WO2020056953A1 - Oled显示面板及其制备方法 - Google Patents

Oled显示面板及其制备方法 Download PDF

Info

Publication number
WO2020056953A1
WO2020056953A1 PCT/CN2018/121792 CN2018121792W WO2020056953A1 WO 2020056953 A1 WO2020056953 A1 WO 2020056953A1 CN 2018121792 W CN2018121792 W CN 2018121792W WO 2020056953 A1 WO2020056953 A1 WO 2020056953A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
disposed
induction
oled
array substrate
Prior art date
Application number
PCT/CN2018/121792
Other languages
English (en)
French (fr)
Inventor
郭天福
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/316,350 priority Critical patent/US10868277B2/en
Publication of WO2020056953A1 publication Critical patent/WO2020056953A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission

Definitions

  • the present invention relates to the field of display technology, and in particular, to an OLED display panel and a manufacturing method thereof.
  • OLED devices have the advantages of light weight, wide viewing angle, fast response speed, low temperature resistance, and high luminous efficiency. They have attracted wide attention in the field of display. In particular, OLEDs can be made into flexible flexible displays on flexible substrates, making OLEDs have a wider Application prospects. However, the current light output efficiency of OLED devices is still low, so how to effectively improve the light output efficiency of OLED devices is still a challenging difficulty.
  • the invention provides an OLED display panel, which can solve the problem of low light emitting efficiency of the existing OLED display panel.
  • the invention provides an OLED display panel, comprising: a TFT array substrate, an OLED light-emitting layer provided on the TFT array substrate, a packaging layer provided on the OLED light-emitting layer, and a light-emitting side of the OLED light-emitting layer.
  • An induction layer, a microlens array film disposed on the induction layer, and an organic hydrophobic layer disposed between the induction layer and the microlens array film, the organic hydrophobic layer is prepared by an atomic layer deposition method.
  • the OLED light-emitting layer includes sub-pixels arrayed on the TFT array substrate.
  • the induction layer is disposed between the TFT array substrate and the sub-pixel.
  • the induction layer is disposed between the sub-pixel and the encapsulation layer.
  • the organic hydrophobic layer is disposed on a surface of the induction layer, and the molecular structure of the organic hydrophobic layer is arranged in a direction perpendicular to the TFT array substrate.
  • the outside of the molecule is a hydrophobic group.
  • the invention also provides a method for preparing an OLED display panel, including:
  • An organic hydrophobic layer is prepared on the surface of the induction layer by an atomic layer deposition method, and a molecular group of the organic hydrophobic layer is provided with a hydrophobic group outside.
  • An encapsulation layer is prepared on the microlens array film.
  • the S30 includes:
  • At least two kinds of precursor compounds are alternately deposited on the surface of the induction layer multiple times to obtain a polymer grown perpendicular to the TFT array substrate, and a hydrophobic group is controlled on the outside of the polymer molecule to form the organic hydrophobic layer.
  • the S40 includes:
  • the prepolymer droplet is subjected to a curing treatment to obtain the microlens array film.
  • the induction layer is prepared using a thiol-based amino compound.
  • the present invention provides another OLED display panel, including: a TFT array substrate, an OLED light-emitting layer provided on the TFT array substrate, a packaging layer provided on the OLED light-emitting layer, and light output provided on the OLED light-emitting layer.
  • An induction layer on the side a microlens array film disposed on the induction layer, and an organic hydrophobic layer disposed between the induction layer and the microlens array film.
  • the OLED light-emitting layer includes sub-pixels arrayed on the TFT array substrate.
  • the induction layer is disposed between the TFT array substrate and the sub-pixel.
  • the induction layer is disposed between the sub-pixel and the encapsulation layer.
  • the organic hydrophobic layer is disposed on a surface of the induction layer, and the molecular structure of the organic hydrophobic layer is arranged in a direction perpendicular to the TFT array substrate.
  • the outside of the molecule is a hydrophobic group.
  • the beneficial effect of the present invention is that by providing an organic hydrophobic layer with extremely strong hydrophobic effect in the OLED light-emitting area, a film surface with a large contact angle is provided for subsequent preparation of the microlens array film, thereby improving the optical coupling rate of the microlens, and thereby improving the optical coupling rate of the microlens. Light-emitting efficiency of OLED light-emitting layer.
