WO2019075932A1 - 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法 - Google Patents

一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法 Download PDF

Info

Publication number
WO2019075932A1
WO2019075932A1 PCT/CN2018/000233 CN2018000233W WO2019075932A1 WO 2019075932 A1 WO2019075932 A1 WO 2019075932A1 CN 2018000233 W CN2018000233 W CN 2018000233W WO 2019075932 A1 WO2019075932 A1 WO 2019075932A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
pentachloropropane
tetrafluoropropene
separation column
catalyst
Prior art date
Application number
PCT/CN2018/000233
Other languages
English (en)
French (fr)
Inventor
洪江永
杨波
欧阳豪
张彦
赵阳
Original Assignee
浙江衢化氟化学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江衢化氟化学有限公司 filed Critical 浙江衢化氟化学有限公司
Priority to EP18868205.8A priority Critical patent/EP3699164B1/en
Priority to US16/337,409 priority patent/US11014861B1/en
Priority to JP2018565724A priority patent/JP6778767B2/ja
Priority to KR1020187034171A priority patent/KR102169970B1/ko
Publication of WO2019075932A1 publication Critical patent/WO2019075932A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/087Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers

Definitions

  • the invention relates to the technical field of fluoroolefins, in particular to a method for co-production of 2,3,3,3-tetrafluoropropene and trans-1,3,3,3-tetrafluoropropene.
  • fluorine refrigerant substitutes require an ozone depletion potential (ODP) of 0, a greenhouse effect potential (GWP) as low as possible, and an atmospheric lifetime as short as possible, while its thermodynamic properties are as close as possible to the current use.
  • ODP ozone depletion potential
  • GWP greenhouse effect potential
  • HFC-134a, HCFC-22, R410A, R407C, etc. are close to each other to reduce the cost of retrofitting refrigeration equipment.
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • LCCP atmospheric lifetime climatic performance
  • HFO-1234yf is used instead of HFC-134a refrigerant, car manufacturers can continue to use the Mobile Air-Conditioning (MAC) system. Therefore, HFO-1234yf is considered to be a potential new generation of automotive refrigerant substitutes. It has been accepted by automobile manufacturers in Western Europe and will gradually promote commercial applications in 2011.
  • Trans-1,3,3,3-tetrafluoropropene has a boiling point of -19 ° C, excellent environmental performance, GWP ⁇ 1, atmospheric lifetime climatic performance is only 16.4 days, far lower At HFC-134a, the atmospheric decomposition products are the same as HFC-134a.
  • E-HFO-1234ze can be used as a refrigerant, instead of HFC-245fa as a foaming agent, a cleaning agent, a solvent, and the like.
  • WO 2009/015317 describes hydrogen fluoride (HF) with chlorinated compounds such as 1,1,2,3-tetrachloropropene (HCO-1230xa), HCC-240db or 2,3,3,3-tetrachloropropene (HCO-1230xf) )
  • HF hydrogen fluoride
  • chlorinated compounds such as 1,1,2,3-tetrachloropropene (HCO-1230xa), HCC-240db or 2,3,3,3-tetrachloropropene (HCO-1230xf)
  • WO 2010/123148 describes the fluorination of HCC-240db to HCFO-1233xf in the absence of a catalyst. However, the reaction temperature is higher, and the HCFO-1233xf selectivity is only 73%.
  • US2009024009 discloses a method of synthesizing HFO-1234yf.
  • the method uses 1,1,2,3-tetrachloropropene as a raw material, firstly carries out HF gas phase fluorination of 1,1,2,3-tetrachloropropene in a first reactor in the presence of a Cr 2 O 3 catalyst. , 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf) is obtained, and then in the second reactor, HCFO-1233xf is fluorinated in the liquid phase in the presence of SbCl 5 to obtain 2-chloro-1.
  • HCFC-1233xf 2-chloro-3,3,3-trifluoropropene
  • HCFC-244bb 1,1,2-tetrafluoropropane
  • HCFC-244bb in the presence of CsCl/MgF 2 , dehydrochlorination at 350-550 ° C, to obtain HFO-1234yf.
  • the method requires a three-step reaction; and the second step is a liquid phase catalytic reaction in which the intermediate product HCFC-244bb is separated as a raw material for the third step reaction, and the catalyst has a short life.
  • CN1852880 discloses fluorinating HCFO-1233zd to 1-chloro-1,3,3,3-tetrafluoropropane and 1,1,1,3,3-pentafluoropropane under the action of a fluorination catalyst, and then liquid phase The HF was removed by the action of a strong base to obtain HFO-1234ze. This method produces a large amount of waste lye, which brings environmental problems.
  • CN200710090535 and CN200810000765 disclose a method for preparing HFO-1234ze from 1,1,1,3,3-pentachloropropane under the action of a fluorination catalyst, first fluorinating 1,1,1,3,3-pentachloropropane HCFO-1233zd and a small amount of HFC-245fa were formed, and then further fluorinated to obtain HFO-1234ze, and the product was subjected to rectification to obtain HFO-1234ze.
  • the above invention has problems such as a long preparation route, a large number of by-products, and a short catalyst life.
  • the invention aims at the deficiencies of the prior art, and provides a 2,3,3,3-tetrafluoropropene and a trans-1,3,3,3- a simple process, high reaction efficiency, long catalyst life and high operational flexibility. Co-production method of tetrafluoropropene.
  • the technical solution adopted by the present invention is: a method for co-production of 2,3,3,3-tetrafluoropropene and trans-1,3,3,3-tetrafluoropropene, comprising the following steps :
  • a mixture of 1,1,1,2,2-pentachloropropane and 1,1,1,3,3-pentachloropropane is preheated with anhydrous hydrogen fluoride and simultaneously introduced into the first reactor at La
  • the reaction is carried out under the action of 2 O 3 -Cr 2 O 3 catalyst, the reaction temperature is 200-350 ° C, anhydrous hydrogen fluoride and 1,1,1,2,2-pentachloropropane and 1,1,1,3,3- a mixture of pentachloropropane having a molar ratio of 6 to 18:1 and a contact time of 1 to 20 s to obtain a first reactor product;
  • the first reactor product obtained in the step (1) is directly passed to the second reactor without separation, and the catalytic fluorination reaction is carried out under the action of a Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst.
  • the reaction temperature is 250 to 400 ° C, and the contact time is 1 to 35 s to obtain a second reactor product;
  • the top component of the second separation column obtained in the step (4) is washed with water, washed with alkali, dried, and then introduced into the third separation column to obtain a top portion of the third separation column and a third separation column. Minute;
  • the third separation column component obtained in the step (5) is introduced into the fourth separation column to obtain a 2,3,3,3-tetrafluoropropene product and a fourth separation column column component;
  • the fourth separation column component obtained in the step (6) is introduced into the fifth separation column to obtain a trans-1,3,3,3-tetrafluoropropene product.
  • 1,1,1 of a mixture of 1,1,1,2,2-pentachloropropane and 1,1,1,3,3-pentachloropropane as described in the step (1) The molar ratio of 2,2-pentachloropropane to 1,1,1,3,3-pentachloropropane is preferably 1:0.05-20.
  • the molar ratio of the anhydrous hydrogen fluoride to the mixture of 1,1,1,2,2-pentachloropropane and 1,1,1,3,3-pentachloropropane as described in the step (1) is preferably 8 to 15:1, the reaction temperature is preferably 250 to 300 ° C, and the contact time is preferably 2 to 10 s.
  • the reaction temperature in the step (2) is preferably 280 to 330 ° C, and the contact time is preferably 4 to 15 s.
  • the La 2 O 3 -Cr 2 O 3 catalyst composition described in the step (1) is preferably 0.5 to 20 wt% (wt%, mass percent) of La 2 O 3 and 80 ⁇ . 99.5 wt% Cr 2 O 3 .
  • the composition of the Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst described in the step (2) is preferably: 1 to 15% by weight of Ga 2 O 3 and 3 to 20% by weight of Y. 2 O 3 and 65 to 96 wt% of Cr 2 O 3 .
  • the second separation column bottoms component described in step (4) can be recycled to the first reactor.
