WO2019174289A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2019174289A1
WO2019174289A1 PCT/CN2018/115700 CN2018115700W WO2019174289A1 WO 2019174289 A1 WO2019174289 A1 WO 2019174289A1 CN 2018115700 W CN2018115700 W CN 2018115700W WO 2019174289 A1 WO2019174289 A1 WO 2019174289A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
defining
defining layer
organic functional
Prior art date
Application number
PCT/CN2018/115700
Other languages
English (en)
French (fr)
Inventor
谢学武
刘浩
艾雨
刘博文
孔玉宝
李慧慧
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18909397.4A priority Critical patent/EP3767680B1/en
Priority to US16/624,400 priority patent/US11233115B2/en
Priority to JP2019569400A priority patent/JP7272966B2/ja
Publication of WO2019174289A1 publication Critical patent/WO2019174289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention

Definitions

  • the present application relates to a display panel, a method of manufacturing the same, and a display device.
  • OLED Organic Light-Emitting Diode
  • an OLED display panel includes a substrate, and an anode, an organic functional layer, and a cathode, which are sequentially disposed on the substrate.
  • the organic functional layer includes a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer which are sequentially disposed on the hole injection layer.
  • an organic functional layer is formed mainly by an inkjet printing process.
  • the principle of illumination of the OLED display panel is that a voltage is applied between the anode and the cathode, and under the action of the voltage, holes of the hole injection layer move to the organic light-emitting layer through the hole transport layer, and electrons of the electron injection layer pass electrons.
  • the transport layer moves toward the organic light-emitting layer. Finally, holes and electrons meet and combine in the organic light-emitting layer, and energy released during the bonding process excites the chemical molecules in the organic light-emitting layer to emit light.
  • the brightness of the above display panel is not uniform.
  • the embodiment of the present application provides a display panel, a preparation method thereof, and a display device.
  • a display panel comprising:
  • each of the pixel units comprising: an anode, an organic functional layer and a cathode, wherein the organic functional layer is located Within the pixel area;
  • the pixel defining layer includes: a first defining layer and a second defining layer, the first defining layer is located on a side of the second defining layer away from the substrate, and the first defining layer is on the substrate
  • the upper orthographic projection covers an orthographic projection of the second defining layer on the substrate, and an opening area of the first defining layer is smaller than an opening area of the second defining layer to form a groove
  • the organic function At least a portion of the edge region of the layer is located within the recess such that an orthographic projection of at least a portion of the edge region of the organic functional layer on the substrate falls within an orthographic projection of the first defined layer on the substrate
  • the thickness of the edge region of the organic functional layer is greater than the thickness of the remaining region of the organic functional layer.
  • the anode is located on the substrate and located in the pixel region, and the thickness of the second defining layer is not less than a sum of a thickness of the anode and a thickness of the organic functional layer.
  • an orthographic projection of all edge regions of the organic functional layer on the substrate falls within an orthographic projection of the first defined layer on the substrate.
  • the material of the first defining layer is an insulating material
  • the material of the second defining layer is an insulating material
  • the material of the second defining layer is a conductive material
  • the cathode is located outside of the recess.
  • the material of the second defining layer is a conductive material
  • the thickness direction of the second defining layer is disposed through a conductive isolation region for isolating electrical connections between adjacent pixel units.
  • the conductive isolation region is a hollow via structure.
  • the hollow via structure has the same insulating material as the first defining layer.
  • the material of the first defining layer is polyimide.
  • the material of the second defining layer is silicon nitride or silicon monoxide, or the material of the second defining layer is a metal oxide.
  • a method for preparing a display panel comprising:
  • first defining layer and a second defining layer on the substrate Forming a first defining layer and a second defining layer on the substrate, the first defining layer being located on a side of the second defining layer away from the substrate, the second defining layer and the first defining layer being for Defining a pixel region, an orthographic projection of the first defining layer on the substrate covers an orthographic projection of the second defining layer on the substrate, and an opening area of the first defining layer is smaller than the second defining An open area of the layer to form a recess, at least a portion of the edge region of the organic functional layer of the pixel unit being positionable within the recess such that an orthographic projection of at least a portion of the edge region of the organic functional layer on the substrate
  • the first defined layer is within an orthographic projection on the substrate.
  • the method further includes:
  • anode layer on the substrate, the anode layer including a plurality of anodes, each of the anodes being located in a pixel region;
  • the functional layer comprising a plurality of organic functional layers disposed on the plurality of anodes, the plurality of organic functional layers being in one-to-one correspondence with the plurality of anodes, each The organic functional layer is located in the pixel region, and the thickness of the edge region of the organic functional layer is greater than the thickness of the remaining region of the organic functional layer;
  • a cathode is formed on the functional layer.
  • the thickness of the second defining layer is not less than a sum of a thickness of each of the anodes and a thickness of a corresponding organic functional layer.
  • an orthographic projection of all edge regions of the organic functional layer on the substrate falls within an orthographic projection of the first defined layer on the substrate.
  • the forming the first defining layer and the second defining layer on the substrate including:
  • first film layer Forming a first film layer at a periphery of each of the anodes, the first film layer having a thickness greater than a thickness of each of the anodes;
  • the second film layer is made of an insulating material
  • the first film layer is made of an insulating material or a conductive material.
  • each cathode is located outside of a recess corresponding to the periphery of the anode.
  • the first film layer is made of a conductive material, and the first film layer is formed at a periphery of each of the anodes, including:
  • a conductive isolation region is formed through the thickness direction of the first film layer, and the conductive isolation region is used to isolate electrical connections between adjacent pixel units.
  • the forming the conductive isolation region along the thickness direction of the first film layer comprises:
  • a via hole is formed through the hole in the thickness direction of the first film layer to obtain the conductive isolation region, and the conductive isolation region is a hollow via structure.
  • the forming a second film layer on the substrate on which the first film layer is formed comprises:
  • An insulating material is deposited on the substrate on which the first film layer is formed to form the second film layer on the first film layer, and the hollow via structure is filled with the insulating material.
  • a display device comprising the display panel of the first aspect.
  • FIG. 1A is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • 1B is a schematic view showing a groove formed by a first defining layer and a second defining layer provided by an embodiment of the present application;
  • 1C is a schematic diagram of an edge region and remaining regions of an organic functional layer provided by an embodiment of the present application.
  • 1D is a schematic structural diagram of a second defining layer and a first defining layer provided by an embodiment of the present application;
  • FIG. 1E is a top view of a pixel defining layer provided by an embodiment of the present application.
  • 1F is a schematic structural diagram of another display panel provided by an embodiment of the present application.
  • FIG. 2 is a top view of a display panel according to an embodiment of the present application.
  • 3A is a schematic structural diagram of still another display panel according to an embodiment of the present application.
  • 3B is a schematic view of a groove formed by a first defining layer and a second defining layer provided by an embodiment of the present application;
  • FIG. 4 is a flowchart of a method for preparing a display panel according to an embodiment of the present application
  • Figure 5 is a flow chart showing the formation of an anode layer in the embodiment shown in Figure 4;
  • Figure 6 is a schematic view showing the structure of forming an anode layer in the embodiment shown in Figure 4;
  • Figure 7 is a flow chart of the first defining layer and the second defining layer formed in the embodiment shown in Figure 4;
  • Figure 8 is a schematic structural view of a first film layer formed in the embodiment shown in Figure 4;
  • Figure 9 is a schematic view showing the structure of a second film layer formed in the embodiment shown in Figure 4.
  • Figure 10 is a schematic structural view of a first defining layer formed in the embodiment shown in Figure 4;
  • Figure 11 is a schematic view showing the structure of a second defining layer formed in the embodiment shown in Figure 4;
  • Figure 12 is a schematic structural view of a functional layer formed in the embodiment shown in Figure 4;
  • Figure 13 is a schematic view showing the structure of a cathode formed in the embodiment shown in Figure 4;
  • FIG. 14 is a flowchart of still another method for preparing a display panel according to an embodiment of the present application.
  • Figure 15 is a schematic structural view of a first film layer formed in the embodiment shown in Figure 14;
  • Figure 16 is a schematic structural view of a conductive isolation region formed in the embodiment shown in Figure 14;
  • Figure 17 is a schematic view showing the structure of a second film layer formed in the embodiment shown in Figure 14;
  • Figure 18 is a schematic view showing the structure of a first defining layer formed in the embodiment shown in Figure 14;
  • Figure 19 is a schematic view showing the structure of a second defining layer formed in the embodiment shown in Figure 14;
  • Figure 20 is a schematic structural view of a functional layer formed in the embodiment shown in Figure 14;
  • Figure 21 is a schematic view showing the structure of a cathode formed in the embodiment shown in Figure 14.
  • an organic functional layer of an OLED display panel is often formed by an inkjet printing process.
  • droplets from the droplet discharge nozzle drips on the substrate, it often flows from the intermediate region to the edge region, and the thickness of the edge region of the film formed on the substrate is always greater than the middle.
  • the thickness of the area creates a "coffee ring" effect. This effect causes the brightness of the edge region to be greater than the brightness of the intermediate portion when illuminated, resulting in uneven brightness of the display panel.
  • FIG. 1A is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • the display panel 100 includes:
  • Each of the pixel units includes an anode, an organic functional layer and a cathode, and the organic functional layer is located in the pixel region. For example, as shown in FIG.
  • the anode 102, the organic functional layer 105 and the cathode 106 are sequentially formed on the substrate, that is, the anode 102 is located on the substrate, the anode 102 is located in the pixel region, and the organic functional layer 105 is located on the anode 102, and the cathode 106 Located on the organic functional layer 105.
  • the cathode 106 may be formed on the entire surface, that is, the cathodes of all the pixel units are integrated, and the cathode is a whole layer; the cathode 106 may also be separately formed in the pixel region, that is, the cathode of each pixel unit and the pixel unit.
  • the organic functional layer as shown in Figure 1A.
  • the cathode may be formed, and the organic functional layer and the anode are sequentially formed on the substrate, that is, the cathode is located on the substrate, the cathode is located in the pixel region, the organic functional layer is located on the cathode, and the anode is located on the organic functional layer.
  • the pixel defining layer includes a first defining layer 103 and a second defining layer 104.
  • the first defining layer 103 is located on a side of the second defining layer 104 away from the substrate 101.
  • the orthographic projection of the first defining layer 103 on the substrate 101 covers the orthographic projection of the second defining layer 104 on the substrate 101, and the first defining layer 103
  • the opening area is smaller than the opening area of the second defining layer 104 to form a groove.
  • the position of the groove 001 corresponds to a region between the bottom of the first defining layer 103 to the side of the substrate 101 in contact with the second defining layer 104.
  • the groove bottom surface of the groove 001 is the side surface of the second defining layer 104, i.e., the groove is a portion of the first boundary layer recessed relative to the first defining layer in a direction parallel to the substrate.
  • the groove is a portion of the first boundary layer recessed relative to the first defining layer in a direction parallel to the substrate.
