WO2017177508A1 - 用于打印成膜工艺的凹槽结构及其制作方法 - Google Patents

用于打印成膜工艺的凹槽结构及其制作方法 Download PDF

Info

Publication number
WO2017177508A1
WO2017177508A1 PCT/CN2016/082701 CN2016082701W WO2017177508A1 WO 2017177508 A1 WO2017177508 A1 WO 2017177508A1 CN 2016082701 W CN2016082701 W CN 2016082701W WO 2017177508 A1 WO2017177508 A1 WO 2017177508A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
dam
bank
enlarged
opening
Prior art date
Application number
PCT/CN2016/082701
Other languages
English (en)
French (fr)
Inventor
郝鹏
吕伯彦
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/114,851 priority Critical patent/US10084132B2/en
Publication of WO2017177508A1 publication Critical patent/WO2017177508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein

Definitions

  • the present invention relates to the field of manufacturing technology of an organic light emitting diode display device, and more particularly to a groove structure for a film forming process and a method of fabricating the same.
  • OLED Organic Light Emitting Display
  • OLED Organic Light Emitting Display
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • the structure of an OLED display device generally includes a substrate, an anode, a cathode, and an organic functional layer sandwiched between the anode and the cathode.
  • the organic functional layer generally includes a Hole Transport Layer (HTL), an Emissive Layer (EML), and an Electro Transport Layer (ETL).
  • Each functional layer may be one layer, or more than one layer, for example, a hole transport functional layer, which may be subdivided into a Hole Injection Layer (HIL) and a hole transport layer; an electron transport functional layer may be subdivided It is an electron transport layer and an electron injection layer (EIL).
  • HIL Hole Injection Layer
  • EIL electron injection layer
  • the principle of luminescence of OLED display devices is that semiconductor materials and organic luminescent materials are driven by electric fields, causing luminescence by carrier injection and recombination.
  • the OLED display device is generally produced by first forming an anode on a substrate, forming a hole transport layer on the anode, forming a light-emitting functional layer on the hole transport layer, and forming an electron transport functional layer on the light-emitting functional layer.
  • a cathode is formed on the transport functional layer, and the material of the cathode and the anode is usually indium tin oxide (ITO).
  • ITO indium tin oxide
  • the preparation methods of organic functional layers such as HTL, EML, and ETL generally include vacuum thermal evaporation and solution processing.
  • the so-called solution film formation is to process the required materials, such as fine particles dispersed into nanometers, and then dissolved in the corresponding solution, and then deposit the solution on the surface of the substrate by using a film forming device. A desired film is formed on the surface of the substrate.
  • the specific manner of film formation can be further subdivided into Ink-jet Printing, Nozzle Printing, Roller Printing, Spin Coating, and the like.
  • a groove is usually formed to restrict the ink, and after drying and baking, the ink shrinks to form a film within a range limited by the groove.
  • the groove 120 is surrounded by a dam 110 disposed on the periphery of the substrate 100 and the ITO anode 130.
  • the high-precision printer accurately drops the ink into the groove 120 through the groove 120.
  • the ink is deposited therein to form an organic functional layer such as the hole injection layer 140, the hole transport layer 150, and the light-emitting function layer 160.
  • the difficulty of making high-resolution OLED display panels increases product competitiveness.
  • the size reduces the accuracy of the printing device, reduces the difficulty of making high-resolution OLED display panels, and enhances product competitiveness.
  • the present invention provides a groove structure for a film forming process, the groove structure being located on a substrate, comprising: a first bank, a first groove surrounded by the first bank, and a second dam on the first dam and a second groove surrounded by the second dam;
  • the first groove and the second groove are mutually penetrated and the central axis is the same, and the opening of the second groove is at least the largest portion of the opening of the first groove;
  • the inclined inner peripheral surface of the first dam surrounding the first groove is a hydrophilic surface; the upper surface of the first dam, the inclined inner circumferential surface of the second dam surrounding the second groove, and the second dam
  • the upper surface is a hydrophobic surface.
  • the groove structure is used for printing film formation of an organic functional layer of an OLED display device, the substrate is provided with an anode, and the first bank is disposed on a peripheral edge of the anode and the substrate.
  • the opening size of the first recess is determined according to the pixel density of the OLED display device.
  • the method further includes a plurality of enlarged dams stacked on the second dam, and a plurality of enlarged grooves surrounded by the plurality of enlarged dams;
  • the openings of the plurality of enlarged grooves gradually increase from bottom to top, and the opening of the enlarged groove of the upper layer is at least the largest portion of the opening of the enlarged groove of the lower layer;
  • the plurality of enlarged grooves are mutually penetrated with the first groove and the second groove and have the same central axis;
  • the enlarged inner peripheral surface of the enlarged dam surrounding the enlarged groove and the upper surface of the enlarged dam are all hydrophobic surfaces.
  • the distance from the bottom corner of the second bank to the apex angle of the first bank is not more than two-thirds of the radius of the ink droplets when the film is formed.
  • the distance from the bottom corner of the second dam to the apex angle of the first dam is 10-20 ⁇ m.
  • the invention also provides a method for manufacturing a groove for printing a film forming process, comprising the following steps:
  • Step 1 Providing a substrate and a first bank material, forming a first bank on the substrate and a first groove surrounded by the first bank by using a first bank material by a coating, drying, and etching process;
  • Step 2 providing a second dam material, forming a second dam on the first dam and a second groove surrounded by the second dam by a coating, drying, and etching process using the second dam material;
  • the first groove and the second groove are mutually penetrated and the central axis is the same, and the opening of the second groove is at least the largest portion of the opening of the first groove;
  • the inclined inner peripheral surface of the first dam surrounding the first groove is a hydrophilic surface; the upper surface of the first dam, the inclined inner circumferential surface of the second dam surrounding the second groove, and the second dam
  • the upper surface is a hydrophobic surface.
  • the groove structure is used for printing film formation of an organic functional layer of an OLED display device, the substrate is provided with an anode, and the first bank is disposed on a peripheral edge of the anode and the substrate; the first groove The opening size is determined according to the pixel density of the OLED display device.
  • the distance from the bottom corner of the second bank to the apex angle of the first bank is not more than two-thirds of the radius of the ink droplets when the film is formed.
  • the distance from the bottom corner of the second dam to the apex angle of the first dam is 10-20 ⁇ m.
  • the present invention also provides a groove structure for a printing film forming process, the groove structure being located on a substrate, comprising: a first dam, a first groove surrounded by the first dam, and being disposed on the first dam a second dam and a second recess surrounded by the second dam;
