WO2019076185A1 - 一种可充电电池 - Google Patents

一种可充电电池 Download PDF

Info

Publication number
WO2019076185A1
WO2019076185A1 PCT/CN2018/107834 CN2018107834W WO2019076185A1 WO 2019076185 A1 WO2019076185 A1 WO 2019076185A1 CN 2018107834 W CN2018107834 W CN 2018107834W WO 2019076185 A1 WO2019076185 A1 WO 2019076185A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
manganese
hydrated
sulfonate
electrolyte
Prior art date
Application number
PCT/CN2018/107834
Other languages
English (en)
French (fr)
Inventor
刘小林
束建军
Original Assignee
南京蔚速科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京蔚速科技有限公司 filed Critical 南京蔚速科技有限公司
Priority to US16/757,057 priority Critical patent/US20200343595A1/en
Publication of WO2019076185A1 publication Critical patent/WO2019076185A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of chemical power sources, and in particular relates to a rechargeable battery.
  • the rechargeable zinc-manganese battery is a green and environmentally friendly chemical power source, which uses manganese oxide as the active material of the positive electrode and zinc as the active material of the negative electrode.
  • the electrolyte of the rechargeable zinc-manganese battery can be mainly divided into two types, one is an alkaline system, but under the condition of an alkaline electrolyte, the polarization of the rechargeable zinc-manganese battery is large, and the cycle stability is poor;
  • the class is a neutral or weakly acidic system such as a zinc sulfate solution.
  • the rechargeable zinc-manganese battery reached a deep charge and discharge of more than 50 cycles, and at the same time, due to its good rate performance and high and low temperature performance, The material used was inexpensive, which made it almost commercialized at one time.
  • the charging and discharging reaction mechanism of this rechargeable zinc-manganese battery is:
  • the present invention is directed to the deficiencies of the prior art and provides a rechargeable battery.
  • a rechargeable battery comprising: a casing, an electrolyte, a positive electrode and a negative electrode disposed in the electrolyte, and a separator disposed between the positive electrode and the negative electrode, wherein the electrolyte, the positive electrode, the negative electrode, and the separator are disposed on the outer casing
  • the active material of the positive electrode includes one or more of manganese oxide and manganese oxyhydroxide
  • the active material of the negative electrode contains a zinc element
  • the electrolyte salt in the electrolyte contains zinc alkylsulfonate and arylsulfonate.
  • the concentration of the electrolyte salt in the electrolyte is 0.1-8 mol/L;
  • the electrolyte salt contains one or more electrolyte salts of a sulfonate ion and a fluoroborate ion in an amount of 5% or more, preferably 45% or more, more preferably 55% or more, based on the total amount of the electrolyte salt. .
  • the concentration of zinc ions in the electrolyte is 0.1 to 6 mol / L, preferably, the concentration of zinc ions in the electrolyte is 1.0 to 2.5 mol / L;
  • the sulfonate ion-containing electrolyte salt includes zinc alkylsulfonate, zinc arylsulfonate, zinc hydrated alkylsulfonate, zinc hydrated arylsulfonate, manganese alkylsulfonate, manganese arylsulfonate, hydrated alkane One or more of manganese sulfonate and manganese hydrated arylsulfonate;
  • the electrolyte salt of the fluorine-containing borate ion includes one or more of zinc fluoroborate, manganese fluoroborate, zinc hydrated fluoroborate, and manganese hydrated borofluoride;
  • the zinc alkylsulfonate is one or more of zinc methanesulfonate, zinc ethyl sulfonate and zinc propyl sulfonate;
  • the zinc aryl sulfonate is one or more of zinc benzenesulfonate and zinc p-toluenesulfonate;
  • the hydrated zinc sulfonate is one or more of zinc hydrated zinc sulfonate, zinc hydrated ethyl sulfonate and zinc hydrated propyl sulfonate;
  • the zinc hydrated arylsulfonate is one or more of zinc hydrate benzenesulfonate and zinc hydrated p-toluenesulfonate.
  • the electrolyte salt in the electrolytic solution further contains one or more of manganese alkylsulfonate, manganese arylsulfonate, manganese fluoroborate, manganese hydrated alkylsulfonate, manganese hydrated arylsulfonate, and manganese hydrated borofluoride.
  • the manganese sulfonate is one or more of manganese methanesulfonate, manganese sulfonate and manganese propylsulfonate; the manganese arylsulfonate is manganese benzenesulfonate and manganese p-toluenesulfonate One or more; the hydrated manganese sulfonate is one or more of hydrated manganese sulfonate, hydrated manganese sulfonate, and hydrated propyl sulfonate; the hydrated aryl sulfonate is hydrated One or more of manganese benzenesulfonate and manganese hydrated p-toluenesulfonate.
  • the active material of the positive electrode contains at least 20% by mass of manganese oxide and manganese oxyhydroxide, preferably 45% or more, more preferably 55% or more; the manganese oxide or hydroxide
  • the crystal lattice of oxymanganese may also contain a small amount of other impurity ions, but still mainly composed of manganese element and oxygen element, the number of manganese ions accounts for more than 80% of the number of all cations, and the sum of the number of oxygen ions and hydroxide ions It accounts for more than 80% of all anions.
  • Manganese oxide and manganese oxyhydroxide in the active material of the positive electrode may exist in the form of a hydrate.
  • the mass percentage of the zinc element in the active material of the negative electrode is 33% or more, preferably 45% or more, more preferably 55% or more, and the zinc element may be present in the form of zinc foil, zinc flakes, and zinc powder. (Zinc powder is mixed with a binder to form a solid as a negative electrode) or a zinc alloy.
  • the solvent of the electrolyte is water or a mixture of water and an organic solvent.
  • the organic solvent includes one or more of an ether organic solvent, an ester organic solvent, a nitrile organic solvent, an amine organic solvent, a sulfone organic solvent, an alcohol organic solvent, or an amide organic solvent.
  • the electrolyte salt may further comprise zinc sulfate, manganese sulfate, zinc chloride, manganese chloride, zinc nitrate, manganese nitrate, zinc acetate, manganese acetate, zinc formate or manganese formate which does not substantially affect battery capacity and cycle stability. More than one.
  • reaction equation of the charge and discharge mechanism of the rechargeable battery of the present invention is:
  • the methylsulfonate is a monovalent anion
  • the sulfate anion is a divalent anion
  • the methylsulfonate has one more methyl group than the sulfate, and the methylsulfonate The volume is larger, so the negative charge of the methanesulfonate anion is more dispersed, and the attraction to the cation (Zn 2+ ) is lower.
  • the hydrogen atom in the manganese benzenesulfonate, the manganese p-toluenesulfonate and the hydrate thereof may be substituted by other substituents, and the other substituents may specifically be a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a n-propyl group or a different one.
  • One or more of a propyl group and a hydroxide group One or more of a propyl group and a hydroxide group.
  • a zinc salt (zinc alkylsulfonate, zinc arylsulfonate, zinc fluoroborate) and a hydrate thereof, a manganese salt (manganese alkylsulfonate, arylsulfonic acid) used in the rechargeable battery of the present invention.