  • the invention uses 1,1,1,2,2-pentachloropropane, 1,1,1,3,3-pentachloropropane and anhydrous hydrogen fluoride (AHF) as raw materials, and is synthesized by two-step gas phase catalytic fluorination 2, 3,3,3-tetrafluoropropene, trans-1,3,3,3-tetrafluoropropene, the first step is 1,1,1,2,2-pentachloropropane, 1,1,1, 3,3-Pentachloropropane and anhydrous hydrogen fluoride are used as raw materials, after gasification, enter the first reactor, react under the action of a catalyst, and 1,1,1,2,2-pentachloropropane is reacted with AHF to obtain 2- Chloro-3,3,3-trifluoropropene and hydrogen chloride, 1,1,1,3,3-pentachloropropane are reacted with AHF to give 1-chloro-3,3,3-trifluoropropene and hydrogen chloride, pentachloro
  • the reaction conditions are: the molar ratio of HF to HCC-240 is 6 to 18:1, the reaction temperature is 200 to 350 ° C, and the contact time is 1 to 20 s.
  • the preferred reaction conditions are: the molar ratio of HF to HCC-240 is 8 to 15:1, the reaction temperature is 250 to 300 ° C, and the contact time is 2 to 10 s.
  • HCC-240 may be composed of any molar ratio of HCC-240ab and HCC-240fa, and the molar ratio of HCC-240ab to HCC-240fa is preferably 1:0.05-20.
  • the second step of the reaction is that the reaction product at the outlet of the first reactor is directly introduced into the second reactor, and the reaction is carried out under the action of the catalyst.
  • the AHF of the first step reaction is greatly excessive, and the complete conversion of HCC-240 is promoted, and the excess is excessive.
  • the AHF and product stream entering the second reactor facilitates deep fluorination, and the second reactor performs two main reactions: (1) conversion of HCFO-1233zd to E-HFO-1234ze; (2) HCFO-1233xf Converted to HFO-1234yf.
  • the reaction conditions are: a reaction temperature of 250 to 400 ° C, a contact time of 1 to 35 s, and preferred reaction conditions are: a reaction temperature of 280 to 330 ° C, and a contact time of 4 to 15 s.
  • the form of the first reactor and the second reactor and the material used are not limited, and any suitable gas phase fluorination reactor is suitable for the present invention, and is preferably made of a material resistant to hydrogen fluoride corrosion such as Hastelloy or Inconel. Column tube reactor.
  • the product formed by the second step reaction is separated into the first separation column for separation.
  • the top component of the first separation column is HCl, and the HCl is collected to a designated storage tank; the components of the tower are mainly HFO-1234yf, E- HFO-1234ze and AHF enter the second separation column for separation.
  • the second separation tower is composed of AHF and a small amount of HCFO-1233xf and HCFO-1233zd, which are directly recycled to the second reactor, and can also be separated by cooling to remove the organic substances HCFO-1233xf and HCFO-1233zd to the first stage.
  • the second reactor enters the product aftertreatment system, and is washed into water, alkali washed, and dried to enter the third separation tower.
  • the third separation column top rectifies a very small amount of light component olefin impurities, and the bottom of the column is obtained by mixing HFO-1234yf and E-HFO-1234ze as a main component into the fourth separation column.
  • the HFO-1234yf product was obtained from the top of the fourth separation column, and a mixture of E-HFO-1234ze and a small amount of high boiler obtained in the column was introduced into the fifth separation column.
  • the form and operating conditions of the separation column are not limited, and may be appropriately selected depending on the components to be separated and the operating conditions of the reaction system.
  • the first step reaction fluorination catalyst may be chromium oxide, chromium fluoride, fluorinated chromium oxide, cerium oxide, cerium fluoride, cerium fluoride fluoride and mixtures thereof, preferably having a composition of 0.5 to 20% by weight of La 2 O. a mixture of 3 and 80 to 99.5 wt% Cr 2 O 3 and a fluorinated oxide thereof, more preferably a composition of 1 to 15 wt% of La 2 O 3 and 85 to 99 wt% of a Cr 2 O 3 mixture and a fluorinated oxide thereof mixture.
  • the second step reaction fluorination catalyst may be chromium oxide, chromium fluoride, fluorinated chromium oxide, gallium oxide, gallium fluoride, gallium fluoride oxide, cerium oxide, cerium fluoride, cerium fluoride fluoride and mixtures thereof, preferably composed of It is a mixture of 1 to 15 wt% of Ga 2 O 3 , 3 to 20 wt% of Y 2 O 3 and 65 to 96 wt% of Cr 2 O 3 and its fluorinated oxide, more preferably 2 to 13 wt% of Ga 2 O 3 , 5 the mixture ⁇ 16wt% Y 2 O 3 and 74 ⁇ 82wt% Cr 2 O 3 oxide and fluorinated.
  • the catalyst employed in the first reactor of the present invention can be prepared by blending or coprecipitation methods well known in the art. For example, chromium chloride and barium chloride can be dissolved in a certain proportion and then reacted with a precipitating agent to adjust the pH to weakly alkaline, stirred, precipitated, filtered, and dried at 100-150 ° C and calcined at 360 ° C to form a catalyst.
  • the catalyst employed in the second reactor of the present invention can be prepared by blending or coprecipitation methods well known in the art. For example, chromium chloride, gallium chloride and lanthanum chloride can be dissolved in a certain proportion and then reacted with a precipitating agent to adjust the pH to weakly alkaline, stirred, precipitated, filtered, and dried at 100-150 ° C and at 400 ° C.
  • the catalyst precursor is calcined, and after compression molding, it is charged into a second reactor and activated by passing anhydrous hydrogen fluoride diluted with nitrogen.
  • the fluorination catalyst of the first step reaction and the second step reaction has good activity, high selectivity, good regeneration performance and long total life. After the catalytic performance of the fluorination catalyst is lowered, it can be regenerated and recycled. When the catalysts of the first reactor and the second reactor are regenerated, the carbon on the surface of the catalyst is burned off by slowly introducing air under a nitrogen atmosphere of 350 ° C for 12 hours; then hydrogen is introduced to carry out the catalyst. The reduction treatment was carried out for 3 h; finally, AHF was introduced under a nitrogen atmosphere for activation for 5 h.
  • the present invention has the following advantages:
  • the process is simple, a set of reaction devices can simultaneously produce two products, which greatly simplifies the process flow;
  • the reaction efficiency is high, the conversion rate and the target product selectivity are high, the conversion rate of HCC-240 is 100%, and the total selectivity of E-HFO-1234ze and HFO-1234yf is above 98%;
  • the catalyst has a long total life.
  • the catalyst of the invention improves the stability and selectivity of the catalyst by synergistic action of multi-metal, auxiliary catalysis and inhibition of crystal form, and prolongs the life of the catalyst, and the single-pass life is more than 200 days, and can be regenerated once. Stable operation for more than 110 days;
  • the invention adopts a two-step gas phase reaction, and the unreacted raw materials and intermediates can be recycled, and the catalyst can be recycled after being recycled, thereby further reducing the discharge of the three wastes.
  • Figure 1 is a process flow diagram of the present invention.
  • 1 is a vaporizer
  • 2 is a first reactor
  • 3 is a second reactor
  • 4 is a first separation tower
  • 5 is a second separation tower
  • 6 is a water washing tower
  • 7 is an alkali washing tower
  • 8 is The dryer
  • 9 is a third separation tower
  • 10 is a fourth separation tower
  • 11 is a fifth separation tower
  • 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 are pipelines.
  • the process of the present invention is as shown in FIG. 1.
  • the first reactor 2 and the second reactor 3 are respectively loaded with different catalysts.
  • HCC-240ab and HCC-240fa are mixed in a certain ratio, and then mixed with AHF through the vaporizer 1 to be heated and vaporized, and then passed through the pipeline.