  • the first groove and the second groove are mutually penetrated and the central axis is the same, and the opening of the second groove is at least the largest portion of the opening of the first groove;
  • the inclined inner peripheral surface of the first dam surrounding the first groove is a hydrophilic surface; the upper surface of the first dam, the inclined inner circumferential surface of the second dam surrounding the second groove, and the second dam
  • the upper surface is a hydrophobic surface;
  • the method further includes a plurality of enlarged dams stacked on the second dam, and a plurality of enlarged grooves surrounded by the plurality of enlarged dams;
  • the openings of the plurality of enlarged grooves gradually increase from bottom to top, and the opening of the enlarged groove of the upper layer is at least the largest portion of the opening of the enlarged groove of the lower layer;
  • the plurality of enlarged grooves are mutually penetrated with the first groove and the second groove and have the same central axis;
  • the enlarged inner circumferential surface of the enlarged dam surrounded by the enlarged groove and the upper surface of the enlarged dam are all hydrophobic surfaces;
  • the groove structure is used for printing film formation of an organic functional layer of the OLED display device
  • the substrate is provided with an anode
  • the first bank is disposed on the peripheral edge of the anode and the substrate.
  • the present invention provides a groove structure for a printing film forming process by designing a groove structure into a first groove surrounded by a first bank and a second wall surrounded by a second bank a stacked structure of two grooves, wherein the first groove and the second groove are mutually penetrated and the central axis is the same, and the opening of the second groove is at a minimum larger than the opening of the first groove,
  • the inclined inner peripheral surface of the first dam surrounding the first groove is a hydrophilic surface, the upper surface of the first dam, the second dam surrounding the inclined inner peripheral surface of the second groove, and the second dam
  • the surface is a hydrophobic surface, which can increase the size of the opening of the groove for printing film formation without reducing the pixel density, so that the ink droplets are more likely to drip into the groove, thereby reducing the accuracy of the printing device and reducing the accuracy.
  • the difficulty of making high-resolution OLED display panels increases product competitiveness.
  • the present invention also provides a method for fabricating a groove for a film forming process, wherein the groove formed by the method can increase the opening size of a groove for printing a film without lowering the pixel density. It reduces the requirements on the accuracy of printing equipment, reduces the difficulty of making high-resolution OLED display panels, enhances product competitiveness, and makes the production method simple and fast.
  • FIG. 1 is a schematic view showing a conventional groove structure for a film forming process
  • FIG. 2 is a schematic view showing the relationship between the groove and the ink in the groove structure shown in FIG. 1;
  • FIG. 3 is a schematic view of the prior art when the pixel density is increased and the groove opening is decreased, and the ink droplet is dropped outside the groove;
  • FIG. 4 is a schematic view showing the structure of a groove for a film forming process of the present invention, and using the groove junction Schematic diagram of the process of dropping ink droplets when printing into a film;
  • Figure 5 is a flow chart showing a method of fabricating a groove for a film forming process of the present invention.
  • the present invention firstly provides a groove structure for a film forming process, the groove structure is located on the substrate 10, and includes: a first bank 11, a first groove surrounded by the first bank 11 14. A second bank 12 disposed on the first bank 11 and a second groove 15 surrounded by the second bank 12;
  • the first groove 14 and the second groove 15 are mutually penetrated and the central axis is the same, and the opening of the second groove 15 is at least the largest portion of the opening of the first groove 14;
  • the inclined inner circumferential surface of the first bank 11 is a hydrophilic surface; the upper surface of the first bank 11 and the second bank 12 are surrounded by the inclined inner circumferential surface of the second groove 15 And the upper surface of the second bank 12 is a hydrophobic surface.
  • the groove structure is used for printing film formation of an organic functional layer of an OLED display device, and the substrate 10 is provided with an anode 13 disposed on a peripheral edge of the anode 13 and the substrate 10
  • the printing device can drop the drop into the second groove 15
  • the printing can be successfully performed, and when the ink droplet is not successfully dropped into the first groove 14,
  • the upper surface of the first bank 11, the second bank 12 is surrounded by the inclined inner peripheral surface of the second groove 15, and the second bank 12
  • the upper surface is characterized by a hydrophobic surface, and the ink droplets flow along the second bank 12 to form the inclined inner peripheral surface of the second groove 15 and the upper surface of the first bank 11 flow into the first groove 14, and
  • the first bank 11 is surrounded by the inclined inner peripheral surface of the first groove 14 to be a hydrophilic surface, and the ink droplets can be successfully locked in the first groove 14 to deposit a film.
  • the OLED display having the pixel opening equivalent to the opening size of the first groove 14 can be successfully fabricated.
  • the device applies the above groove structure to the manufacturing process of the high-resolution OLED display device, can effectively reduce the precision of the printing device, reduce the difficulty in manufacturing the high-resolution OLED display panel, and enhance the product competitiveness.
  • the substrate 10 is a thin film transistor array substrate.
  • the opening size of the first groove 14 is determined according to the pixel density of the OLED display device.
  • the above groove structure for printing film formation is not limited to the knot of the double dam a plurality of enlarged grooves which are formed by stacking a plurality of enlarged dams and surrounded by the plurality of enlarged dams, and the plurality of enlarged grooves can be further enlarged for printing on the second dam 12
  • the groove opening of the film-forming groove further reduces the difficulty of ink dripping into the groove.
  • the openings of the plurality of enlarged grooves gradually increase from bottom to top, and the opening of the enlarged groove of the upper layer is at least the largest portion of the opening of the enlarged groove of the lower layer, and the plurality of enlarged grooves are respectively the first concave
  • the groove 14 and the second groove 15 are mutually penetrated and the center axis is the same, the enlarged inner circumference of the enlarged bank surrounded by the enlarged groove, and the upper surface of the enlarged bank are all hydrophobic surfaces.
  • the remaining surface should be a hydrophobic surface to facilitate the ink droplets flowing into the first groove 14, and the first The inclined inner peripheral surface of a groove 14 is a hydrophilic surface to facilitate deposition of ink.
  • the distance X from the bottom corner of the second bank 12 to the apex angle of the first bank 11 does not exceed two-thirds of the radius of the ink droplets when the film is formed.
  • the distance X from the bottom corner of the second bank 12 to the apex angle of the first bank 11 is 10 to 20 ⁇ m.
