WO2019072084A1 - 一种耐高温硬质复合涂层及其制备方法和涂层刀具 - Google Patents
一种耐高温硬质复合涂层及其制备方法和涂层刀具 Download PDFInfo
- Publication number
- WO2019072084A1 WO2019072084A1 PCT/CN2018/107206 CN2018107206W WO2019072084A1 WO 2019072084 A1 WO2019072084 A1 WO 2019072084A1 CN 2018107206 W CN2018107206 W CN 2018107206W WO 2019072084 A1 WO2019072084 A1 WO 2019072084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- high temperature
- composite coating
- hard composite
- temperature resistant
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3485—Sputtering using pulsed power to the target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the invention relates to the technical field of hard coatings, in particular to a high temperature resistant hard composite coating, a preparation method thereof and a coating tool.
- Hard coating is an effective way to strengthen the surface of materials, exert material potential and improve production efficiency. It is a kind of surface coating, which means that the microhardness deposited on the surface of the base by physical or chemical methods is greater than a certain specificity. Value of the surface coating.
- Hard coatings have been widely used in the cutting industry, mold industry, geological drilling, textile industry, machinery manufacturing and aerospace, and play an increasingly important role. Among them, the application of hard coating in the cutting industry can not only process ordinary cutting tools such as tools, drills and other difficult-to-machine materials, but also improve the precision of cutting, and play superhard, tough, wear-resistant, self-lubricating, etc. The advantage is considered a revolution in the history of cutting.
- nano-multilayer composite coatings are widely used in the tool industry.
- Early hard protective coatings such as simple binary TiN and TiC coatings, are widely used in many fields due to their high resistance to mechanical wear, low friction coefficient and abrasion resistance, but the high temperature oxidation resistance of the above coatings Poor performance, so the coating does not meet the requirements of use in the field of high-speed cutting.
- many researchers have added Al, Cr and other elements on the basis of simple coating to improve the oxidation resistance of the coating, the hardness and friction and wear resistance of these coatings are still poor under high temperature conditions, resulting in tools. The short service life still does not meet the needs of modern high-speed machining tools.
- the object of the present invention is to provide a high temperature resistant hard composite coating, a preparation method thereof and a coating tool.
- the high temperature resistant hard composite coating provided by the invention maintains good hardness, low friction coefficient and anti-friction and wear performance under high temperature conditions, and has a long service life when used on a tool surface.
- the technical solution adopted by the present invention is:
- a high temperature resistant hard composite coating comprising a CrN transition layer and a nanocomposite layer disposed in sequence on a surface of a substrate, the nanocomposite layer comprising an AlCrSiN layer and a MeN layer alternately disposed on a surface of the CrN transition layer, wherein the Me includes W, Nb or Hf.
- each layer of AlCrSiN layer is independently 10 to 15 nm.
- the AlCrSiN layer comprises, in atomic percentage, Al: 34 to 42 at.%, Cr 13 to 20 at.%, Si 5 to 9 at.%, and N 33 to 47 at.%.
- the AlCrSiN layer is a nanocomposite structure including nanocrystalline CrN, amorphous Si 3 N 4 and amorphous AlN.
- each layer of MeN is independently 4 to 10 nm.
- the MeN layer is in atomic percentage, and includes: Me 48-60 at.% and N 52-40 at.%.
- the MeN layer comprises one of nanocrystals of WN, NbN and HfN.
- the nanocomposite layer has a thickness of 2 to 5 ⁇ m.
- the CrN transition layer has a thickness of 50 to 200 nm.
- the invention provides a preparation method of the high temperature resistant hard composite coating according to the above technical solution, which comprises the following steps:
- the AlCrSiN layer and the MeN layer are alternately deposited in the surface of the CrN transition layer in the step (1), and the Me includes W, Nb or Hf to obtain a high temperature resistant hard composite coating.
- the deposition in the step (1) is cathodic arc ion plating deposition.
- the deposition of the AlCrSiN layer in the step (2) is multi-arc ion plating deposition
- the deposition of the MeN layer is high power pulsed magnetron sputtering deposition.
- the present invention also provides a coating tool comprising a tool base and a coating disposed on a surface of the tool base, the coating being the high temperature resistant hard composite coating described in the above technical solution or according to the above technical solution.