  • at least a portion of the edge region of the organic functional layer 105 is located within the recess such that an orthographic projection of at least a portion of the edge region of the organic functional layer 105 on the substrate 101 falls onto the first defined layer 103 on the substrate 101. Inside the orthographic projection.
  • the edge region E of the organic functional layer 105 is a region where the organic functional layer 105 is close to the pixel defining layer, and the remaining region C of the organic functional layer 105 is a region other than the edge region E of the organic functional layer 105.
  • the thickness h1 of the edge region of the organic functional layer 105 is greater than the thickness of the remaining region of the organic functional layer 105.
  • the orthographic projection of the first defining layer on the substrate covers the orthographic projection of the second defining layer on the substrate (ie, the area of the orthographic projection of the first defining layer on the substrate is greater than the second defining layer on the substrate)
  • the area of the orthographic projection, and the orthographic projection of the second defining layer on the substrate is within the orthographic projection of the first defining layer on the substrate), and the opening area of the first defining layer is smaller than the opening area of the second defining layer to form Groove.
  • the orthographic projection of the second defining layer 104 on the substrate 101 can be centered on the orthographic projection of the first defining layer 103 on the substrate 101.
  • the orthographic projection of the second defining layer 104 on the substrate 101 may also not be at the center of the orthographic projection of the first defining layer 103 on the substrate 101.
  • At least a portion of the edge region of the organic functional layer formed by the inkjet printing process is located in a recess formed by the first defining layer and the second defining layer such that an orthographic projection of at least a portion of the edge region of the organic functional layer falls on the substrate A defined layer is within the orthographic projection on the substrate.
  • the portion of the first defining layer that protrudes from the second defining layer blocks the cathode such that at least a portion of the edge region of the organic functional layer is not in contact with the cathode, so that at least a portion of the edge region of the organic functional layer does not emit light when displayed. Therefore, the brightness uniformity of the display panel can be improved, the display effect of the display panel can be improved, and the uneven brightness of the display panel due to the "coffee ring" effect can be avoided.
  • the opening area of the first defining layer is smaller than the opening area of the second defining layer, wherein the position of the opening defining the layer corresponds to the position of the organic functional layer.
  • FIG. 1E exemplarily shows a top view of a pixel defining layer in an embodiment of the present application. As shown in FIG. 1E, the opening area of the first defining layer 103 (such as the area of the rectangle R1 in FIG. 1B) is smaller than the opening area of the second defining layer 104 (such as the area of the rectangle R2 in FIG. 1B).
  • the thickness of the second defining layer is not less than the sum of the thickness of the anode and the thickness of the organic functional layer.
  • the thickness of the second defining layer 104 may be equal to the sum of the thickness of the anode 102 and the thickness of the organic functional layer 105.
  • the thickness of the second defining layer may also be greater than the sum of the thickness of the anode and the thickness of the organic functional layer.
  • FIG. 1F shows a schematic diagram in which the thickness of the second defining layer 104 is greater than the sum of the thickness of the anode 102 and the thickness of the organic functional layer 105. In this case, there is a gap between the top of the organic functional layer 105 and the bottom of the first defining layer 103.
  • the orthographic projection of all the edge regions of the organic functional layer 105 on the substrate 101 may fall within the orthographic projection of the first defining layer 103 on the substrate 101.
  • all of the edge regions of the organic functional layer are located in the grooves formed by the first defining layer and the second defining layer.
  • the first defining layer protrudes from the portion of the second defining layer to block the cathode, so that all the edge regions of the organic functional layer are not in contact with the cathode, so that all edge regions of the organic functional layer are not illuminated when displayed, the display panel The display is better.
  • the cathode when there is a gap between the top of the organic functional layer 105 and the bottom of the first defining layer 103, the cathode may also be partially located in the recess.
  • the cathode is located outside of the recess formed by the first defining layer and the second defining layer.
  • the cathode is located outside the recess, so that the cathode is completely out of contact with at least a portion of the edge region of the organic functional layer, so that at least a portion of the edge region of the organic functional layer does not emit light during display.
  • the organic functional layer 105 may include a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer.
  • FIG. 2 is a top view of a display panel provided by an embodiment of the present application.
  • the periphery of each pixel unit 10 is surrounded by a first defining layer 103 and a second defining layer, and an orthographic projection of at least a portion of the edge regions of the organic functional layer on the substrate falls onto the first defining layer 103 on the substrate.
  • Fig. 2 exemplarily shows six pixel units each for emitting light of one color.
  • each pixel unit can emit red, blue or green light.
  • the material of the first defining layer 103 and the material of the second defining layer 104 may both be insulating materials, in order to form the present defining layer without affecting another defining layer, in consideration of the influence of the etching process.
  • the structure, the material of the first defining layer 103 and the material of the second defining layer 104 are different.
  • the material of the first defining layer may be polyimide (PI)
  • the material of the second defining layer may be silicon nitride (SiN) or silicon monoxide (SiO).
  • the material of the anode may be a material having a high conductivity and a high work function.
  • the material of the anode may be Indium tin oxide (ITO) or Antimony-doped tin oxide (ATO) or the like.
  • the material of the cathode may be a metal.
  • the material of the cathode can be aluminum.
  • the display panel provided by the embodiment of the present application includes a plurality of pixel units and a pixel defining layer on the substrate, each pixel unit includes an anode, an organic functional layer and a cathode, and the pixel defining layer includes: a defining layer and a second defining layer, the first defining layer and the second defining layer forming a groove, wherein at least a portion of the edge region of the organic functional layer formed by the inkjet printing process is formed by the first defining layer and the second defining layer Within the recess, an orthographic projection of at least a portion of the edge region of the organic functional layer on the substrate falls within the orthographic projection of the first defined layer on the substrate.
  • the portion of the first defining layer that protrudes from the second defining layer blocks the cathode such that at least a portion of the edge region of the organic functional layer is not in contact with the cathode, so that at least a portion of the edge region of the organic functional layer does not emit light when displayed.
  • the brightness uniformity of the display panel is improved, and the display effect of the display panel is improved.
  • FIG. 3A is a schematic structural diagram of still another display panel according to an embodiment of the present application. As shown in FIG. 3A, the display panel 200 includes:
  • Each pixel unit includes an anode 202, an organic functional layer 205, and a cathode 206.
  • the anode 202 and the organic functional layer 205 are located within the pixel area.
  • the anode 202, the organic functional layer 205, and the cathode 206 are sequentially formed on a substrate.
  • the cathode 206 may be formed on the entire surface, that is, the cathodes of all the pixel units are integrated, and the cathode is a whole layer; the cathode 206 may also be separately formed in the pixel region, that is, the cathode of each pixel unit and the pixel unit. Corresponding to the organic functional layer, as shown in Figure 3A.
  • the pixel defining layer includes a first defining layer 203 and a second defining layer 204.
  • the first defining layer 203 is located on a side of the second defining layer 204 away from the substrate 201, and the orthographic projection of the first defining layer 203 on the substrate 201 covers the orthographic projection of the second defining layer 204 on the substrate 201, and the first defining layer 203
  • the opening area is smaller than the opening area of the second defining layer 204 to form a groove.
  • the position of the groove 001 corresponds to a region between the bottom of the first defining layer 203 to the side of the substrate 201 in contact with the second defining layer 204.
  • the groove bottom surface of the groove 001 is the side of the second defining layer 204.
  • at least a portion of the edge region of the organic functional layer 205 is located within the recess such that an orthographic projection of at least a portion of the edge region of the organic functional layer 205 on the substrate 201 falls onto the first defined layer 203 on the substrate 201.
  • the thickness h2 of the edge region of the organic functional layer 205 is greater than the thickness of the remaining region of the organic functional layer 205.
  • the remaining area of the organic functional layer is the area of the organic functional layer other than the edge area.
  • FIG. 1C A schematic diagram of the edge regions of the organic functional layer and the remaining regions can be referred to FIG. 1C.
  • At least a portion of the edge region of the organic functional layer formed by the inkjet printing process is located in a recess formed by the first defining layer and the second defining layer, and at least a portion of the edge region of the organic functional layer is on the substrate
  • the orthographic projection falls within the orthographic projection of the first defined layer on the substrate.
  • the thickness of the second defining layer is not less than the sum of the thickness of the anode and the thickness of the organic functional layer.
  • the thickness of the second defining layer 204 may be equal to the sum of the thickness of the anode 202 and the thickness of the organic functional layer 205.
  • the orthographic projection of all the edge regions of the organic functional layer 205 on the substrate 201 may fall within the orthographic projection of the first defining layer 203 on the substrate 201.
  • all the edge regions of the organic functional layer are located in the grooves formed by the first defining layer and the second defining layer, and all the edge regions of the organic functional layer are not in contact with the cathode, so that all of the organic functional layers are displayed.
  • the edge area does not emit light, and the display panel has a better display effect.
  • the cathode is located outside of the recess formed by the first defining layer and the second defining layer.
  • the cathode is located outside the recess, so that the cathode is completely out of contact with at least a portion of the edge region of the organic functional layer, so that at least a portion of the edge region of the organic functional layer does not emit light during display.
  • the organic functional layer includes a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer.
  • the material of the first defining layer 203 may be an insulating material, and the material of the second defining layer 204 may be a conductive material.
  • the material of the first defining layer may be PI
  • the material of the second defining layer may be a metal oxide.
  • the metal oxide can be ITO.
  • the thickness direction of the second defining layer 204 may be provided through the conductive isolation region 2041.
  • the conductive isolation region 2041 is used to isolate electrical connections between adjacent pixel units to avoid conduction between adjacent pixel units.
  • the thickness of the second defining layer is the distance from the upper surface to the lower surface of the second defining layer, the upper surface and the lower surface of the second defining layer are both parallel to the substrate, and the upper surface of the second defining layer is in contact with the first defining layer, The lower surface of the second defining layer is in contact with the substrate.
  • the thickness direction of the second defining layer is perpendicular to the substrate.
  • the second defining layer made of a conductive material is provided with a conductive isolation region, so that the short circuit phenomenon of the adjacent pixel unit due to the conductivity of the second defining layer can be avoided.
  • the electrically conductive isolation region can be a hollow via structure.
  • the hollow via structure of the conductive isolation region may have the same insulating material as the first defining layer, that is, the hollow via structure may have an insulating material such as PI used to form the first defining layer.
  • the display panel provided by the embodiment of the present application includes a plurality of pixel units and a pixel defining layer on the substrate, and the pixel defining layer includes: a first defining layer and a second defining layer, the first defining layer A groove is formed with the second defining layer.
  • a second defined layer of electrically conductive material is provided with electrically conductive isolation regions for isolating electrical connections between adjacent pixel units.
  • At least a portion of the edge region of the organic functional layer formed by the inkjet printing process is located in a recess formed by the first defining layer and the second defining layer, and an orthographic projection of at least a portion of the edge region of the organic functional layer on the substrate falls into the first Defining the layer in the orthographic projection on the substrate, when forming the cathode, the first defining layer protrudes from the second defining layer to block the cathode, so that at least part of the edge region of the organic functional layer is not in contact with the cathode, so the organic layer is displayed At least part of the edge region of the functional layer does not emit light, which improves the brightness uniformity of the display panel and improves the display effect of the display panel.