  • 12 entering the first reactor 2 reaction the mixture containing HCFO-1233xf, HCFO-1233zd, hydrogen chloride and excess AHF directly enters the second reactor 3 through the pipelines 13, 14 and the material of the outlet of the second reactor 3 is passed through the pipeline 15 , enter the first separation tower 4 top of the tower to dry out HCl, and store separately.
  • the material of the first separation column 4 column is passed through line 16 to the second separation column 5, and the mixture of AHF and a small amount of unreacted HCFO-1233zd and HCFO-1233xf obtained in the second separation column 5 is circulated through the lines 17, 14.
  • the top component of the second separation column 5 is a mixture containing HFO-1234yf and E-HFO-1234ze as the main mixture, and enters the water washing tower 6 through the line 18 to remove acid, and then enters through the line 19.
  • the caustic scrubber 7 enters the dryer 8 via line 20 to remove moisture, and then enters the third separation column 9 through the line 21 to carry out the light-removing component, and the third separation column 9 has a very small amount of low boiling point.
  • Fluorine-containing olefin impurities the column is a stream of HFO-1234yf and E-HFO-1234ze, which enters the fourth separation column via line 22.
  • the HFO-1234yf product was obtained from the top of the fourth separation column, and the column was charged with a stream rich in E-HFO-1234ze, and passed through line 23 to the fifth separation column.
  • the E-HFO-1234ze product is obtained from the top of the fifth separation column, and the column is a heavy component. After being accumulated to a certain amount, it is recovered or sent to incineration.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 1 wt% Ga 2 O 3 , 3 wt% Y 2 O 3 and 96 wt% Cr 2 O 3
  • Activation was carried out at 280 ° C by introducing anhydrous hydrogen fluoride diluted with nitrogen.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to be 250 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane and 1,1,1,3,3-pentachloropropane was 16:1:1, and the contact time was 10 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 280 ° C
  • the contact time is 10 s
  • a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 3 wt% Ga 2 O 3 , 5 wt% Y 2 O 3 and 92 wt% Cr 2 O 3
  • Activation was carried out at 280 ° C by introducing anhydrous hydrogen fluoride diluted with nitrogen.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to be 250 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane to 1,1,1,3,3-pentachloropropane was 20:1:1, and the contact time was 7.2 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 280 ° C
  • the contact time is 7.2 s
  • a bypass is taken at the outlet of the first reactor for sampling analysis and analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 5 wt% Ga 2 O 3 , 7 wt% Y 2 O 3 and 88 wt% Cr 2 O 3
  • Activation was carried out at 290 ° C by introducing anhydrous hydrogen fluoride diluted with nitrogen.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to be 270 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane and 1,1,1,3,3-pentachloropropane was 20:1:1, and the contact time was 6 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 290 ° C, the contact time is 6 s, and a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 7 wt% Ga 2 O 3 , 9 wt% Y 2 O 3 and 84 wt% Cr 2 O 3
  • Activation was carried out at 290 ° C by introducing anhydrous hydrogen fluoride diluted with nitrogen.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to be 270 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane to 1,1,1,3,3-pentachloropropane was 36:2:1, and the contact time was 4 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 290 ° C
  • the contact time is 4 s
  • a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 9 wt% Ga 2 O 3 , 11 wt% Y 2 O 3 and 80 wt% Cr 2 O 3
  • activation was carried out by passing anhydrous hydrogen fluoride diluted with nitrogen.
  • AHF flow rate 25 g/h
  • nitrogen flow rate 0.2 L/min
  • activation time was 8 hours.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to be 280 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane and 1,1,1,3,3-pentachloropropane was 20:1:1, and the contact time was 6 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 300 ° C, the contact time is 6 s, and a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst having a composition of 11 wt% Ga 2 O 3 , 14 wt% Y 2 O 3 and 75 wt% Cr 2 O 3 .
  • activation was carried out by passing anhydrous hydrogen fluoride diluted with nitrogen.
  • AHF flow rate 25 g/h
  • nitrogen flow rate 0.2 L/min
  • activation time was 8 hours.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to be 280 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane and 1,1,1,3,3-pentachloropropane was 45:2:1, and the contact time was 2 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 320 ° C, the contact time is 2 s, and a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 13 wt% Ga 2 O 3 , 17 wt% Y 2 O 3 and 70 wt% Cr 2 O 3
  • activation was carried out by passing anhydrous hydrogen fluoride diluted with nitrogen.
  • AHF flow rate 25 g/h
  • nitrogen flow rate 0.2 L/min
  • activation time was 8 hours.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to 300 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane to 1,1,1,3,3-pentachloropropane was 20:1:1, and the contact time was 4 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 320 ° C, the contact time is 4 s, and a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 15 wt% Ga 2 O 3 , 20 wt% Y 2 O 3 and 65 wt% Cr 2 O 3
  • activation was carried out by passing anhydrous hydrogen fluoride diluted with nitrogen.
  • AHF flow rate 25 g/h
  • nitrogen flow rate 0.2 L/min
  • activation time was 8 hours.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to 300 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane to 1,1,1,3,3-pentachloropropane was 45:1:2, and the contact time was 3.6 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 330 ° C
  • the contact time is 3.6 s
  • a bypass is taken at the outlet of the first reactor for sampling analysis and analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 15 wt% Ga 2 O 3 , 20 wt% Y 2 O 3 and 65 wt% Cr 2 O 3
  • activation was carried out by passing anhydrous hydrogen fluoride diluted with nitrogen.
  • AHF flow rate 25 g/h
  • nitrogen flow rate 0.2 L/min
  • activation time was 8 hours.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to 300 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane to 1,1,1,3,3-pentachloropropane was 16:1.9:0.1, and the contact time was 3.6 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 330 ° C
  • the contact time is 4 s
  • a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.
  • Ga 2 O 3 -Y 2 O 3 -Cr 2 O 3 catalyst composition of 15 wt% Ga 2 O 3 , 20 wt% Y 2 O 3 and 65 wt% Cr 2 O 3
  • activation was carried out by passing anhydrous hydrogen fluoride diluted with nitrogen.
  • AHF flow rate 25 g/h
  • nitrogen flow rate 0.2 L/min
  • activation time was 8 hours.
  • HCC-240ab, HCC-240fa and hydrogen fluoride are mixed and passed to a vaporizer, gasified to a temperature slightly lower than the first reactor, and then enter the first reactor for reaction, and the temperature of the first reactor is controlled to 300 ° C.
  • the molar ratio of anhydrous hydrogen fluoride, 1,1,1,2,2-pentachloropropane to 1,1,1,3,3-pentachloropropane was 16:0.1:1.9, and the contact time was 3.6 s.
  • the material of the outlet of the first reactor is directly sent to the second reactor for reaction.
  • the reaction temperature of the second reactor is 330 ° C
  • the contact time is 4 s
  • a bypass is taken at the outlet of the first reactor for sampling analysis.
  • the product was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 1.
  • the product at the outlet of the second reactor was washed with water and alkali, and the composition of the organic product was analyzed by gas chromatography. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