- the high temperature resistant hard composite coating prepared by the preparation method.
- the high temperature resistant hard composite coating provided by the invention comprises a CrN transition layer and a nano composite layer disposed on the surface of the substrate, the nano composite layer comprising an AlCrSiN layer and a MeN layer alternately arranged on the surface of the CrN transition layer, Me includes W, Nb or Hf.
- the high temperature resistant hard composite coating provided by the invention uses CrN as a transition layer to strengthen the bonding force between the matrix and the nanocomposite layer, and the AlCrSiN layer and the MeN layer which are alternately arranged have adaptive properties, and metal elements such as W, Nb and Hf.
- the incorporation can rapidly form WO, Nb-O and Hf-O frictional oxides with lubricating properties under high temperature conditions of cutting friction (greater than 800 ° C). These oxides form on the surface of the tool while acting on the inside of the coating. The role of protection, therefore, still maintains good physical properties such as good hardness, low friction coefficient, anti-friction and wear under high temperature conditions.
- the experimental results show that the high temperature resistant hard composite coating provided by the invention has the following cutting conditions: the cutting speed is 350 m/min, the workpiece material is H13 (HRC 55-57), the feed rate is 0.06 mm/flute, and the depth is 0.3. Mm, side milling, average life is 162.0m, compared with the average life of the AlCrSiN coated tool under the same conditions of 48.0m, the life is significantly improved.
- 1 is a schematic structural view of a high temperature resistant hard composite coating according to the present invention; wherein 1 is a matrix, 2 is a CrN as a transition layer, 3 is a nanocomposite layer, 4 is an AlCrSiN layer, and 5 is a MeN layer;
- Example 2 is an XRD pattern of a nanocomposite layer in a high temperature resistant hard composite coating layer according to Example 1 of the present invention.
- the present invention provides a high temperature resistant hard composite coating.
- the high temperature resistant hard composite coating provided by the present invention comprises a CrN transition layer 2 and a nano composite layer 3 disposed on the surface of the substrate 1 in sequence.
- the nanocomposite layer 3 includes an AlCrSiN layer 4 and a MeN layer 5 which are alternately disposed on the surface of the CrN transition layer 2 in this order.
- the high temperature resistant hard composite coating provided by the present invention comprises a CrN transition layer disposed on the surface of the substrate.
- the thickness of the CrN transition layer is preferably from 50 to 200 nm, more preferably from 100 to 150 nm, and most preferably from 120 to 130 nm.
- the CrN transition layer preferably comprises, in atomic percentage, Cr: 45 to 64 at.% and N 55 to 36 at.%, more preferably Cr to 48 to 55 at.% and N 52 to 45 at.%.
- the CrN transition layer is disposed between the substrate and the nanocomposite layer, lattice-matched with the matrix and the nanocomposite layer, and enhances the bonding force between the two, and reduces coating fatigue and internal stress.
- the high temperature resistant hard composite coating provided by the present invention comprises a nanocomposite layer disposed on the surface of the CrN transition layer, the nanocomposite layer comprising an AlCrSiN layer and a MeN layer alternately disposed on the surface of the CrN transition layer, wherein the Me includes W, Nb or Hf.
- the outermost layer of the high temperature resistant hard composite coating layer is preferably a MeN layer.
- the thickness of each layer of the AlCrSiN layer is independently preferably from 10 to 15 nm, more preferably from 12 to 13 nm.
- the thickness of the MeN layer is independently preferably 4 to 10 nm, and more preferably 6 to 8 nm.
- the thickness of the nanocomposite layer is preferably 2 to 5 ⁇ m, and more preferably 3 to 4 ⁇ m.
- the AlCrSiN layer preferably comprises, in atomic percentage, Al 34 to 42 at.%, Cr 13 to 20 at.%, Si 5 to 9 at.%, and N 33 to 47 at.%, more preferably including: Al. 36 to 40 at.%, Cr 15 to 18 at.%, Si 6 to 8 at.%, and N 38 to 42 at.%.
- the AlCrSiN layer is preferably a nanocomposite structure including nanocrystalline CrN, amorphous Si 3 N 4 , and amorphous AlN.
