应用于车辆的控制参数;进而实现加速度的快速修正,即实现加速度收敛于目标加速度。
4)对自动驾驶车辆的控制通过提出的车辆控制模型实现,不依赖于ESP系统实现;因此,本申请实施例对自动驾驶车辆进行控制时,无需配置ESP系统需要的转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等设备,较相关技术中的车辆控制方法实现成本低,并且具有更好的可移植性。
5)动力系统模型将自动驾驶车辆中的动力学系统中各组件(内燃机、离合器、变速箱、差速器、节气门及油门开度)之间的非线性关系简化为线性关系,降低了确定控制参数的难度。
6)第一阻力因素模型、第二阻力因素模型、第三阻力因素模型及第四阻力因素模型中,均忽略了影响因子较小的因素,保留了影响因子较大的风阻、机械摩擦阻力和道路阻力;并将风阻、机械摩擦阻力和道路阻力拟合成与速度、时间等易测量的参数相关的函数,避免了相关技术中对结构复杂、价格昂贵的惯性元件的依赖,提高了自动驾驶车辆控制的通用性、可实现性和可移植性。
7)车辆应用加速控制模式行驶过程中,不可避免地会存在行驶阻力,本申请实施例利用第二油门量对行驶过程中存在的阻力进行补偿,避免只应用第一油门量对车辆进行控制时,出现的实现目标行驶速度延迟的情况,以及避免由于阻力因素 导致的无法实现目标行驶速度的情况。
8)车辆应用刹车控制模式行驶过程中,在确定第一刹车量后,在第一刹车量中剔出等同于车辆行驶过程中等同于阻力的第二刹车量,进一步保证减速的精确性。
9)通过比较目标行驶速度和实际行驶速度的方式即可迅速地确定车辆的控制模式,较现有技术中通过油门控制量、刹车控制量及速度偏差综合判断车辆控制模式相比,实现过程更简单。
10)本申请实施例中,每种控制模式均使用单独的算法来计算油门量和刹车量,与现有技术中单纯依据当前行驶速度和目标行驶速度的差值,采用同一算法计算油门量和刹车量相比,算法的细分进一步保证了车辆速度的平滑控制。
以上所述,仅为本申请的具体实施模式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种车辆控制方法,由车载终端或车辆执行,其中,包括:
    获得车辆的目标行驶速度和实际行驶速度;
    基于所述目标行驶速度与所述实际行驶速度的比较结果,在候选的控制模式中确定与所述比较结果相对应的控制模式;
    其中,所述候选的控制模式包括:刹车控制模式、加速控制模式和停车控制模式;
    基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的油门量和刹车量;以及,
    基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量。
  2. 如权利要求1所述的方法,其特征在于,所述获得车辆的目标行驶速度,包括:
    将从所述车辆的实际位置到目标位置的路段应用速度和时间曲线,得到到达路段中不同前方位置对应的时间和速度;
    确定与所述实际位置相邻的前方位置对应的速度为所述目标行驶速度。
  3. 如权利要求1所述的方法,其中,所述基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量,包括:
    所述控制模式为加速控制模式时,基于预定幅度减小在所述车辆中应用的刹车量;
    当所应用的刹车量减少到保持所述车辆力矩平衡的最小刹车量时,在所述车辆中应用实现所述控制模式对应的目标加速度所需要的油门量,直至加速至所述目标行驶速度。
  4. 如权利要求1所述的方法,其中,所述基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量,包括:
    所述控制模式为刹车控制模式时,基于预定幅度减小在所述车辆中应用的油门量;
    当所应用的油门量减小到保持所述车辆怠速的最小油门量时,在所述车辆中应 用达到所述控制模式对应的目标加速度所需的刹车量,直至减速至所述目标行驶速度。
  5. 如权利要求1所述的方法,其中,所述基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量,包括:
    所述控制模式为停车控制模式时,在所述车辆中应用达到所述控制模式对应的目标加速度所需的刹车量;
    在减速至零速度时,在所述车辆中应用用于保持停车状态所需的刹车量。
  6. 如权利要求1所述的方法,其中,所述基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量,包括:
    将应用于所述车辆的控制参数应用于所述车辆,得到实际加速度,将所述实际加速度与根据所述控制模式得到的目标加速度的差值进行积分,得到应用于所述车辆的控制参数的修正值;
    基于所述修正值更新应用于所述车辆的所述控制参数;
    所述控制参数为油门量或刹车量。
  7. 如权利要求1所述的方法,其中,所述基于所确定控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的油门量,包括:
    所述控制模式为加速控制模式时,确定在所处路段实现所述目标行驶速度所需要的目标加速度;
    基于所述车辆的油门量与加速度之间的第一线性关系,确定在所处路段实现所述目标加速度所需要的第一油门量;