  • the embodiment of the present application further provides a flowchart of a method for preparing a display panel, the method includes: forming a first defining layer and a second defining layer on a substrate, wherein the first defining layer is located at a second defined layer away from the substrate The side, the second defining layer and the first defining layer are for defining a pixel area.
  • the orthographic projection of the first defining layer on the substrate covers the orthographic projection of the second defining layer on the substrate, and the opening area of the first defining layer is smaller than the opening area of the second defining layer to form the recess.
  • At least a portion of the edge region of the organic functional layer of the pixel unit can be positioned within the recess such that an orthographic projection of at least a portion of the edge region of the organic functional layer on the substrate falls within the orthographic projection of the first defined layer on the substrate.
  • the pixel unit comprises an anode, an organic functional layer and a cathode.
  • the anode, the organic functional layer and the cathode are sequentially formed on the substrate; or, the cathode, the organic functional layer and the anode are sequentially formed on the substrate.
  • the method for preparing the display panel provided by the embodiment of the present application will be described below by taking an anode, an organic functional layer and a cathode sequentially formed on a substrate.
  • the preparation method includes:
  • an anode layer is formed on the substrate, the anode layer comprising a plurality of anodes.
  • Each anode is located within the pixel area.
  • step 602 a first defined layer and a second defined layer are formed on the substrate.
  • the first defining layer and the second defining layer are used to define a pixel area.
  • the first defining layer is located on a side of the second defining layer away from the substrate.
  • the orthographic projection of the first defining layer on the substrate covers the orthographic projection of the second defining layer on the substrate, and the opening area of the first defining layer is smaller than the opening area of the second defining layer to form the recess.
  • the orthographic projection of the first defining layer on the substrate covers an orthographic projection of the second defining layer on the substrate, ie the area of the orthographic projection of the first defining layer on the substrate is greater than the area of the orthographic projection of the second defining layer on the substrate, and The orthographic projection of the second defined layer on the substrate is within the orthographic projection of the first defined layer on the substrate.
  • the material of the first defining layer and the material of the second defining layer may both be insulating materials.
  • a functional layer is formed on the anode layer, the functional layer comprising a plurality of organic functional layers disposed on the plurality of anodes.
  • the plurality of organic functional layers are in one-to-one correspondence with the plurality of anodes.
  • the organic functional layer is located in the pixel area. At least a portion of the edge region of the organic functional layer is located in a recess formed by the first defining layer and the second defining layer, and an orthographic projection of at least a portion of the edge region of each organic functional layer on the substrate falls into a first definition corresponding to the periphery of the anode
  • the layer is within the orthographic projection on the substrate.
  • the thickness of the edge region of the organic functional layer is greater than the thickness of the remaining region of the organic functional layer.
  • a functional layer can be formed using an inkjet printing process.
  • the organic functional layer may include a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer.
  • step 604 a cathode is formed on the functional layer.
  • the cathode can be formed into a film on the whole surface, that is, the cathodes of all the pixel units are integrated, and the cathode is a whole layer; the cathode can also be separately formed in the pixel region, that is, the cathode of each pixel unit and the organic unit of the pixel unit.
  • the functional layer corresponds.
  • step 604 can include forming a full layer of cathodes on the functional layer.
  • step 604 may include forming a plurality of cathodes on the functional layer including one-to-one correspondingly disposed on the plurality of organic functional layers.
  • At least a portion of the edge region of the organic functional layer formed by the inkjet printing process is located in a recess formed by the first defining layer and the second defining layer, and at least a portion of the edge region of the organic functional layer is on the substrate
  • the orthographic projection falls within the orthographic projection of the first defined layer on the substrate.
  • the thickness of the second defined layer is not less than the sum of the thickness of each anode and the thickness of the corresponding organic functional layer.
  • the orthographic projection of all the edge regions of each organic functional layer on the substrate may fall within the orthographic projection of the first defining layer on the substrate corresponding to the periphery of the anode, that is, the entire organic functional layer.
  • the edge region is located in the groove, and all the edge regions of the organic functional layer are not in contact with the cathode, so that all edge regions of the organic functional layer are not illuminated when displayed.
  • FIG. 5 is a flowchart of forming an anode layer on a substrate in step 601 provided by the embodiment of the present application. As shown in Figure 5, the process can include:
  • step 6011 a substrate is provided.
  • an anode layer is formed on the substrate using a magnetron sputtering process and a patterning process.
  • an anode thin film layer is first formed on the substrate by a magnetron sputtering process, and then the anode thin film layer is patterned to obtain an anode layer.
  • the patterning process mainly comprises: coating a photoresist on the anode film layer, exposing the photoresist-coated substrate with a mask, developing and etching the exposed substrate to obtain an anode layer, and finally stripping the light. Engraved.
  • the material of the anode layer may be a material having a high electrical conductivity and a high work function.
  • the material of the anode layer may be ITO or ATO.
  • FIG. 6 is a schematic structural view of forming an anode layer on a substrate according to an embodiment of the present application. As shown in FIG. 6, an anode layer is formed on the substrate 101 by a magnetron sputtering process and a patterning process, and the anode layer includes a plurality of anodes 102 each located in a pixel region.
  • FIG. 7 is a flowchart of forming a first defining layer and a second defining layer on the substrate in step 602 provided by the embodiment of the present application. As shown in Figure 7, the process can include:
  • a first film layer is formed at the periphery of each anode, the thickness of the first film layer being greater than the thickness of each anode.
  • a first film layer is formed on the periphery of each anode such that the first film layer covers the anode layer.
  • the first film layer may be made of an insulating material.
  • the insulating material may be SiN or SiO.
  • step 6022 a second film layer is formed on the substrate on which the first film layer is formed.
  • the second film layer is made of an insulating material.
  • the insulating material can be PI.
  • step 6023 the second film layer is patterned to form a first defined layer.
  • the patterning process mainly includes steps of coating photoresist, exposing, developing, etching, and stripping the photoresist.
  • the second film layer may be patterned by dry etching to form a first defining layer.
  • step 6024 the first film layer is patterned to form a second defined layer.
  • the first film layer may be patterned by wet etching to form a second defined layer. After forming the second defining layer, the first film layer is exposed. At this time, the first film layer is etched by spraying the etching liquid on the first film layer, and the required second defining layer is formed by controlling the reaction time. .
  • each cathode is located outside of a recess corresponding to the periphery of the anode.
  • the cathode is located outside the recess, so that the cathode is completely out of contact with at least part of the edge region of the organic functional layer, and at least part of the edge region of the organic functional layer is not illuminated when displayed, so that at least part of the edge region of the organic functional layer does not emit light when displayed.
  • FIG. 8 to 13 are schematic views showing the structure of the present invention when the display panel is prepared according to the above preparation method.
  • FIG. 8 is a schematic structural view of forming a first film layer around an anode provided by an embodiment of the present application.
  • a first film layer 11 is formed at the periphery of each anode 102 such that the first film layer 11 covers the anode layer, and the thickness D of the first film layer 11 is larger than the thickness d of each anode 102.
  • FIG. 9 is a schematic structural view of forming a second film layer on a substrate on which a first film layer is formed according to an embodiment of the present application.
  • the second film layer 12 is formed on the substrate 101 on which the first film layer 11 is formed.
  • FIG. 10 is a schematic structural diagram of forming a first defining layer by patterning a second film layer according to an embodiment of the present application.
  • a schematic diagram of the patterning process of the second film layer 12 in FIG. 9 to form the first defining layer 103 may be as shown in FIG.
  • FIG. 11 is a schematic structural diagram of forming a second defining layer by patterning a first film layer according to an embodiment of the present application.
  • a schematic diagram of the patterning process of the first film layer 11 in FIG. 10 to form the second defining layer 104 may be as shown in FIG.
  • the first defining layer 103 is formed on a side of the second defining layer 104 away from the substrate 101.
  • the orthographic projection of the first defining layer 103 on the substrate 101 covers the orthographic projection of the second defining layer 104 on the substrate 101, and the first defining The opening area of the layer 103 is smaller than the opening area of the second defining layer 104 to form the groove 001.
  • Fig. 12 is a view showing the structure of forming a functional layer on the anode layer shown in Fig. 11.
  • the functional layer includes a plurality of organic functional layers 105 disposed on the plurality of anodes 102, and the plurality of organic functional layers 105 are in one-to-one correspondence with the plurality of anodes 102.
  • At least a portion of the edge region of the organic functional layer 105 is located within the recess, and an orthographic projection of at least a portion of the edge region of each of the organic functional layers 105 on the substrate 101 falls onto the first defined layer 103 corresponding to the periphery of the anode 102 on the substrate 101.
  • the thickness of the edge region of the organic functional layer 105 is greater than the thickness of the remaining region of the organic functional layer 105.
  • Fig. 13 is a view showing the structure of forming a cathode on the functional layer shown in Fig. 12.
  • a plurality of cathodes 106 including one-to-one correspondingly disposed on the plurality of organic functional layers 105 may be formed on the functional layer.
  • Each cathode 106 can be located outside of a recess corresponding to the periphery of the anode 102.
  • the preparation method of the display panel provided by the embodiment of the present application eliminates the “coffee ring” effect without changing the original inkjet printing process flow, and can avoid the uneven brightness of the display panel caused by the “coffee ring” effect.
  • the preparation process is relatively simple.
  • the method for fabricating a display panel forms a first defining layer and a second defining layer on the substrate, the first defining layer and the second defining layer forming a groove formed on the anode layer.
  • the functional layer includes a plurality of organic functional layers disposed, at least a portion of the edge regions of the organic functional layers being located within the recesses formed by the first defined layer and the second defined layer.
  • An orthographic projection of at least a portion of the edge region of each of the organic functional layers on the substrate falls within an orthographic projection of the first defined layer on the substrate adjacent the periphery of the anode.
  • the portion of the first defining layer that protrudes from the second defining layer blocks the cathode such that at least a portion of the edge region of the organic functional layer is not in contact with the cathode, so that at least a portion of the edge region of the organic functional layer does not emit light when displayed.
  • the brightness uniformity of the display panel is improved, and the display effect of the display panel is improved.
  • FIG. 14 is a flowchart of still another method for preparing a display panel according to an embodiment of the present application. As shown in FIG. 14, the preparation method includes:
  • an anode layer is formed on the substrate, the anode layer including a plurality of anodes.
  • Each anode is located within the pixel area.
  • step 802 a first film layer is formed on the periphery of each anode.
  • the first film layer covers the anode layer, and the thickness of the first film layer is greater than the thickness of each anode.
  • the first film layer is made of a conductive material.
  • the first film layer can be made of a metal oxide.
  • the metal oxide is ITO.
  • step 803 a conductive isolation region is formed through the thickness direction of the first film layer.