- the crystallite size of the nanocrystalline CrN is preferably 2 to 10 nm, and more preferably 3 to 5 nm.
- the AlCrSiN layer has high hardness and oxidation resistance, and has a nanocomposite structure, which can promote diffusion between elements in a high-speed cutting state and improve the cutting performance of the overall coating.
- the MeN layer preferably comprises, in terms of atomic percentage, Me: 48 to 60 at.% and N 52 to 40 at.%, more preferably: Me 50 to 55 at.% and N 55 to 50 at.%.
- the MeN layer preferably includes one of nanocrystals of WN, NbN, and HfN.
- the grain size of the MeN layer is preferably from 3 to 8 nm, more preferably from 4 to 5 nm.
- W, Nb or Hf in the metal element of the MeN layer can rapidly form a lubricating WO, Nb-O and Hf-O friction oxide under high temperature conditions (greater than 800 ° C), and these oxidations
- the material acts on the surface of the tool while protecting the inside of the coating. Therefore, it maintains good physical properties such as good hardness, low friction coefficient and anti-friction wear under high temperature conditions.
- the AlCrSiN layer and the MeN layer are alternately arranged in cycles, have an adaptive property, and can generate a frictional oxide during cutting frictional friction, thereby reducing cutting wear and improving tool life.
- the AlCrSiN layer and the MeN layer are alternately arranged, and the outermost layer of the composite coating varies according to the thickness of the coating layer, and the outermost layer may be an AlCrSiN layer or a MeN layer.
- the invention also provides a preparation method of the high temperature resistant hard composite coating according to the above technical solution, comprising the following steps:
- the AlCrSiN layer and the MeN layer are alternately deposited in the surface of the CrN transition layer in the step (1), and the Me includes W, Nb or Hf to obtain a high temperature resistant hard composite coating.
- the invention deposits a CrN transition layer on the surface of the substrate.
- the material of the substrate is preferably a cemented carbide or a high speed steel, and more preferably a cemented carbide.
- the composition of the cemented carbide or high-speed steel is not particularly limited in the present invention, and a cemented carbide or high-speed steel for cutting processing well known to those skilled in the art may be used.
- the deposition of the CrN transition layer is preferably cathodic arc ion plating deposition.
- the operation of the cathode arc ion plating deposition of the CrN transition layer of the present invention is not particularly limited, and a technical scheme of cathode arc ion plating deposition well known to those skilled in the art may be employed.
- the substrate is subjected to pretreatment and sputter cleaning in sequence prior to depositing the CrN transition layer.
- the operation of the pretreatment of the present invention is not particularly limited, and a pretreatment technical solution well known to those skilled in the art may be employed.
- the pretreatment preferably includes washing and drying in sequence.
- the washing preferably comprises sequential sonication in acetone and absolute ethanol; the time of sonication in the acetone and absolute ethanol is preferably independently from 10 to 30 min, more preferably from 15 to 25 min.
- the drying is preferably a dry nitrogen blow drying.
- the parameters of the sputter cleaning are preferably: a distance between the surface of the substrate and the target of 10 to 25 mm, a rotation speed of the substrate of 3 to 9 rpm, a temperature of 400 to 500 ° C, a sputtering gas of argon gas, and a sputtering gas pressure of 1 to 1.3.
- bias voltage 800 ⁇ 1200V bias voltage 800 ⁇ 1200V
- sputter cleaning time 5 ⁇ 20min more preferably: substrate surface and target spacing 15 ⁇ 20mm, substrate rotation speed 5 ⁇ 7rpm, temperature 440 ⁇ 460 ° C, sputtering gas argon, sputtering
- the gas pressure is 1.1 to 1.2 Pa
- the bias voltage is 900 to 1100 V
- the sputtering cleaning time is 10 to 15 min.
- the sputter cleaning can improve the bonding ability between the substrate and the CrN transition layer.
- the Cr target is directly opened, and the parameters of the cathode arc ion plating deposition of each parameter to the CrN transition layer are adjusted to deposit the CrN transition layer.
- the parameters of the cathode arc ion plating deposition of the CrN transition layer are preferably: the substrate surface is spaced from the target by 10 to 25 mm, the substrate rotation speed is 3 to 9 rpm, the temperature is 400 to 500 ° C, and the sputtering gas is argon gas.