    基于所述车辆抵消阻力与所需的油门量之间的第二线性关系,确定抵消所述车辆行驶的阻力所需的第二油门量;
    确定所述第一油门量和所述第二油门量的加和,将所述第一油门量和所述第二油门量的加和作为实现所述目标行驶速度时所需要的油门量。
  8. 如权利要求7所述的方法,其中,所述确定在所处路段实现所述目标加速度所需要的第一油门量,包括:
    其中,所述第一线性关系包括至少两个依次连接的对应所述车辆的不同档位的线性关系;
    确定实现所述目标加速度时所需要依次使用的目标档位;
    基于所述目标档位在所述第一线性关系中所对应的线性关系,确定在相应目标档位中所需的第一油门量。
  9. 如权利要求1所述的方法,其中,所述基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的刹车量,包括:
    所述控制模式为加速控制模式时,基于阻力与实现力矩平衡状态时所需的最小刹车量之间的第三线性关系、以及所述车辆行驶遇到的阻力,确定用于保持所述车辆力矩平衡的最小刹车量,将所述最小刹车量作为所述实现所述目标行驶速度时所需要的刹车量。
  10. 如权利要求1所述的方法,其中,所述基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的刹车量,包括:
    所述控制模式为刹车控制模式时,确定在所处路段实现所述目标行驶速度所需要的目标加速度;
    基于所述车辆的刹车量与加速度之间的第四线性关系,确定在所处路段实现所述目标加速度所需要的第一刹车量;
    基于阻力与等同于所述阻力的刹车量之间的第五线性关系,确定与所述车辆行驶遇到的阻力等同的所述目标行驶速度所需的第二刹车量;
    确定所述第一刹车量和所述第二刹车量的差值,将所述第一刹车量和所述第二刹车量的差值作为所述实现所述目标行驶速度时所需要的刹车量。
  11. 如权利要求10所述的方法,其中,还包括:
    在候选的第四线性关系中,确定起始速度与所述车辆的实际行驶速度匹配的第四线性关系;其中,
    不同的所述候选的第四线性关系中,相同刹车量所获得的加速度与相应第四线性关系的起始速度正相关。
  12. 如权利要求1所述的方法,其中,所述基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的油门量,包括:
    所述控制模式为刹车控制模式时,基于阻力与保持怠速时所需的最小油门量之间的第六线性关系、以及所述车辆行驶遇到的阻力,确定用于保持所述车辆怠速所需的最小油门量,将所述最小油门量作为实现所述目标行驶速度时所需要的油门量。
  13. 一种车辆控制装置,其中,包括:
    获得单元,用于获得车辆的目标行驶速度和实际行驶速度;
    控制模式确定单元,用于基于所述目标行驶速度与所述实际行驶速度的比较结果,在候选的控制模式中确定与所述比较结果相对应的控制模式;其中,所述候选的控制模式包括:刹车控制模式、加速控制模式和停车控制模式;
    控制参数确定单元,用于基于所确定的控制模式对应的油门量和刹车量的确定方式,确定实现所述目标行驶速度时所需要的油门量和刹车量;
    应用单元,用于基于所确定的控制模式对应的油门量和刹车量的应用方式,在所述车辆中应用所确定的油门量和刹车量。
  14. 一种车辆,其中,包括:
    存储器,配置为存储可执行程序;
    处理器,配置为通过执行所述存储器中存储的可执行程序时,实现权利要求1至12任一项所述的车辆控制方法。
  15. 一种存储介质,其中,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至12所述的车辆控制方法。
PCT/CN2018/109697 2017-10-19 2018-10-10 车辆控制方法、装置、车辆及存储介质 WO2019076222A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18869117.4A EP3614224B1 (en) 2017-10-19 2018-10-10 Vehicle control method and device, and vehicle and storage medium
US16/589,251 US11214252B2 (en) 2017-10-19 2019-10-01 Vehicle control method and apparatus, vehicle, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710980290.4 2017-10-19
CN201710980290.4A CN108287540B (zh) 2017-10-19 2017-10-19 车辆控制方法、装置、车辆及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/589,251 Continuation US11214252B2 (en) 2017-10-19 2019-10-01 Vehicle control method and apparatus, vehicle, and storage medium

