WO2019075797A1 - 一种印刷oled显示屏的制备方法 - Google Patents

一种印刷oled显示屏的制备方法 Download PDF

Info

Publication number
WO2019075797A1
WO2019075797A1 PCT/CN2017/109602 CN2017109602W WO2019075797A1 WO 2019075797 A1 WO2019075797 A1 WO 2019075797A1 CN 2017109602 W CN2017109602 W CN 2017109602W WO 2019075797 A1 WO2019075797 A1 WO 2019075797A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
preparing
printing
oled display
display screen
Prior art date
Application number
PCT/CN2017/109602
Other languages
English (en)
French (fr)
Inventor
郑华
杨雷
章伟
张耿
张绍强
李春花
范丽仙
刘敏霞
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Priority to AU2017436335A priority Critical patent/AU2017436335A1/en
Publication of WO2019075797A1 publication Critical patent/WO2019075797A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the invention relates to the technical field of OLED display screens, and in particular to a method for preparing a printed OLED display screen.
  • OLED Organic light-emitting diode
  • Traditional OLED displays are prepared by full evaporation process.
  • High-precision evaporation masks must be used (FMM, Fine Metal).
  • Mask to define red, green and blue sub-pixels, so the process is complex and costly.
  • FMM Fine Metal
  • Mask a printing process (mainly inkjet printing) to prepare red, green and blue sub-pixels, which is simple in process and low in cost.
  • This OLED display comprising a printing process is called a 'printed OLED display'.
  • the basic feature of the printed OLED display is that the luminescent layer is prepared by a printing process (mainly inkjet printing), and the other organic functional layers of the upper and lower layers can be a printing process (inkjet printing, screen printing, spin coating, spraying, Preparation by knife coating, stamping, etc., or it can be prepared by an evaporation process.
  • a printing process mainly inkjet printing
  • the other organic functional layers of the upper and lower layers can be a printing process (inkjet printing, screen printing, spin coating, spraying, Preparation by knife coating, stamping, etc., or it can be prepared by an evaporation process.
  • the overall structure of the pixel of a single printed OLED display is shown in Figure 1.
  • the printed OLED technology is generally on an anode substrate, and 2345 layers are sequentially prepared and finally encapsulated.
  • the core difficulty lies in the inkjet printing of 3 red, green and blue luminescent layers.
  • the inkjet printed droplets easily overflow and mix with each other, thus failing the definition of red, green and blue sub-pixels.
  • the pixel defining layer on the anode substrate is limited by the process, and the pixel defining layer has two aspects which are difficult to meet the needs of inkjet printing: 1) The thickness thereof is difficult to increase, resulting in a limited volume of sub-pixel pits capable of accommodating droplets; (2) the affinity of the material (polyimide) and the droplets is hard to be lowered, resulting in easy diffusion of the droplets.
  • the present invention provides a method for preparing a printed OLED display screen, which is improved for the existing inkjet printing process, and can be used in the process of preparing an OLED display screen.
  • the inkjet printed droplets can form a red, green and blue luminescent layer well within the sub-pixel.
  • a method for preparing a printed OLED display screen comprising:
  • the cathode is prepared by printing or evaporation, and finally encapsulated, and a single printed OLED display is prepared.
  • the hole injection layer, the hole transport layer or the electron blocking layer is prepared by a printing method or an evaporation method; the thickness of the hole injection layer, the hole transport layer or the electron blocking layer is 5-100 nm.
  • the printing method includes an inkjet printing method, a screen printing method, a spin coating method, a spray coating method, a knife coating method, or an imprint method.
  • the soluble fluorine-containing insulating layer has a thickness of 50-2000 nm; and the red-green-blue light-emitting layer has a thickness of 20-200 nm.
  • the fluorine solvent is a perfluoroalkane, a perfluorodialkylether or a perfluorotrialkylamine.
  • the thickness in the electron injecting layer, the electron transporting layer or the hole blocking layer is 1 to 50 nm.
  • the cathode is a metal cathode, and the metal in the metal cathode is Al or Ag.
  • the invention provides a method for preparing an OLED display screen, which is improved for an inkjet process of a red, green and blue light emitting layer, by adding a layer of a soluble fluorine-containing insulating layer on the substrate, so that the inkjet printed liquid droplets can be in the sub-pixel
  • the red, green and blue light-emitting layers are well formed in the pit, which can greatly improve the production yield of the printed OLED display.
  • FIG. 1 is a schematic structural view of a single OLED pixel in the prior art.
  • FIG. 2 is a schematic flow chart of the preparation method in the embodiment of the present invention.
  • 3 to 8 are schematic structural diagrams of preparing the OLED display screen according to steps S10 to S60, respectively.
  • a method for preparing a printed OLED display screen the steps of the preparation method include:
  • the hole injecting layer, the hole transporting layer or the electron blocking layer may be prepared by a printing method or an evaporation method, and the thickness of the hole injecting layer, the hole transporting layer or the electron blocking layer is preferably from 5 to 100 nm.
  • a polymer hole transport layer such as PEDOT: PSS
  • a small molecule hole injecting layer e.g., CuPc or HAT-CN
  • the anode substrate has an anode metal, a pixel defining layer and sub-pixel pits, as shown in FIG.
  • the anode substrate in this embodiment is prepared by etching, and its structure belongs to the prior art.
  • the printing method includes an inkjet printing method, a screen printing method, a spin coating method, a spray coating method, a knife coating method, or an imprint method.
  • the thickness of the soluble fluorine-containing insulating layer (such as CYTOP) is preferably from 50 to 2000 nm.
  • the thickness of the soluble fluorine-containing insulating layer is preferably 50-2000 nm; and the fluorine solvent is preferably a perfluoroalkane, a perfluorodialkylether or a perfluorotrialkylamine.
  • a solution droplet of red (such as PFO-DHTBT), green (such as P-PPV), blue (such as PF-FSO) luminescent material can be inkjet printed in a sub-pixel pit to form red, green and blue light in the sub-pixel pit.
  • a layer in which the solvent of the solution is an organic solvent (e.g., ethanol, toluene, chlorobenzene, cyclohexane, etc.). Since the soluble fluorine-containing insulating layer covers the original pixel defining layer, which is equivalent to increasing the thickness and lowering the surface energy, the solution droplets are stably confined in the sub-pixel pits and do not overflow, thereby well solving the existing solution.
  • the droplets of the inkjet printed solution are easily spilled and mixed with each other to cause a defect in the definition of the red, green and blue sub-pixels.
  • the solvent of the solution is chosen because the 'soluble fluorine-containing insulating layer' is only soluble in the fluorine-containing solvent and is not soluble in the common organic solvent, so the soluble fluorine-containing insulating layer is not absorbed by the droplets of the luminescent material. influences.
  • the thickness of the red, green and blue light-emitting layer formed in the sub-pixel pit after the solution is dried is 20-200 nm.
  • the thickness in the electron injecting layer, the electron transporting layer or the hole blocking layer is preferably from 1 to 50 nm, and preferably by a printing method (such as inkjet printing, screen printing, spin coating, spray coating, blade coating,
  • a printing method such as inkjet printing, screen printing, spin coating, spray coating, blade coating
  • An electron injecting layer, an electron transporting layer or a hole blocking layer is prepared by a method such as imprinting or an evaporation method such as vacuum thermal evaporation.
  • a polymer electron transport layer (such as PFNR 2 ) may be prepared by printing on a substrate to a thickness of 1 to 50 nm; or a small molecule electron transport layer (such as Alq 3 ) and an electron injection layer may be vacuum evaporated on the substrate. (such as LiF), the thickness is 1-40nm.
  • the cathode is a metal cathode
  • the metal in the metal cathode is preferably Al or Ag.
  • conductive paste such as micro-silver paste, nano-silver ink, etc.
  • the thickness is preferably from 200 nm to 2 mm; or the metal cathode (such as Al or Ag) may be thermally evaporated on the substrate by vacuum, and the thickness is preferably from 50 nm to 2 ⁇ m.
  • the pixel defining layer of the existing printed OLED process is formed by etching a polyimide material to form a sub-pixel pit, which is difficult to be thick due to its thickness (ie, the depth of the sub-pixel pit is limited), and the surface energy is high (parent Solution), so it is easy to overflow and mix with each other when printing luminescent material droplets, so that the luminescent layer of the red, green and blue sub-pixels cannot be formed correctly.
  • the present invention optimizes and improves the above problems existing in the prior art by first printing a layer of a soluble fluorine-containing insulating layer on the entire anode substrate, and then washing the sub-pixel pits by a special fluorine solvent for inkjet printing, which is equivalent.
  • the upper pixel defining layer is further covered with a fluorine-containing insulating layer; by adding the soluble fluorine-containing insulating layer, not only the depth of the sub-pixel pit is increased, but also the surface energy of the soluble fluorine-containing insulating layer is low (smooth solution) Therefore, it does not overflow when printing the luminescent material droplets, so that the red, green and blue luminescent layers can be well formed in the sub-pixel pits, thereby greatly improving the production yield of the printed OLED display.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种印刷OLED显示屏的制备方法,步骤包括:在阳极基板上制备空穴注入层、空穴传输层或电子阻挡层(S10);利用印刷法,形成可溶性含氟绝缘层封住整个基板(S20);在可溶性含氟绝缘层上喷墨打印氟溶剂,洗开所有的子像素坑(S30);喷墨打印发光材料溶液滴,以使得在子像素坑形成红绿蓝发光层(S40);制备电子注入层、电子传输层或空穴阻挡层(S50);利用印刷法或蒸镀法制备阴极,最后进行包封,单个印刷OLED显示屏制备完毕(S60)。印刷OLED显示屏的制备方法针对红绿蓝发光层的喷墨工艺进行改进,通过在基板上增加一层可溶性含氟绝缘层,从而使得喷墨打印的液滴能在子像素内良好地形成红绿蓝发光层,进而可极大提高印刷OLED显示屏的生产良率。