  • the openings of the lower surfaces of the first groove 14 and the second groove 15 are smaller than the openings of the upper surface, that is, the shapes of the first groove 14 and the second groove 15 may be inverted trapezoidal bodies or inverted Round table.
  • an organic functional layer such as a hole injection layer, a hole transport layer, a light-emitting function layer, or the like of the OLED display device can be fabricated by depositing a corresponding ink material into the first recess 14 when the OLED display device is fabricated.
  • the present invention also provides a method for manufacturing a groove for a film forming process, comprising the following steps:
  • Step 1 Providing a substrate 10 and a first bank material, forming a first bank 11 on the substrate 10 by a coating, drying, and etching process with a first bank material, and a first surrounded by the first bank 11 Groove 14.
  • the step 1 includes first coating a first dam material on the first substrate 10, then drying the first dam material to form a film solidified by the first dam material, and then at the first dam The film of material is etched to form a first bank 11 and a first groove 14 surrounded by the first bank 11.
  • the groove structure is used for printing film formation of an organic functional layer of an OLED display device, and the first bank 11 and the first groove 14 surrounded by the first bank 11 correspond to the OLED display device
  • the array of pixel structures is arranged on the substrate 10.
  • the opening size of the first recess 14 is determined according to the pixel density of the OLED display device.
  • the substrate 10 is a thin film transistor array substrate.
  • Step 2 providing a second dam material, coating, drying, and etching with the second dam material
  • the process forms a second bank 12 on the first bank 11 and a second groove 15 surrounded by the second bank 12.
  • the step 2 includes first coating a second dam material on the first dam 11, then drying the second dam material to form a film solidified by the second dam material, and then at the second dam Etching is performed on the film of material to form a second bank 12 and a second groove 15 surrounded by the second bank 12.
  • the groove structure is used for printing film formation of an organic functional layer of the OLED display device, and the second bank 12 and the second groove 15 surrounded by the second bank 12 correspond to the OLED display device
  • the array of pixel structures is arranged on the substrate 10.
  • first groove 14 and the second groove 15 are mutually penetrated and the central axis is the same, and the opening of the second groove 15 is at least the largest portion of the opening of the first groove 14;
  • the inclined inner circumferential surface of the first bank 11 is a hydrophilic surface; the upper surface of the first bank 11 and the second bank 12 are surrounded by the inclined inner circumferential surface of the second groove 15 And the upper surface of the second bank 12 is a hydrophobic surface.
  • the groove structure is used for printing film formation of an organic functional layer of an OLED display device, and the substrate 10 is provided with an anode 13 disposed on a peripheral edge of the anode 13 and the substrate 10
  • the printing device can drop the ink droplet into the second groove 15
  • the printing can be successfully performed, and when the ink droplet fails to succeed in the first groove 14, the second film is dropped into the second groove 14
  • the first groove 14 is outside the groove 15
  • the upper surface of the first bank 11, the second bank 12 is surrounded by the inclined inner circumferential surface of the second groove 15, and the upper surface of the second bank 12 is The characteristics of the hydrophobic surface, the ink droplets will follow the second inner bank 12 and the inclined inner circumferential surface of the second groove 15 and the upper surface of the first bank 11 flow into the first groove 14, and the first bank
  • the inclined inner peripheral surface of the first groove 14 is a hydrophilic surface, and the ink droplets can be successfully locked in the first groove 14 to deposit
  • the OLED display having the pixel opening equivalent to the opening size of the first groove 14 can be successfully fabricated.
  • the device applies the above groove structure to the manufacturing process of the high-resolution OLED display device, can effectively reduce the precision of the printing device, reduce the difficulty in manufacturing the high-resolution OLED display panel, and enhance the product competitiveness.
  • the above-mentioned groove structure for printing film formation is not limited to the structure of the double-deck dam, and a plurality of enlarged dams may be continuously stacked on the second dam 12 and surrounded by the plurality of enlarged dams.
  • the openings of the plurality of enlarged grooves gradually increase from bottom to top, and the upper layer is enlarged
  • the opening of the groove is at least the largest portion of the opening of the enlarged groove of the lower layer, and the plurality of enlarged grooves are mutually penetrated with the first groove 14 and the second groove 15 and the central axis is the same, and the enlarged dam is surrounded by
  • the inclined inner peripheral surface of the enlarged groove and the enlarged upper surface of the dam are all hydrophobic surfaces.
  • the remaining surfaces should be hydrophobic surfaces to facilitate the ink droplets flowing into the first groove 14, and the first The inclined inner peripheral surface of the groove 14 is a hydrophilic surface to facilitate deposition of ink.
  • the distance X from the bottom corner of the second bank 12 to the apex angle of the first bank 11 does not exceed two-thirds of the radius of the ink droplets when the film is formed.
  • the distance X from the bottom corner of the second bank 12 to the apex angle of the first bank 11 is 10 to 20 ⁇ m.
  • the openings of the lower surfaces of the first groove 14 and the second groove 15 are smaller than the openings of the upper surface, that is, the shapes of the first groove 14 and the second groove 15 may be inverted trapezoidal bodies or inverted Round table.
  • an organic functional layer such as a hole injection layer, a hole transport layer, a light-emitting function layer, or the like of the OLED display device can be fabricated by depositing a corresponding ink material into the first recess 14 when the OLED display device is fabricated.
  • the present invention provides a groove structure for a printing film forming process by designing a groove structure into a first groove surrounded by a first bank and a second groove surrounded by a second bank a laminated structure of the grooves, wherein the first groove and the second groove are mutually penetrated and the central axis is the same, and the opening of the second groove is at least the largest portion of the opening of the first groove, the first
  • the inclined inner peripheral surface of a dam surrounding the first groove is a hydrophilic surface
  • the upper surface of the first dam, the second dam surrounding the inclined inner peripheral surface of the second groove, and the upper surface of the second dam All of them are hydrophobic surfaces, which can increase the size of the opening of the groove for printing film formation without reducing the pixel density, so that the ink droplets can be easily dropped into the groove, which reduces the precision of the printing device and reduces the height.
  • the present invention also provides a method for fabricating a groove for a film forming process, wherein the groove formed by the method can increase the opening size of a groove for printing a film without lowering the pixel density. It reduces the requirements on the accuracy of printing equipment, reduces the difficulty of making high-resolution OLED display panels, enhances product competitiveness, and makes the production method simple and fast.