  • Manganese, manganese fluoroborate and its hydrate can not only improve the reversibility of the positive electrode, but also avoid irreversible sulfation of the positive electrode, significantly improve the cycle life of the rechargeable battery, and at the same time have a higher energy density, and there is no chloride ion. The problem of corrosion and the problem that nitrate ions are easily reduced.
  • the rechargeable battery of the present invention has a lower material cost than the lithium battery on the market, and thus has better economic benefits.
  • Figure 1 is a graph showing the performance comparison of the batteries obtained in Example 1 and Comparative Example 1 of the present invention.
  • Figure 2 is a graph showing the performance comparison of the batteries obtained in Example 2 and Comparative Example 2 of the present invention.
  • Figure 3 is a graph showing the performance comparison of the batteries obtained in Example 3 and Comparative Example 2 of the present invention.
  • Figure 4 is a graph showing the performance comparison of the batteries obtained in Example 4 and Comparative Example 2 of the present invention.
  • Figure 5 is a graph showing the performance comparison of the batteries obtained in Example 2 and Comparative Example 3 of the present invention.
  • Figure 6 is a graph showing the performance comparison of the batteries obtained in Example 2, Example 5, Example 6, and Example 7 of the present invention.
  • the abscissa is the number of charge and discharge cycles, and the ordinate is the mass ratio capacity in units of milliamperes per gram.
  • the present invention provides a rechargeable battery.
  • a rechargeable battery comprising: a casing, an electrolyte, a positive electrode and a negative electrode disposed in the electrolyte, and a separator disposed between the positive electrode and the negative electrode, wherein the electrolyte, the positive electrode, the negative electrode, and the separator are disposed on the outer casing Inside, among them,
  • the active material of the positive electrode includes manganese oxide (MnO x , a value of x is preferably between 0.8 and 2.5) and one or more of manganese oxyhydroxide, and manganese oxide and oxygen hydroxide in the active material of the positive electrode. It is possible that more than one mass percentage of manganese is greater than or equal to 33%, preferably, 45% or more, more preferably 55% or more; and the manganese oxide or manganese oxyhydroxide may also contain a small amount in the crystal lattice.
  • impurity ions but mainly manganese and oxygen, the number of manganese ions accounts for more than 80% of the total number of cations, and the sum of the number of oxygen ions and hydroxide ions accounts for more than 80% of all anions;
  • manganese oxide and manganese oxyhydroxide in the active material of the positive electrode may also exist in the form of a hydrate.
  • the active material of the negative electrode contains a zinc element, and a mass percentage of the zinc element in the active material of the negative electrode is more than 33%, preferably, 45% or more, more preferably 55% or more; zinc elemental
  • the form may be zinc foil, zinc flakes, zinc powder (zinc powder mixed with a binder to form a solid as a negative electrode) or a zinc alloy.
  • the electrolyte salt in the electrolyte may further comprise one or more of zinc alkylsulfonate, zinc arylsulfonate, zinc fluoroborate, zinc hydrated alkylsulfonate, zinc hydrated arylsulfonate and zinc fluoroborate hydrate.
  • concentration of the electrolyte salt in the electrolyte is between 0.1 and 8 mol/L;
  • the concentration of zinc ions in the electrolytic solution may be between 0.1 and 6 mol/L, and preferably, the concentration of zinc ions in the electrolytic solution is from 1.0 to 2.5 mol/L.
  • the electrolyte salt contains one or more electrolyte salts of a sulfonate ion and a fluoroborate ion in an amount of 10% or more based on the total amount of the electrolyte salt, preferably, 45% or more, more preferably, more than Equal to 55%;
  • the solvent of the electrolyte may be water or a mixture of water and an organic solvent; a gelatinous substance may be added to the electrolyte to cause the electrolyte to exist in a gel form.
  • the organic solvent may be one or more of an ether organic solvent, an ester organic solvent, a nitrile organic solvent, an amine organic solvent, a sulfone organic solvent, an alcohol organic solvent or an amide organic solvent, such as: Tetrahydrofuran, propylene carbonate, ethylene carbonate, acetonitrile, dimethyl carbonate, sulfolane, ⁇ -butyrolactone, 2-methyltetrahydrofuran, diethyl carbonate, 3-methylsulfolane, dimethyl sulfoxide, dimethyl Ethoxyethane, ethyl methyl carbonate, N,N-dimethylformamide, diethylethane, and the like.
  • an ether organic solvent such as: Tetrahydrofuran, propylene carbonate, ethylene carbonate, acetonitrile, dimethyl carbonate, sulfolane, ⁇ -butyrolactone, 2-methyltetrahydrofuran, diethyl carbonate, 3-methyl
  • the zinc alkylsulfonate may be one or more of zinc methanesulfonate, zinc ethyl sulfonate and zinc propyl sulfonate;
  • the zinc arylsulfonate may be one or more of zinc benzenesulfonate and zinc p-toluenesulfonate;
  • the hydrated zinc sulfonate may be one or more of zinc hydrated zinc sulfonate, zinc hydrated ethyl sulfonate and zinc hydrated propyl sulfonate;
  • the hydrated arylsulfonic acid zinc may be one or more of zinc hydrate benzenesulfonate and zinc hydrated p-toluenesulfonate.
  • the electrolyte salt in the electrolyte may further include one or more of manganese alkylsulfonate, manganese arylsulfonate, manganese fluoroborate, manganese hydrated alkylsulfonate, manganese hydrated arylsulfonate, and manganese hydrated borofluoride. .
  • the manganese sulfonate may be one or more of manganese methanesulfonate, manganese ethylsulfonate and manganese propylsulfonate; the manganese arylsulfonate may be manganese benzenesulfonate and p-toluenesulfonic acid One or more of manganese; the hydrated manganese sulfonate may be one or more of hydrated manganese sulfonate, hydrated manganese sulfonate, and hydrated propyl sulfonate; the hydrated arylsulfonic acid Manganese may be one or more of manganese hydrated benzenesulfonate and manganese hydrated p-toluenesulfonate.
  • the electrolyte salt may further comprise zinc sulfate, manganese sulfate, zinc chloride, manganese chloride, zinc nitrate, manganese nitrate, zinc acetate, manganese acetate, zinc formate or manganese formate which does not substantially affect battery capacity and cycle stability. More than one.
  • the hydrogen atom in the manganese benzenesulfonate, the manganese p-toluenesulfonate and the hydrate thereof may be substituted by other substituents, and the other substituents may specifically be a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a n-propyl group or a different one.
  • One or more of a propyl group and a hydroxide group can also achieve the object of the present invention.
  • the rechargeable battery of the present invention comprises a casing, an electrolyte, a positive electrode and a negative electrode which are disposed in the electrolyte, and a separator is disposed between the positive electrode and the negative electrode, and the electrolyte, the positive electrode, the negative electrode and the separator are disposed on the outer casing. Inside.