- the gas pressure is 1.2-1.8 Pa
- the reaction gas nitrogen the reaction gas pressure is 2.0-2.7 Pa
- the bias voltage is 140-200 V
- the arc target current is 40-80 A
- the deposition time is 10-20 min, and more preferably: the substrate surface and the target spacing 15 ⁇ 20mm, substrate rotation speed 5 ⁇ 7rpm, temperature 440 ⁇ 460°C, sputtering gas argon gas, sputtering gas pressure 1.4 ⁇ 1.6Pa, reaction gas nitrogen, reaction gas pressure 2.3 ⁇ 2.5Pa, bias voltage 160 ⁇ 180V, arc target
- the current is 50-70A
- the deposition time is 14-16 minutes.
- the present invention alternately deposits an AlCrSiN layer and a MeN layer on the surface of the CrN transition layer, and the Me includes W, Nb or Hf to obtain a high temperature resistant hard composite coating.
- the deposition of the AlCrSiN layer and the MeN layer is preferably multi-arc ion plating deposition and high power pulse magnetron sputtering deposition, respectively.
- the multi-arc ion plating deposition and the high power pulsed magnetron sputtering deposition have very high bombardment ion energy, which can further improve the performance of the coating.
- the Cr target is turned off, the Al 0.65 Cr 0.25 Si 0.1 target is opened, and the parameters are adjusted to the deposition parameters of the AlCrSiN layer for deposition, and then the Al 0.65 Cr 0.25 Si 0.1 target is turned off, and then opened.
- the Me target was deposited by adjusting the parameters to the high-power pulsed magnetron sputtering deposition parameters of the MeN layer, and the Al 0.65 Cr 0.25 Si 0.1 target and the Me target were alternately turned on and off, until the deposition of the nanocomposite layer was completed.
- the multi-arc ion plating deposition parameter of the AlCrSiN layer is preferably: the substrate surface is spaced from the target by 10 to 25 mm, the substrate rotation speed is 3 to 9 rpm, the temperature is 400 to 500 ° C, the sputtering gas is argon gas, and the reaction gas is nitrogen gas.
- the total gas pressure is 0.7 to 1.2 Pa, the pressure ratio of nitrogen to argon gas (1 to 2): (2 to 1), the bias voltage is 80 to 130 V, the arc target current is 60 to 100 A, and the deposition time is 2 to 5 min, and more preferably:
- the distance between the surface of the substrate and the target is 15-20 mm, the rotation speed of the substrate is 5-7 rpm, the temperature is 440-460 ° C, the argon gas is sputtered, the reaction gas is nitrogen, the total pressure of the gas is 0.9-1.1 Pa, and the pressure ratio of nitrogen to argon gas is 1:1.
- the bias voltage is 100-110V, the arc target current is 70-90A, and the deposition time is 3-4 minutes.
- the high-power pulsed magnetron sputtering deposition parameter of the MeN layer is preferably: the substrate surface is spaced from the target by 10 to 25 mm, the substrate rotation speed is 3 to 9 rpm, the temperature is 400 to 500 ° C, and the sputtering gas is argon gas.
- Reaction gas nitrogen total gas pressure 0.7 to 1.2 Pa, nitrogen to argon gas pressure ratio (1 to 2): (2 to 1), bias voltage 80 to 130 V, sputtering power 1.0 to 3.0 kW, duty ratio 1 to 5 %, peak current 400 ⁇ 600A, deposition time 5 ⁇ 12min, more preferably: the substrate surface and target spacing 15 ⁇ 20mm, substrate rotation speed 5 ⁇ 7rpm, temperature 440 ⁇ 460 ° C, sputtering gas argon, reaction gas nitrogen,
- the total gas pressure is 0.9-1.1Pa, the pressure ratio of nitrogen to argon gas is 1:1, the bias voltage is 90-110V, the sputtering power is 1.5-2.5kW, the duty ratio is 3-4%, the peak current is 450-550A, and the deposition time is 8 ⁇ . 10min.
- the deposited product is cooled after the deposition of the nanocomposite layer is completed to obtain a high temperature resistant hard composite coating.