提供一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,将1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物与无水氟化氢预热后同时通入第一反应器,在La 2O 3-Cr 2O 3催化剂作用下进行反应,得到第一反应器产物;将第一反应器产物不经分离直接通入第二反应器,在Ga 2O 3-Y 2O 3-Cr 2O 3催化剂作用下进行催化氟化反应,得到第二反应器反应产物;将第二反应器反应产物进行分离后得到2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯产品。该方法具有工艺简单、设备投资少,催化剂活性好、选择性高、总寿命长,可根据市场需求灵活调节两种产品比例等优点。

Description

一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法 技术领域
本发明涉及氟烯烃技术领域,特别涉及一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法。
背景技术
氟制冷剂替代品作为全球热门研究课题,要求其臭氧消耗潜值(ODP)为0,温室效应潜值(GWP)尽可能低,大气寿命尽可能短,同时其热力学性能尽可能与现使用的HFC-134a、HCFC-22、R410A、R407C等相接近,以减少替代带来的制冷设备改造成本。
2,3,3,3-四氟丙烯(HFO-1234yf)沸点为-29.5℃,具有优异的环境参数,GWP≤1,大气寿命期气候性能(LCCP)仅有10.5天,远远低于HFC-134a,大气分解物与HFC-134a相同。而且其系统性能优于HFC-134a。若选用HFO-1234yf替代HFC-134a制冷剂,则汽车生产商就可以继续沿用原车载空调(Mobile Air-Conditioning,MAC)系统。所以HFO-1234yf被认为是较具潜力的新一代汽车制冷剂替代品,目前在西欧已被汽车生产商所接受,在2011年开始逐步推广商业化应用。
反式-1,3,3,3-四氟丙烯(E-HFO-1234ze)沸点为-19℃,具有优异的环境性能,GWP≤1,大气寿命期气候性能仅有16.4天,远远低于HFC-134a,大气分解物与HFC-134a相同。E-HFO-1234ze可用作制冷剂、替代HFC-245fa作发泡剂、清洗剂、溶剂等。
US2009/0240090描述了在不存在氧气的情况下的1,1,1,2,3-五氯丙烷(HCC-240db)反应得到2-氯-3,3,3-三氟丙烯(HCFO-1233xf)。所得的HCFO-1233xf通过液相法转变成2-氯-1,1,1,2-四氟丙烷(HCFC-244bb),再气相氟化成HFO-1234yf。该工艺技术步骤较长,且最后一步反应温度高达460℃。
WO2009/015317描述了氟化氢(HF)与氯化化合物例如1,1,2,3-四氯丙烯(HCO-1230xa)、HCC-240db或2,3,3,3-四氯丙烯(HCO-1230xf)在气相中的反应。该方法可用于获得HCFO-1233xf,但催化剂仅能连续运行67h,添加稳定剂后催化剂寿命仍然很短。
WO2010/123148描述了在不存在催化剂的情况下的HCC-240db向HCFO-1233xf的氟化。但存在反应温度较高,HCFO-1233xf选择性仅有73%。
US2009024009公开了一种HFO-1234yf的合成方法。该方法以1,1,2,3-四氯丙烯为原料,首先在Cr 2O 3催化剂的存在下,在第一反应器中进行HF气相氟化1,1,2,3-四氯丙烯,得到2-氯-3,3,3-三氟丙烯(HCFC-1233xf),然后在第二反应器中,在SbCl 5存在下,HF液相氟化HCFO-1233xf得到2-氯-1,1,1,2-四氟丙烷(HCFC-244bb),最后在第三反应器中,在CsCl/MgF 2存在下HCFC-244bb,在350~550℃脱氯化氢,得到HFO-1234yf。但该方法需要三步反应;而且第二步为液相催化反应,需分离中间产物HCFC-244bb,作为第三步反应的原料,并且催化剂寿命短。
CN1852880公开了在氟化催化剂作用下,将HCFO-1233zd氟化成1-氯-1,3,3,3-四氟丙烷和1,1,1,3,3-五氟丙烷,然后再液相强碱作用下脱HF,得到HFO-1234ze。该方法产生大量废碱液,带来环保问题。
CN200710090535和CN200810000765公开了在氟化催化剂作用下,由1,1,1,3,3-五氯丙烷制备HFO-1234ze的方法,先将1,1,1,3,3-五氯丙烷氟化生成HCFO-1233zd和少量的HFC-245fa,然后经进一步氟化得到HFO-1234ze,将产物进行精馏分离得到HFO-1234ze。
然而,上述发明存在着制备路线过长、副产物多、催化剂寿命短等问题。
发明内容
本发明针对现有技术的不足,提供一种工艺简单、反应效率高、催化剂寿命长、操作弹性大的2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法。
为了解决上述技术问题,本发明采用的技术方案为:一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,包括以下步骤:
(1)将1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物与无水氟化氢预热后同时通入第一反应器,在La 2O 3-Cr 2O 3催化剂作用下进行反应,反应温度为200~350℃,无水氟化氢与1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物的摩尔比为6~18∶1,接触时间为1~20s,得到第一反应器产物;
(2)将步骤(1)得到的第一反应器产物不经分离直接通入第二反应器,在 Ga 2O 3-Y 2O 3-Cr 2O 3催化剂作用下进行催化氟化反应,反应温度为250~400℃,接触时间为1~35s,得到第二反应器产物;
(3)将步骤(2)得到的第二反应器产物进入第一分离塔进行分离,得到第一分离塔塔釜组分和氯化氢;
(4)将步骤(3)得到的第一分离塔塔釜组分进入第二分离塔进行分离,得到第二分离塔塔顶组分和第二分离塔塔釜组分;
(5)将步骤(4)得到的第二分离塔塔顶组分进行水洗、碱洗、干燥后,进入第三分离塔,得到第三分离塔塔顶组分和第三分离塔塔釜组分;
(6)将步骤(5)得到的第三分离塔塔釜组分进入第四分离塔,得到2,3,3,3-四氟丙烯产品和第四分离塔塔釜组分;
(7)将步骤(6)得到的第四分离塔塔釜组分进入第五分离塔,得到反式-1,3,3,3-四氟丙烯产品。
作为本发明的优选实施方式,步骤(1)所述的1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物中1,1,1,2,2-五氯丙烷与1,1,1,3,3-五氯丙烷的摩尔比优选为1∶0.05~20。
作为本发明的优选实施方式,步骤(1)所述的无水氟化氢与1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物的摩尔比优选为8~15∶1,反应温度优选为250~300℃,接触时间优选为2~10s。
作为本发明的优选实施方式,步骤(2)所述的反应温度优选为280~330℃,接触时间优选为4~15s。
作为本发明的优选实施方式,步骤(1)所述的La 2O 3-Cr 2O 3催化剂组成优选为:0.5~20wt%(wt%,质量百分含量)的La 2O 3和80~99.5wt%的Cr 2O 3
作为本发明的优选实施方式,步骤(2)所述的Ga 2O 3-Y 2O 3-Cr 2O 3催化剂组成优选为:1~15wt%的Ga 2O 3,3~20wt%的Y 2O 3和65~96wt%的Cr 2O 3
作为本发明的优选实施方式,可将步骤(4)所述的第二分离塔塔釜组分循环至第一反应器。
本发明涉及的主要化合物沸点如下:
中文化学名称 化学命名 化学式 沸点/℃
1,1,1,2,2-五氯丙烷 HCC-240ab CCl 3CCl 2CH 3 173
1,1,1,3,3-五氯丙烷 HCC-240fa CCl 3CH 2CHCl 2 180
2,3,3,3-四氟丙烯 HFO-1234yf CF 3CF=CH 2 -29.5
1,3,3,3-四氟丙烯 HFO-1234ze CF 3CH=CHF -19(反式),9.8(顺式)
2-氯-3,3,3-三氟丙烯 HCFO-1233xf CF 3CCl=CH 2 15
1-氯-3,3,3-三氟丙烯 HCFO-1233zd CF 3CH=CHCl 18.3(反式),38(顺式)
无水氟化氢 AHF HF 19
氯化氢 HCl HCl -85