  • the rechargeable battery in the embodiment of the present invention adopts a button battery, and uses zinc foil as a negative electrode, a glass fiber separator (about 1 mm thick, and an average pore diameter of 1-10 ⁇ m) as a separator, and manganese dioxide in the active material of the positive electrode. Electrolytic manganese dioxide having a particle diameter of about 200 nm is used.
  • the manganese oxyhydroxide in the embodiment of the present invention is prepared by a self-made method. 4.53 g of manganese sulfate and 2 mL of a 0.5 mol/L aqueous solution of sulfuric acid are added to 90 mL of deionized water, and stirred until completely dissolved. Then, 20 mL of a 1 mol/L potassium permanganate aqueous solution was added to the above solution, and stirring was continued for about 2 hours. After the stirring, the obtained mixture was transferred into a Teflon-lined hydrothermal kettle and placed in an oven at 120 ° C for 12 hours. After the completion of the reaction, the obtained product was filtered three times with deionized water, and finally dried in an oven to obtain manganese oxyhydroxide used in the present example.
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • Electrolyte 57.5 g of zinc sulfate heptahydrate was dissolved in 100 mL of deionized water to prepare an aqueous solution of about 1.6 mol/L of zinc sulfate to obtain an electrolytic solution.
  • the prepared positive electrode sheet was used as a positive electrode, the zinc foil was used as a negative electrode, and a 1.6 mol/L zinc sulfate aqueous solution was used as an electrolytic solution, and a glass fiber separator was assembled into a button battery.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V.
  • the relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. see picture 1.
  • Comparative Example 2 Rechargeable zinc-manganese battery with electrolyte solution of zinc sulfate and manganese sulfate
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • the prepared positive electrode sheet was used as a positive electrode, zinc foil was used as a negative electrode, an aqueous solution having a zinc sulfate concentration of 1.6 mol/L, and a manganese sulfate concentration of 0.16 mol/L was used as an electrolytic solution, and a glass fiber separator was assembled into a button battery.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V.
  • the relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. See Figure 2 and Figures 3 to 5.
  • Comparative Example 3 Rechargeable mixed water lithium ion/zinc ion battery with electrolyte solution of zinc methanesulfonate and lithium methanesulfonate
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • lithium manganate, acetylene black, and polyvinylidene fluoride are mass ratio 75:
  • the ratio of 15:10 was mixed, and the mixture was uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • the prepared positive electrode sheet is used as a positive electrode
  • the zinc foil is used as a negative electrode
  • an aqueous solution containing 1.6 mol/L zinc methanesulfonate and 0.8 mol/L lithium methanesulfonate is used as an electrolyte
  • a glass fiber separator is assembled into a button battery.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.4-2.1 V.
  • the measured relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. See Figure 5.
  • the energy density of the battery was tested.
  • the test results showed that the energy density of the system was 160 Wh/kg (based on the mass of the positive active material, the active material of the positive electrode was calculated).
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • Electrolyte 51.1 g of zinc methanesulfonate was dissolved in 100 mL of deionized water to prepare an aqueous solution of zinc methanesulfonate having a concentration of about 1.6 mol/L to obtain an electrolytic solution.
  • the prepared positive electrode sheet is used as a positive electrode, the zinc foil is used as a negative electrode, and a 1.6 mol/L zinc methyl methanesulfonate aqueous solution is used as an electrolytic solution, and a glass fiber separator is assembled into a button battery, which is the same as described in the embodiment.
  • Rechargeable Battery is used as a positive electrode, the zinc foil is used as a negative electrode, and a 1.6 mol/L zinc methyl methanesulfonate aqueous solution is used as an electrolytic solution, and a glass fiber separator is assembled into a button battery, which is the same as described in the embodiment. Rechargeable Battery.
  • Figure 1 shows that the use of zinc methanesulfonate instead of zinc sulfate as the electrolyte salt of a rechargeable zinc-manganese battery can significantly improve the cycle stability of the rechargeable zinc-manganese battery.
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • electrolyte 51.1 g of zinc methanesulfonate and 4.9 g of manganese methanesulfonate were dissolved in 100 mL of deionized water to obtain an electrolyte solution, and the concentration of zinc methanesulfonate in the obtained electrolyte was about 1.6 mol/L.
  • the manganese sulfonate concentration was 0.16 mol/L.
  • the prepared positive electrode sheet is used as a positive electrode, and the zinc foil is used as a negative electrode, and an aqueous solution containing 1.6 mol/L zinc methanesulfonate and 0.16 mol/L manganese sulfonate is used as an electrolyte solution, and a glass fiber separator is assembled into a button battery. That is, the rechargeable battery described in this embodiment is obtained.
  • the battery test system of the assembled button battery was tested. The test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V. The relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. 2 (compared with Comparative Example 2) and FIG. 5 (Comparative with Comparative Example 3), wherein FIG.
  • the electrolyte salt used in place of zinc sulfate and manganese sulfate (electrolyte salt used in Comparative Example 2) as an electrolyte salt of a rechargeable zinc-manganese battery can significantly improve the cycle stability of the rechargeable zinc-manganese battery.
  • the energy density of the battery obtained in the present example was tested.
  • the test results showed that the energy density of the system was 195 Wh/kg (based on the mass of the positive active material), and also significantly higher than that of the comparative example 3 rechargeable mixed water lithium ion/zinc.
  • the ion battery has an energy density of 160 Wh/kg.
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • electrolyte 51.1 g of zinc methanesulfonate and 4.57 g of manganese fluoroborate were dissolved in 100 mL of deionized water to obtain an electrolyte solution.
  • the concentration of zinc methanesulfonate in the obtained electrolyte was 1.6 mol/L, and the concentration of manganese fluoroborate. It is 0.16 mol/L.
  • the prepared positive electrode sheet is used as a positive electrode, and the zinc foil is used as a negative electrode, and an aqueous solution containing 1.6 mol/L zinc methanesulfonate and 0.16 mol/L manganese borohydride is used as an electrolyte solution, and a glass fiber separator is assembled into a button battery, that is, The rechargeable battery described in this embodiment is obtained.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V.
  • the relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. See Figure 3 (this example is compared with Comparative Example 2), Figure 3 shows that the use of zinc methane sulfonate, manganese fluoroborate instead of zinc sulfate, manganese sulfate as the electrolyte salt of rechargeable zinc-manganese battery can make rechargeable zinc-manganese battery The cycle stability is significantly improved.
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • electrolyte 51.1 g of zinc methanesulfonate and 3.38 g of manganese sulfate monohydrate were dissolved in 100 mL of deionized water to obtain an electrolyte solution.
  • the concentration of zinc methanesulfonate in the obtained electrolyte was about 1.6 mol/L, manganese sulfate.
  • the concentration is about 0.16 mol/L.
  • the prepared positive electrode sheet is used as a positive electrode
  • the zinc foil is used as a negative electrode
  • an aqueous solution containing 1.6 mol/L zinc methanesulfonate and 0.16 mol/L manganese sulfate is used as an electrolyte solution
  • a glass fiber separator is assembled into a button battery, that is, The rechargeable battery described in this embodiment.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V.