- the cooling is preferably carried out in a deposited atmosphere.
- the cooling end temperature of the deposited product in the deposition atmosphere is preferably 150 ° C or lower, more preferably 80 ° C or lower.
- the present invention also provides a coating tool comprising a tool base and a coating disposed on a surface of the tool base, the coating being the high temperature resistant hard composite coating described in the above technical solution or according to the above technical solution.
- the high temperature resistant hard composite coating prepared by the preparation method.
- the material of the tool base is preferably cemented carbide or high speed steel.
- the composition of the cemented carbide or high-speed steel is not particularly limited in the present invention, and a cemented carbide or high-speed steel for cutting processing well known to those skilled in the art may be used.
- the shape and size of the tool base of the present invention are not particularly limited, and a tool known to those skilled in the art may be used.
- the preparation of the coating tool is preferably performed by using a tool base as a base, and the preparation method of the high temperature resistant hard composite coating according to the above technical solution may be omitted, and details are not described herein.
- the cemented carbide tool substrate was ultrasonically cleaned in acetone for 15 min, then ultrasonicated with absolute ethanol for 25 min, and finally blown dry with nitrogen;
- the treated tool base is fixed on the bracket in the vacuum chamber, the distance from the target is 15 mm, the rotation speed of the support is 4 rpm, the vacuum is drawn to 1 ⁇ 10 -3 Pa, and then the cavity is heated to 400 ° C, and argon is introduced.
- the gas pressure is 1 Pa, and the bias voltage is 800 V for glow sputter cleaning for 12 min;
- Nitrogen gas was introduced to make the pressure 2.0 Pa, wherein the partial pressure of Ar was still 1.3 Pa, the Cr target was turned on, the bias voltage was maintained at 140 V, the arc target current was 40 A, and the CrN transition layer was deposited for 14 min;
- the Al 0.65 Cr 0.25 Si 0.1 target and the W target were alternately turned on and off to prepare a nanocomposite coating AlCrSiN/WN having a total thickness of 2.2 ⁇ m. After the coating is completed, when the vacuum chamber is lowered to 100 ° C, the chamber is opened and naturally cooled.
- the atomic percentage ratio and thickness of the coating are as follows:
- CrN layer Cr 48at.%, N 52at.%; thickness 80nm;
- AlCrSiN layer Al 39at.%, Cr 17at.%, Si 6at.%, N 38at.%; single layer thickness 12nm;
- WN layer W: 49 at.%, N: 51 at.%; single layer thickness 4 nm.
- the total thickness of the prepared nano-composite coating AlCrSiN/WN is about 2.2 ⁇ m.
- the schematic diagram of the coating tool structure is shown in Figure 1.
- the tool structure can be divided into three parts, namely the tool base, the CrN transition layer and the AlCrSiN/MeN nanometer. Composite coating.
- the X-ray diffraction image of the coating is shown in Fig. 2. It is obvious that the diffraction peaks of CrN and WN can be seen as the nanocrystalline structure from the full width at half maximum of the diffraction peak.
- the phase structure of the AlCrSiN layer is a nanocomposite structure.
- Example 1 The coating tools of Example 1 and Comparative Example 1 were subjected to a life comparison test at high speed cutting hardened steel.
- the cutting conditions were: cutting speed of 350 m/min, workpiece material of H13 (HRC 55-57), feed rate of 0.06 mm/flute, depth of 0.3 mm, side milling.
- the average lifespan was 48.0 m for AlCrSiN coated tools and 162.0 m for AlCrSiN/WN coated tools.
- the cemented carbide tool substrate was ultrasonically cleaned in acetone for 15 min, then ultrasonicated with absolute ethanol for 25 min, and finally blown dry with nitrogen;
- the treated tool base is fixed on the bracket in the vacuum chamber at a distance of 15 mm, the support rotation speed is 4 rpm, the vacuum is drawn to 1 ⁇ 10 -3 Pa, and then the cavity is heated to 400 ° C, and argon gas is introduced to make the cavity.