本发明以1,1,1,2,2-五氯丙烷、1,1,1,3,3-五氯丙烷和无水氟化氢(AHF)为原料,经两步气相催化氟化合成2,3,3,3-四氟丙烯、反式-1,3,3,3-四氟丙烯,第一步反应以1,1,1,2,2-五氯丙烷、1,1,1,3,3-五氯丙烷和无水氟化氢为原料,经气化后进入第一反应器,在催化剂的作用下反应,1,1,1,2,2-五氯丙烷与AHF反应得到2-氯-3,3,3-三氟丙烯和氯化氢,1,1,1,3,3-五氯丙烷与AHF反应得到1-氯-3,3,3-三氟丙烯和氯化氢,五氯丙烷(HCC-240)的转化率可达到100%。反应条件为:HF与HCC-240的摩尔比为6~18∶1,反应温度为200~350℃,接触时间1~20s,优选的反应条件为:HF与HCC-240的摩尔比为8~15∶1,反应温度为250~300℃,接触时间2~10s。本发明中,HCC-240可由HCC-240ab和HCC-240fa的任意摩尔比组成,HCC-240ab和HCC-240fa的摩尔比优选为1∶0.05~20。
本发明中,第二步反应是将第一反应器出口的反应产物直接进入第二反应器,在催化剂的作用下进行反应,第一步反应的AHF大大过量,促进HCC-240完全转化,过量的AHF与产物流进入第二反应器有助于进行深度氟化,第二反应器主要进行两个反应:(1)将HCFO-1233zd转化成E-HFO-1234ze;(2)将HCFO-1233xf转化成HFO-1234yf。反应条件为:反应温度250~400℃,接触时间1~35s,优选的反应条件为:反应温度280~330℃,接触时间为4~15s。
本发明中,对第一反应器和第二反应器的形式和所用材质没有限制,任何适合的气相氟化反应器均适用于本发明,优选耐氟化氢腐蚀作用的材质如Hastelloy、Inconel等制成的列管式反应器。
本发明中,第二步反应生成的产物进入第一分离塔进行分离,第一分离塔塔顶组分为HCl,将HCl收集至指定贮槽;塔釜组分主要为HFO-1234yf、E-HFO-1234ze和AHF,进入第二分离塔进行分离。第二分离塔塔釜组分为AHF和少量HCFO-1233xf、 HCFO-1233zd,将其直接循环至第二反应器,还可以通过冷却后相分离出有机物HCFO-1233xf、HCFO-1233zd再循环至第二反应器;第二分离塔塔顶组分主要为HFO-1234yf和E-HFO-1234ze,进入产品后处理系统,经水洗、碱洗、干燥后进入第三分离塔。第三分离塔塔顶精馏出极少量的轻组分烯烃杂质,塔釜得到HFO-1234yf和E-HFO-1234ze为主要组成的混合物进入第四分离塔。第四分离塔塔顶得到HFO-1234yf产品,塔釜得到的E-HFO-1234ze和少量高沸物的混合物进入第五分离塔。第五分离塔塔顶得到的E-HFO-1234ze产品,塔釜得到的高沸物累积到一定量后回收处理或送至焚烧。本发明中,对分离塔的形式和操作条件没有限制,可以根据分离的组分及反应系统的操作条件等进行适当的选择。
本发明中,第一步反应氟化催化剂可以采用氧化铬、氟化铬、氟化氧化铬、氧化镧、氟化镧、氟化氧化镧及其混合物,优选组成为0.5~20wt%La 2O 3和80~99.5wt%Cr 2O 3混合物及其氟化氧化物的混合物,更优选组成为1~15wt%La 2O 3和85~99wt%Cr 2O 3混合物及其氟化氧化物的混合物。第二步反应氟化催化剂可以采用氧化铬、氟化铬、氟化氧化铬、氧化镓、氟化镓、氟化氧化镓、氧化钇、氟化钇、氟化氧化钇及其混合物,优选组成为1~15wt%Ga 2O 3,3~20wt%Y 2O 3和65~96wt%Cr 2O 3及其氟化氧化物的混合物,更优选组成为2~13wt%Ga 2O 3,5~16wt%Y 2O 3和74~82wt%Cr 2O 3及其氟化氧化物的混合物。
本发明中第一反应器所采用的催化剂可采用本领域内公知的共混合法或共沉淀法制备。如可将氯化铬与氯化镧按一定比例加水溶解后与沉淀剂反应,调pH至弱碱性,搅拌、沉淀、过滤,并在100~150℃下干燥和在360℃下焙烧成催化剂前体,压片成型后装入第一反应器通入用氮气稀释的无水氟化氢进行活化。
本发明中第二反应器所采用的催化剂可采本领域内公知的共混合法或共沉淀法制备。如可将氯化铬、氯化镓与氯化钇按一定比例加水溶解后与沉淀剂反应,调pH至弱碱性,搅拌、沉淀、过滤,并在100~150℃下干燥和在400℃下焙烧成催化剂前体,压片成型后装入第二反应器通入用氮气稀释的无水氟化氢进行活化。
本发明中,第一步反应和第二步反应的氟化催化剂活性好,选择性高,再生性能好,总寿命长。氟化催化剂催化性能下降后可进行再生,从而循环利用。对第一反应器和第二反应器的催化剂进行再生处理时,先在350℃的氮气氛下缓慢通入空气将催化剂表面上的积炭烧掉,处理12h;接着通入氢气,对催化剂进行还原处理3h;最后在氮气氛下 通入AHF进行活化5h。
与现有技术相比,本发明具有以下优点:
1、工艺简单,一套反应装置可以同时生产两种产品,大大简化了工艺流程;
2、反应效率高,转化率和目标产物选择性高,HCC-240转化率100%,E-HFO-1234ze和HFO-1234yf的总选择性在98%以上;
3、催化剂总寿命长,本发明的催化剂,通过多金属协同作用、辅助催化和抑制晶型等提高了催化剂稳定性和选择性,延长了催化剂寿命,单程寿命达200天以上,再生一次后能稳定运行110天以上;
4、投资小,操作弹性大,可根据市场需求灵活调节2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯两种产品产量比例;
5、安全环保,本发明采用两步气相反应,未反应的原料及中间体可循环利用,催化剂可再生后循环利用,进一步减少了三废排放。
附图说明
图1为本发明的工艺流程图。
如图所示:1为汽化器,2为第一反应器,3为第二反应器,4为第一分离塔,5为第二分离塔,6为水洗塔,7为碱洗塔,8为干燥器,9为第三分离塔,10为第四分离塔,11为第五分离塔,12、13、14、15、16、17、18、19、20、21、22、23为管线。
具体实施方式
本发明流程如图1所示,第一反应器2和第二反应器3分别装填不同的催化剂,HCC-240ab、HCC-240fa以一定比例混合后与AHF通过汽化器1混合加热汽化后,通过管线12进入第一反应器2反应,含HCFO-1233xf、HCFO-1233zd、氯化氢及过量的AHF的混合物经管线13、14直接进入第二反应器3反应,第二反应器3出口的物料经管线15,进入第一分离塔4塔顶干法分离出HCl,另行贮存。第一分离塔4塔釜的物料经过管线16进入第二分离塔5,第二分离塔5塔釜得到的含AHF和少量未反应的HCFO-1233zd、HCFO-1233xf的混合物经管线17、14循环至第二反应器3进行再反应, 第二分离塔5塔顶组分为含HFO-1234yf和E-HFO-1234ze为主的混合物,经管线18进入水洗塔6除酸,再通过管线19进入碱洗塔7进一步除酸后,经管线20进入干燥器8脱除水分,然后通过管线21进入第三分离塔9进行脱轻组分,第三分离塔9塔顶得到极少量的低沸点的含氟烯烃杂质,塔釜为HFO-1234yf和E-HFO-1234ze物流,通过管线22进入第四分离塔。第四分离塔塔顶得到HFO-1234yf产品,塔釜得到富含E-HFO-1234ze的物流,通过管线23进入第五分离塔。第五分离塔塔顶得到E-HFO-1234ze产品,塔釜为重组分,累积至一定量后回收处理或送至焚烧。
下面通过实施例对本发明作进一步详细描述,但本发明并不限于所述的实施例。
实施例1
将300ml La 2O 3-Cr 2O 3催化剂(组成为1wt%La 2O 3,99wt%Cr 2O 3)装入第一反应器,升温至250℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为1wt%Ga 2O 3,3wt%Y 2O 3和96wt%Cr 2O 3)装入第二反应器,升温至280℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为250℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为16∶1∶1,接触时间为10s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为280℃,接触时间为10s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例2
将300ml La 2O 3-Cr 2O 3催化剂(组成为3wt%La 2O 3,97wt%Cr 2O 3)装入第一反应器,升温至250℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为3wt%Ga 2O 3,5wt%Y 2O 3和92wt%Cr 2O 3)装入第二反应器,升温至280℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为250℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为20∶1∶1,接触时间为7.2s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为280℃,接触时间为7.2s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例3