  • the relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. See Figure 4 (comparison of this example and Comparative Example 2), Figure 4 shows that in the case of containing manganese sulfate in the electrolyte, the use of zinc methanesulfonate instead of zinc sulfate as the electrolyte salt of the rechargeable zinc-manganese battery can be made The cycle stability of the rechargeable zinc-manganese battery is significantly improved.
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • the prepared positive electrode sheet is used as a positive electrode, and the zinc foil is used as a negative electrode, and an aqueous solution containing 0.47 mol/L zinc methanesulfonate and 0.16 mol/L manganese sulfonate is used as an electrolyte solution, and a glass fiber separator is assembled into a button battery. That is, the rechargeable battery described in this embodiment is obtained.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V.
  • the relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. See Figure 6.
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • electrolyte 90.12g of zinc methanesulfonate and 4.9g of manganese sulfonate were dissolved in 100mL of deionized water to obtain an electrolyte solution.
  • concentration of zinc methanesulfonate in the obtained electrolyte was about 2.5mol/L.
  • the manganese sulfonate concentration is about 0.16 mol/L.
  • the prepared positive electrode sheet is used as a positive electrode, and the zinc foil is used as a negative electrode, and an aqueous solution containing 2.5 mol/L zinc methanesulfonate and 0.16 mol/L manganese sulfonate is used as an electrolyte solution, and a glass fiber separator is assembled into a button battery. That is, the rechargeable battery described in this embodiment is obtained.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V.
  • the relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. See Figure 6.
  • the binder polyvinylidene fluoride
  • N-methylpyrrolidone N-methylpyrrolidone
  • the vinyl fluoride was mixed at a mass ratio of 70:5:15:10, and uniformly stirred in a high-speed mixer.
  • the obtained mixture was uniformly coated on the surface of the graphite conductive paper, transferred into a vacuum oven at 120 ° C, taken out after 12 hours, and cut to obtain a positive electrode sheet.
  • electrolyte 128.75g of zinc methanesulfonate and 4.9g of manganese sulfonate were dissolved in 100mL of deionized water to obtain an electrolyte solution.
  • concentration of zinc methanesulfonate in the obtained electrolyte was about 3.1mol/L.
  • the manganese sulfonate concentration is about 0.16 mol/L.
  • the prepared positive electrode sheet is used as a positive electrode, and the zinc foil is used as a negative electrode, and an aqueous solution containing 3.1 mol/L zinc methanesulfonate and 0.16 mol/L manganese sulfonate is used as an electrolyte solution, and a glass fiber separator is assembled into a button battery. That is, the rechargeable battery described in this embodiment is obtained.
  • the battery test system of the assembled button battery was tested.
  • the test current was 300 mA/g, and the charge and discharge voltage range was 1.0-1.9 V.
  • the relationship between the number of charge and discharge cycles of the battery and its mass specific capacity was measured. See Figure 6.
  • a suitable zinc ion concentration in the electrolyte is from 0.1 mol/L to 6 mol/L, preferably from 1.0 mol/L to 2.5 mol/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种可充电电池,包括电解液、正极、负极以及设置在正极和负极之间的隔离膜,所述正极的活性物质包含氧化锰和氢氧化氧锰中的一种以上,所述负极的活性物质包含锌元素,所述电解液中的电解质盐包含烷基磺酸锌、芳基磺酸锌、氟硼酸锌、水合烷基磺酸锌、水合芳基磺酸锌和水合氟硼酸锌中的一种以上。本发明所得的可充电电池不仅可以有效避免正极的不可逆硫酸盐化,提高正极材料的可逆性,进而明显提高可充电电池的循环寿命,同时具有较高的能量密度,并且也不存在氯离子的腐蚀问题以及硝酸根离子易被还原的问题,同时相比于市面上的锂电池,采用的原材料价格低廉,因此具有更好的经济效益。