  • FIG. 1 is a schematic structural diagram of an OLED display panel according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of steps in a method for manufacturing an OLED display panel according to the present invention
  • 3 to 6 are schematic structural diagrams of a manufacturing process of an OLED display panel according to the present invention.
  • FIG. 7 is a schematic diagram of the molecular arrangement direction of the organic hydrophobic layer of the present invention.
  • the present invention is directed to the existing OLED display panel. Because the microlens structure is provided on the OLED device, the microlens is usually prepared by inkjet printing technology, the ink droplets have greater polarity, and are printed on the surface of the film layer with a smaller contact angle. The surface of the film layer is easily wetted, which causes the light-emitting efficiency of the prepared microlens film to be low, which further affects the light-emitting efficiency of the OLED device. This embodiment can solve this defect.
  • the present invention provides an OLED display panel 10 including a TFT array substrate 11, an OLED light emitting layer 12 provided on the TFT array substrate 11, and an induction on a light emitting side of the OLED light emitting layer 12.
  • Layer 13 a microlens array film 15 disposed on the induction layer 13, an organic hydrophobic layer 14 disposed on the induction layer 13 and the microlens array film 15, and a package disposed on the OLED light emitting layer Layer 16.
  • the OLED light emitting layer 12 is a top light emitting structure, and the induction layer is disposed between the OLED light emitting layer 12 and the encapsulation layer 16.
  • a pixel definition layer is provided on the TFT array substrate 11, and a plurality of via holes are provided on the pixel definition layer, and the via holes are used to receive a part of the structure of the OLED light emitting layer 12.
  • the OLED light-emitting layer 12 includes a plurality of R, G, and B sub-pixels arranged in an array, and the sub-pixels are disposed in vias of the pixel definition layer.
  • the microlens array film 15 includes a plurality of microlenses arranged in an array, and the microlenses are arranged corresponding to the sub-pixels, so as to increase the light emitting efficiency of the OLED.
  • the induction layer 13 is disposed on the surface of the sub-pixel, the induction layer 13 covers the sub-pixel, the organic hydrophobic layer 14 is disposed on the surface of the induction layer 13, and the microlens array film 15 is disposed on the surface of the sub-pixel.
  • Organic hydrophobic layer surface is disposed on the surface of the sub-pixel, the induction layer 13 covers the sub-pixel, the organic hydrophobic layer 14 is disposed on the surface of the induction layer 13, and the microlens array film 15 is disposed on the surface of the sub-pixel.
  • microlenses are prepared using inkjet printing technology, and the printed ink materials usually contain carbonyl groups, which have a large polarity and need to be prepared on a highly hydrophobic surface.
  • the organic hydrophobic layer 14 provided by the present invention is prepared by an atomic layer deposition method, and the inducing layer 13 can control the molecular structure of the hydrophobic film layer deposited on the surface thereof to be aligned in a direction perpendicular to the TFT array substrate 11 and pass through The material of the precursor deposited for the last time is controlled so that the obtained molecular outer group of the organic hydrophobic layer 14 is a hydrophobic group.
  • the material of the induction layer 13 is a thiol amino compound.
  • mercapto-undecylamine hydrochloride was used as the preparation material of the induction layer 13.
  • a hydrophobic film layer is directly deposited on the OLED light-emitting layer 12 to allow the hydrophobic film layer to grow flat or randomly, the position of the hydrophobic group cannot be controlled, resulting in an unsatisfactory hydrophobic effect of the hydrophobic film layer, which in turn results in
  • the microlens prepared on the surface of the hydrophobic film layer has an unsatisfactory light-emitting effect.
  • the hydrophobic film layer grown on the surface can be grown in a certain direction, and the hydrophilic group or the hydrophobic group can be controlled.
  • the position in the molecular structure controls the groups outside the molecular structure to be hydrophobic groups, thereby improving the hydrophobic performance of the film layer.
  • Two or more precursor compounds are alternately deposited on the surface of the induction layer 13 repeatedly.