- the chamber pressure is 1 Pa, and the adjustment bias voltage is 800 V for glow sputter cleaning for 12 min;
- Nitrogen gas was introduced to make the pressure 2.0 Pa, wherein the partial pressure of Ar was still 1.2 Pa, the Cr target was turned on, the bias voltage was maintained at 120 V, the arc target current was 40 A, and the CrN transition layer was deposited for 14 min;
- the Al 0.65 Cr 0.25 Si 0.1 target and the Nb target are alternately turned on and off to prepare a nanocomposite coating AlCrSiN/NbN having a total thickness of 2.5 ⁇ m;
- the atomic percentage ratio and thickness of the coating are as follows:
- CrN layer Cr 49at.%, N 51at.%; thickness 70nm;
- AlCrSiN layer Al 38at.%, Cr 18at.%, Si 7at.%, N 37at.%; single layer thickness 10nm;
- NbN layer Nb: 50 at.%, N: 50 at.%; single layer thickness 4 nm.
- the total thickness of the prepared AlCrSiN/NbN coating was approximately 2.5 ⁇ m.
- Three coated end mills were obtained by the method of Example 2 and the AlCrN, AlTiN and AlCrSiN coatings deposited on the same cemented carbide end mill surface, respectively.
- the coating tool of Example 2 and Comparative Example 2 was subjected to a life comparison test at high speed cutting hardened steel.
- the cutting conditions were: cutting speed of 350 m/min, workpiece material of H13 (HRC 55-57), feed rate of 0.06 mm/flute, depth of 0.3 mm, side milling.
- the average lifespan is 24.0m for AlCrN coating, 8.2m for AlTiN coating, 48.0m for AlCrSiN coating, and 200.0m for AlCrSiN/NbN coating.
- the high-speed steel tool base was ultrasonically cleaned in acetone for 15 min, then ultrasonicated with absolute ethanol for 20 min, and finally blown dry with nitrogen;
- the treated tool base is fixed on the bracket in the vacuum chamber at a distance of 15 mm, the support rotation speed is 3 rpm, and the vacuum is 2 ⁇ 10 -3 Pa, and then the cavity is heated to 400 ° C, and argon gas is introduced to make the cavity.
- the chamber pressure is 1 Pa, and the bias voltage is 900 V for glow sputter cleaning for 15 min;
- Nitrogen gas was introduced to make the pressure 2.0 Pa, wherein the partial pressure of Ar was still 1.5 Pa, the Cr target was turned on, the bias voltage was maintained at 140 V, the arc target current was 60 A, and the CrN transition layer was deposited for 15 min;
- the Al 0.65 Cr 0.25 Si 0.1 target and the Hf target are alternately turned on and off to prepare a nanocomposite coating AlCrSiN/HfN having a total thickness of 4 ⁇ m;
- the atomic percentage ratio and thickness of the coating are as follows:
- CrN layer Cr 49at.%, N 51at.%; thickness 200nm;
- AlCrSiN layer Al 37at.%, Cr 18at.%, Si 5at.%, N 40at.%; single layer thickness 15nm;
- HfN layer Hf: 48 at.%, N: 52 at.%; single layer thickness 8 nm.
- the total thickness of the prepared AlCrSiN/HfN coating was approximately 4 ⁇ m.
- the AlCrN, AlTiN and AlCrSiN coatings deposited on the surface of the same cemented carbide end mill were obtained by the method of Example 3 to obtain three differently coated end mills.
- the cutting conditions were: cutting speed of 350 m/min, workpiece material of H13 (HRC 55-57), feed rate of 0.06 mm/flute, depth of 0.3 mm, side milling.
- the average lifespan is 24.0m for AlCrN coating, 8.2m for AlTiN coating, 48.0m for AlCrSiN coating, and 220.0m for AlCrSiN/HfN coating.