  • the thickness of the first film layer is the distance from the upper surface to the lower surface of the first film layer, and the upper surface and the lower surface of the first film layer are both parallel to the substrate.
  • the thickness direction of the first film layer is perpendicular to the substrate.
  • the electrically conductive isolation region is used to isolate electrical connections between adjacent pixel units.
  • the pixel unit comprises an anode, an organic functional layer and a cathode.
  • the second defining layer made of a conductive material is provided with a conductive isolation region, which can prevent the adjacent pixel unit from short-circuiting due to the conductivity of the second defining layer.
  • the step 803 may include: forming a via hole through the thickness direction of the first film layer by using a punching technique to obtain a conductive isolation region, and the conductive isolation region may be a hollow via structure.
  • a patterning process can be used when punching is performed by using a punching technique.
  • step 804 a second film layer is formed on the substrate on which the first film layer is formed.
  • the second film layer is made of an insulating material.
  • the insulating material can be PI.
  • step 804 may include depositing an insulating material on the substrate on which the first film layer is formed to form a second film layer on the first film layer, and filling the hollow via structure with an insulating material.
  • the top of the hollow via structure may also be sealed.
  • the insulating material of the second film layer is not filled in the hollow via structure.
  • step 805 the second film layer is patterned to form a first defined layer.
  • the second film layer may be patterned by dry etching to form a first defining layer.
  • step 806 the first film layer is patterned to form a second defined layer.
  • the first defining layer is located on a side of the second defining layer away from the substrate, and the orthographic projection of the first defining layer on the substrate covers an orthographic projection of the second defining layer on the substrate, and the opening area of the first defining layer is smaller than the second defining layer The opening area is to form a groove.
  • the first film layer may be patterned by wet etching to form a second defined layer.
  • step 807 a functional layer is formed on the anode layer.
  • the functional layer includes a plurality of organic functional layers disposed on the plurality of anodes, and the plurality of organic functional layers are in one-to-one correspondence with the plurality of anodes.
  • the organic functional layer is located in the pixel area. At least a portion of the edge region of the organic functional layer is located within the recess, and an orthographic projection of at least a portion of the edge region of each of the organic functional layers on the substrate falls within an orthographic projection of the first defined layer on the substrate adjacent the anode, the organic functional layer
  • the thickness of the edge region is greater than the thickness of the remaining regions of the organic functional layer.
  • the thickness of the second defined layer is not less than the sum of the thickness of each anode and the thickness of the corresponding organic functional layer.
  • the orthographic projection of all of the edge regions of the organic functional layer on the substrate may fall within the orthographic projection of the first defined layer on the substrate.
  • all the edge regions of the organic functional layer are located in the grooves formed by the first defining layer and the second defining layer, and all the edge regions of the organic functional layer are not in contact with the cathode, so that all of the organic functional layers are displayed.
  • the edge area does not emit light, and the display panel has a better display effect.
  • step 808 a cathode is formed on the functional layer.
  • a plurality of cathodes may be formed on the functional layer including one-to-one correspondingly disposed on the plurality of organic functional layers, and each of the cathodes may be located outside the recess corresponding to the periphery of the anode.
  • FIG. 15 to FIG. 21 are schematic diagrams showing the structure of the present invention when the display panel is prepared according to the preparation method shown in FIG. 14.
  • FIG. 15 is a schematic structural view of forming a first film layer around the anode provided by an embodiment of the present application.
  • a first film layer 21 is formed at the periphery of each anode 202, and the first film layer 21 covers the anode layer, and the thickness of the first film layer 21 is larger than the thickness of each anode 202.
  • FIG. 16 is a schematic structural view of a conductive isolation region formed along a thickness direction of a first film layer according to an embodiment of the present application.
  • a schematic structural view of forming the conductive isolation region 2041 in the thickness direction of the first film layer 21 shown in FIG. 15 can be as shown in FIG. 16.
  • the conductive isolation region 2041 is used to isolate electrical connections between adjacent pixel units.
  • the electrically conductive isolation region can be a hollow via structure.
  • FIG. 17 is a schematic structural view of forming a second film layer on a first film layer according to an embodiment of the present application.
  • an insulating material is deposited on the substrate on which the first film layer is formed to form a second film layer 22 on the first film layer, and at the same time, the insulating material enters the hollow via structure, and the hollow via structure is filled. There is insulation material.
  • FIG. 18 is a schematic structural diagram of forming a first defining layer by patterning a second film layer according to an embodiment of the present application.
  • a schematic diagram of the patterning process of the second film layer 22 in FIG. 17 to form the first defining layer 203 may be as shown in FIG. 18.
  • FIG. 19 is a schematic structural diagram of forming a second defining layer by patterning a first film layer according to an embodiment of the present application.
  • a schematic diagram of the patterning process of the first film layer 21 in FIG. 18 to form the second defining layer 204 may be as shown in FIG.