  • the polarity of the precursor compounds may be different, but at least one of the precursor compounds is a hydrophobic compound.
  • the deposited precursor compounds A polymerization reaction is performed on the surface of the induction layer 13 to obtain a film layer having a highly directional molecular structure, and the functional groups on the outside of the film layer are controlled to be hydrophobic functional groups.
  • the first precursor used for atomic layer deposition is an amino compound
  • the second precursor is an aldehyde compound.
  • the first precursor is aniline
  • the second precursor is terephthalaldehyde.
  • the use of a precursor compound containing a benzene ring for deposition can provide a rigid support for the molecular structure of the film layer.
  • a sub-pixel area may correspond to a plurality of microlenses.
  • the microlenses are spherical.
  • the microlenses 15 are prepared by an inkjet printing method. Generally, the materials used for inkjet printing microlenses have a large polarity and need to be in water.
  • the surface of the film layer with a large contact angle can be printed to prepare a microlens with good performance.
  • the surface of the organic hydrophobic layer 14 has strong hydrophobicity and the surface has a large water contact angle, which is beneficial for printing microlens materials.
  • the printed ink droplets are cured to form array-distributed microlenses.
  • the encapsulation layer 16 is disposed on the surface of the microlens array film 15.
  • the encapsulation layer 16 covers the OLED light emitting layer 12.
  • the encapsulation layer is used to prevent water and oxygen from corroding the OLED device.
  • the encapsulation layer may be The organic layer and the inorganic layer are stacked to form a multilayer packaging structure.
  • the OLED light emitting layer may be a bottom emission structure
  • the induction layer is disposed between the OLED light emitting layer and the TFT array substrate.
  • the induction layer is disposed on the TFT array.
  • the organic hydrophobic layer is disposed on a surface of the induction layer facing away from the TFT array substrate, and the microlens film is disposed on a surface of the organic hydrophobic layer facing away from the TFT array substrate.
  • the present invention further provides a method for manufacturing an OLED display panel according to the first embodiment, which includes:
  • An encapsulation layer 16 is prepared on the microlens array.
  • the TFT array substrate 11 includes an active layer, a source / drain, a gate, a gate insulating layer, a pixel definition layer, and the like, and the pixel definition layer is provided with a plurality of via holes.
  • the OLED light-emitting layer 12 is prepared in the via hole, and the OLED light-emitting layer 12 is a top-emission type structure, which includes an anode, a hole injection layer, a hole transport layer, and a light-emitting material layer sequentially prepared by a vacuum evaporation method. , An electron transport layer, an electron injection layer, and a cathode, wherein the anode is made of a material with high reflectivity and high work function, and the cathode is made of a material with high permeability and low work function.
  • a layer of growth-inducing material is printed on the surface of the cathode by using inkjet printing technology. After being cured, the induction layer 13 is formed.
  • the induction layer 13 is prepared by using a thiol amino compound, which may specifically be a mercapto-undecylamine salt. Acid salt.
  • An atomic layer deposition method is used to prepare the organic hydrophobic layer 14 on the surface of the induction layer 13. At least two precursor compounds are alternately deposited on the surface of the induction layer 13 several times. After polymerization, a molecular structure is formed perpendicular to the TFT. Polymer of array substrate,
  • the precursor has extremely strong directivity during deposition, and the molecular chains of all molecules after the deposition are aligned vertically with respect to the TFT array substrate.
  • aniline can be used as the first precursor
  • terephthalaldehyde can be used as the second precursor
  • the polymer can be alternately deposited on the surface of the induction layer 13 in a pulse form to form a polymer.
  • the active group cannot be arranged on the outside of the polymer, so the precursor compound deposited last time is aniline, and the benzene ring in the aniline is a hydrophobic group, which is arranged on the outside of the polymer, making the polymer highly hydrophobic.
  • the inkjet printing method is used to print pre-polymer droplets distributed in an array on the surface of the organic hydrophobic layer 14, and the pre-polymer droplets are subjected to curing treatment to obtain the microlens film 15.