将300ml La 2O 3-Cr 2O 3催化剂(组成为8wt%La 2O 3,92wt%Cr 2O 3)装入第一反应器,升温至270℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为5wt%Ga 2O 3,7wt%Y 2O 3和88wt%Cr 2O 3)装入第二反应器,升温至290℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为270℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为20∶1∶1,接触时间为6s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为290℃,接触时间为6s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例4
将300ml La 2O 3-Cr 2O 3催化剂(组成为12wt%La 2O 3,88wt%Cr 2O 3)装入第一反应器,升温至270℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为7wt%Ga 2O 3,9wt%Y 2O 3和84wt%Cr 2O 3)装入第二反应器,升温至290℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低 于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为270℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为36∶2∶1,接触时间为4s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为290℃,接触时间为4s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例5
将300ml La 2O 3-Cr 2O 3催化剂(组成为16wt%La 2O 3,84wt%Cr 2O 3)装入第一反应器,升温至280℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为9wt%Ga 2O 3,11wt%Y 2O 3和80wt%Cr 2O 3)装入第二反应器,升温至300℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为280℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为20∶1∶1,接触时间为6s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为300℃,接触时间为6s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例6
将300ml La 2O 3-Cr 2O 3催化剂(组成为18wt%La 2O 3,82wt%Cr 2O 3)装入第一反应器,升温至280℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为11wt%Ga 2O 3,14wt%Y 2O 3和75wt%Cr 2O 3)装入第二反应器,升温至320℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为280℃,无水氟 化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为45∶2∶1,接触时间为2s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为320℃,接触时间为2s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例7
将300ml La 2O 3-Cr 2O 3催化剂(组成为20wt%La 2O 3,80wt%Cr 2O 3)装入第一反应器,升温至300℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为13wt%Ga 2O 3,17wt%Y 2O 3和70wt%Cr 2O 3)装入第二反应器,升温320℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为300℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为20∶1∶1,接触时间为4s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为320℃,接触时间为4s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例8
将300ml La 2O 3-Cr 2O 3催化剂(组成为10wt%La 2O 3,90wt%Cr 2O 3)装入第一反应器,升温至300℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为15wt%Ga 2O 3,20wt%Y 2O 3和65wt%Cr 2O 3)装入第二反应器,升温至330℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为300℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为45∶1∶2,接触时间为3.6s。 将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为330℃,接触时间为3.6s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例9
将300ml La 2O 3-Cr 2O 3催化剂(组成为3wt%La 2O 3,97wt%Cr 2O 3)装入第一反应器,升温至300℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为15wt%Ga 2O 3,20wt%Y 2O 3和65wt%Cr 2O 3)装入第二反应器,升温至330℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为300℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为16∶1.9∶0.1,接触时间为3.6s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为330℃,接触时间为4s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
实施例10
将300ml La 2O 3-Cr 2O 3催化剂(组成为3wt%La 2O 3,97wt%Cr 2O 3)装入第一反应器,升温至300℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
将300ml Ga 2O 3-Y 2O 3-Cr 2O 3催化剂(组成为15wt%Ga 2O 3,20wt%Y 2O 3和65wt%Cr 2O 3)装入第二反应器,升温至330℃,通入用氮气稀释的无水氟化氢进行活化。AHF流量:25g/h,氮气流量:0.2L/min,活化时间为8小时。
活化完成后,将HCC-240ab、HCC-240fa和氟化氢混合后通入汽化器,气化到略低于第一反应器温度后进入第一反应器进行反应,控制第一反应器温度为300℃,无水氟化氢、1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的摩尔比为16∶0.1∶1.9,接触时间为3.6s。将第一反应器出口的物料直接进入第二反应器进行反应,第二反应器反应温度为330℃, 接触时间为4s,在第一反应器的出口接一旁路,进行取样分析,分析前对产物进行水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表1。第二反应器出口的产物经水洗、碱洗,用气相色谱仪分析有机产物的组成,结果见表2。
表1 第一反应器反应结果
Figure PCTCN2018000233-appb-000001
表2 第二反应器反应结果
Figure PCTCN2018000233-appb-000002
Figure PCTCN2018000233-appb-000003