Abstract

提供一种用于打印成膜工艺的凹槽结构及其制作方法,通过将凹槽结构设计成由第一堤坝(11)围拢成的第一凹槽(14)和由第二堤坝(12)围拢成的第二凹槽(15)的层叠结构,且所述第一凹槽(14)与第二凹槽(15)相互贯通且中心轴线相同,所述第二凹槽(15)的开口最小处大于所述第一凹槽(14)的开口最大处,所述第一堤坝(11)围拢成第一凹槽(14)的倾斜内周面为亲水性表面,所述第一堤坝(11)的上表面、第二堤坝(12)围拢成第二凹槽(15)的倾斜内周面、以及第二堤坝(12)的上表面均为疏水性表面,进而能够在不降低像素密度的前提下增加用于打印成膜的凹槽的开口大小,使得墨滴更容易滴入凹槽中,降低对打印设备精度的要求,降低高分辨率有机发光二极管(OLED)显示面板的制作难度,提升产品竞争力。

Description

用于打印成膜工艺的凹槽结构及其制作方法 技术领域
本发明涉及有机发光二极管显示器件制造技术领域,尤其涉及一种用于打印成膜工艺的凹槽结构及其制作方法。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示器件具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示器件的结构一般包括:基板、阳极、阴极以及夹在阳极与阴极之间的有机功能层。其中有机功能层,一般包括空穴传输功能层(Hole Transport Layer,HTL)、发光功能层(Emissive Layer,EML)、及电子传输功能层(Electron Transport Layer,ETL)。每个功能层可以是一层,或者一层以上,例如空穴传输功能层,可以细分为空穴注入层(Hole Injection Layer,HIL)和空穴传输层;电子传输功能层,可以细分为电子传输层和电子注入层(Electron Injection Layer,EIL)。OLED显示器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。
OLED显示器件的制作方法通常为,先在基板上形成阳极,在该阳极上形成空穴传输层,在空穴传输层上形成发光功能层,在发光功能层上形成电子传输功能层,在电子传输功能层上形成阴极,其中阴极与阳极的材料通常采用氧化铟锡(ITO)。HTL、EML、ETL等有机功能层的制备方式通常包括真空热蒸镀(Vacuum Thermal Evaporation)与溶液成膜(Solution Process)两种。
所谓溶液成膜即是把所需材料经过处理,比如分散成纳米级的微小颗粒,然后溶解在相应的溶液中,再应用成膜设备将该溶液沉积在基板表面,待溶剂挥发后,即可在基板表面形成所需薄膜。成膜的具体方式又可以细分为喷墨打印(Ink-jet Printing)、连续打印(Nozzle Printing)、滚筒打印(Roller Printing)、旋转涂布(Spin Coating)等。
在应用打印成膜工艺的基板上,通常会制作凹槽,用来限制住墨水,通过干燥烘烤后,墨水收缩在该凹槽限制的范围内形成薄膜。请参阅图1, 所述凹槽120由设于基板100、及ITO阳极130四周边缘上的堤坝110围成,如图2所示,高精度的打印机将墨水准确的滴入凹槽120中,通过在凹槽120内沉积墨水,形成空穴注入层140、空穴传输层150、发光功能层160等有机功能层。
随着显示技术的不断发展,显示面板的分辨率也越来越高,要实现高分辨率的产品,则需要将像素设计的比较小,随之也需要将凹槽的开口设计的更小(如宽度40um或以下)。这对打印设备提出了很苛刻的要求,目前市场上几乎没有可以打印高像素密度(pixels per inch,PPI)的成膜设备,如图3所示,如果打印设备精度不足或者凹槽的开口太小,从打印设备内滴落的墨滴可能不会落到预期的凹槽开口中去,进而引起制程不良,造成产品稳定性下降。
发明内容
本发明的目的在于提供一种用于打印成膜工艺的凹槽结构,能够在不降低像素密度的前提下增加用于打印成膜的凹槽的开口大小,降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力。
本发明的目的还在于提供一种用于打印成膜工艺的凹槽的制作方法,采用该方法制得的凹槽能够在不降低像素密度的前提下增加用于打印成膜的凹槽的开口大小,降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力。
为实现上述目的,本发明提供了一种用于打印成膜工艺的凹槽结构,该凹槽结构位于基板上,包括:第一堤坝、由第一堤坝围拢成的第一凹槽、设于第一堤坝上的第二堤坝、及由第二堤坝围拢成的第二凹槽;
所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处;
所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面;所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面。
所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板上设有阳极,所述第一堤坝设于所述阳极的四周边缘及基板上。
所述第一凹槽的开口大小根据所述OLED显示器件的像素密度确定。
还包括层叠设置于所述第二堤坝上的多个扩大堤坝、以及由所述多个扩大堤坝围拢成的多个扩大凹槽;
所述多个扩大凹槽的开口自下而上逐渐增大,且上层的扩大凹槽的开口最小处大于下层的扩大凹槽的开口最大处;
所述多个扩大凹槽均与第一凹槽和第二凹槽相互贯通且中心轴线相同;
所述扩大堤坝围拢成扩大凹槽的倾斜内周面、以及扩大堤坝的上表面均为疏水性表面。
所述第二堤坝的底角到第一堤坝的顶角的距离不超过打印成膜时墨滴的半径的三分之二。
所述第二堤坝的底角到第一堤坝的顶角的距离为10~20μm。
本发明还提供一种用于打印成膜工艺的凹槽的制作方法,包括如下步骤:
步骤1、提供一基板和第一堤坝材料,用第一堤坝材料通过涂布、干燥、及蚀刻工艺在所述基板上形成第一堤坝、及由第一堤坝围拢成的第一凹槽;
步骤2、提供第二堤坝材料,用第二堤坝材料通过涂布、干燥、及蚀刻工艺在所述第一堤坝上形成第二堤坝、及由第二堤坝围拢成的第二凹槽;