Abstract

一种OLED显示面板,包括TFT阵列基板、OLED发光层、封装层、设置于OLED发光层的出光侧的诱导层、设置于诱导层上的微透镜阵列薄膜、以及设置于诱导层与微透镜阵列薄膜之间的有机疏水层。通过设置疏水效果极强的有机疏水层,为后续制备微透镜阵列薄膜提供一个水接触角较大的表面,提高微透镜的光耦合率,进而提高OLED发光层的出光效率。

Description

OLED显示面板及其制备方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示面板及其制备方法。
背景技术
OLED器件具有重量轻巧、视角广、响应速度快、耐低温、发光效率高等优点,在显示领域受到广泛关注,尤其是OLED能够在柔性基板上做成可弯曲的柔性显示屏,使得OLED具有更广阔的应用前景。但目前OLED器件的出光效率仍然较低,因此如何有效提高OLED器件的出光效率仍然是一个具有挑战的难点。
相关研究表明,在透光膜层中掺杂适量小尺寸的透明颗粒物可提升膜层的出光效率,目前研究的micro lens(微透镜)技术正是基于这一理论基础,目前的micro lens工艺主要是利用IJP(ink jet printing,喷墨打印)技术来实现。但是,IJP工艺中常用的材料含有羰基等极性官能团,使得ink的极性较大,因此如果在水接触角小的膜层表面进行micro lens工艺打印,得到的micro lens薄膜的出光效率很低。
技术问题
本发明提供一种OLED显示面板,能够解决现有的OLED显示面板的出光效率较低的问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种OLED显示面板,包括:TFT阵列基板、设置于所述TFT阵列基板上的OLED发光层、设置于所述OLED发光层上的封装层、设置于所述OLED发光层的出光侧的诱导层、设置于所述诱导层上的微透镜阵列薄膜、以及设置于所述诱导层与所述微透镜阵列薄膜之间的有机疏水层,所述有机疏水层采用原子层沉积法制备。
在本发明的至少一种实施例中,所述OLED发光层包括阵列设置于所述TFT阵列基板上的子像素。
在本发明的至少一种实施例中,所述诱导层设置于所述TFT阵列基板与所述子像素之间。
在本发明的至少一种实施例中,所述诱导层设置于所述子像素与所述封装层之间。
在本发明的至少一种实施例中,所述有机疏水层设置于所述诱导层表面,所述有机疏水层的分子结构沿垂直于所述TFT阵列基板的方向排列,所述有机疏水层的分子外侧为疏水性基团。
本发明还提供一种OLED显示面板的制备方法,包括:
S10,提供一TFT阵列基板,在所述TFT阵列基板上制备OLED发光层;
S20,在所述OLED发光层上制备诱导层;
S30,利用原子层沉积法在所述诱导层表面制备有机疏水层,所述有机疏水层的分子外侧为疏水性基团;
S40,在所述有机疏水层表面制备微透镜阵列薄膜;
S50,在所述微透镜阵列薄膜上制备封装层。
在本发明的至少一种实施例中,所述S30包括:
在所述诱导层表面多次交替沉积至少两种前驱体化合物,得到垂直于所述TFT阵列基板生长的聚合物,控制所述聚合物分子外侧为疏水性基团,以形成所述有机疏水层。
在本发明的至少一种实施例中,所述S40包括:
采用喷墨打印法在所述有机疏水层表面形成阵列分布的预聚合物液滴;
将所述预聚合物液滴进行固化处理,得到所述微透镜阵列薄膜。
在本发明的至少一种实施例中,所述诱导层采用硫醇类氨基化合物制备。
本发明提供另一种OLED显示面板,包括:TFT阵列基板、设置于所述TFT阵列基板上的OLED发光层、设置于所述OLED发光层上的封装层、设置于所述OLED发光层的出光侧的诱导层、设置于所述诱导层上的微透镜阵列薄膜、以及设置于所述诱导层与所述微透镜阵列薄膜之间的有机疏水层。