Publications (1)

Publication Number Publication Date
WO2019076222A1 true WO2019076222A1 (zh) 2019-04-25

Family

ID=62831692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109697 WO2019076222A1 (zh) 2017-10-19 2018-10-10 车辆控制方法、装置、车辆及存储介质

Country Status (4)

Country Link
US (1) US11214252B2 (zh)
EP (1) EP3614224B1 (zh)
CN (1) CN108287540B (zh)
WO (1) WO2019076222A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116227042A (zh) * 2023-05-08 2023-06-06 中汽研(天津)汽车工程研究院有限公司 车辆风阻系数确定方法、设备和存储介质

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287540B (zh) * 2017-10-19 2020-05-08 腾讯科技(深圳)有限公司 车辆控制方法、装置、车辆及存储介质
CN110968088B (zh) * 2018-09-30 2023-09-12 百度(美国)有限责任公司 车辆控制参数的确定方法、装置、车载控制器和无人车
CN110967991B (zh) * 2018-09-30 2023-05-26 百度(美国)有限责任公司 车辆控制参数的确定方法、装置、车载控制器和无人车
CN109435952A (zh) * 2018-10-31 2019-03-08 北京新能源汽车股份有限公司 车辆纵向控制标定方法、装置、系统及汽车
CN109747652B (zh) * 2018-12-27 2021-02-19 东软睿驰汽车技术(沈阳)有限公司 一种车辆控制方法、装置及系统
CN109747651B (zh) * 2018-12-27 2021-08-06 东软睿驰汽车技术(沈阳)有限公司 一种车辆控制方法、装置及系统
CN109895627B (zh) * 2019-02-25 2020-07-31 武汉理工大学 一种汽车油门踏板和汽车油门自动控制系统
CN110059095B (zh) * 2019-03-12 2021-06-25 北京小马慧行科技有限公司 一种数据更新方法及装置
CN109976385A (zh) * 2019-04-03 2019-07-05 成都永奉科技有限公司 一种基于加速度的跟随车控制方法
CN110126760B (zh) * 2019-04-10 2021-07-16 百度在线网络技术(北京)有限公司 用于交通工具的驾驶控制的方法、装置、设备和介质
CN110103709B (zh) * 2019-05-20 2021-04-23 北京易控智驾科技有限公司 一种车辆踏板开度的控制方法、系统、设备和介质
CN110164124B (zh) * 2019-06-17 2021-07-27 吉林大学 一种高速公路重型卡车队列行驶中车辆纵向跟随控制方法
CN112389428B (zh) * 2019-08-02 2022-07-15 北京地平线机器人技术研发有限公司 车辆速度的控制方法和装置、存储介质、电子设备
CN110775059B (zh) * 2019-10-22 2021-08-27 腾讯科技(深圳)有限公司 一种基于人工智能的自动跟车方法和相关装置
CN110962597B (zh) * 2019-12-20 2021-09-24 重庆长安工业(集团)有限责任公司深圳分公司 基于车速的油门提示方法及相关装置
CN111231962B (zh) * 2020-03-03 2021-10-12 北京百度网讯科技有限公司 一种无人车车辆控制方法、装置、设备、车辆及介质
CN111540079A (zh) * 2020-04-02 2020-08-14 东软睿驰汽车技术(沈阳)有限公司 行驶状态的评价方法、装置、电子设备及存储介质
CN113799772B (zh) * 2020-09-18 2024-03-01 北京京东乾石科技有限公司 车辆的控制方法、装置以及控制系统
CN112379668A (zh) * 2020-10-30 2021-02-19 深圳元戎启行科技有限公司 车辆控制数据标定方法、装置、计算机设备和存储介质
CN113581210B (zh) * 2021-08-12 2023-01-31 安徽江淮汽车集团股份有限公司 适用于拥堵跟车工况的自动驾驶纵向运动控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897126B2 (ja) * 2012-07-06 2016-03-30 本田技研工業株式会社 車両の走行制御装置
CN105711441A (zh) * 2016-01-20 2016-06-29 奇瑞汽车股份有限公司 车速控制方法及系统
CN105818686A (zh) * 2016-03-25 2016-08-03 北京新能源汽车股份有限公司 车辆的智能驾驶控制方法和控制系统
CN106904098A (zh) * 2017-02-13 2017-06-30 江西江铃集团新能源汽车有限公司 车速控制方法及系统
CN107215334A (zh) * 2017-06-26 2017-09-29 地壳机器人科技有限公司 车速控制方法、装置及无人驾驶汽车
CN108287540A (zh) * 2017-10-19 2018-07-17 腾讯科技(深圳)有限公司 车辆控制方法、装置、车辆及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770016B1 (fr) * 1997-10-17 1999-12-10 Renault Procede de regulation de la distance entre deux vehicules mobiles
DE10229036A1 (de) * 2002-06-28 2004-01-22 Robert Bosch Gmbh Verfahren zur Ermittlung der Masse eines Fahrzeugs
US7285869B2 (en) * 2004-07-29 2007-10-23 Ford Global Technologies, Llc Method for estimating engine power in a hybrid electric vehicle powertrain
JP4306764B2 (ja) * 2007-06-04 2009-08-05 トヨタ自動車株式会社 車間距離制御装置
DE102007036794B4 (de) * 2007-08-03 2014-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Festlegung der Fahrstrategie eines Fahrzeuges
DE102011018580A1 (de) * 2011-04-26 2012-10-31 Audi Ag Karftfahrzeug umfassend ein Fahrerassistenzsystem
KR101360043B1 (ko) * 2011-12-09 2014-02-24 현대자동차주식회사 차속 제어 시스템 및 그 방법
GB2498929B (en) * 2012-01-25 2014-05-07 Jaguar Land Rover Ltd Adaptive control of internal combustion engine
US9682705B2 (en) * 2015-08-13 2017-06-20 Ford Global Technologies, Llc Vehicle having ACC stop and go with braking auto-hold to increase engine autostop availability
JP6418187B2 (ja) * 2016-03-22 2018-11-07 トヨタ自動車株式会社 車両の変速制御装置
JP6460349B2 (ja) * 2016-04-13 2019-01-30 トヨタ自動車株式会社 車両走行制御装置
US10935982B2 (en) * 2017-10-04 2021-03-02 Huawei Technologies Co., Ltd. Method of selection of an action for an object using a neural network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897126B2 (ja) * 2012-07-06 2016-03-30 本田技研工業株式会社 車両の走行制御装置
CN105711441A (zh) * 2016-01-20 2016-06-29 奇瑞汽车股份有限公司 车速控制方法及系统
CN105818686A (zh) * 2016-03-25 2016-08-03 北京新能源汽车股份有限公司 车辆的智能驾驶控制方法和控制系统
CN106904098A (zh) * 2017-02-13 2017-06-30 江西江铃集团新能源汽车有限公司 车速控制方法及系统
CN107215334A (zh) * 2017-06-26 2017-09-29 地壳机器人科技有限公司 车速控制方法、装置及无人驾驶汽车
CN108287540A (zh) * 2017-10-19 2018-07-17 腾讯科技(深圳)有限公司 车辆控制方法、装置、车辆及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116227042A (zh) * 2023-05-08 2023-06-06 中汽研(天津)汽车工程研究院有限公司 车辆风阻系数确定方法、设备和存储介质
CN116227042B (zh) * 2023-05-08 2023-07-07 中汽研(天津)汽车工程研究院有限公司 车辆风阻系数确定方法、设备和存储介质