Description

一种印刷OLED显示屏的制备方法
技术领域
本发明涉及OLED显示屏技术领域,具体一种印刷OLED显示屏的制备方法。
背景技术
有机发光二极管(OLED)是一种重要的显示技术,传统的OLED显示屏采用全蒸镀工艺制备,必须使用高精度的蒸镀掩膜板(FMM,Fine Metal Mask)来定义红绿蓝子像素,因此工艺复杂、成本高昂。目前业界正积极改用印刷工艺(主要是喷墨打印)来制备红绿蓝子像素,其工艺简单、成本低廉,这种包含了印刷工艺制备的OLED显示屏称为'印刷OLED显示屏'。印刷OLED显示屏的基本特点是发光层采用印刷工艺(主要是喷墨打印)制备,而其上、下层的其它有机功能层可以是印刷工艺(喷墨打印、丝网印刷、旋涂、喷涂、刮涂、压印等)制备,也可以是蒸镀工艺制备。
单个印刷OLED显示屏的像素的整体结构示意图如图1所示,目前印刷OLED技术一般是在①阳极基板上,依次制备②③④⑤各层,最后包封而成。其中核心难点在于喷墨打印③红绿蓝发光层,喷墨打印的液滴容易溢出和彼此混合,从而使红绿蓝子像素的定义失败。究其原因,这是因为现有技术中,在喷墨打印红绿蓝发光层时,阳极基板上的像素定义层受限于工艺,像素定义层有两方面难以满足喷墨打印的需要:(1)其厚度很难增加,导致子像素坑能容纳液滴的体积有限;(2)其材料(聚酰亚胺)与液滴的亲和能很难降低,导致液滴容易扩散。
发明内容
为克服现有技术的不足及存在的问题,本发明提供一种印刷OLED显示屏的制备方法,该制备方法针对现有的喷墨打印工艺进行改进,可使得在制备OLED显示屏的过程中,喷墨打印的液滴能在子像素内良好地形成红绿蓝发光层。
本发明是通过以下技术方案实现的:
一种印刷OLED显示屏的制备方法,所述制备方法的步骤包括:
S10 、在阳极基板上制备空穴注入层、空穴传输层以及电子阻挡层中的全部三层,或者只制备其中的任意一层或任意两层;
S20 、利用印刷法,形成可溶性含氟绝缘层封住整个基板;
S30 、在可溶性含氟绝缘层上喷墨打印氟溶剂,洗开所有的子像素坑;
S40 、喷墨打印发光材料溶液滴,以使得在子像素坑形成红绿蓝发光层;
S50 、制备电子注入层、电子传输层以及空穴阻挡层中的全部三层,或者只制备其中的任意一层或任意两层;
S60 、利用印刷法或蒸镀法制备阴极,最后进行包封,单个印刷OLED显示屏制备完毕。
优选地,在步骤S10中,利用印刷法或蒸镀法制备所述空穴注入层、空穴传输层或电子阻挡层;所述空穴注入层、空穴传输层或电子阻挡层的厚度为5-100nm。
优选地,在步骤S20中,所述印刷法包括喷墨打印法、丝网印刷法、旋涂法、喷涂法、刮涂法或压印法。
较佳地,所述可溶性含氟绝缘层的厚度为50-2000nm;所述红绿蓝发光层的厚度为20-200nm。
优选地,所述氟溶剂为全氟烷烃、全氟二烷基醚或全氟三烷基胺。
优选地,步骤S50中,所述电子注入层、电子传输层或空穴阻挡层中的厚度为1-50nm。
优选地,步骤S60中,所述阴极为金属阴极,所述金属阴极中的金属为Al或Ag。
本发明提供的OLED显示屏的制备方法,其针对红绿蓝发光层的喷墨工艺进行改进,通过在基板上增加一层可溶性含氟绝缘层,从而使得喷墨打印的液滴能在子像素坑内良好地形成红绿蓝发光层,进而可极大提高印刷OLED显示屏的生产良率。
附图说明
图1是现有技术中单个OLED像素的结构示意图。
图2是本发明实施例中所述制备方法的流程示意图。
图3-图8分别是根据步骤S10-步骤S60制备所述OLED显示屏的简要结构示意图。
具体实施方式
为了便于本领域技术人员的理解,以下结合附图和具体实施例对本发明作进一步详细描述。
如附图2所示,一种印刷OLED显示屏的制备方法,所述制备方法的步骤包括:
S10 、在阳极基板上制备空穴注入层、空穴传输层以及电子阻挡层中的全部三层,或者只制备其中的任意一层或任意两层,具体制备哪一层或制备几层根据实际需要选择;