在本发明的至少一种实施例中,所述OLED发光层包括阵列设置于所述TFT阵列基板上的子像素。
在本发明的至少一种实施例中,所述诱导层设置于所述TFT阵列基板与所述子像素之间。
在本发明的至少一种实施例中,所述诱导层设置于所述子像素与所述封装层之间。
在本发明的至少一种实施例中,所述有机疏水层设置于所述诱导层表面,所述有机疏水层的分子结构沿垂直于所述TFT阵列基板的方向排列,所述有机疏水层的分子外侧为疏水性基团。
有益效果
本发明的有益效果为:通过在OLED发光区域设置疏水效果极强的有机疏水层,为后续制备微透镜阵列薄膜提供一个接触角较大的膜层表面,提高微透镜的光耦合率,进而提高OLED发光层的出光效率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例一的OLED显示面板的结构示意图;
图2为本发明的OLED显示面板的制备方法的步骤流程图;
图3~图6为本发明的OLED显示面板制备过程的结构示意图;
图7为本发明有机疏水层的分子排列方向示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的OLED显示面板,由于在OLED器件上设置有微透镜结构,微透镜通常采用喷墨打印技术来制备,墨滴极性较大,在接触角较小的膜层表面打印,易润湿膜层表面,导致制得的微透镜薄膜的出光效率低下,进而影响OLED器件的出光效率,本实施例能够解决该缺陷。
如图1所示,本发明提供一种OLED显示面板10,包括TFT阵列基板11、设置于所述TFT阵列基板11上的OLED发光层12、设置于所述OLED发光层12的出光侧的诱导层13、设置于所述诱导层13上的微透镜阵列薄膜15、设置于所述诱导层13与所述微透镜阵列薄膜15的有机疏水层14、以及设置于所述OLED发光层上的封装层16。
在本实施例中,所述OLED发光层12为顶发光结构,所述诱导层设置于所述OLED发光层12与所述封装层16之间。
所述TFT阵列基板11上设置有像素定义层,所述像素定义层上设置有多个过孔,所述过孔用以容纳所述OLED发光层12的部分结构。
所述OLED发光层12包括阵列设置的多个R、G、B子像素,所述子像素设置在所述像素定义层的过孔内。
所述微透镜阵列薄膜15包括多个阵列设置的微透镜,所述微透镜与所述子像素对应设置,用以增大OLED的出光效率。
所述诱导层13设置于所述子像素表面,所述诱导层13覆盖所述子像素,所述有机疏水层14设置于所述诱导层13表面,所述微透镜阵列薄膜15设置于所述有机疏水层表面。
一般制备微透镜采用喷墨打印技术,而打印的墨水材料通常含有羰基,具有较大的极性,需要在疏水性强的表面制备。
本发明提供的所述有机疏水层14采用原子层沉积法制备,所述诱导层13可控制在其表面沉积的疏水膜层的分子结构沿垂直于所述TFT阵列基板11的方向排列,并且通过控制最后一次沉积的前驱体的材料,使得得到的所述有机疏水层14的分子外侧基团为疏水性基团。
利用喷墨打印技术,在对应的子像素区域打印一层极薄的膜层生长诱导材料,再经过固化成为所述诱导层13,所述诱导层13的材料选用硫醇类氨基化合物,本实施例中采用巯基-十一胺盐酸盐作为诱导层13的制备材料。
若直接在所述OLED发光层12上沉积一层疏水膜层,让疏水膜层平铺生长或随机堆积,则无法控制疏水基团的位置,导致疏水膜层的疏水效果不理想,进而导致在该疏水膜层表面制备的微透镜的出光效果不理想,通过设置所述诱导层13,能够使得在其表面生长的疏水膜层按照一定的方向生长,进而控制亲水基团或疏水基团在分子结构中的位置,控制分子结构外侧的基团为疏水基团,从而提升膜层的疏水性能。