所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处;
所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面;所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面。
所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板上设有阳极,所述第一堤坝设于所述阳极的四周边缘及基板上;所述第一凹槽的开口大小根据所述OLED显示器件的像素密度确定。
所述第二堤坝的底角到第一堤坝的顶角的距离不超过打印成膜时墨滴的半径的三分之二。
所述第二堤坝的底角到第一堤坝的顶角的距离为10~20μm。
本发明还提供一种用于打印成膜工艺的凹槽结构,该凹槽结构位于基板上,包括:第一堤坝、由第一堤坝围拢成的第一凹槽、设于第一堤坝上的第二堤坝、及由第二堤坝围拢成的第二凹槽;
所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处;
所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面;所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面;
还包括层叠设置于所述第二堤坝上的多个扩大堤坝、以及由所述多个扩大堤坝围拢成的多个扩大凹槽;
所述多个扩大凹槽的开口自下而上逐渐增大,且上层的扩大凹槽的开口最小处大于下层的扩大凹槽的开口最大处;
所述多个扩大凹槽均与第一凹槽和第二凹槽相互贯通且中心轴线相同;
所述扩大堤坝围拢成扩大凹槽的倾斜内周面、以及扩大堤坝的上表面均为疏水性表面;
其中,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板上设有阳极,所述第一堤坝设于所述阳极的四周边缘及基板上。
本发明的有益效果:本发明提供了一种用于打印成膜工艺的凹槽结构,通过将凹槽结构设计成由第一堤坝围拢成的第一凹槽和由第二堤坝围拢成的第二凹槽的层叠结构,且所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处,所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面,所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面,进而能够在不降低像素密度的前提下增加用于打印成膜的凹槽的开口大小,使得墨滴更容易滴入凹槽中,降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力。本发明还提供了一种用于打印成膜工艺的凹槽的制作方法,采用该方法的制得的凹槽能够在不降低像素密度的前提下增加用于打印成膜的凹槽的开口大小,降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力,且制作方法简单快捷。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的用于打印成膜工艺的凹槽结构示意图;
图2为图1所示的凹槽结构中凹槽与墨水的关系示意图;
图3为现有技术中当像素密度增大凹槽开口减小时墨滴滴落到凹槽外的示意图;
图4为本发明的用于打印成膜工艺的凹槽结构示意图暨采用该凹槽结 构进行打印成膜时墨滴滴落过程的示意图;
图5为本发明的用于打印成膜工艺的凹槽的制作方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图4,本发明首先提供一种用于打印成膜工艺的凹槽结构,该凹槽结构位于基板10上,包括:第一堤坝11、由第一堤坝11围拢成的第一凹槽14、设于第一堤坝11上的第二堤坝12、及由第二堤坝12围拢成的第二凹槽15;
所述第一凹槽14与第二凹槽15相互贯通且中心轴线相同,所述第二凹槽15的开口最小处大于所述第一凹槽14的开口最大处;
所述第一堤坝11围拢成第一凹槽14的倾斜内周面为亲水性表面;所述第一堤坝11的上表面、第二堤坝12围拢成第二凹槽15的倾斜内周面、以及第二堤坝12的上表面均为疏水性表面。
具体地,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板10上设有阳极13,所述第一堤坝11设于所述阳极13的四周边缘及基板10上,采用上述凹槽结构打印成膜时,只要打印设备能够将墨滴(drop)滴入到第二凹槽15内即可成功打印,当墨滴未能成功滴入第一凹槽14内而滴入第二凹槽15内第一凹槽14外时,由于所述第一堤坝11的上表面、第二堤坝12围拢成第二凹槽15的倾斜内周面、以及第二堤坝12的上表面均为疏水性表面的特性,墨滴会顺着第二堤坝12围拢成第二凹槽15的倾斜内周面和第一堤坝11的上表面流入到第一凹槽14内,而所述第一堤坝11围拢成第一凹槽14的倾斜内周面为亲水性表面则可以成功将墨滴锁定在第一凹槽14内,以沉积成膜。
至此,也即仅需要打印设备的精度能够达到将墨滴准确滴入相当于第二凹槽15的开口内的标准时,即可成功制作像素开口相当于第一凹槽14的开口大小的OLED显示器件,将上述凹槽结构应用于高分辨率的OLED显示器件的制作过程中,能够有效降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力。
具体的,所述基板10为薄膜晶体管阵列基板。
具体地,所述第一凹槽14的开口大小根据所述OLED显示器件的像素密度确定。
进一步地,上述用于打印成膜的凹槽结构并不局限于双层堤坝的结 构,还可以在第二堤坝12上继续层叠设置多个扩大堤坝、并由所述多个扩大堤坝围拢成的多个扩大凹槽,通过该多个扩大凹槽可进一步的增大用于打印成膜的凹槽的凹槽开口,进一步降低墨水滴入凹槽内的难度。
具体地。所述多个扩大凹槽的开口自下而上逐渐增大,且上层的扩大凹槽的开口最小处大于下层的扩大凹槽的开口最大处,所述多个扩大凹槽均与第一凹槽14与第二凹槽15相互贯通且中心轴线相同,所述扩大堤坝围拢成扩大凹槽的倾斜内周面、以及扩大堤坝的上表面均为疏水性表面。也即对于该凹槽结构来说,除去第一堤坝11围拢成第一凹槽14的倾斜内周面外,其余表面均应为疏水性表面以利于墨滴流入第一凹槽14,而第一凹槽14的倾斜内周面为亲水性表面,以利于墨水的沉积。