  • the first defining layer 203 is located on a side of the second defining layer 204 away from the substrate 201, and the orthographic projection of the first defining layer 203 on the substrate 201 covers the orthographic projection of the second defining layer 204 on the substrate 201, and the first defining layer 203
  • the opening area is smaller than the opening area of the second defining layer 204 to form the groove 001.
  • Fig. 20 is a view showing the structure of forming a functional layer on the anode layer shown in Fig. 19.
  • the functional layer includes a plurality of organic functional layers 205 disposed on the plurality of anodes 202, and the plurality of organic functional layers 205 are in one-to-one correspondence with the plurality of anodes 202.
  • At least a portion of the edge region of the organic functional layer 205 is located within the recess, and an orthographic projection of at least a portion of the edge region of each of the organic functional layers 205 on the substrate 201 falls onto the first defined layer 203 of the periphery of the corresponding anode 202 on the substrate 201.
  • the thickness of the edge region of the organic functional layer 205 is greater than the thickness of the remaining regions of the organic functional layer 205.
  • Fig. 21 is a view showing the structure of forming a cathode on the functional layer shown in Fig. 20.
  • a plurality of cathodes 206 including one-to-one correspondingly disposed on the plurality of organic functional layers 205 may be formed on the functional layer.
  • Each cathode 206 can be located outside of a recess corresponding to the periphery of the anode 202.
  • the method for fabricating a display panel forms a first defining layer and a second defining layer on the substrate, the first defining layer and the second defining layer forming a groove and made of a conductive material.
  • the second defining layer is provided with a conductive isolation region for isolating electrical connections between adjacent pixel units.
  • the functional layer formed on the anode layer includes a plurality of organic functional layers, at least a portion of the edge regions of the organic functional layer being located in the grooves formed by the first defining layer and the second defining layer, at least a portion of the edge regions of each of the organic functional layers
  • An orthographic projection on the substrate falls within the orthographic projection of the first defined layer on the periphery of the corresponding anode.
  • the portion of the first defining layer that protrudes from the second defining layer blocks the cathode such that at least a portion of the edge region of the organic functional layer is not in contact with the cathode, so that at least a portion of the edge region of the organic functional layer does not emit light when displayed.
  • the brightness uniformity of the display panel is improved, and the display effect of the display panel is improved.
  • the embodiment of the present application further provides a display device, which includes a display panel, which may be the display panel shown in FIG. 1A, FIG. 1F, FIG. 3A, FIG. 13, or FIG.
  • the display device can be any product or component having display function such as electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制备方法、显示装置,属于显示技术领域。显示面板包括:基板(101);位于基板(101)上多个像素单元和像素界定层;每个像素单元包括:阳极(102),有机功能层(105)和阴极(106);像素界定层包括:第一界定层(103)和第二界定层(104),第一界定层(103)位于第二界定层(104)远离基板(101)的一侧,第一界定层(103)在基板(101)上的正投影覆盖第二界定层(104)在基板(101)上的正投影,第一界定层(103)的开口面积小于第二界定层(104)的开口面积,以形成凹槽,有机功能层(105)至少部分边缘区域位于凹槽内,以使得有机功能层(105)至少部分边缘区域在基板(101)上的正投影落入第一界定层(103)在基板(101)上的正投影内,可以使有机功能层(105)至少部分边缘区域与阴极(106)不接触,显示时至少部分边缘区域不发光,有助于提高显示面板亮度均匀性。

Description

显示面板及其制备方法、显示装置
本申请要求于2018年03月12日提交的申请号为201810202060.X、发明名称为“显示面板及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种显示面板及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板因其自发光、对比度高、厚度薄、视角广及反应速度快等优点,广泛应用于智能手机、平板电脑、电视等终端产品。
据发明人所知,OLED显示面板包括基板,以及依次设置在基板上的阳极、有机功能层和阴极。其中,有机功能层包括空穴注入层,依次设置在空穴注入层上的空穴传输层、有机发光层、电子传输层和电子注入层。目前主要采用喷墨打印工艺形成有机功能层。OLED显示面板的发光原理为:在阳极和阴极之间加上电压,在该电压的作用下,空穴注入层的空穴通过空穴传输层向有机发光层移动,电子注入层的电子通过电子传输层向有机发光层移动,最终,空穴和电子在有机发光层相遇并结合,结合的过程中释放的能量激发有机发光层中的化学分子发光。
上述显示面板的亮度不均匀。
发明内容
本申请实施例提供了一种显示面板及其制备方法、显示装置。
第一方面,提供了一种显示面板,所述显示面板包括:
基板;以及
位于所述基板上的多个像素单元和像素界定层,所述像素界定层用于界定像素区域,每个所述像素单元包括:阳极,有机功能层和阴极,所述有机功能层位于所述像素区域内;
其中,所述像素界定层包括:第一界定层和第二界定层,所述第一界定层位于所述第二界定层远离所述基板的一侧,所述第一界定层在所述基板上的正投影覆盖所述第二界定层在所述基板上的正投影,且所述第一界定层的开口面积小于所述第二界定层的开口面积,以形成凹槽,所述有机功能层的至少部分边缘区域位于所述凹槽内,以使得所述有机功能层的至少部分边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内,所述有机功能层的边缘区域的厚度大于所述有机功能层的其余区域的厚度。
可选地,所述阳极位于所述基板上且位于所述像素区域内,所述第二界定层的厚度不小于所述阳极的厚度和所述有机功能层的厚度之和。
可选地,所述有机功能层的全部边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内。
可选地,所述第一界定层的材料为绝缘材料,所述第二界定层的材料为绝缘材料或所述第二界定层的材料为导电材料。
可选地,所述阴极位于所述凹槽外。
可选地,所述第二界定层的材料为导电材料,所述第二界定层的厚度方向贯穿设置有导电隔离区,所述导电隔离区用于隔离相邻像素单元之间的电连接。
可选地,所述导电隔离区为空心通孔结构。
可选地,所述空心通孔结构中有与所述第一界定层相同的绝缘材料。
可选地,所述第一界定层的材料为聚酰亚胺,
所述第二界定层的材料为一氮化硅或一氧化硅,或者,所述第二界定层的材料为金属氧化物。
第二方面,提供了一种显示面板的制备方法,所述制备方法包括:
在基板上形成第一界定层和第二界定层,所述第一界定层位于所述第二界定层远离所述基板的一侧,所述第二界定层和所述第一界定层用于界定像素区域,所述第一界定层在所述基板上的正投影覆盖所述第二界定层在所述基板上的正投影,且所述第一界定层的开口面积小于所述第二界定层的开口面积,以形成凹槽,像素单元的有机功能层的至少部分边缘区域能够位于所述凹槽内,以使得所述有机功能层的至少部分边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内。
可选地,所述方法还包括:
在所述基板上形成阳极层,所述阳极层包括多个阳极,每个所述阳极位于 像素区域内;
在所述阳极层上形成功能层,所述功能层包括设置在所述多个阳极上的多个有机功能层,所述多个有机功能层与所述多个阳极一一对应,每个所述有机功能层位于所述像素区域内,所述有机功能层的边缘区域的厚度大于所述有机功能层的其余区域的厚度;
在所述功能层上形成阴极。
可选地,所述第二界定层的厚度不小于每个所述阳极的厚度和对应的有机功能层的厚度之和。
可选地,所述有机功能层的全部边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内。
可选地,所述在基板上形成第一界定层和第二界定层,包括:
在每个所述阳极的周边形成第一膜层,所述第一膜层的厚度大于每个所述阳极的厚度;
在形成有所述第一膜层的基板上形成第二膜层;
对所述第二膜层进行构图工艺形成所述第一界定层;
对所述第一膜层进行构图工艺形成所述第二界定层。
可选地,所述第二膜层由绝缘材料制成,所述第一膜层由绝缘材料或导电材料制成。
可选地,每个阴极位于对应阳极周边的凹槽外。
可选地,所述第一膜层由导电材料制成,所述在每个所述阳极的周边形成第一膜层,包括:
在每个所述阳极的周边形成第一膜层;
沿所述第一膜层的厚度方向贯穿形成导电隔离区,所述导电隔离区用于隔离相邻像素单元之间的电连接。
可选地,所述沿所述第一膜层的厚度方向贯穿形成导电隔离区,包括:
采用打孔技术沿所述第一膜层的厚度方向贯穿形成过孔,以得到所述导电隔离区,所述导电隔离区为空心通孔结构。
可选地,所述在形成有所述第一膜层的基板上形成第二膜层,包括:
在形成有所述第一膜层的基板上沉积绝缘材料,以在所述第一膜层上形成所述第二膜层,并使所述空心通孔结构中填充有所述绝缘材料。
第三方面,提供了一种显示装置,包括第一方面所述的显示面板。
附图说明
图1A是本申请实施例提供的一种显示面板的结构示意图;
图1B示出了本申请实施例提供的第一界定层和第二界定层形成的凹槽的示意图;
图1C是本申请实施例提供的有机功能层的边缘区域和其余区域的示意图;
图1D是本申请实施例提供的第二界定层和第一界定层的结构示意图;
图1E示出了本申请实施例提供的像素界定层的俯视图;
图1F是本申请实施例提供的另一种显示面板的结构示意图;
图2是本申请实施例提供的一种显示面板的俯视图;
图3A是本申请实施例提供的又一种显示面板的结构示意图;
图3B是本申请实施例提供的第一界定层和第二界定层形成的凹槽的示意图;
图4是本申请实施例提供的一种显示面板的制备方法的流程图;
图5是图4所示实施例中形成阳极层的流程图;
图6是图4所示实施例中形成阳极层的结构示意图;
图7是图4所示实施例中形成的第一界定层和第二界定层的流程图;
图8是图4所示实施例中形成的第一膜层的结构示意图;