Claims (7)

  1. 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,其特征在于包括以下步骤:
    (1)将1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物与无水氟化氢预热后同时通入第一反应器,在La 2O 3-Cr 2O 3催化剂作用下进行反应,反应温度为200~350℃,无水氟化氢与1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物的摩尔比为6~18∶1,接触时间为1~20s,得到第一反应器产物;
    (2)将步骤(1)得到的第一反应器产物不经分离直接通入第二反应器,在Ga 2O 3-Y 2O 3-Cr 2O 3催化剂作用下进行催化氟化反应,反应温度为250~400℃,接触时间为1~35s,得到第二反应器产物;
    (3)将步骤(2)得到的第二反应器产物进入第一分离塔进行分离,得到第一分离塔塔釜组分和氯化氢;
    (4)将步骤(3)得到的第一分离塔塔釜组分进入第二分离塔进行分离,得到第二分离塔塔顶组分和第二分离塔塔釜组分;
    (5)将步骤(4)得到的第二分离塔塔顶组分进行水洗、碱洗、干燥后,进入第三分离塔,得到第三分离塔塔顶组分和第三分离塔塔釜组分;
    (6)将步骤(5)得到的第三分离塔塔釜组分进入第四分离塔,得到2,3,3,3-四氟丙烯产品和第四分离塔塔釜组分;
    (7)将步骤(6)得到的第四分离塔塔釜组分进入第五分离塔,得到反式-1,3,3,3-四氟丙烯产品。
  2. 根据权利要求1所述的2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,其特征在于步骤(1)所述的1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物中1,1,1,2,2-五氯丙烷与1,1,1,3,3-五氯丙烷的摩尔比为1∶0.05~20。
  3. 根据权利要求1所述的2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,其特征在于步骤(1)所述的无水氟化氢与1,1,1,2,2-五氯丙烷和1,1,1,3,3-五氯丙烷的混合物的摩尔比为8~15∶1,反应温度为250~300℃,接触时间为2~10s。
  4. 根据权利要求1所述的2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,其特征在于步骤(2)所述的反应温度为280~330℃,接触时间为4~15s。
  5. 根据权利要求1所述的2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,其特征在于步骤(1)所述的La 2O 3-Cr 2O 3催化剂组成为:0.5~20wt%的La 2O 3和80~99.5wt%的Cr 2O 3
  6. 根据权利要求1所述的2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,其特征在于步骤(2)所述的Ga 2O 3-Y 2O 3-Cr 2O 3催化剂组成为:1~15wt%的Ga 2O 3,3~20wt%的Y 2O 3和65~96wt%的Cr 2O 3
  7. 根据权利要求1所述的2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法,其特征在于将步骤(4)所述的第二分离塔塔釜组分循环至第一反应器。
PCT/CN2018/000233 2017-10-19 2018-06-25 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法 WO2019075932A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18868205.8A EP3699164B1 (en) 2017-10-19 2018-06-25 Co-production method for 2,3,3,3-tetrafluoropropylene and trans-1,3,3,3-tetrafluoropropylene
US16/337,409 US11014861B1 (en) 2017-10-19 2018-06-25 Method for co-producing 2,3,3,3-tetrafluoropropene and trans-1,3,3,3-tetrafluoropropene
JP2018565724A JP6778767B2 (ja) 2017-10-19 2018-06-25 2,3,3,3−テトラフルオロプロピレンとトランス−1,3,3,3−テトラフルオロプロピレンの同時生産方法
KR1020187034171A KR102169970B1 (ko) 2017-10-19 2018-06-25 2,3,3,3-테트라플루오로프로펜과 트랜스-1,3,3,3-테트라플루오로프로펜의 공동 생산 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710976257.4A CN107721809B (zh) 2017-10-19 2017-10-19 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法
CN201710976257.4 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019075932A1 true WO2019075932A1 (zh) 2019-04-25

Family

ID=61210711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000233 WO2019075932A1 (zh) 2017-10-19 2018-06-25 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法

Country Status (6)