其中,可利用印刷法或蒸镀法制备所述空穴注入层、空穴传输层或电子阻挡层,所述空穴注入层、空穴传输层或电子阻挡层的厚度优选为5-100nm。
如可在阳极基板上用印刷法(喷墨打印、丝网印刷、旋涂、喷涂、刮涂、压印等),制备聚合物空穴传输层(如PEDOT:PSS),厚度10-100nm;或者可在阳极基板上用真空热蒸镀法,制备小分子空穴注入层(如CuPc或HAT-CN),厚度5-100nm。其中,阳极基板上具有阳极金属、像素定义层以及子像素坑,如附图3所示。本实施例中的阳极基板的通过刻蚀制备,且其结构属于现有技术。
S20 、利用印刷法,形成可溶性含氟绝缘层封住整个基板;如附图4所示。
本实施例中,所述印刷法包括喷墨打印法、丝网印刷法、旋涂法、喷涂法、刮涂法或压印法。所述可溶性含氟绝缘层(如CYTOP)的厚度优选为50-2000nm。
S30 、在可溶性含氟绝缘层上喷墨打印氟溶剂,洗开所有的子像素坑;如附图5所示。
本实施例中,所述可溶性含氟绝缘层的厚度优选为50-2000nm;所述氟溶剂优选为全氟烷烃、全氟二烷基醚或全氟三烷基胺。
S40 、喷墨打印发光材料溶液滴,以使得在子像素坑形成红绿蓝发光层; 如附图6所示。
如可在子像素坑依次喷墨打印红(如PFO-DHTBT)、绿(如P-PPV)、蓝(如PF-FSO)发光材料的溶液滴,以使得在子像素坑形成红绿蓝发光层,其中溶液的溶剂为有机溶剂(如乙醇、甲苯、氯苯、环己烷等)。由于可溶性含氟绝缘层覆盖了原来的像素定义层,相当于使其厚度增加且表面能降低,因此溶液滴会被稳定地限制在子像素坑内,不会溢出,从而很好地解决了现有技术中喷墨打印的溶液滴容易溢出和彼此混合而导致红绿蓝子像素定义失败的缺陷。另外,溶液的溶剂为之所以选择有机溶剂,是因为'可溶性含氟绝缘层'只溶于含氟溶剂,而不溶于普通的有机溶剂,因此可溶性含氟绝缘层不会被发光材料的液滴影响。本实施例中,溶液滴干燥后在子像素坑内形成的红绿蓝发光层的厚度20-200nm。
S50 、制备电子注入层、电子传输层以及空穴阻挡层中的全部三层,或者只制备其中的任意一层或任意两层;如附图7所示。
本步骤中,所述电子注入层、电子传输层或空穴阻挡层中的厚度优选为1-50nm,且优选采用印刷法(如喷墨打印、丝网印刷、旋涂、喷涂、刮涂、压印等方法)或蒸镀法(如真空热蒸镀)制备电子注入层、电子传输层或空穴阻挡层。
例如,可在基板上用印刷法制备聚合物电子传输层(如PFNR 2 ),厚度为1-50nm;又或者在基板上用真空热蒸镀小分子电子传输层(如Alq3)和电子注入层(如LiF),厚度为1-40nm。
S60 、利用印刷法或蒸镀法制备阴极,最后进行包封,单个印刷OLED显示屏制备完毕;如附图8所示。
本步骤中,所述阴极为金属阴极,所述金属阴极中的金属优选为Al或Ag。如可在基板上印刷(喷墨打印、丝网印刷、旋涂、喷涂、刮涂、压印等)导电浆料(如微米银浆,纳米银墨水等),干燥并烧结后制得导电阴极,厚度优选为200nm-2mm;又或者可在基板上利用真空热蒸镀金属阴极(如Al或Ag),厚度优选为50nm-2um。
目前,现有印刷OLED工艺的像素定义层是利用聚酰亚胺材料刻蚀形成子像素坑,由于其厚度很难做厚(即子像素坑的深度有限),而且表面能较高(较亲溶液),所以印刷发光材料液滴时容易出现溢出和互相混合现象,从而使得红绿蓝子像素的发光层不能正确形成。而本发明则对现有技术中存在的上述问题进行了优化改进:先对整个阳极基板印刷一层可溶性含氟绝缘层,再喷墨打印专用的氟溶剂把子像素坑洗开,这样就相当于在原像素定义层上再覆盖上一层含氟绝缘层;通过增加所述可溶性含氟绝缘层,不仅使得子像素坑的深度增加,而且可溶性含氟绝缘层的表面能很低(较疏溶液),因此在印刷发光材料液滴时不会溢出,从而可使得在子像素坑内良好地形成红绿蓝发光层,进而可极大提高印刷OLED显示屏的生产良率。
上述实施例为本发明的较佳的实现方式,并非是对本发明的限定,在不脱离本发明的发明构思的前提下,任何显而易见的替换均在本发明的保护范围之内。