Description

一种可充电电池 技术领域
本发明属于化学电源领域,具体涉及一种可充电电池。
背景技术
可充电锌锰电池,是一种绿色、环保的化学电源,采用锰的氧化物作正极的活性材料,锌做负极的活性材料。可充电锌锰电池的电解液主要可分为两类,一类是碱性体系,但在碱性电解液条件下,可充电锌锰电池的极化很大,循环稳定性很差;另一类是中性或弱酸性体系,如硫酸锌溶液等。上世纪90年代通过改性正极材料、使用耐枝晶隔离膜等措施,使可充电锌锰电池达到了深度充放电50次循环以上,同时,由于其具有良好的倍率性能和高低温性能,且所选用的材料价格低廉,使得其曾经一度几乎实现了商业化生产,这种可充电锌锰电池的充放电反应机理方程式为:
负极:
Figure PCTCN2018107834-appb-000001
正极:
Figure PCTCN2018107834-appb-000002
从以上方程式可以看出这种电池在放电过程中,锌离子并不是嵌入二氧化锰晶格内,而是与电解液中的SO 4 2-阴离子结合生成了沉淀,这种沉淀在充电过程中不易被分解,使得正极的可逆性大大降低,严重影响可充电锌锰电池的循环稳定性,更坏的是,经多次循环后,ZnSO 4[Zn(OH) 2] 3·xH 2O会包裹在正极材料的表面,阻碍电解液中离子的传输,严重影响电池的容量及循环寿命。虽然目前已有多种方法可以改善正极的可逆性,但效果仍然有限,电池的循环稳定性仍不能达到商业化生产的最低要求。
发明内容
本发明针对现有技术的不足,提供一种可充电电池。
一种可充电电池,其包括:外壳、电解液、设置在电解液中的正极和负极以及设置在正极和负极之间的隔离膜,所述电解液、正极、负极以及隔离膜均设置在外壳内,所述正极的活性物质包含氧化锰和氢氧化氧锰中的一种以上,所述负极的活性物质包含锌元素,所述电解液中的电解质盐包含烷基磺酸锌、芳基磺酸锌、氟硼酸锌、水合烷基磺酸锌、水合芳基磺酸锌和水合氟硼酸锌中的一种以上。
所述电解液中电解质盐的浓度为0.1~8mol/L;
所述电解质盐中含磺酸根离子和氟硼酸根离子中一种以上的电解质盐占电解质盐总量的摩尔百分比大于等于5%,优选地,大于等于45%,更优选地,大于等于55%。
所述电解液中锌离子的浓度为0.1~6mol/L,优选地,所述电解液中锌离子的浓度为1.0~2.5mol/L;
所述含磺酸根离子的电解质盐包括烷基磺酸锌、芳基磺酸锌、水合烷基磺酸锌、水合芳基磺酸锌、烷基磺酸锰、芳基磺酸锰、水合烷基磺酸锰、水合芳基磺酸锰中的一种以上;
所述含氟硼酸根离子的电解质盐包括氟硼酸锌、氟硼酸锰、水合氟硼酸锌、水合氟硼酸锰中的一种以上;
所述烷基磺酸锌为甲基磺酸锌、乙基磺酸锌和丙基磺酸锌中的一种以上;
所述芳基磺酸锌为苯磺酸锌和对甲苯磺酸锌中的一种以上;
所述水合烷基磺酸锌为水合甲基磺酸锌、水合乙基磺酸锌和水合丙基磺酸锌中的一种以上;
所述水合芳基磺酸锌为水合苯磺酸锌和水合对甲苯磺酸锌中的一种以上。
所述电解液中的电解质盐还包含烷基磺酸锰、芳基磺酸锰、氟硼酸锰、水合烷基磺酸锰、水合芳基磺酸锰及水合氟硼酸锰中的一种以上。
所述烷基磺酸锰为甲基磺酸锰、乙基磺酸锰和丙基磺酸锰中的一种以上;所述芳基磺酸锰为苯磺酸锰和对甲苯磺酸锰中的一种以上;所述水合烷基磺酸锰为水合甲基磺酸锰、水合乙基磺酸锰和水合丙基磺酸锰中的一种以上;所述水合芳基磺酸锰为水合苯磺酸锰和水合对甲苯磺酸锰中的一种以上。
所述正极的活性物质中氧化锰和氢氧化氧锰一种以上所占质量百分比大于等于20%,优选地,大于等于45%,更优选地,大于等于55%;所述氧化锰或氢氧化氧锰的晶格内也可含有少量其它杂质离子,但仍以锰元素、氧元素为主,锰离子个数占所有阳离子个数的80%以上,氧离子和氢氧根离子个数之和占所有阴离子个数的80%以上。
所述正极的活性物质中的氧化锰和氢氧化氧锰可以水合物的形式存在。
所述负极的活性物质中锌元素所占质量百分比大于等于33%,优选地,大于等于45%,更优选地,大于等于55%,锌元素的存在形式可以是锌箔、锌片、锌粉(锌粉与粘合剂混合制成固状物作为负极)或锌合金。
所述电解液的溶剂为水或水和有机溶剂的混合物。
所述有机溶剂包含醚类有机溶剂、酯类有机溶剂、腈类有机溶剂、胺类有机溶剂、砜类有机溶剂、醇类有机溶剂或酰胺类有机溶剂中的一种以上。
所述电解质盐还可包含基本不影响电池容量、循环稳定性能的硫酸锌、硫酸锰、氯化锌、氯化锰、硝酸锌、硝酸锰、醋酸锌、醋酸锰、甲酸锌、甲酸锰中的一种以上。
以电解液中含磺酸根离子的甲基磺酸锌为例,本发明所述可充电电池的充放电机理的反应方程式为:
负极:
Figure PCTCN2018107834-appb-000003
正极:
Figure PCTCN2018107834-appb-000004
由上述反应方程式可以看出,由于甲基磺酸根是一价阴离子,硫酸根阴离子是二价阴离子,且从体积效应的角度,甲基磺酸根比硫酸根多了一个甲基,甲基磺酸根体积更大,因而甲基磺酸根阴离子的负电荷更分散,对阳离子(Zn 2+)的吸引力更低,在充电过程中,Zn(CH 3SO 3) 2[Zn(OH) 2] 3·xH 2O则更容易被分解,这样便使得采用甲基磺酸盐作为电解质盐能显著提高可充电锌锰电池正极的可逆性,从而提高充电电池的容量和循环寿命,而采用硫酸盐作为本电池体系的电解质盐,则会引起正极的不可逆硫酸盐化,使得正极的可逆性大大降低。同理含氟硼酸根离子的电解液用在本发明所述可充电电池中的充放电反应机理。
所述的甲基磺酸锌、乙基磺酸锌、丙基磺酸锌、甲基磺酸锰、乙基磺酸锰、丙基磺酸锰、苯磺酸锌、对甲苯磺酸锌、苯磺酸锰、对甲苯磺酸锰以及它们的水合物中的氢原子还可以被其它取代基取代,其它取代基具体可以是氟原子、氯原子、甲基、乙基、正丙基、异丙基、氢氧根中的一种或多种。
由于采用上述方案,本发明的有益效果是:
1、本发明所述的可充电电池所采用的锌盐(烷基磺酸锌、芳基磺酸锌、氟硼酸锌)及其水合物、锰盐(烷基磺酸锰、芳基磺酸锰、氟硼酸锰)及其水合物不仅可以提高正极的可逆性,有效避免正极的不可逆硫酸盐化,明显提高可充电电池的循环寿命,同时具有较高的能量密度,并且也不存在氯离子的腐蚀问题以及硝酸根离子易被还原的问题。
2、本发明所述的可充电电池相比于市面上的锂电池,采用的材料价格低廉,因此具有更好的经济效益。
附图说明
图1为本发明中实施例1与对比例1所得电池的性能对比图。
图2为本发明中实施例2与对比例2所得电池的性能对比图。
图3为本发明中实施例3与对比例2所得电池的性能对比图。
图4为本发明中实施例4与对比例2所得电池的性能对比图。
图5为本发明中实施例2与对比例3所得电池的性能对比图。
图6为本发明中实施例2、实施例5、实施例6和实施例7所得电池的性能对比图。
上述各附图中,横坐标为充放电循环次数、纵坐标为质量比容量,单位为毫安时每克。
具体实施方式
本发明提供了一种可充电电池。
<可充电电池>
一种可充电电池,其包括:外壳、电解液、设置在电解液中的正极和负极以及设置在正极和负极之间的隔离膜,所述电解液、正极、负极以及隔离膜均设置在外壳内,其中,
所述正极的活性物质包含氧化锰(MnO x,x取值在0.8~2.5之间是可以的)和氢氧化氧锰中的一种以上,所述正极的活性物质中氧化锰和氢氧化氧锰一种以上所占质量百分比大于等于33%是可以的,优选地,大于等于45%,更优选地,大于等于55%;所述氧化锰或氢氧化氧锰的晶格内也可含有少量其它杂质离子,但仍以锰元素、氧元素为主,锰离子个数占所有阳离子个数的80%以上,氧离子和氢氧根离子个数之和占所有阴离子个数的80%以上;
另外,所述正极的活性物质中的氧化锰和氢氧化氧锰也可以水合物的形式存在。
所述负极的活性物质包含锌元素,所述负极的活性物质中锌元素所占质量百分比大于33%是可以的,优选地,大于等于45%,更优选地,大于等于55%;锌元素的存在形式可以是锌箔、锌片、锌粉(锌粉与粘合剂混合制成固状物作为负极)或锌合金。
所述电解液中的电解质盐还可以包含烷基磺酸锌、芳基磺酸锌、氟硼酸锌、水合烷基磺酸锌、水合芳基磺酸锌和水合氟硼酸锌中的一种以上,所述电解液中电解质盐的浓度在0.1~8mol/L之间是可以的;