图9是图4所示实施例中形成的第二膜层的结构示意图;
图10是图4所示实施例中形成的第一界定层的结构示意图;
图11是图4所示实施例中形成的第二界定层的结构示意图;
图12是图4所示实施例中形成的功能层的结构示意图;
图13是图4所示实施例中形成的阴极的结构示意图;
图14是本申请实施例提供的又一种显示面板的制备方法的流程图;
图15是图14所示实施例中形成的第一膜层的结构示意图;
图16是图14所示实施例中形成的导电隔离区的结构示意图;
图17是图14所示实施例中形成的第二膜层的结构示意图;
图18是图14所示实施例中形成的第一界定层的结构示意图;
图19是图14所示实施例中形成的第二界定层的结构示意图;
图20是图14所示实施例中形成的功能层的结构示意图;
图21是图14所示实施例中形成的阴极的结构示意图。
具体实施方式
为使本申请的原理和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
据发明人所知,为了提高OLED材料的使用率,降低OLED显示面板的制备成本,常采用喷墨打印工艺形成OLED显示面板的有机功能层。然而在液滴成膜的过程中,来自液滴喷头的液滴滴落在基板上时,经常会从中间区域流向边缘区域,液滴在基板上形成的薄膜的边缘区域的厚度总是大于中间区域的厚度,形成“咖啡环”效应。这种效应会导致发光时边缘区域的亮度大于中间区域的亮度,从而导致显示面板的亮度不均匀。
为了消除“咖啡环”效应,提高显示面板的亮度均匀性,本申请实施例提供了一种显示面板,示例地,图1A是本申请实施例提供的一种显示面板的结构示意图。如图1A所示,该显示面板100包括:
基板101,以及位于基板101上的多个像素单元和像素界定层,像素界定层用于界定像素区域,图1A以1个像素单元为例进行说明。每个像素单元包括:阳极,有机功能层和阴极,有机功能层位于像素区域内。示例地,如图1A所示,阳极102,有机功能层105和阴极106依次形成在基板上,即阳极102位于基板上,阳极102位于像素区域内,有机功能层105位于阳极102上,阴极106位于有机功能层105上。可选地,阴极106可以整面成膜,即所有像素单元的阴极是一体的,阴极为一整层;阴极106也可以在像素区域单独成膜,即每个像素单元的阴极与该像素单元的有机功能层对应,如图1A所示。
在本申请实施例中,也可以是阴极,有机功能层和阳极依次形成在基板上,即阴极位于基板上,阴极位于像素区域内,有机功能层位于阴极上,阳极位于有机功能层上。
其中,像素界定层包括:第一界定层103和第二界定层104。第一界定层103位于第二界定层104远离基板101的一侧,第一界定层103在基板101上的正投影覆盖第二界定层104在基板101上的正投影,且第一界定层103的开口面积小于第二界定层104的开口面积,以形成凹槽。如图1B所示,该凹槽001的位置对应于第一界定层103的底部到基板101与第二界定层104接触的一面之间的区域。凹槽001的槽底面为第二界定层104的侧面,即该凹槽为第一界 定层在平行于基板的方向上相对于第一界定层凹陷的部分。如图1A所示,有机功能层105的至少部分边缘区域位于凹槽内,以使得有机功能层105的至少部分边缘区域在基板101上的正投影落入第一界定层103在基板101上的正投影内。
其中,如图1C所示,有机功能层105的边缘区域E为有机功能层105靠近像素界定层的区域,有机功能层105的其余区域C为有机功能层105除边缘区域E之外的区域。如图1A所示,有机功能层105的边缘区域的厚度h1大于有机功能层105的其余区域的厚度。
在本申请实施例中,第一界定层在基板上的正投影覆盖第二界定层在基板上的正投影(即第一界定层在基板上的正投影的面积大于第二界定层在基板上的正投影的面积,且第二界定层在基板上的正投影位于第一界定层在基板上的正投影之内),且第一界定层的开口面积小于第二界定层开口面积,以形成凹槽。示例地,如图1B所示,第二界定层104在基板101上的正投影可以位于第一界定层103在基板101上的正投影的中心。此外,如图1D所示,第二界定层104在基板101上的正投影也可以不位于第一界定层103在基板101上的正投影的中心。
采用喷墨打印工艺形成的有机功能层的至少部分边缘区域位于第一界定层和第二界定层所形成的凹槽内,使得有机功能层的至少部分边缘区域在基板上的正投影落入第一界定层在基板上的正投影内。在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的至少部分边缘区域与阴极不接触,所以显示时有机功能层的至少部分边缘区域不发光,因此能够提高显示面板的亮度均匀性,提高显示面板的显示效果,可以避免因“咖啡环”效应而导致的显示面板亮度不均匀的现象。
在本实施例中,第一界定层的开口面积小于第二界定层的开口面积,其中,界定层的开口的位置与有机功能层的位置相对应。图1E示例性示出了本申请实施例中的像素界定层的俯视图。如图1E所示,第一界定层103的开口面积(如图1B中矩形R1的面积)小于第二界定层104的开口面积(如图1B中矩形R2的面积)。
可选地,第二界定层的厚度不小于阳极的厚度和有机功能层的厚度之和。示例地,如图1A所示,第二界定层104的厚度可以等于阳极102的厚度和有机功能层105的厚度之和。
第二界定层的厚度也可以大于阳极的厚度和有机功能层的厚度之和。示例地,图1F示出了第二界定层104的厚度大于阳极102的厚度和有机功能层105的厚度之和的示意图。在这种情况下,有机功能层105的顶部与第一界定层103的底部之间存在空隙。
为了进一步提高显示面板的亮度均匀性,示例地,如图1A所示,有机功能层105的全部边缘区域在基板101上的正投影可以落入第一界定层103在基板101上的正投影内。在这种情况下,有机功能层的全部边缘区域位于第一界定层和第二界定层所形成的凹槽内。在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的全部边缘区域与阴极不接触,所以显示时有机功能层的全部边缘区域不发光,显示面板的显示效果更好。
可选地,如图1F所示,当有机功能层105的顶部与第一界定层103的底部之间存在空隙时,阴极也可能有部分位于凹槽内。
可选地,阴极位于第一界定层和第二界定层所形成的凹槽外。阴极位于凹槽外,可以使阴极完全与有机功能层的至少部分边缘区域不接触,便于显示时有机功能层的至少部分边缘区域不发光。
在本申请实施例中,有机功能层105可以包括空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层。
图2示出了本申请实施例提供的显示面板的俯视图。如图2所示,各个像素单元10的周边均被第一界定层103和第二界定层包围,有机功能层的至少部分边缘区域在基板上的正投影落入第一界定层103在基板上的正投影内。图2示例性示出了6个像素单元,每个像素单元用于发出一种颜色的光。示例地,每个像素单元可以发出红色、蓝色或者绿色的光。
在本申请实施例中,第一界定层103的材料和第二界定层104的材料可以均为绝缘材料,考虑到刻蚀工艺的影响,为了在形成本界定层而不影响另一界定层的结构,第一界定层103的材料和第二界定层104的材料不同。示例地,第一界定层的材料可以为聚酰亚胺(Polyimide,PI),第二界定层的材料可以为一氮化硅(SiN)或一氧化硅(SiO)。
可选地,阳极的材料可以为导电率较高且功函数较高的材料。示例地,阳极的材料可以为氧化铟锡(Indium tin oxide,ITO)或氧化锡锑(Antimony-doped tin oxide,ATO)等。
可选地,阴极的材料可以为金属。示例地,阴极的材料可以为铝。
综上所述,本申请实施例提供的显示面板,该显示面板包括位于基板上的多个像素单元和像素界定层,每个像素单元包括阳极,有机功能层和阴极,像素界定层包括:第一界定层和第二界定层,第一界定层和第二界定层形成凹槽,采用喷墨打印工艺形成的有机功能层的至少部分边缘区域位于第一界定层和第二界定层所形成的凹槽内,使得有机功能层的至少部分边缘区域在基板上的正投影落入第一界定层在基板上的正投影内。在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的至少部分边缘区域与阴极不接触,所以显示时有机功能层的至少部分边缘区域不发光,提高了显示面板的亮度均匀性,提高了显示面板的显示效果。
图3A是本申请实施例提供的又一种显示面板的结构示意图。如图3A所示,该显示面板200包括:
基板201,以及位于基板201上的多个像素单元和像素界定层,像素界定层用于界定像素区域,图3A以1个像素单元为例进行说明。每个像素单元包括:阳极202,有机功能层205和阴极206。阳极202和有机功能层205位于像素区域内。示例地,阳极202,有机功能层205和阴极206依次形成在基板上。可选地,阴极206可以整面成膜,即所有像素单元的阴极是一体的,阴极为一整层;阴极206也可以在像素区域单独成膜,即每个像素单元的阴极与该像素单元的有机功能层对应,如图3A所示。
其中,像素界定层包括:第一界定层203和第二界定层204。第一界定层203位于第二界定层204远离基板201的一侧,第一界定层203在基板201上的正投影覆盖第二界定层204在基板201上的正投影,且第一界定层203的开口面积小于第二界定层204的开口面积,以形成凹槽。如图3B所示,该凹槽001的位置对应于第一界定层203的底部到基板201与第二界定层204接触的一面之间的区域。凹槽001的槽底面为第二界定层204的侧面。如图3A所示,有机功能层205的至少部分边缘区域位于凹槽内,以使得有机功能层205的至少部分边缘区域在基板201上的正投影落入第一界定层203在基板201上的正投影内。有机功能层205的边缘区域的厚度h2大于有机功能层205的其余区域的厚度。有机功能层的其余区域为有机功能层除边缘区域之外的区域。有机功能层的边缘区域和其余区域的示意图可以参考图1C。
在本申请实施例中,采用喷墨打印工艺形成的有机功能层的至少部分边缘 区域位于第一界定层和第二界定层所形成的凹槽内,有机功能层的至少部分边缘区域在基板上的正投影落入第一界定层在基板上的正投影内。在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的至少部分边缘区域与阴极不接触,所以显示时有机功能层的至少部分边缘区域不发光,提高了显示面板的亮度均匀性,提高了显示面板的显示效果。
可选地,第二界定层的厚度不小于阳极的厚度和有机功能层的厚度之和。示例地,如图3A所示,第二界定层204的厚度可以等于阳极202的厚度和有机功能层205的厚度之和。
为了进一步提高显示面板的亮度均匀性,示例地,如图3A所示,有机功能层205的全部边缘区域在基板201上的正投影可以落入第一界定层203在基板201上的正投影内。在这种情况下,有机功能层的全部边缘区域位于第一界定层和第二界定层所形成的凹槽内,有机功能层的全部边缘区域与阴极不接触,所以显示时有机功能层的全部边缘区域不发光,显示面板的显示效果更好。
可选地,阴极位于第一界定层和第二界定层所形成的凹槽外。阴极位于凹槽外,可以使阴极完全与有机功能层的至少部分边缘区域不接触,便于显示时有机功能层的至少部分边缘区域不发光。
有机功能层包括空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层。
在本申请实施例中,第一界定层203的材料可以为绝缘材料,第二界定层204的材料可以为导电材料。示例地,第一界定层的材料可以为PI,第二界定层的材料可以为金属氧化物。比如,金属氧化物可以为ITO。
当第二界定层的材料为导电材料时,示例地,如图3A所示,第二界定层204的厚度方向(如图3A中u所指示的方向)可以贯穿设置有导电隔离区2041。该导电隔离区2041用于隔离相邻像素单元之间的电连接,以避免相邻像素单元之间导通。第二界定层的厚度为第二界定层的上表面到下表面的距离,第二界定层的上表面与下表面均平行于基板,第二界定层的上表面与第一界定层接触,第二界定层的下表面与基板接触。第二界定层的厚度方向与基板垂直。
在本申请实施例中,由导电材料制成的第二界定层设置有导电隔离区,这样可以避免相邻像素单元因第二界定层的导电性而产生短路现象。
示例地,导电隔离区可以为空心通孔结构。
示例地,导电隔离区的空心通孔结构中还可以有与第一界定层相同的绝缘 材料,即空心通孔结构中可以有形成第一界定层时所采用的绝缘材料,如PI。
综上所述,本申请实施例提供的显示面板,该显示面板包括位于基板上的多个像素单元和像素界定层,像素界定层包括:第一界定层和第二界定层,第一界定层和第二界定层形成凹槽。由导电材料制成的第二界定层设置有导电隔离区,用于隔离相邻像素单元之间的电连接。采用喷墨打印工艺形成的有机功能层的至少部分边缘区域位于第一界定层和第二界定层所形成的凹槽内,有机功能层的至少部分边缘区域在基板上的正投影落入第一界定层在基板上的正投影内,在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的至少部分边缘区域与阴极不接触,所以显示时有机功能层的至少部分边缘区域不发光,提高了显示面板的亮度均匀性,提高了显示面板的显示效果。
本申请实施例还提供了一种显示面板的制备方法的流程图,该制备方法包括:在基板上形成第一界定层和第二界定层,第一界定层位于第二界定层远离基板的一侧,第二界定层和第一界定层用于界定像素区域。第一界定层在基板上的正投影覆盖第二界定层在基板上的正投影,且第一界定层的开口面积小于第二界定层的开口面积,以形成凹槽。像素单元的有机功能层的至少部分边缘区域能够位于凹槽内,以使得有机功能层的至少部分边缘区域在基板上的正投影落入第一界定层在基板上的正投影内。
其中,像素单元包括阳极,有机功能层和阴极。示例地,阳极,有机功能层和阴极依次形成在基板上;或者,阴极,有机功能层和阳极依次形成在基板上。下面以阳极,有机功能层和阴极依次形成在基板上为例,对本申请实施例提供的显示面板的制备方法进行说明。
图4是本申请实施例提供的一种显示面板的制备方法的流程图。如图4所示,该制备方法包括:
在步骤601中,在基板上形成阳极层,该阳极层包括多个阳极。
每个阳极位于像素区域内。
在步骤602中,在基板上形成第一界定层和第二界定层。
第一界定层和第二界定层用于界定像素区域。第一界定层位于第二界定层远离基板的一侧。第一界定层在基板上的正投影覆盖第二界定层在基板上的正投影,且第一界定层的开口面积小于第二界定层的开口面积,以形成凹槽。
第一界定层在基板上的正投影覆盖第二界定层在基板上的正投影,即第一界定层在基板上的正投影的面积大于第二界定层在基板上的正投影的面积,且第二界定层在基板上的正投影位于第一界定层在基板上的正投影之内。
在本申请实施例中,第一界定层的材料和第二界定层的材料可以均为绝缘材料。
在步骤603中,在阳极层上形成功能层,该功能层包括设置在多个阳极上的多个有机功能层。
多个有机功能层与多个阳极一一对应。有机功能层位于像素区域内。有机功能层的至少部分边缘区域位于第一界定层和第二界定层所形成的凹槽内,每个有机功能层的至少部分边缘区域在基板上的正投影落入对应阳极周边的第一界定层在基板上的正投影内。有机功能层的边缘区域的厚度大于有机功能层的其余区域的厚度。
在步骤603中,可以采用喷墨打印工艺形成功能层。