Claims (7)

  1. 一种印刷OLED显示屏的制备方法,所述制备方法的步骤包括:
    S10 、在阳极基板上制备空穴注入层、空穴传输层以及电子阻挡层中的全部三层,或者只制备其中的任意一层或任意两层;
    S20 、利用印刷法,形成可溶性含氟绝缘层封住整个基板;
    S30 、在可溶性含氟绝缘层上喷墨打印氟溶剂,洗开所有的子像素坑;
    S40 、喷墨打印发光材料溶液滴,以使得在子像素坑形成红绿蓝发光层;
    S50 、制备电子注入层、电子传输层以及空穴阻挡层中的全部三层,或者只制备其中的任意一层或任意两层;
    S60 、利用印刷法或蒸镀法制备阴极,最后进行包封,单个印刷OLED显示屏制备完毕。
    其中,在步骤S10中,利用印刷法或蒸镀法制备所述空穴注入层、空穴传输层或电子阻挡层;
    在步骤S20中,所述印刷法包括喷墨打印法、丝网印刷法、旋涂法、喷涂法、刮涂法或压印法;
    在步骤S30中,所述氟溶剂为全氟烷烃、全氟二烷基醚或全氟三烷基胺。
  2. 根据权利要求1所述的制备方法,其特征在于: 所述空穴注入层、空穴传输层或电子阻挡层的厚度为5-100nm。
  3. 根据权利要求1所述的制备方法,其特征在于:所述可溶性含氟绝缘层的厚度为50-2000nm。
  4. 根据权利要求1~3中任意一项所述制备方法,其特征在于: 所述红绿蓝发光层的厚度为20-200nm。
  5. 根据权利要求4所述的制备方法,其特征在于:步骤S50中,所述电子注入层、电子传输层或空穴阻挡层中的厚度为1-50nm。
  6. 根据权利要求5所述的制备方法,其特征在于:步骤S60中,所述阴极为金属阴极。
  7. 根据权利要求6所述的制备方法,其特征在于:所述金属阴极中的金属为Al或Ag。
PCT/CN2017/109602 2017-10-20 2017-11-06 一种印刷oled显示屏的制备方法 WO2019075797A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2017436335A AU2017436335A1 (en) 2017-10-20 2017-11-06 Method for preparing printed OLED display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710986812.1A CN107644951A (zh) 2017-10-20 2017-10-20 一种印刷oled显示屏的制备方法
CN201710986812.1 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019075797A1 true WO2019075797A1 (zh) 2019-04-25