需要说明的是,所述第二堤坝12的底角到第一堤坝11的顶角的距离X不超过打印成膜时墨滴的半径的三分之二。
优选地,所述第二堤坝12的底角到第一堤坝11的顶角的距离X为10~20μm。所述第一凹槽14和第二凹槽15的下表面的开口均小于上表面的开口,也即所述第一凹槽14和第二凹槽15的形状可以为倒置的梯形体或倒置的圆台。
具体地,在制作OLED显示器件时通过将相应的墨水材料沉积到该第一凹槽14内可以制作OLED显示器件空穴注入层、空穴传输层、发光功能层等有机功能层。
请参阅图5,本发明还提供一种用于打印成膜工艺的凹槽的制作方法,包括如下步骤:
步骤1、提供一基板10和第一堤坝材料,用第一堤坝材料通过涂布、干燥、及蚀刻工艺在所述基板10上形成第一堤坝11、及由第一堤坝11围拢成的第一凹槽14。
具体地,所述步骤1包括:首先在第一基板10上涂布第一堤坝材料,随后干燥所述第一堤坝材料,形成由第一堤坝材料固化成的薄膜,然后在所述第一堤坝材料的薄膜上进行蚀刻,形成第一堤坝11、及由第一堤坝11围拢成的第一凹槽14。
进一步地,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述第一堤坝11、及由第一堤坝11围拢成的第一凹槽14对应所述OLED显示器件的像素结构阵列排布于基板10上。所述第一凹槽14的开口大小根据所述OLED显示器件的像素密度确定。
具体的,所述基板10为薄膜晶体管阵列基板。
步骤2、提供第二堤坝材料,用第二堤坝材料通过涂布、干燥、及蚀刻 工艺在所述第一堤坝11上形成第二堤坝12、及由第二堤坝12围拢成的第二凹槽15。
具体地,所述步骤2包括:首先在第一堤坝11上涂布第二堤坝材料,随后干燥所述第二堤坝材料,形成由第二堤坝材料固化成的薄膜,然后在所述第二堤坝材料的薄膜上进行蚀刻,形成第二堤坝12、及由第二堤坝12围拢成的第二凹槽15。
进一步地,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述第二堤坝12、及由第二堤坝12围拢成的第二凹槽15对应所述OLED显示器件的像素结构阵列排布于基板10上。
具体地,所述第一凹槽14与第二凹槽15相互贯通且中心轴线相同,所述第二凹槽15的开口最小处大于所述第一凹槽14的开口最大处;
所述第一堤坝11围拢成第一凹槽14的倾斜内周面为亲水性表面;所述第一堤坝11的上表面、第二堤坝12围拢成第二凹槽15的倾斜内周面、以及第二堤坝12的上表面均为疏水性表面。
具体地,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板10上设有阳极13,所述第一堤坝11设于所述阳极13的四周边缘及基板10上,采用上述凹槽结构打印成膜时,只要打印设备能够将墨滴滴入到第二凹槽15内即可成功打印,当墨滴未能成功第一凹槽14内而滴入第二凹槽15内第一凹槽14外时,由于所述第一堤坝11的上表面、第二堤坝12围拢成第二凹槽15的倾斜内周面、以及第二堤坝12的上表面均为疏水性表面的特性,墨滴会顺着第二堤坝12围拢成第二凹槽15的倾斜内周面和第一堤坝11的上表面流入到第一凹槽14内,而所述第一堤坝11围拢成第一凹槽14的倾斜内周面为亲水性表面则可以成功将墨滴锁定在第一凹槽14内,以沉积成膜。
至此,也即仅需要打印设备的精度能够达到将墨滴准确滴入相当于第二凹槽15的开口内的标准时,即可成功制作像素开口相当于第一凹槽14的开口大小的OLED显示器件,将上述凹槽结构应用于高分辨率的OLED显示器件的制作过程中,能够有效降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力。
进一步地,上述用于打印成膜的凹槽结构并不局限于双层堤坝的结构,还可以在第二堤坝12上继续层叠设置多个扩大堤坝、并由所述多个扩大堤坝围拢成的多个扩大凹槽,通过该多个扩大凹槽可进一步的增大用于打印成膜的凹槽的凹槽开口,进一步降低墨水滴入凹槽内的难度。
具体地。所述多个扩大凹槽的开口自下而上逐渐增大,且上层的扩大 凹槽的开口最小处大于下层的扩大凹槽的开口最大处,所述多个扩大凹槽均与第一凹槽14与第二凹槽15相互贯通且中心轴线相同,所述扩大堤坝围拢成扩大凹槽的倾斜内周面、以及扩大堤坝的上表面均为疏水性表面。也即对于该凹槽结构来说除去第一堤坝11围拢成第一凹槽14的倾斜内周面外,其余表面均应为疏水性表面以利于墨滴流入第一凹槽14,而第一凹槽14的倾斜内周面为亲水性表面,以利于墨水的沉积。
需要说明的是,所述第二堤坝12的底角到第一堤坝11的顶角的距离X不超过打印成膜时墨滴的半径的三分之二。
优选地,所述第二堤坝12的底角到第一堤坝11的顶角的距离X为10~20μm。所述第一凹槽14和第二凹槽15的下表面的开口均小于上表面的开口,也即所述第一凹槽14和第二凹槽15的形状可以为倒置的梯形体或倒置的圆台。
具体地,在制作OLED显示器件时通过将相应的墨水材料沉积到该第一凹槽14内可以制作OLED显示器件空穴注入层、空穴传输层、发光功能层等有机功能层。
综上所述,本发明提供了一种用于打印成膜工艺的凹槽结构,通过将凹槽结构设计成由第一堤坝围拢成的第一凹槽和由第二堤坝围拢成的第二凹槽的层叠结构,且所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处,所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面,所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面,进而能够在不降低像素密度的前提下增加用于打印成膜的凹槽的开口大小,使得墨滴更容易滴入凹槽中,降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力。本发明还提供了一种用于打印成膜工艺的凹槽的制作方法,采用该方法的制得的凹槽能够在不降低像素密度的前提下增加用于打印成膜的凹槽的开口大小,降低对打印设备精度的要求,降低高分辨率OLED显示面板的制作难度,提升产品竞争力,且制作方法简单快捷。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (14)