在所述诱导层13表面多次交替沉积两种或两种以上的前驱体化合物,所述前驱体化合物的极性可不相同,但至少一种前驱体化合物为疏水性化合物,沉积的前驱体化合物附着在所述诱导层13表面发生聚合反应,得到分子结构极具方向性排列的膜层,控制膜层外侧的官能团为疏水性官能团。
原子层沉积采用的第一前驱体为氨基化合物,第二前驱体为醛基化合物,具体地,第一前驱体为苯胺,第二前驱体为对苯二甲醛,在所述诱导层13表面多次交替沉积苯胺、对苯二甲醛,控制沉积预定厚度的膜层的外侧为疏水性基团,即最后一次沉积苯胺,得到分子结构垂直于所述TFT阵列基板11排列的所述诱导层13,采用含有苯环的前驱体化合物进行沉积,能够对膜层的分子结构起到刚性支撑作用。
一个子像素区域可对应有多个微透镜,所述微透镜为球形,所述微透镜15采用喷墨打印法制备,一般喷墨打印微透镜使用的材料具有较大的极性,需要在水接触角较大的膜层表面打印,才能制备出性能良好的微透镜,所述有机疏水层14表面具有较强的疏水性,其表面具有较大的水接触角,有利于将微透镜材料打印在其表面,打印后的墨滴经固化后形成阵列分布的微透镜。
所述封装层16设置于所述微透镜阵列薄膜15表面,所述封装层16覆盖所述OLED发光层12,所述封装层用以阻止水氧对OLED器件的腐蚀,所述封装层可采用有机层、无机层叠加的方式形成多层封装结构。
在其他实施例中,所述OLED发光层可为底发光结构,所述诱导层设置于所述OLED发光层与所述TFT阵列基板之间,具体地,所述诱导层设置于所述TFT阵列基板上,所述有机疏水层设置于所述诱导层的背离所述TFT阵列基板一侧表面,所述微透镜薄膜设置于所述有机疏水层的背离所述TFT阵列基板的一侧表面。
如图2~图6所示,本发明还提供一种上述实施例一所述的OLED显示面板的制备方法,包括:
S10,提供一TFT阵列基板11,在所述TFT阵列基板11上制备OLED发光层12;
S20,在所述OLED发光层12上制备诱导层13;
S30,利用原子层沉积法在所述诱导层13表面制备有机疏水层14;
S40,在所述有机疏水层14表面制备微透镜阵列15;
S50,在所述微透镜阵列上制备封装层16。
具体地,所述TFT阵列基板11包括有源层、源漏极、栅极、栅极绝缘层、像素定义层等,所述像素定义层上设置有多个过孔。
在所述过孔内制备所述OLED发光层12,所述OLED发光层12为顶发光型结构,包括利用真空蒸镀法依次制备的阳极、空穴注入层、空穴传输层、发光材料层、电子传输层、电子注入层、以及阴极,其中,所述阳极采用具有高反射性、高功函数材料制备,所述阴极采用具有高透过性、低功函数材料制备。
利用喷墨打印技术在所述阴极表面打印一层生长诱导材料,经固化后,形成所述诱导层13,所述诱导层13采用硫醇类氨基化合物制备,具体可以为巯基-十一胺盐酸盐。
利用原子层沉积法在所述诱导层13表面制备所述有机疏水层14,在所述诱导层13表面多次交替沉积至少两种前驱体化合物,经过聚合反应,形成分子结构垂直于所述TFT阵列基板的聚合物,
如图7所示,由于所述诱导层13的作用,前驱体在沉积时,具有极强的方向性,沉积后的所有分子的分子链均相对于所述TFT阵列基板竖直排列。具体地,可采用苯胺为第一前驱体,对苯二甲醛为第二前驱体,以脉冲形式交替沉积在所述诱导层13表面形成聚合物,由于对苯二甲醛中的醛基是亲水性基团不能排列在聚合物外侧,故最后一次沉积的前驱体化合物为苯胺,苯胺中的苯环为疏水性基团,排列在聚合物的外侧,使得聚合物具有很强的疏水性。
利用喷墨打印法在所述有机疏水层14表面打印阵列分布的预聚合物液滴,再将所述预聚合物液滴进行固化处理,得到所述微透镜薄膜15。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (14)