Family

ID=61123970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109602 WO2019075797A1 (zh) 2017-10-20 2017-11-06 一种印刷oled显示屏的制备方法

Country Status (4)

Country Link
US (1) US10388914B2 (zh)
CN (1) CN107644951A (zh)
AU (1) AU2017436335A1 (zh)
WO (1) WO2019075797A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538902B (zh) * 2018-05-21 2020-09-01 深圳市华星光电技术有限公司 Oled背板的制作方法及oled背板
CN110828683B (zh) * 2019-10-28 2021-07-06 深圳市华星光电半导体显示技术有限公司 Oled器件及其制备方法
CN110943109A (zh) * 2019-11-22 2020-03-31 武汉华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法
CN113097423B (zh) * 2021-04-08 2023-05-23 深圳扑浪创新科技有限公司 一种量子点发光层的制备方法
CN113161509A (zh) * 2021-04-25 2021-07-23 上海大学 非真空制备的oled器件及其制备方法
KR20240045247A (ko) 2021-08-02 2024-04-05 메르크 파텐트 게엠베하 잉크들을 결합하는 것에 의한 프린팅 방법
CN113745441B (zh) * 2021-08-20 2023-01-24 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN113745406B (zh) * 2021-11-04 2022-02-08 惠科股份有限公司 像素结构及其制备方法和显示面板
CN115802858B (zh) * 2022-12-01 2023-10-13 安徽芯视佳半导体显示科技有限公司 一种oled直接rgb图形化的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207185A (zh) * 2006-12-22 2008-06-25 群康科技(深圳)有限公司 有机电激发光显示器的制造方法
JP2008243406A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 電気光学装置、および電気光学装置の製造方法
CN102222779A (zh) * 2011-06-01 2011-10-19 友达光电股份有限公司 一种有机发光二极管器件的制造方法
CN103187434A (zh) * 2013-04-01 2013-07-03 京东方科技集团股份有限公司 有机电致发光器件及制备有机电致发光器件的方法
CN106067478A (zh) * 2016-08-08 2016-11-02 深圳市华星光电技术有限公司 像素界定层的制作方法与oled器件的制作方法
CN106784402A (zh) * 2016-12-21 2017-05-31 福州大学 一种非光刻像素bank的制备及其印刷显示应用方法
CN106935735A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示基板的制作方法、显示基板和显示装置
CN107112417A (zh) * 2014-08-01 2017-08-29 正交公司 有机电子装置的光刻法图案化