可选地,有机功能层可以包括空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层。
在步骤604中,在功能层上形成阴极。
可选地,阴极可以整面成膜,即所有像素单元的阴极是一体的,阴极为一整层;阴极也可以在像素区域单独成膜,即每个像素单元的阴极与该像素单元的有机功能层对应。
当阴极整面成膜时,步骤604可以包括:在功能层上形成一整层阴极。
当阴极在像素区域单独成膜时,步骤604可以包括:在功能层上形成包括一一对应设置在多个有机功能层上的多个阴极。
在本申请实施例中,采用喷墨打印工艺形成的有机功能层的至少部分边缘区域位于第一界定层和第二界定层所形成的凹槽内,有机功能层的至少部分边缘区域在基板上的正投影落入第一界定层在基板上的正投影内。在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的至少部分边缘区域与阴极不接触,所以显示时有机功能层的至少部分边缘区域不发光,因此可以提高显示面板的亮度均匀性,提高显示面板的显示效果,可以避免了因“咖啡环”效应而导致的显示面板的亮度不均匀的现象。
可选地,第二界定层的厚度不小于每个阳极的厚度和对应的有机功能层的厚度之和。
为了进一步提高显示面板的亮度均匀性,每个有机功能层的全部边缘区域在基板上的正投影可以落入对应阳极周边的第一界定层在基板上的正投影内,即有机功能层的全部边缘区域位于凹槽内,有机功能层的全部边缘区域与阴极不接触,所以显示时有机功能层的全部边缘区域不发光。
可选地,图5是本申请实施例提供的步骤601中在基板上形成阳极层的流程图。如图5所示,该过程可以包括:
在步骤6011中,提供基板。
在步骤6012中,在基板上采用磁控溅射工艺和构图工艺形成阳极层。
其中,在基板上先采用磁控溅射工艺形成阳极薄膜层,然后对阳极薄膜层进行构图工艺得到阳极层。构图工艺主要包括:在阳极薄膜层上涂覆光刻胶,采用掩膜版对涂覆有光刻胶的基板进行曝光,再对曝光后的基板进行显影、刻蚀得到阳极层,最后剥离光刻胶。
示例地,阳极层的材料可以为导电率较高,且功函数较高的材料。比如阳极层的材料可以为ITO或ATO等。
图6是本申请实施例提供的一种在基板上形成阳极层的结构示意图。如图6所示,在基板101上采用磁控溅射工艺和构图工艺形成阳极层,该阳极层包括多个阳极102,每个阳极位于像素区域内。
可选地,图7是本申请实施例提供的步骤602中在基板上形成第一界定层和第二界定层的流程图。如图7所示,该过程可以包括:
在步骤6021中,在每个阳极的周边形成第一膜层,第一膜层的厚度大于每个阳极的厚度。
在步骤6021中,在每个阳极的周边形成第一膜层,使得第一膜层覆盖阳极层。可选地,第一膜层可以由绝缘材料制成。示例地,该绝缘材料可以为SiN或SiO。
在步骤6022中,在形成有第一膜层的基板上形成第二膜层。
其中,第二膜层由绝缘材料制成。示例地,该绝缘材料可以为PI。
在步骤6023中,对第二膜层进行构图工艺形成第一界定层。
构图工艺主要包括:涂覆光刻胶,曝光,显影、刻蚀,以及剥离光刻胶等步骤。
在步骤6023中,可以采用干法刻蚀方式对第二膜层进行构图工艺以形成第一界定层。
在步骤6024中,对第一膜层进行构图工艺形成第二界定层。
在步骤6024中,可以采用湿法刻蚀方式对第一膜层进行构图工艺以形成第二界定层。形成第二界定层之后,第一膜层裸露出来,此时,在第一膜层上喷淋刻蚀液对第一膜层进行刻蚀,通过控制反应时间,形成所需要的第二界定层。
可选地,每个阴极位于对应阳极周边的凹槽外。阴极位于凹槽外,可以使阴极完全与有机功能层的至少部分边缘区域不接触,显示时有机功能层的至少部分边缘区域不发光,便于显示时有机功能层的至少部分边缘区域不发光。
图8至图13是本申请按照上述制备方法制备显示面板时的结构示意图。示例地,图8是本申请实施例提供的一种在阳极周边形成第一膜层的结构示意图。如图8所示,在每个阳极102的周边形成第一膜层11,使得第一膜层11覆盖阳极层,第一膜层11的厚度D大于每个阳极102的厚度d。
示例地,图9是本申请实施例提供的一种在形成有第一膜层的基板上形成第二膜层的结构示意图。如图9所示,在形成有第一膜层11的基板101上形成第二膜层12。
示例地,图10是本申请实施例提供的一种对第二膜层进行构图工艺形成第一界定层的结构示意图。比如对图9中的第二膜层12进行构图工艺形成第一界定层103的结构示意图可以如图10所示。
示例地,图11是本申请实施例提供的一种对第一膜层进行构图工艺形成第二界定层的结构示意图。比如对图10中的第一膜层11进行构图工艺形成第二界定层104的结构示意图可以如图11所示。形成的第一界定层103位于第二界定层104远离基板101的一侧,第一界定层103在基板101上的正投影覆盖第二界定层104在基板101上的正投影,且第一界定层103的开口面积小于第二界定层104的开口面积,以形成凹槽001。
图12示出了在图11所示的阳极层上形成功能层的结构示意图。如图12所示,该功能层包括设置在多个阳极102上的多个有机功能层105,多个有机功能层105与多个阳极102一一对应。有机功能层105的至少部分边缘区域位于凹槽内,每个有机功能层105的至少部分边缘区域在基板101上的正投影落入对应阳极102周边的第一界定层103在基板101上的正投影内,有机功能层105的边缘区域的厚度大于有机功能层105的其余区域的厚度。
图13示出了在图12所示的功能层上形成阴极的结构示意图。示例地,如图13所示,可以在功能层上形成包括一一对应设置在多个有机功能层105上的 多个阴极106。每个阴极106可以位于对应阳极102周边的凹槽外。
本申请实施例提供的显示面板的制备方法在不改变原有的喷墨打印工艺流程的情况下消除“咖啡环”效应,可以避免因“咖啡环”效应而导致的显示面板亮度不均匀的现象,制备过程较简单。
综上所述,本申请实施例提供的显示面板的制备方法,在基板上形成第一界定层和第二界定层,第一界定层和第二界定层形成凹槽,在阳极层上形成的功能层包括设置多个有机功能层,有机功能层的至少部分边缘区域位于第一界定层和第二界定层所形成的凹槽内。每个有机功能层的至少部分边缘区域在基板上的正投影落入对应阳极周边的第一界定层在基板上的正投影内。在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的至少部分边缘区域与阴极不接触,所以显示时有机功能层的至少部分边缘区域不发光,提高了显示面板的亮度均匀性,提高了显示面板的显示效果。
图14是本申请实施例提供的又一种显示面板的制备方法的流程图。如图14所示,该制备方法包括:
在步骤801中,在基板上形成阳极层,该阳极层包括多个阳极。
每个阳极位于像素区域内。
在步骤802中,在每个阳极的周边形成第一膜层。
第一膜层覆盖阳极层,第一膜层的厚度大于每个阳极的厚度。
可选地,该第一膜层由导电材料制成。示例地,第一膜层可以由金属氧化物制成。比如,金属氧化物为ITO。
在步骤803中,沿第一膜层的厚度方向贯穿形成导电隔离区。
第一膜层的厚度为第一膜层的上表面到下表面的距离,第一膜层的上表面与下表面均平行于基板。第一膜层的厚度方向与基板垂直。
该导电隔离区用于隔离相邻像素单元之间的电连接。其中,像素单元包括阳极,有机功能层和阴极。由导电材料制成的第二界定层设置有导电隔离区,可以避免相邻像素单元因第二界定层的导电性而产生短路现象。
可选地,步骤803可以包括:采用打孔技术沿第一膜层的厚度方向贯穿形成过孔,以得到导电隔离区,该导电隔离区可以为空心通孔结构。其中,在采用打孔技术进行打孔时可以采用构图工艺。
在步骤804中,在形成有第一膜层的基板上形成第二膜层。
该第二膜层由绝缘材料制成。示例地,该绝缘材料可以为PI。
可选地,步骤804可以包括:在形成有第一膜层的基板上沉积绝缘材料,以在第一膜层上形成第二膜层,并使空心通孔结构中填充有绝缘材料。
在本申请实施例中,在采用打孔技术形成导电隔离区后,也可以对空心通孔结构的顶部进行密封处理。在这种情况下,在形成第二膜层时,第二膜层的绝缘材料不会填充于该空心通孔结构中。
在步骤805中,对第二膜层进行构图工艺形成第一界定层。
在步骤805中,可以采用干法刻蚀方式对第二膜层进行构图工艺形成第一界定层。
在步骤806中,对第一膜层进行构图工艺形成第二界定层。
第一界定层位于第二界定层远离基板的一侧,第一界定层在基板上的正投影覆盖第二界定层在基板上的正投影,且第一界定层的开口面积小于第二界定层的开口面积,以形成凹槽。
在步骤806中,可以采用湿法刻蚀方式对第一膜层进行构图工艺形成第二界定层。
在步骤807中,在阳极层上形成功能层。
该功能层包括设置在多个阳极上的多个有机功能层,多个有机功能层与多个阳极一一对应。有机功能层位于像素区域内。有机功能层的至少部分边缘区域位于凹槽内,每个有机功能层的至少部分边缘区域在基板上的正投影落入对应阳极周边的第一界定层在基板上的正投影内,有机功能层的边缘区域的厚度大于有机功能层的其余区域的厚度。
可选地,第二界定层的厚度不小于每个阳极的厚度和对应的有机功能层的厚度之和。
为了进一步提高显示面板的亮度均匀性,示例地,有机功能层的全部边缘区域在基板上的正投影可以落入第一界定层在基板上的正投影内。在这种情况下,有机功能层的全部边缘区域位于第一界定层和第二界定层所形成的凹槽内,有机功能层的全部边缘区域与阴极不接触,所以显示时有机功能层的全部边缘区域不发光,显示面板的显示效果更好。
在步骤808中,在功能层上形成阴极。
可选地,可以在功能层上形成包括一一对应设置在多个有机功能层上的多个阴极,每个阴极可以位于对应阳极周边的凹槽外。
图15至图21是本申请按照图14所示制备方法制备显示面板时的结构示意图。示例地,图15是本申请实施例提供的一种在阳极的周边形成第一膜层的结构示意图。如图15所示,在每个阳极202的周边形成第一膜层21,第一膜层21覆盖阳极层,第一膜层21的厚度大于每个阳极202的厚度。
示例地,图16是本申请实施例提供的一种沿第一膜层的厚度方向贯穿形成导电隔离区的结构示意图。比如沿图15所示的第一膜层21的厚度方向贯穿形成导电隔离区2041的结构示意图可以如图16所示。该导电隔离区2041用于隔离相邻像素单元之间的电连接。示例地,该导电隔离区可以为空心通孔结构。
示例地,图17是本申请实施例提供的一种在第一膜层上形成第二膜层的结构示意图。如图17所示,在形成有第一膜层的基板上沉积绝缘材料,以在第一膜层上形成第二膜层22,同时,绝缘材料进入空心通孔结构,空心通孔结构中填充有绝缘材料。
示例地,图18是本申请实施例提供的一种对第二膜层进行构图工艺形成第一界定层的结构示意图。比如对图17中的第二膜层22进行构图工艺形成第一界定层203的结构示意图可以如图18所示。
示例地,图19是本申请实施例提供的一种对第一膜层进行构图工艺形成第二界定层的结构示意图。比如对图18中的第一膜层21进行构图工艺形成第二界定层204的结构示意图可以如图19所示。第一界定层203位于第二界定层204远离基板201的一侧,第一界定层203在基板201上的正投影覆盖第二界定层204在基板201上的正投影,且第一界定层203的开口面积小于第二界定层204的开口面积,以形成凹槽001。
图20示出了在图19所示的阳极层上形成功能层的结构示意图。如图20所示,该功能层包括设置在多个阳极202上的多个有机功能层205,多个有机功能层205与多个阳极202一一对应。有机功能层205的至少部分边缘区域位于凹槽内,每个有机功能层205的至少部分边缘区域在基板201上的正投影落入对应阳极202周边的第一界定层203在基板201上的正投影内,有机功能层205的边缘区域的厚度大于有机功能层205的其余区域的厚度。
图21示出了在图20所示的功能层上形成阴极的结构示意图。示例地,如图21所示,可以在功能层上形成包括一一对应设置在多个有机功能层205上的多个阴极206。每个阴极206可以位于对应阳极202周边的凹槽外。
综上所述,本申请实施例提供的显示面板的制备方法,在基板上形成第一 界定层和第二界定层,第一界定层和第二界定层形成凹槽,且由导电材料制成的第二界定层设置有导电隔离区,用于隔离相邻像素单元之间的电连接。在阳极层上形成的功能层包括多个有机功能层,有机功能层的至少部分边缘区域位于第一界定层和第二界定层所形成的凹槽内,每个有机功能层的至少部分边缘区域在基板上的正投影落入对应阳极周边的第一界定层在基板上的正投影内。在形成阴极时,第一界定层突出第二界定层的部分对阴极产生阻挡作用,使得有机功能层的至少部分边缘区域与阴极不接触,所以显示时有机功能层的至少部分边缘区域不发光,提高了显示面板的亮度均匀性,提高了显示面板的显示效果。
本申请实施例还提供了一种显示装置,该显示装置包括显示面板,该显示面板可以为图1A、图1F、图3A、图13或图21所示的显示面板。该显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述仅为本申请的示例性实施例,并不用以限制本申请的范围,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请所附权利要求限定的保护范围之内。

Claims (20)

  1. 一种显示面板,包括:
    基板;以及
    位于所述基板上的多个像素单元和像素界定层,所述像素界定层用于界定像素区域,每个所述像素单元包括:阳极,有机功能层和阴极,所述有机功能层位于所述像素区域内;
    其中,所述像素界定层包括:第一界定层和第二界定层,所述第一界定层位于所述第二界定层远离所述基板的一侧,所述第一界定层在所述基板上的正投影覆盖所述第二界定层在所述基板上的正投影,且所述第一界定层的开口面积小于所述第二界定层的开口面积,以形成凹槽,所述有机功能层的至少部分边缘区域位于所述凹槽内,以使得所述有机功能层的至少部分边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内,所述有机功能层的边缘区域的厚度大于所述有机功能层的其余区域的厚度。
  2. 根据权利要求1所述的显示面板,其中,所述阳极位于所述基板上且位于所述像素区域内,所述第二界定层的厚度不小于所述阳极的厚度和所述有机功能层的厚度之和。
  3. 根据权利要求1所述的显示面板,其中,所述有机功能层的全部边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内。
  4. 根据权利要求1所述的显示面板,其中,所述第一界定层的材料为绝缘材料,所述第二界定层的材料为绝缘材料或所述第二界定层的材料为导电材料。
  5. 根据权利要求2所述的显示面板,其中,所述阴极位于所述凹槽外。
  6. 根据权利要求4所述的显示面板,其中,所述第二界定层的材料为导电材料,所述第二界定层的厚度方向贯穿设置有导电隔离区,所述导电隔离区用于隔离相邻像素单元之间的电连接。
  7. 根据权利要求6所述的显示面板,其中,所述导电隔离区为空心通孔结构。
  8. 根据权利要求7所述的显示面板,其中,所述空心通孔结构中有与所述第一界定层相同的绝缘材料。
  9. 根据权利要求4所述的显示面板,其中,所述第一界定层的材料为聚酰亚胺,
    所述第二界定层的材料为一氮化硅或一氧化硅,或者,所述第二界定层的材料为金属氧化物。