Also Published As

Publication number Publication date
EP3614224B1 (en) 2024-01-10
US11214252B2 (en) 2022-01-04
EP3614224A4 (en) 2021-01-27
US20200031348A1 (en) 2020-01-30
CN108287540A (zh) 2018-07-17
CN108287540B (zh) 2020-05-08
EP3614224A1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
WO2019076222A1 (zh) 车辆控制方法、装置、车辆及存储介质
US20230211775A1 (en) Method and device for vehicle parking control
JP3633707B2 (ja) 車群走行制御装置
US10668923B2 (en) Method for adaptively controlling a vehicle speed in a vehicle, and speed control system for carrying out the method
US8676483B2 (en) Guidance control device, guidance control method, and guidance control program
CN108216241A (zh) 确定自主驾驶车辆的控制特性
BR102016023026A2 (pt) método para determinar uma mudança de resistência do ar percebida por um veículo automotor
US20190337514A1 (en) Driving assist system and driving assist method
CN110834633B (zh) 一种车辆速度的控制方法、装置、车辆及存储介质
JP4613124B2 (ja) ナビ協調走行制御装置
JP2021143917A (ja) 車両の重量推定方法
JP6972644B2 (ja) 車両制御装置
CN112519776B (zh) 自动驾驶车队的控制方法、车载装置及自动驾驶车辆
CN110126760B (zh) 用于交通工具的驾驶控制的方法、装置、设备和介质
JP2014189214A (ja) 車速制御装置
JP2017100654A (ja) 走行制御装置
JPH09245287A (ja) 車群走行制御装置
JP2016113097A (ja) 車両制御装置および車両制御プログラム
CN116968704B (zh) 车辆制动控制方法、装置、存储介质以及车辆
KR102468158B1 (ko) 도로의 경사에 따른 자율주행 차량의 가속도 제어 방법 및 장치
JP2005125894A (ja) 車両の速度制御装置
JP2017088113A (ja) 駆動力の制御装置
CN117533347A (zh) 指令生成方法、装置以及车辆
JP2024041727A (ja) 緊急の障害物回避のための反復の軌道再計画
JP6032020B2 (ja) 車載制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018869117

Country of ref document: EP

Effective date: 20191120

NENP Non-entry into the national phase

Ref country code: DE