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055159A (ja) * 2002-07-16 2004-02-19 Dainippon Screen Mfg Co Ltd 有機el素子の製造方法および有機el表示装置
EP1933393A1 (en) * 2006-12-13 2008-06-18 Samsung SDI Co., Ltd. Method of manufacturing a substrate for an electronic device
US7993960B2 (en) * 2006-12-13 2011-08-09 Samsung Mobile Display Co., Ltd. Electronic device and method of manufacturing the same
GB2455747B (en) * 2007-12-19 2011-02-09 Cambridge Display Tech Ltd Electronic devices and methods of making the same using solution processing techniques
CN101916831B (zh) * 2010-06-30 2012-06-27 华南理工大学 一种全印刷方法制备有机电致发光显示屏的方法
KR102042532B1 (ko) * 2013-06-28 2019-11-08 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
US10243175B2 (en) * 2016-02-02 2019-03-26 Samsung Display Co., Ltd. Organic light-emitting apparatus fabricated using a fluoropolymer and method of manufacturing the same
CN105590957B (zh) * 2016-03-03 2019-07-12 深圳市华星光电技术有限公司 一种基于喷墨打印技术的有机发光显示装置及其制造方法
CN106129090B (zh) * 2016-07-22 2019-01-25 华南理工大学 一种线性像素界定层结构及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207185A (zh) * 2006-12-22 2008-06-25 群康科技(深圳)有限公司 有机电激发光显示器的制造方法
JP2008243406A (ja) * 2007-03-26 2008-10-09 Seiko Epson Corp 電気光学装置、および電気光学装置の製造方法
CN102222779A (zh) * 2011-06-01 2011-10-19 友达光电股份有限公司 一种有机发光二极管器件的制造方法
CN103187434A (zh) * 2013-04-01 2013-07-03 京东方科技集团股份有限公司 有机电致发光器件及制备有机电致发光器件的方法
CN107112417A (zh) * 2014-08-01 2017-08-29 正交公司 有机电子装置的光刻法图案化
CN106067478A (zh) * 2016-08-08 2016-11-02 深圳市华星光电技术有限公司 像素界定层的制作方法与oled器件的制作方法
CN106784402A (zh) * 2016-12-21 2017-05-31 福州大学 一种非光刻像素bank的制备及其印刷显示应用方法
CN106935735A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示基板的制作方法、显示基板和显示装置

Also Published As

Publication number Publication date
US20190123308A1 (en) 2019-04-25
CN107644951A (zh) 2018-01-30
US10388914B2 (en) 2019-08-20
AU2017436335A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2019075797A1 (zh) 一种印刷oled显示屏的制备方法
WO2019095452A1 (zh) Oled显示器及其制作方法
CN106129264B (zh) 像素界定层的制作方法与oled器件的制作方法
JP4428533B2 (ja) 薄膜蒸着用のマスクフレーム組立体及び有機電界発光表示装置
WO2020164528A1 (zh) 显示基板及其制备方法、显示装置
WO2017012309A1 (zh) 有机电致发光显示基板及制备方法、显示面板、显示装置
WO2020118842A1 (zh) 阵列基板及其制作方法、显示装置
WO2016074554A1 (zh) 一种像素单元及其制备方法、发光器件、显示装置
WO2017177508A1 (zh) 用于打印成膜工艺的凹槽结构及其制作方法
CN109950292A (zh) 显示基板及其制造方法、显示装置
WO2018120362A1 (zh) Oled基板及其制作方法
WO2020164317A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
US11329246B2 (en) Organic light emitting diode panel and method for fabricating same
CN101647320A (zh) 有机薄膜晶体管基板及其制造方法、以及图像显示面板及其制造方法
US20190379007A1 (en) Manufacturing method for high-resolution array organic film, and use thereof
WO2020238410A1 (zh) 像素界定层和制作方法、显示面板和制作方法、显示装置
WO2022032741A1 (zh) 显示面板及其制备方法
JP4637787B2 (ja) 有機薄膜トランジスタ、それを備えた平板ディスプレイ装置、該有機薄膜トランジスタの製造方法
WO2019196798A1 (zh) 像素界定层、像素结构、显示面板及显示装置
WO2021227153A1 (zh) 显示面板
CN107785504B (zh) 一种oled器件的制备方法
WO2019174289A1 (zh) 显示面板及其制备方法、显示装置
JP3896876B2 (ja) 膜の製造方法、機能素子の製造方法、電気光学装置の製造方法、及び電子機器の製造方法
WO2012169696A1 (ko) 바코팅을 이용한 유기반도체 박막의 제조방법
CN113270564A (zh) 一种基于电流体印刷量子点发光层的qled器件及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017436335

Country of ref document: AU

Date of ref document: 20171106

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929323

Country of ref document: EP

Kind code of ref document: A1