  1. 一种OLED显示面板,其中,包括:
    TFT阵列基板;
    OLED发光层,设置于所述TFT阵列基板上;
    封装层,设置于所述OLED发光层上;
    诱导层,设置于所述OLED发光层的出光侧;
    微透镜阵列薄膜,设置于所述诱导层上,以及
    有机疏水层,设置于所述诱导层与所述微透镜阵列薄膜之间,所述有机疏水层采用原子层沉积法制备。
  2. 根据权利要求1所述的OLED显示面板,其中,所述OLED发光层包括阵列设置于所述TFT阵列基板上的子像素。
  3. 根据权利要求2所述的OLED显示面板,其中,所述诱导层设置于所述TFT阵列基板与所述子像素之间。
  4. 根据权利要求2所述的OLED显示面板,其中,所述诱导层设置于所述子像素与所述封装层之间。
  5. 根据权利要求3或4所述的OLED显示面板,其中,所述有机疏水层设置于所述诱导层表面,所述有机疏水层的分子结构沿垂直于所述TFT阵列基板的方向排列,所述有机疏水层的分子外侧为疏水性基团。
  6. 一种OLED显示面板的制备方法,其中,包括:
    S10,提供一TFT阵列基板,在所述TFT阵列基板上制备OLED发光层;
    S20,在所述OLED发光层上制备诱导层;
    S30,利用原子层沉积法在所述诱导层表面制备有机疏水层,所述有机疏水层的分子外侧为疏水性基团;
    S40,在所述有机疏水层表面制备微透镜阵列薄膜;
    S50,在所述微透镜阵列薄膜上制备封装层。
  7. 根据权利要求6所述的制备方法,其中,所述S30包括:在所述诱导层表面多次交替沉积至少两种前驱体化合物,得到垂直于所述TFT阵列基板生长的聚合物,控制所述聚合物分子外侧为疏水性基团,以形成所述有机疏水层。
  8. 根据权利要求6所述的制备方法,其中,所述S40包括:
    采用喷墨打印法在所述有机疏水层表面形成阵列分布的预聚合物液滴;
    将所述预聚合物液滴进行固化处理,得到所述微透镜阵列薄膜。
  9. 根据权利要求6所述的制备方法,其中,所述诱导层采用硫醇类氨基化合物制备。
  10. 一种OLED显示面板,其中,包括:
    TFT阵列基板;
    OLED发光层,设置于所述TFT阵列基板上;
    封装层,设置于所述OLED发光层上;
    诱导层,设置于所述OLED发光层的出光侧;
    微透镜阵列薄膜,设置于所述诱导层上,以及
    有机疏水层,设置于所述诱导层与所述微透镜阵列薄膜之间。
  11. 根据权利要求10所述的OLED显示面板,其中,所述OLED发光层包括阵列设置于所述TFT阵列基板上的子像素。
  12. 根据权利要求11所述的OLED显示面板,其中,所述诱导层设置于所述TFT阵列基板与所述子像素之间。
  13. 根据权利要求11所述的OLED显示面板,其中,所述诱导层设置于所述子像素与所述封装层之间。
  14. 根据权利要求12或13所述的OLED显示面板,其中,所述有机疏水层设置于所述诱导层表面,所述有机疏水层的分子结构沿垂直于所述TFT阵列基板的方向排列,所述有机疏水层的分子外侧为疏水性基团。
PCT/CN2018/121792 2018-09-19 2018-12-18 Oled显示面板及其制备方法 WO2020056953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/316,350 US10868277B2 (en) 2018-09-19 2018-12-18 Organic light emitting diode display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811091055.2 2018-09-19
CN201811091055.2A CN109346619B (zh) 2018-09-19 2018-09-19 Oled显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2020056953A1 true WO2020056953A1 (zh) 2020-03-26