所述电解液中锌离子的浓度在0.1~6mol/L之间是可以的,优选地,所述电解液中锌离子的浓度在1.0~2.5mol/L。
所述电解质盐中含磺酸根离子和氟硼酸根离子中一种以上的电解质盐占电解质盐总量的摩尔百分比大于等于10%是可以的,优选地,大于等于45%,更优选地,大于等于55%;
所述电解液的溶剂可以为水或水和有机溶剂的混合物;电解液中可以加入胶凝质的物质,使电解液以凝胶状的形式存在。
所述有机溶剂为醚类有机溶剂、酯类有机溶剂、腈类有机溶剂、胺类有机溶剂、砜类有机溶剂、醇类有机溶剂或酰胺类有机溶剂中的一种以上是可以的,如:四氢呋喃、碳酸丙烯酯、碳酸乙烯酯、乙腈、碳酸二甲酯、环丁砜、γ-丁内酯、2-甲基四氢呋喃、碳酸二乙酯、3-甲基环丁砜、二甲基亚砜、二甲氧基乙烷、碳酸甲乙酯、N,N-二甲基甲酰胺、二乙基乙烷等。
所述烷基磺酸锌可以为甲基磺酸锌、乙基磺酸锌和丙基磺酸锌中的一种以上;
所述芳基磺酸锌可以为苯磺酸锌和对甲苯磺酸锌中的一种以上;
所述水合烷基磺酸锌可以为水合甲基磺酸锌、水合乙基磺酸锌和水合丙基磺酸锌中的一种以上;
所述水合芳基磺酸锌可以为水合苯磺酸锌和水合对甲苯磺酸锌中的一种以上。
所述电解液中的电解质盐还可包含烷基磺酸锰、芳基磺酸锰、氟硼酸锰、水合烷基磺酸锰、水合芳基磺酸锰及水合氟硼酸锰中的一种以上。
所述烷基磺酸锰可以为甲基磺酸锰、乙基磺酸锰和丙基磺酸锰中的一种以上;所述芳基磺酸锰可以为苯磺酸锰和对甲苯磺酸锰中的一种以上;所述水合烷基磺酸锰可以为水合甲基磺酸锰、水合乙基磺酸锰和水合丙基磺酸锰中的一种以上;所述水合芳基磺酸锰可以为水合苯磺酸锰和水合对甲苯磺酸锰中的一种以上。
所述电解质盐还可包含基本不影响电池容量、循环稳定性能的硫酸锌、硫酸锰、氯化锌、氯化锰、硝酸锌、硝酸锰、醋酸锌、醋酸锰、甲酸锌、甲酸锰中的一种以上。
所述的甲基磺酸锌、乙基磺酸锌、丙基磺酸锌、甲基磺酸锰、乙基磺酸锰、丙基磺酸锰、苯磺酸锌、对甲苯磺酸锌、苯磺酸锰、对甲苯磺酸锰以及它们的水合物中的氢原子还可以被其它取代基取代,其它取代基具体可以是氟原子、氯原子、甲基、乙基、正丙基、异丙基、氢氧根中的一种或多种,同样可以实现本发明的发明目的。
以下结合附图及实施例对本发明作进一步的说明。
本发明所述可充电电池,包括外壳、电解液、间隔设置在电解液中的正极和负极,隔离膜设置在正极和负极之间,所述电解液、正极、负极以及隔离膜均设置在外壳内。
本发明实施例中的可充电电池采用扣式电池,选用锌箔作为负极,玻璃纤维隔离膜(厚约1毫米,平均孔径1-10微米)作为隔离膜,正极的活性物质中的二氧化锰采用粒径为200纳米左右的电解二氧化锰。
所得电池的循环稳定性及能量密度在蓝电电池测试系统上测试。
本发明实施例中的氢氧化氧锰采用自制的方式,制备方法:将4.53g硫酸锰以及2mL,0.5mol/L的硫酸水溶液加入90mL去离子水中,搅拌至完全溶解。然后,再将20mL,1mol/L的高锰酸钾水溶液加入上述溶液,继续搅拌约2小时。搅拌完毕,将所得的混合液转移进特氟龙内衬的水热釜中,放入烘箱,120℃,12小时。反应完后,所得产物用去离子水过滤三遍,最后放入烘箱烘干后,得到本实施例中采用的氢氧化氧锰。
对比例1(电解液为硫酸锌水溶液的可充电锌锰电池)
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将57.5g七水合硫酸锌溶于100mL去离子水中,配制成约1.6mol/L的硫酸锌水溶液,得到电解液。
将制备好的正极片作为正极,锌箔作为负极,1.6mol/L硫酸锌水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池。对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图1。
对比例2(电解液为硫酸锌和硫酸锰水溶液的可充电锌锰电池)
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将57.5g七水合硫酸锌和3.38g一水合硫酸锰溶于100mL去离子水中,配制得到的电解液中硫酸锌浓度约为1.6mol/L,硫酸锰浓度约为0.16mol/L。
将制备好的正极片作为正极,锌箔作为负极,硫酸锌浓度为1.6mol/L,硫酸锰浓度为0.16mol/L的水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池。
对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图2和图3~5。
对比例3(电解液为甲基磺酸锌和甲基磺酸锂水溶液的可充电混合水系锂离子/锌离子电池)
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮配成质量分数为5%的分散液,将锰酸锂、乙炔黑、聚偏氟乙烯按质量比75:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将51.1g甲基磺酸锌和10.2g甲基磺酸锂溶于100mL去离子水中,配制得到的电解液中甲基磺酸锌浓度约为1.6mol/L,甲基磺酸锂浓度为0.8mol/L。
将制备好的正极片作为正极,锌箔作为负极,含有1.6mol/L甲基磺酸锌和0.8mol/L甲基磺酸锂的水溶液为电解液,与玻璃纤维隔离膜组装成扣式电池。对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.4-2.1V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图5。
对该电池的能量密度进行测试,测试结果显示该体系的能量密度为160Wh/kg(以正极活 性物质的质量为计算依据,单计算正极的活性物质)。
实施例1
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将51.1g甲基磺酸锌溶于100mL去离子水中,配制成浓度约为1.6mol/L的甲基磺酸锌水溶液,得到电解液。
将制备好的正极片作为正极,锌箔作为负极,含有1.6mol/L的甲基磺酸锌水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池,即得本实施例所述的可充电电池。
对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图1(本实施例与对比例1作对比),图1显示使用甲基磺酸锌代替硫酸锌作为可充电锌锰电池的电解质盐能使可充电锌锰电池的循环稳定性明显提高。
实施例2
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将51.1g甲基磺酸锌和4.9g甲基磺酸锰溶于100mL去离子水中,得到电解液,所得电解液中甲基磺酸锌浓度约为1.6mol/L,甲基磺酸锰浓度为0.16mol/L。
将制备好的正极片作为正极,锌箔作为负极,含有1.6mol/L甲基磺酸锌和0.16mol/L甲基磺酸锰的水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池,即得本实施例所述的可充电电池。对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图2(本实施例与对比例2作对比)和图5(本实施例与对比例3作对比),其中,图2显示使用甲基磺酸锌、甲基磺酸锰(本实施例所用电解质盐)代替硫酸锌、硫酸锰(对比例2所用电解质盐)作为可充电锌锰电池的电解质盐能使可充电锌锰电池的循环稳定性明显提高。
图5显示同样使用甲基磺酸盐作为电解质盐,可充电锌锰电池的循环稳定性以及质量比容 量明显好于对比例3所得的可充电混合水系锂离子/锌离子电池的循环稳定性以及质量比容量。
对本实施例所得电池的能量密度进行测试,测试结果显示该体系的能量密度为195Wh/kg(以正极活性物质的质量为计算依据),也明显高于对比例3可充电混合水系锂离子/锌离子电池的能量密度160Wh/kg。
实施例3
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将51.1g甲基磺酸锌和4.57g氟硼酸锰溶于100mL去离子水中,得到电解液,所得电解液中甲基磺酸锌浓度为1.6mol/L,氟硼酸锰浓度为0.16mol/L。
将制备好的正极片作为正极,锌箔作为负极,含有1.6mol/L甲基磺酸锌和0.16mol/L氟硼酸锰的水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池,即得本实施例所述的可充电电池。