  10. 一种显示面板的制备方法,包括:
    在基板上形成第一界定层和第二界定层,所述第一界定层位于所述第二界定层远离所述基板的一侧,所述第二界定层和所述第一界定层用于界定像素区域,所述第一界定层在所述基板上的正投影覆盖所述第二界定层在所述基板上的正投影,且所述第一界定层的开口面积小于所述第二界定层的开口面积,以形成凹槽,像素单元的有机功能层的至少部分边缘区域能够位于所述凹槽内,以使得所述有机功能层的至少部分边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    在所述基板上形成阳极层,所述阳极层包括多个阳极,每个所述阳极位于所述像素区域内;
    在所述阳极层上形成功能层,所述功能层包括设置在所述多个阳极上的多个有机功能层,所述多个有机功能层与所述多个阳极一一对应,每个所述有机功能层位于所述像素区域内,所述有机功能层的边缘区域的厚度大于所述有机功能层的其余区域的厚度;
    在所述功能层上形成阴极。
  12. 根据权利要求11所述的方法,其中,所述第二界定层的厚度不小于每个所述阳极的厚度和对应的有机功能层的厚度之和。
  13. 根据权利要求10所述的方法,其中,所述有机功能层的全部边缘区域在所述基板上的正投影落入所述第一界定层在所述基板上的正投影内。
  14. 根据权利要求11所述的方法,其中,所述在基板上形成第一界定层和第二界定层,包括:
    在每个所述阳极的周边形成第一膜层,所述第一膜层的厚度大于每个所述阳极的厚度;
    在形成有所述第一膜层的基板上形成第二膜层;
    对所述第二膜层进行构图工艺形成所述第一界定层;
    对所述第一膜层进行构图工艺形成所述第二界定层。
  15. 根据权利要求14所述的方法,其中,所述第二膜层由绝缘材料制成,所述第一膜层由绝缘材料或导电材料制成。
  16. 根据权利要求11所述的方法,其中,每个所述阴极位于对应阳极周边的凹槽外。
  17. 根据权利要求15所述的方法,其中,所述第一膜层由导电材料制成,所述在每个所述阳极的周边形成第一膜层,包括:
    在每个所述阳极的周边形成第一膜层;
    沿所述第一膜层的厚度方向贯穿形成导电隔离区,所述导电隔离区用于隔离相邻像素单元之间的电连接。
  18. 根据权利要求17所述的方法,其中,所述沿所述第一膜层的厚度方向贯穿形成导电隔离区,包括:
    采用打孔技术沿所述第一膜层的厚度方向贯穿形成过孔,以得到所述导电隔离区,所述导电隔离区为空心通孔结构。
  19. 根据权利要求18所述的方法,其中,所述在形成有所述第一膜层的基板上形成第二膜层,包括:
    在形成有所述第一膜层的基板上沉积绝缘材料,以在所述第一膜层上形成所述第二膜层,并使所述空心通孔结构中填充有所述绝缘材料。
  20. 一种显示装置,包括权利要求1至9任一所述的显示面板。
PCT/CN2018/115700 2018-03-12 2018-11-15 显示面板及其制备方法、显示装置 WO2019174289A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18909397.4A EP3767680B1 (en) 2018-03-12 2018-11-15 Display panel and manufacturing method therefor, and display apparatus
US16/624,400 US11233115B2 (en) 2018-03-12 2018-11-15 Display panel and manufacturing method thereof, and display device
JP2019569400A JP7272966B2 (ja) 2018-03-12 2018-11-15 表示パネルとその製造方法、表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810202060.XA CN110265428B (zh) 2018-03-12 2018-03-12 显示面板及其制备方法、显示装置
CN201810202060.X 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019174289A1 true WO2019174289A1 (zh) 2019-09-19

Family

ID=67908552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115700 WO2019174289A1 (zh) 2018-03-12 2018-11-15 显示面板及其制备方法、显示装置

Country Status (5)

Country Link
US (1) US11233115B2 (zh)
EP (1) EP3767680B1 (zh)
JP (1) JP7272966B2 (zh)
CN (1) CN110265428B (zh)
WO (1) WO2019174289A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430300B (zh) * 2020-03-31 2023-09-05 京东方科技集团股份有限公司 Oled阵列基板及其制备方法、显示面板及显示装置
CN115148917A (zh) * 2021-03-31 2022-10-04 北京京东方技术开发有限公司 显示基板及其制备方法、显示装置
CN116456770A (zh) * 2023-04-27 2023-07-18 惠科股份有限公司 显示基板及其制备方法、显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029028A1 (en) * 2008-07-30 2010-02-04 Alex Song Method of manufacturing organic light emitting device
CN105448957A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 有机电致发光显示基板及其制作方法、显示装置
CN107393939A (zh) * 2017-08-30 2017-11-24 京东方科技集团股份有限公司 像素界定层及制造方法、显示面板及制造方法、显示装置
CN107706222A (zh) * 2017-09-28 2018-02-16 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板
CN207834304U (zh) * 2018-03-12 2018-09-07 京东方科技集团股份有限公司 显示面板及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915806B2 (ja) * 2003-11-11 2007-05-16 セイコーエプソン株式会社 電気光学装置および電子機器
KR100625994B1 (ko) * 2004-02-04 2006-09-20 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법
JP5256605B2 (ja) * 2006-01-18 2013-08-07 凸版印刷株式会社 有機エレクトロルミネッセンス素子の製造方法
JP5055925B2 (ja) * 2006-09-29 2012-10-24 セイコーエプソン株式会社 電気光学装置、およびその製造方法
US8729534B2 (en) * 2009-06-29 2014-05-20 Panasonic Corporation Organic EL display panel
JP5201484B2 (ja) * 2009-08-25 2013-06-05 カシオ計算機株式会社 発光装置及びその製造方法並びに電子機器
CN103928497B (zh) * 2014-04-01 2016-07-13 京东方科技集团股份有限公司 Oled显示器件及其制作方法、显示装置
CN104393192A (zh) * 2014-12-04 2015-03-04 京东方科技集团股份有限公司 一种像素界定层及其制作方法、显示面板、显示装置
US10243175B2 (en) * 2016-02-02 2019-03-26 Samsung Display Co., Ltd. Organic light-emitting apparatus fabricated using a fluoropolymer and method of manufacturing the same
KR102439873B1 (ko) * 2017-03-10 2022-09-05 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN107331691B (zh) * 2017-08-24 2020-07-03 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板
KR102421575B1 (ko) * 2017-12-01 2022-07-18 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
KR102439307B1 (ko) * 2018-01-29 2022-09-02 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법
KR20210028799A (ko) * 2019-09-04 2021-03-15 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100029028A1 (en) * 2008-07-30 2010-02-04 Alex Song Method of manufacturing organic light emitting device
CN105448957A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 有机电致发光显示基板及其制作方法、显示装置
CN107393939A (zh) * 2017-08-30 2017-11-24 京东方科技集团股份有限公司 像素界定层及制造方法、显示面板及制造方法、显示装置
CN107706222A (zh) * 2017-09-28 2018-02-16 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板
CN207834304U (zh) * 2018-03-12 2018-09-07 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
JP7272966B2 (ja) 2023-05-12
CN110265428A (zh) 2019-09-20
US11233115B2 (en) 2022-01-25
CN110265428B (zh) 2024-05-24
JP2021516842A (ja) 2021-07-08
US20210151548A1 (en) 2021-05-20
EP3767680B1 (en) 2023-09-13
EP3767680A4 (en) 2021-12-15
EP3767680A1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2020207124A1 (zh) 显示基板及其制造方法、显示装置
JP6219685B2 (ja) 発光ディスプレイバックプレーン、ディスプレイデバイス、及び画素定義層の製造方法
WO2016086728A1 (zh) 像素界定层及其制作方法、显示面板和显示装置
WO2019148853A1 (zh) 柔性显示面板、其制作方法及显示装置
US11985840B2 (en) Display substrate, manufacturing method thereof and display device
CN110890406B (zh) 一种有机发光显示背板、其制作方法及显示装置
US20220367581A1 (en) Display substrate and preparation method therefor, and display apparatus
WO2020143552A1 (zh) 显示基板及其制备方法、显示装置
US11183111B2 (en) Pixel unit and method for manufacturing the same, and double-sided OLED display device
CN109920825B (zh) 像素界定结构及其制作方法、显示面板及显示装置
CN110571361B (zh) 有机发光显示面板及制作方法、显示装置
CN111146215B (zh) 一种阵列基板、其制作方法及显示装置
WO2020010847A1 (zh) 显示面板及其制造方法和显示装置
US20180356922A1 (en) Touch screen, fabrication method thereof, and display apparatus
WO2019174289A1 (zh) 显示面板及其制备方法、显示装置
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
CN108573998B (zh) 显示面板及制造方法、显示装置
CN100421252C (zh) 有机电致发光显示器件及其制造方法
WO2020164317A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
US20210399067A1 (en) Display Substrate and Manufacturing Method Thereof, Display Device, and Inkjet Printing Method
US10908331B2 (en) Display substrate, manufacturing method thereof and display panel
CN110867526B (zh) 显示基板及其制备方法、显示装置
US20220336552A1 (en) Display substrates and methods of manufacturing the same, display panels, and display apparatuses
CN110518073B (zh) 薄膜晶体管及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018909397

Country of ref document: EP

Effective date: 20201012