Family

ID=65305561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121792 WO2020056953A1 (zh) 2018-09-19 2018-12-18 Oled显示面板及其制备方法

Country Status (2)

Country Link
CN (1) CN109346619B (zh)
WO (1) WO2020056953A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085639A (zh) * 2019-04-23 2019-08-02 深圳市华星光电半导体显示技术有限公司 发光面板、发光面板的制备方法及显示装置
CN111864112B (zh) * 2020-07-22 2022-06-10 武汉华星光电半导体显示技术有限公司 一种阵列基板、阵列基板制程方法及显示面板
CN112838176B (zh) * 2021-01-21 2022-05-27 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113066916A (zh) * 2021-03-05 2021-07-02 致晶科技(北京)有限公司 制备凸面微透镜的方法和制造白光led器件的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130269751A1 (en) * 2010-12-07 2013-10-17 Afshin Izadian Adaptive lenses for solar energy collection
CN105762299A (zh) * 2015-01-02 2016-07-13 三星显示有限公司 有机发光二极管显示装置
CN106784365A (zh) * 2016-11-28 2017-05-31 武汉华星光电技术有限公司 Oled显示装置及其制作方法
CN108198836A (zh) * 2017-12-27 2018-06-22 武汉华星光电半导体显示技术有限公司 显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1612659A (zh) * 2003-10-29 2005-05-04 铼宝科技股份有限公司 可调色有机发光显示面板
CN103956373A (zh) * 2013-12-18 2014-07-30 上海天马有机发光显示技术有限公司 一种疏水有机薄膜封装的有机发光显示装置及其制造方法
CN106129267B (zh) * 2016-08-02 2018-01-12 武汉华星光电技术有限公司 Oled薄膜封装结构及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130269751A1 (en) * 2010-12-07 2013-10-17 Afshin Izadian Adaptive lenses for solar energy collection
CN105762299A (zh) * 2015-01-02 2016-07-13 三星显示有限公司 有机发光二极管显示装置
CN106784365A (zh) * 2016-11-28 2017-05-31 武汉华星光电技术有限公司 Oled显示装置及其制作方法
CN108198836A (zh) * 2017-12-27 2018-06-22 武汉华星光电半导体显示技术有限公司 显示装置

Also Published As

Publication number Publication date
CN109346619B (zh) 2020-04-10
CN109346619A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020056953A1 (zh) Oled显示面板及其制备方法
US11004917B2 (en) Pixel defining layer, display substrate and manufacturing method thereof, and display apparatus
JP4909152B2 (ja) 蒸着装置及び蒸着方法
US10811476B2 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
US10559635B2 (en) Pixel defining layer, production method thereof, and display substrate
US20070178708A1 (en) Vapor deposition system and vapor deposition method for an organic compound
CN109860239B (zh) 阵列基板及其制作方法、显示装置
WO2016145965A1 (zh) 像素界定层及其制作方法以及相应的发光显示器
WO2017096709A1 (zh) 用于打印成膜工艺的凹槽结构及其制作方法
WO2019205752A1 (zh) Oled器件
CN107331681B (zh) 一种显示基板及其制作方法、显示器件
WO2019127685A1 (zh) 显示面板制备方法、显示面板及显示装置
US7737631B2 (en) Flat panel display with repellant and border areas and method of manufacturing the same
CN103928497A (zh) Oled显示器件及其制作方法、显示装置
JP2001291583A (ja) 有機el素子および有機el素子の製造方法
US20180190736A1 (en) Electroluminescent display device
CN107845661B (zh) 一种像素界定层及其制备方法、显示面板
WO2018120362A1 (zh) Oled基板及其制作方法
US20210057497A1 (en) Pixel defining structure and manufacturing method thereof, display panel and display device
CN203787433U (zh) Oled显示器件及显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
CN108417724A (zh) 发光二极管显示器及其制备方法
US20090128457A1 (en) Organic electroluminescent display panel and method for manufacturing the same
CN108428723B (zh) 像素界定结构及其制备方法、显示基板、喷墨打印方法
WO2024022056A1 (zh) 显示面板及制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934263

Country of ref document: EP

Kind code of ref document: A1