对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图3(本实施例与对比例2作对比),图3显示使用甲基磺酸锌、氟硼酸锰代替硫酸锌、硫酸锰作为可充电锌锰电池的电解质盐能使可充电锌锰电池的循环稳定性明显提高。
实施例4
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将51.1g甲基磺酸锌和3.38g一水合硫酸锰溶于100mL去离子水中,得到电解液,所得电解液中甲基磺酸锌浓度约为1.6mol/L,硫酸锰浓度约为0.16mol/L。
将制备好的正极片作为正极,锌箔作为负极,含有1.6mol/L甲基磺酸锌和0.16mol/L硫酸锰的水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池,即得本实施例所述的可充电电池。
对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图4(本实施例和对比例2作对比),图4显示在电解液中含有硫酸锰的情况下,使用甲基磺酸锌代替硫酸 锌作为可充电锌锰电池的电解质盐能使可充电锌锰电池的循环稳定性明显提高。
实施例5
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将12.88g甲基磺酸锌和4.9g甲基磺酸锰溶于100mL去离子水中,得到电解液,所得电解液中甲基磺酸锌浓度约为0.47mol/L,甲基磺酸锰浓度约为0.16mol/L。
将制备好的正极片作为正极,锌箔作为负极,含有0.47mol/L甲基磺酸锌和0.16mol/L甲基磺酸锰的水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池,即得本实施例所述的可充电电池。
对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图6。
实施例6
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将90.12g甲基磺酸锌和4.9g甲基磺酸锰溶于100mL去离子水中,得到电解液,所得电解液中甲基磺酸锌浓度约为2.5mol/L,甲基磺酸锰浓度约为0.16mol/L。
将制备好的正极片作为正极,锌箔作为负极,含有2.5mol/L甲基磺酸锌和0.16mol/L甲基磺酸锰的水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池,即得本实施例所述的可充电电池。
对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图6。
实施例7
正极的制备:先将粘结剂(聚偏氟乙烯)溶于N-甲基吡咯烷酮中,配成质量分数为5%的分散液,将二氧化锰、氢氧化氧锰、乙炔黑、聚偏氟乙烯按质量比70:5:15:10的比例混合,在高速搅拌机内搅拌均匀,将所得混合物均匀涂布于石墨导电纸表面,移入120℃真空烘箱,12小时后取出,裁剪得到正极片。
电解液的制备:将128.75g甲基磺酸锌和4.9g甲基磺酸锰溶于100mL去离子水中,得到电解液,所得电解液中甲基磺酸锌浓度约为3.1mol/L,甲基磺酸锰浓度约为0.16mol/L。
将制备好的正极片作为正极,锌箔作为负极,含有3.1mol/L甲基磺酸锌和0.16mol/L甲基磺酸锰的水溶液作为电解液,与玻璃纤维隔离膜组装成扣式电池,即得本实施例所述的可充电电池。
对组装好的扣式电池用电池测试系统进行测试,测试电流大小为300mA/g,充放电电压区间为1.0-1.9V,测得的该电池的充放电循环次数与其质量比容量的关系曲线图见图6。
如图6中显示当电解液中锌离子浓度较低(0.5mol/L)时,可充电锌锰电池能释放更高的容量,但循环稳定性欠佳;随着锌离子浓度的增加,可充电锌锰电池的可逆容量稍有降低,但循环稳定性提升。综合考虑,电解液中合适的锌离子浓度为0.1mol/L~6mol/L,优选1.0mol/L~2.5mol/L。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种可充电电池,包括电解液、正极、负极以及设置在正极和负极之间的隔离膜,所述正极的活性物质包含氧化锰和氢氧化氧锰中的一种以上,所述负极的活性物质包含锌元素,其特征在于:所述电解液中的电解质盐包含烷基磺酸锌、芳基磺酸锌、氟硼酸锌、水合烷基磺酸锌、水合芳基磺酸锌和水合氟硼酸锌中的一种以上。
  2. 如权利要求1所述的可充电电池,其特征在于:所述电解液中电解质盐的浓度为0.1~8mol/L;和/或,
    所述电解质盐中含磺酸根离子和氟硼酸根离子中一种以上的电解质盐占电解质盐总量的摩尔百分比大于等于5%。
  3. 如权利要求1或2所述的可充电电池,其特征在于:所述电解液中锌离子的浓度为0.1~6mol/L;和/或,所述烷基磺酸锌为甲基磺酸锌、乙基磺酸锌和丙基磺酸锌中的一种以上;和/或,
    所述芳基磺酸锌为苯磺酸锌和对甲苯磺酸锌中的一种以上;和/或,
    所述水合烷基磺酸锌为水合甲基磺酸锌、水合乙基磺酸锌和水合丙基磺酸锌中的一种以上;和/或,
    所述水合芳基磺酸锌为水合苯磺酸锌和水合对甲苯磺酸锌中的一种以上;
    优选地,所述电解液中锌离子的浓度为1.0~2.5mol/L。
  4. 如权利要求1或2所述的可充电电池,其特征在于:所述电解液中的电解质盐还包含烷基磺酸锰、芳基磺酸锰、氟硼酸锰、水合烷基磺酸锰、水合芳基磺酸锰及水合氟硼酸锰中的一种以上。
  5. 如权利要求4所述的可充电电池,其特征在于:所述烷基磺酸锰为甲基磺酸锰、乙基磺酸锰和丙基磺酸锰中的一种以上;和/或,
    所述芳基磺酸锰为苯磺酸锰和对甲苯磺酸锰中的一种以上;和/或,
    所述水合烷基磺酸锰为水合甲基磺酸锰、水合乙基磺酸锰和水合丙基磺酸锰中的一种以上;和/或,
    所述水合芳基磺酸锰为水合苯磺酸锰和水合对甲苯磺酸锰中的一种以上。
  6. 如权利要求1所述的可充电电池,其特征在于:所述正极的活性物质中氧化锰和氢氧化氧锰中一种以上所占的质量百分比大于等于20%。
  7. 如权利要求1所述的可充电电池,其特征在于:所述负极的活性物质中锌元素所占质量百分比大于等于33%。
  8. 如权利要求1或2或5所述的可充电电池,其特征在于:所述电解液的溶剂为水或水和有机溶剂的混合物。
  9. 如权利要求1所述的可充电电池,其特征在于:所述电解质盐还包括硫酸锌、硫酸锰、氯化锌、氯化锰、硝酸锌、硝酸锰、醋酸锌、醋酸锰、甲酸锌、甲酸锰中的一种以上。
  10. 如权利要求1所述的可充电电池,其特征在于:所述的可充电锌锰电池包括一外壳,所述正极、负极、隔离膜和电解液均设置在该外壳内。
PCT/CN2018/107834 2017-10-20 2018-09-27 一种可充电电池 WO2019076185A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/757,057 US20200343595A1 (en) 2017-10-20 2018-09-27 Rechargeable battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710984090.6 2017-10-20
CN201710984090 2017-10-20
CN201810835244.X 2018-07-26
CN201810835244.XA CN109037794B (zh) 2017-10-20 2018-07-26 一种可充电电池

Publications (1)

Publication Number Publication Date
WO2019076185A1 true WO2019076185A1 (zh) 2019-04-25

Family

ID=64645626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107834 WO2019076185A1 (zh) 2017-10-20 2018-09-27 一种可充电电池

Country Status (3)

Country Link
US (1) US20200343595A1 (zh)
CN (1) CN109037794B (zh)