  1. 一种用于打印成膜工艺的凹槽结构,该凹槽结构位于基板上,包括:第一堤坝、由第一堤坝围拢成的第一凹槽、设于第一堤坝上的第二堤坝、及由第二堤坝围拢成的第二凹槽;
    所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处;
    所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面;所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面。
  2. 如权利要求1所述的用于打印成膜工艺的凹槽结构,其中,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板上设有阳极,所述第一堤坝设于所述阳极的四周边缘及基板上。
  3. 如权利要求2所述的用于打印成膜工艺的凹槽结构,其中,所述第一凹槽的开口大小根据所述OLED显示器件的像素密度确定。
  4. 如权利要求1所述的用于打印成膜工艺的凹槽结构,还包括层叠设置于所述第二堤坝上的多个扩大堤坝、以及由所述多个扩大堤坝围拢成的多个扩大凹槽;
    所述多个扩大凹槽的开口自下而上逐渐增大,且上层的扩大凹槽的开口最小处大于下层的扩大凹槽的开口最大处;
    所述多个扩大凹槽均与第一凹槽和第二凹槽相互贯通且中心轴线相同;
    所述扩大堤坝围拢成扩大凹槽的倾斜内周面、以及扩大堤坝的上表面均为疏水性表面。
  5. 如权利要求1所述的用于打印成膜工艺的凹槽结构,其中,所述第二堤坝的底角到第一堤坝的顶角的距离不超过打印成膜时墨滴的半径的三分之二。
  6. 如权利要求5所述的用于打印成膜工艺的凹槽结构,其中,所述第二堤坝的底角到第一堤坝的顶角的距离为10~20μm。
  7. 一种用于打印成膜工艺的凹槽的制作方法,包括如下步骤:
    步骤1、提供一基板和第一堤坝材料,用第一堤坝材料通过涂布、干燥、及蚀刻工艺在所述基板上形成第一堤坝、及由第一堤坝围拢成的第一凹槽;
    步骤2、提供第二堤坝材料,用第二堤坝材料通过涂布、干燥、及蚀刻 工艺在所述第一堤坝上形成第二堤坝、及由第二堤坝围拢成的第二凹槽;
    所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处;
    所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面;所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面。
  8. 如权利要求7所述的用于打印成膜工艺的凹槽的制作方法,其中,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板上设有阳极,所述第一堤坝设于所述阳极的四周边缘及基板上;所述第一凹槽的开口大小根据所述OLED显示器件的像素密度确定。
  9. 如权利要求7所述的用于打印成膜工艺的凹槽的制作方法,其中,所述第二堤坝的底角到第一堤坝的顶角的距离不超过打印成膜时墨滴的半径的三分之二。
  10. 如权利要求9所述的用于打印成膜工艺的凹槽的制作方法,其中,所述第二堤坝的底角到第一堤坝的顶角的距离为10~20μm。
  11. 一种用于打印成膜工艺的凹槽结构,该凹槽结构位于基板上,包括:第一堤坝、由第一堤坝围拢成的第一凹槽、设于第一堤坝上的第二堤坝、及由第二堤坝围拢成的第二凹槽;
    所述第一凹槽与第二凹槽相互贯通且中心轴线相同,所述第二凹槽的开口最小处大于所述第一凹槽的开口最大处;
    所述第一堤坝围拢成第一凹槽的倾斜内周面为亲水性表面;所述第一堤坝的上表面、第二堤坝围拢成第二凹槽的倾斜内周面、以及第二堤坝的上表面均为疏水性表面;
    还包括层叠设置于所述第二堤坝上的多个扩大堤坝、以及由所述多个扩大堤坝围拢成的多个扩大凹槽;
    所述多个扩大凹槽的开口自下而上逐渐增大,且上层的扩大凹槽的开口最小处大于下层的扩大凹槽的开口最大处;
    所述多个扩大凹槽均与第一凹槽和第二凹槽相互贯通且中心轴线相同;
    所述扩大堤坝围拢成扩大凹槽的倾斜内周面、以及扩大堤坝的上表面均为疏水性表面;
    其中,所述凹槽结构用于OLED显示器件的有机功能层的打印成膜,所述基板上设有阳极,所述第一堤坝设于所述阳极的四周边缘及基板上。
  12. 如权利要求11所述的用于打印成膜工艺的凹槽结构,其中,所述 第一凹槽的开口大小根据所述OLED显示器件的像素密度确定。
  13. 如权利要求11所述的用于打印成膜工艺的凹槽结构,其中,所述第二堤坝的底角到第一堤坝的顶角的距离不超过打印成膜时墨滴的半径的三分之二。
  14. 如权利要求13所述的用于打印成膜工艺的凹槽结构,其中,所述第二堤坝的底角到第一堤坝的顶角的距离为10~20μm。
PCT/CN2016/082701 2016-04-15 2016-05-19 用于打印成膜工艺的凹槽结构及其制作方法 WO2017177508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/114,851 US10084132B2 (en) 2016-04-15 2016-05-19 Groove structure for printing coating process and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610236054.7A CN105895818B (zh) 2016-04-15 2016-04-15 用于打印成膜工艺的凹槽结构及其制作方法
CN201610236054.7 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017177508A1 true WO2017177508A1 (zh) 2017-10-19