Country Link
US (1) US11014861B1 (zh)
EP (1) EP3699164B1 (zh)
JP (1) JP6778767B2 (zh)
KR (1) KR102169970B1 (zh)
CN (1) CN107721809B (zh)
WO (1) WO2019075932A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721809B (zh) 2017-10-19 2020-06-19 浙江衢化氟化学有限公司 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法
CN112537997B (zh) * 2020-12-09 2021-06-29 威海新元化工有限公司 一种3,3,3-三氟丙烯和2-氯-3,3,3-三氟丙烯的联产方法及装置
CN116143583B (zh) * 2023-04-19 2023-07-07 山东澳帆新材料有限公司 一种2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的联产制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852880A (zh) 2003-07-25 2006-10-25 霍尼韦尔国际公司 1,3,3,3-四氟丙烯的制备方法
CN101028992A (zh) * 2007-04-11 2007-09-05 西安近代化学研究所 1,1,1,3-四氟丙烯的制备方法
US20090024009A1 (en) 2002-04-19 2009-01-22 Dominique Freeman Body fluid sampling device with a capacitive sensor
WO2009015317A1 (en) 2007-07-25 2009-01-29 Honeywell International Inc. Improved method for producing 2-chloro-3,3,3,-trifluoropropene (hcfc-1233xf)
US20090240090A1 (en) 2004-04-29 2009-09-24 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
WO2010123148A1 (en) 2009-04-23 2010-10-28 Daikin Industries, Ltd. Process for preparing 2-chloro-3,3,3-trifluoropropene
CN102001910A (zh) * 2010-09-20 2011-04-06 西安近代化学研究所 2,3,3,3-四氟丙烯的制备方法
CN104710274A (zh) * 2013-12-13 2015-06-17 中化近代环保化工(西安)有限公司 联产制备1,3,3,3-四氟丙烯和/或2,3,3,3-四氟丙烯的工艺
WO2016132111A1 (en) * 2015-02-19 2016-08-25 Mexichem Fluor S.A. De C.V. Process for the preparation of tetrafluoropropene
CN107721809A (zh) * 2017-10-19 2018-02-23 浙江衢化氟化学有限公司 一种2,3,3,3‑四氟丙烯和反式‑1,3,3,3‑四氟丙烯的联产方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215220A (zh) 2008-01-16 2008-07-09 西安近代化学研究所 1,1,1,3-四氟丙烯的制备方法
CN101269323A (zh) * 2008-04-23 2008-09-24 浙江师范大学 用于气相氟化生产四氟甲烷的催化剂及制备方法
CN101507922A (zh) * 2008-04-23 2009-08-19 浙江师范大学 一种气相氟化催化剂及制备方法
WO2010101198A1 (en) * 2009-03-04 2010-09-10 Daikin Industries, Ltd. Process for preparing fluorine-containing propenes containing 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene
KR101374000B1 (ko) * 2009-04-23 2014-03-12 다이킨 고교 가부시키가이샤 2,3,3,3-테트라플루오로프로펜의 제조 방법
US8426656B2 (en) * 2010-04-05 2013-04-23 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
CN102513136B (zh) * 2011-11-25 2015-02-11 西安近代化学研究所 氟化铬基氟化催化剂及其用途
CN103880590B (zh) * 2012-12-19 2016-10-05 中化蓝天集团有限公司 一种制备1,3,3,3-四氟丙烯的工艺
CN104151131B (zh) * 2014-08-08 2015-11-18 浙江衢化氟化学有限公司 一种2,3,3,3-四氟丙烯的制备方法
CN105753642B (zh) * 2014-12-13 2018-06-08 西安近代化学研究所 联产1,3,3,3-四氟丙烯与2,3,3,3-四氟丙烯的制备方法
CN105753640B (zh) * 2014-12-13 2018-07-31 西安近代化学研究所 一种1,3,3,3-四氟丙烯的制备方法
CN105753639B (zh) * 2014-12-13 2018-07-31 西安近代化学研究所 一种2,3,3,3-四氟丙烯的制备方法
JP6176262B2 (ja) * 2015-01-13 2017-08-09 ダイキン工業株式会社 含フッ素オレフィンの製造方法
CN104945221B (zh) * 2015-06-11 2017-07-18 浙江衢州巨新氟化工有限公司 一种联产2,3,3,3‑四氟丙烯和1,3,3,3‑四氟丙烯的方法
GB2540426A (en) * 2015-07-17 2017-01-18 Mexichem Fluor Sa De Cv Process
CN106349005B (zh) * 2016-08-25 2018-08-28 浙江衢州巨新氟化工有限公司 一种联产三氟丙烯类产品和四氟丙烯类产品的方法
CN106824232B (zh) * 2017-01-22 2019-08-02 北京宇极科技发展有限公司 高价铬基催化剂、制备方法及用途

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090024009A1 (en) 2002-04-19 2009-01-22 Dominique Freeman Body fluid sampling device with a capacitive sensor
CN1852880A (zh) 2003-07-25 2006-10-25 霍尼韦尔国际公司 1,3,3,3-四氟丙烯的制备方法
US20090240090A1 (en) 2004-04-29 2009-09-24 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
CN101028992A (zh) * 2007-04-11 2007-09-05 西安近代化学研究所 1,1,1,3-四氟丙烯的制备方法
WO2009015317A1 (en) 2007-07-25 2009-01-29 Honeywell International Inc. Improved method for producing 2-chloro-3,3,3,-trifluoropropene (hcfc-1233xf)
WO2010123148A1 (en) 2009-04-23 2010-10-28 Daikin Industries, Ltd. Process for preparing 2-chloro-3,3,3-trifluoropropene
CN102001910A (zh) * 2010-09-20 2011-04-06 西安近代化学研究所 2,3,3,3-四氟丙烯的制备方法
CN104710274A (zh) * 2013-12-13 2015-06-17 中化近代环保化工(西安)有限公司 联产制备1,3,3,3-四氟丙烯和/或2,3,3,3-四氟丙烯的工艺
WO2016132111A1 (en) * 2015-02-19 2016-08-25 Mexichem Fluor S.A. De C.V. Process for the preparation of tetrafluoropropene
CN107721809A (zh) * 2017-10-19 2018-02-23 浙江衢化氟化学有限公司 一种2,3,3,3‑四氟丙烯和反式‑1,3,3,3‑四氟丙烯的联产方法

Also Published As

Publication number Publication date
JP2019537548A (ja) 2019-12-26
EP3699164B1 (en) 2023-10-04
CN107721809B (zh) 2020-06-19
KR20190059258A (ko) 2019-05-30
JP6778767B2 (ja) 2020-11-04
US20210171424A1 (en) 2021-06-10
EP3699164A4 (en) 2021-07-28
KR102169970B1 (ko) 2020-10-26
US11014861B1 (en) 2021-05-25
EP3699164A1 (en) 2020-08-26
CN107721809A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
JP6650523B2 (ja) 1−クロロ−3,3,3−トリフルオロプロピレン、2,3,3,3−テトラフルオロプロピレン及び1,3,3,3−テトラフルオロプロピレンの同時生産方法
KR20190068646A (ko) 플루오르화 올레핀을 제조하는 방법
JP2015501800A (ja) ヒドロフルオロオレフィンを製造するための方法
WO2019075932A1 (zh) 一种2,3,3,3-四氟丙烯和反式-1,3,3,3-四氟丙烯的联产方法
JP2015515464A (ja) trans−1−クロロ−3,3,3−トリフルオロプロペン、trans−1,3,3,3−テトラフルオロプロペンおよび1,1,1,3,3−ペンタフルオロプロパンを併産するための統合プロセス
WO2016090745A1 (zh) 2,3,3,3-四氟丙烯的制备方法
JP6743193B2 (ja) 低炭素発泡剤の同時生産方法
KR20190040181A (ko) 다양한 알케닐 할라이드 및 하이드로플루오로알칸을 공동으로 생산하는 방법
WO2017028442A1 (zh) 一种用甲基氯化镁制备2,3,3,3-四氟丙烯的方法
WO2016019485A1 (zh) 一种2,3,3,3-四氟丙烯的制备方法
WO2017015779A1 (zh) 一种2,3,3,3-四氟丙烯的生产方法
JP2021504365A (ja) 高純度2−クロロ−1,1,1,2−テトラフルオロプロパン(hcfc−244bb)の製造プロセス
CN111253211B (zh) 一种高纯电子级四氟丙烯HFO-1234yf的分离纯化方法
CN111454121B (zh) 一种1,3,3,3-四氟丙烯的生产方法
CN112354539A (zh) 用于合成1,3,3,3-四氟丙烯的催化剂及其合成方法
WO2016019718A1 (zh) 一种制备2-氯-1,1,1,2-四氟丙烷的方法
CN115215722B (zh) 2,3,3,3-四氟丙烯和1-氯-3,3,3-三氟丙烯的联产制备方法
CN113527038B (zh) 制备顺式-1,3,3,3-四氟丙烯的方法
CN116143583B (zh) 一种2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的联产制备方法
CN115215723B (zh) 2,3,3,3-四氟丙烯和1-氯-2,3,3,3-四氟丙烯的联产制备方法
CN113480403A (zh) 一种用于制备氟氯烯烃和含氟烯烃的制备方法
WO2022218204A1 (zh) 制备2,3,3,3-四氟丙烯的方法
CN1568297A (zh) 生产氟代乙烷的方法以及所得氟代乙烷的用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187034171

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018565724

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868205

Country of ref document: EP

Effective date: 20200519