WO (1) WO2019076185A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446509A (zh) * 2020-04-26 2020-07-24 张韩生 用于二次锌离子电池的电解液和凝胶电解质及其制备方法
CN114242928A (zh) * 2021-11-30 2022-03-25 浙江浙能中科储能科技有限公司 一种电化学造孔方法及其在水基电池中的应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490515B (zh) * 2019-09-11 2022-01-18 中国科学院大连化学物理研究所 一种中性锌锰二次电池及电解液
CN111509306B (zh) * 2020-04-26 2021-06-25 河北大学 一种用于可充锌离子电池的电解液、其制备方法及可充锌离子电池
CN113921900B (zh) * 2021-09-24 2024-04-12 天津大学 一种锌基电化学储能器件
CN113644326B (zh) * 2021-10-18 2022-01-04 北京金羽新能科技有限公司 一种水系锌离子电池及化成方法
CN114725536B (zh) * 2022-04-21 2024-05-28 中南大学 一种水系锌锰电池电解液及其应用
CN115149014A (zh) * 2022-07-13 2022-10-04 中南大学 准深共晶电解液及其在水系锌锰电池中的应用和电池
CN116111208A (zh) * 2023-04-11 2023-05-12 中科南京绿色制造产业创新研究院 一种水系锌离子电池电解液及含有其的水系锌离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299389A (zh) * 2011-07-19 2011-12-28 浙江理工大学 一种高性能可充电电池
US20140072886A1 (en) * 2012-09-07 2014-03-13 Basf Se Rechargeable electrochemical zinc-oxygen cells
CN104272523A (zh) * 2014-04-03 2015-01-07 清华大学深圳研究生院 一种锌离子可充电电池及其制造方法
CN105958131A (zh) * 2016-06-20 2016-09-21 南开大学 一种长循环寿命和高能量密度的可充水系锌离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300371A (en) * 1990-03-23 1994-04-05 Battery Technologies Inc. Manganese dioxide positive electrode for rechargeable cells, and cells containing the same
JP6228009B2 (ja) * 2010-09-13 2017-11-08 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of California イオン性ゲル電解質、エネルギー貯蔵デバイス、およびそれらの製造方法
US9520598B2 (en) * 2012-10-10 2016-12-13 Nthdegree Technologies Worldwide Inc. Printed energy storage device
CN104934639A (zh) * 2015-04-29 2015-09-23 张家港智电芳华蓄电研究所有限公司 一种锂离子电池电解质溶液的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299389A (zh) * 2011-07-19 2011-12-28 浙江理工大学 一种高性能可充电电池
US20140072886A1 (en) * 2012-09-07 2014-03-13 Basf Se Rechargeable electrochemical zinc-oxygen cells
CN104272523A (zh) * 2014-04-03 2015-01-07 清华大学深圳研究生院 一种锌离子可充电电池及其制造方法
CN105958131A (zh) * 2016-06-20 2016-09-21 南开大学 一种长循环寿命和高能量密度的可充水系锌离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446509A (zh) * 2020-04-26 2020-07-24 张韩生 用于二次锌离子电池的电解液和凝胶电解质及其制备方法
CN111446509B (zh) * 2020-04-26 2022-08-23 张韩生 用于二次锌离子电池的电解液和凝胶电解质及其制备方法
CN114242928A (zh) * 2021-11-30 2022-03-25 浙江浙能中科储能科技有限公司 一种电化学造孔方法及其在水基电池中的应用

Also Published As

Publication number Publication date
CN109037794B (zh) 2020-11-24
CN109037794A (zh) 2018-12-18
US20200343595A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019076185A1 (zh) 一种可充电电池
CN105958131B (zh) 一种长循环寿命和高能量密度的可充水系锌离子电池
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN104037404B (zh) 一种锂离子电池用镍钴铝锂和锰酸锂复合材料及其制备方法
CN106848315B (zh) 锌镍电池负极材料及其制备方法和使用该负极材料的电池
CN107910532B (zh) 一种石墨烯包覆镍钴锰酸锂复合材料的制备方法
WO2017206633A1 (zh) 一种高倍率型钴酸锂正极材料及其制备方法
CN103825016A (zh) 一种富锂高镍正极材料及其制备方法
CN103579590A (zh) 一种锂电池的包覆正极材料的制备方法
WO2016023398A1 (zh) 负极活性材料及其制备方法以及锂离子电池
CN106207253B (zh) 一种水溶液锂离子二次电池负极、电解液以及电池
CN109786721A (zh) 一种正极材料、及其制备方法和用途
US20220077456A1 (en) Core-shell nickel ferrite and preparation method thereof, nickel ferrite@c material and preparation method and application thereof
CN110233261B (zh) 一种单晶三元锂电池正极材料的制备方法及锂离子电池
CN103943848A (zh) 一种多孔棒状结构钴基锂离子电池正极材料的制备方法
WO2023097983A1 (zh) 一种普鲁士白复合材料及其制备方法和应用
CN111584840A (zh) 碳布负载的碳包覆二硫化镍纳米片复合材料及其制备方法和应用
CN108682901B (zh) 一种大容量双袋式铁镍电池
CN112645390A (zh) 一种具有包覆结构的钴酸锂前驱体、其制备方法及用途
CN105355889A (zh) 一种高电压高倍率锂离子电池
CN104091917A (zh) 一种可用作钠离子电池的钛氧化物负极材料及其制备方法
JP2012033389A (ja) 正極活物質及びその製造方法並びにリチウムイオン二次電池
WO2024125486A1 (zh) 钠离子电池和储能设备
CN103413979A (zh) 一种以锌为负极的充放电电池
CN109850957A (zh) 一种富锂锰基材料、其制备方法以及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868572

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.12.2020)