Family

ID=56704873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082701 WO2017177508A1 (zh) 2016-04-15 2016-05-19 用于打印成膜工艺的凹槽结构及其制作方法

Country Status (3)

Country Link
US (1) US10084132B2 (zh)
CN (1) CN105895818B (zh)
WO (1) WO2017177508A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180032736A (ko) * 2016-09-22 2018-04-02 엘지디스플레이 주식회사 유기발광 다이오드 표시장치
CN107046048B (zh) * 2016-09-30 2020-09-04 广东聚华印刷显示技术有限公司 像素界定层及其制备方法和应用
CN106505159B (zh) * 2016-11-14 2018-07-10 深圳市华星光电技术有限公司 用于打印oled显示器件的凹槽结构及oled显示器件的制作方法
CN109285947B (zh) * 2017-07-20 2023-06-06 武汉国创科光电装备有限公司 印刷用led薄膜led衬底、led薄膜led器件及其制备方法
CN107591432B (zh) * 2017-09-27 2020-05-26 京东方科技集团股份有限公司 像素界定层、显示基板及制造方法、显示装置
CN107819017B (zh) * 2017-10-31 2021-01-29 京东方科技集团股份有限公司 像素界定结构、显示基板及其制作方法和显示装置
JP7102131B2 (ja) * 2017-12-01 2022-07-19 キヤノン株式会社 トップエミッション型の有機el素子およびその製造方法
CN108538886B (zh) * 2018-03-28 2020-08-25 京东方科技集团股份有限公司 像素界定层及制造方法、显示基板、显示装置
CN108899345B (zh) * 2018-07-02 2021-01-26 京东方科技集团股份有限公司 像素界定结构及其制造方法、显示面板和显示装置
CN109713021B (zh) * 2019-01-18 2020-05-12 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
US10741798B1 (en) 2019-01-18 2020-08-11 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic light emitting diode display panel and method of manufacturing same
CN110137225A (zh) * 2019-05-05 2019-08-16 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN110828705A (zh) * 2019-10-30 2020-02-21 深圳市华星光电半导体显示技术有限公司 面板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167430A (zh) * 2014-08-08 2014-11-26 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置
US20150125666A1 (en) * 2013-11-01 2015-05-07 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN104638147A (zh) * 2015-03-04 2015-05-20 京东方科技集团股份有限公司 一种像素界定层及oled器件
CN104779269A (zh) * 2015-04-13 2015-07-15 深圳市华星光电技术有限公司 Oled显示器件
CN105470408A (zh) * 2015-12-08 2016-04-06 深圳市华星光电技术有限公司 用于打印成膜工艺的凹槽结构及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915806B2 (ja) * 2003-11-11 2007-05-16 セイコーエプソン株式会社 電気光学装置および電子機器
JP4815761B2 (ja) * 2003-11-27 2011-11-16 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、電子機器
CN101013719A (zh) * 2006-02-02 2007-08-08 精工爱普生株式会社 发光装置、发光装置的制造方法、曝光装置及电子设备
JP2007242592A (ja) * 2006-02-02 2007-09-20 Seiko Epson Corp 発光装置、発光装置の製造方法、露光装置、及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125666A1 (en) * 2013-11-01 2015-05-07 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN104167430A (zh) * 2014-08-08 2014-11-26 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置
CN104638147A (zh) * 2015-03-04 2015-05-20 京东方科技集团股份有限公司 一种像素界定层及oled器件
CN104779269A (zh) * 2015-04-13 2015-07-15 深圳市华星光电技术有限公司 Oled显示器件
CN105470408A (zh) * 2015-12-08 2016-04-06 深圳市华星光电技术有限公司 用于打印成膜工艺的凹槽结构及其制作方法

Also Published As

Publication number Publication date
CN105895818A (zh) 2016-08-24
CN105895818B (zh) 2017-12-19
US20180108839A1 (en) 2018-04-19
US10084132B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2017177508A1 (zh) 用于打印成膜工艺的凹槽结构及其制作方法
WO2017096709A1 (zh) 用于打印成膜工艺的凹槽结构及其制作方法
US11004917B2 (en) Pixel defining layer, display substrate and manufacturing method thereof, and display apparatus
US10886343B2 (en) Pixel defining layer and method for manufacturing the same, display panel and method for manufacturing the same, and display device
US10510990B2 (en) Groove structure for printing OLED display and manufacturing method for OLED display
US10811476B2 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
CN106941112B (zh) 像素界定层及其制造方法、显示基板
WO2016086728A1 (zh) 像素界定层及其制作方法、显示面板和显示装置
US10559635B2 (en) Pixel defining layer, production method thereof, and display substrate
US20210118964A1 (en) Organic electroluminescent display panel, manufacturing method thereof, and display device
US20160293683A1 (en) Pixel unit and method of manufacturing the same, light emitting device and display device
US9882161B2 (en) Pixel unit and method for manufacturing the same, display panel, and display apparatus
US20170194394A1 (en) Organic Light-Emitting Display Substrate, Method of Fabricating the Same, Display Panel, and Display Device
US20230337472A1 (en) Pixel defining structure and manufacturing method thereof, display panel and display device
WO2019205752A1 (zh) Oled器件
CN109860239B (zh) 阵列基板及其制作方法、显示装置
WO2018120362A1 (zh) Oled基板及其制作方法
WO2019015447A1 (zh) 阵列基板及其制备方法、显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2020056953A1 (zh) Oled显示面板及其制备方法
WO2024022056A9 (zh) 显示面板及制作方法、显示装置
US11289554B2 (en) Organic light emitting device and fabricating method thereof
WO2021212586A1 (zh) 显示面板及显示面板的制备方法
WO2021103103A1 (zh) 显示面板及其制备方法与显示装置
WO2024051548A1 (zh) 电致发光基板及包括其的电致发光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15114851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898323

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898323

Country of ref document: EP

Kind code of ref document: A1