- the high temperature resistant hard composite coating provided by the invention has greatly improved the performance of the tool when the tool surface is used, and the service life is improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
一种耐高温硬质复合涂层,包括在基体(1)表面依次设置的CrN过渡层(2)和纳米复合层(3),纳米复合层(3)包括在CrN过渡层(2)表面依次交替设置的AlCrSiN层(4)和MeN层(5), Me包括W、Nb或Hf。还提供了一种耐高温硬质复合涂层的制备方法,以及涂层刀具。
Description
本申请要求于2017年10月10日提交中国专利局、申请号为CN201710934135.9、发明名称为“一种耐高温硬质复合涂层及其制备方法和涂层刀具”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及硬质涂层技术领域,特别涉及一种耐高温硬质复合涂层及其制备方法和涂层刀具。
硬质涂层是进行材料表面强化、发挥材料潜力、提高生产效率的有效途径,它是表面涂层的一种,是指通过物理或化学方法在基地的表面沉积的显微硬度大于某一特定值的表面涂层。硬质涂层已经被广泛应用于切削业、模具工业、地质钻探、纺织工业、机械制造以及航空航天领域,并发挥着越来越重要的作用。其中,硬质涂层在切削业的应用,不仅可以加工普通切削工具如刀具、钻头等难以加工的材料,而且可以提高切削的精准度,发挥出超硬、强韧、耐磨、自润滑等优势,被认为是切削史上的一次革命。
其中,纳米多层复合涂层在刀具行业使用较为广泛。早期的硬质保护涂层,如简单二元TiN、TiC涂层因具有较高的抗机械磨损、低摩擦系数和抗磨料磨损,所以在很多领域上广泛使用,但上述涂层的高温抗氧化性能较差,所以涂层在高速切割领域上不符合使用要求。虽然众多研究者们在简单涂层的基础上掺杂入Al、Cr等元素来提高涂层的抗氧化效果,但这些涂层在高温条件下的硬度、耐摩擦磨损性能依然较差,导致刀具的使用寿命短,仍不能满足现代高速加工刀具的需求。
发明内容
本发明的目的在于提供一种耐高温硬质复合涂层及其制备方法和涂层刀具。本发明提供的耐高温硬质复合涂层在高温条件下仍保持良好的硬度、低摩擦系数和抗摩擦磨损性能,用于刀具表面时寿命长。
为了解决上述技术问题,本发明采用的技术方案是:
一种耐高温硬质复合涂层,包括在基体表面依次设置的CrN过渡层和纳米复合层,所述纳米复合层包括在CrN过渡层表面依次交替设置的AlCrSiN层和MeN层,所述Me包括W、Nb或Hf。
优选的,每层AlCrSiN层的厚度独立地为10~15nm。
优选的,所述AlCrSiN层按原子百分比计,包括:Al 34~42at.%,Cr 13~20at.%,Si 5~9at.%和N 33~47at.%。
优选的,所述AlCrSiN层为包括纳米晶CrN、非晶Si
3N
4和非晶AlN的纳米复合结构。
优选的,每层MeN层的厚度独立地为4~10nm。
优选的,所述MeN层按原子百分比计,包括:Me 48~60at.%和N52~40at.%。
优选的,所述MeN层包括WN、NbN和HfN的纳米晶中的一种。
优选的,所述纳米复合层的厚度为2~5μm。
优选的,所述CrN过渡层的厚度为50~200nm。
本发明提供了一种上述技术方案所述耐高温硬质复合涂层的制备方法,包括以下步骤:
(1)在基体表面沉积CrN过渡层;
(2)在所述步骤(1)中的CrN过渡层的表面依次交替沉积AlCrSiN层和MeN层,所述Me包括W、Nb或Hf,得到耐高温硬质复合涂层。
优选的,所述步骤(1)中的沉积为阴极电弧离子镀沉积。
优选的,所述步骤(2)中AlCrSiN层的沉积为多弧离子镀沉积,所述MeN层的沉积为高功率脉冲磁控溅射沉积。
本发明还提供了一种涂层刀具,包括刀具基体和设置在所述刀具基体表面的涂层,所述涂层为上述技术方案所述的耐高温硬质复合涂层或按照上述技术方案所述制备方法制备的耐高温硬质复合涂层。
本发明提供的耐高温硬质复合涂层,包括在基体表面依次设置的CrN过渡层和纳米复合层,所述纳米复合层包括在CrN过渡层表面依次交替设置的AlCrSiN层和MeN层,所述Me包括W、Nb或Hf。本发明提供的耐高温硬质复合涂层以CrN为过渡层,增强基体与纳米复合层之间的 结合力,交替设置的AlCrSiN层和MeN层具有自适应性能,W、Nb、Hf等金属元素的掺入可以在切削摩擦的高温条件下(大于800℃)快速形成具有润滑作用的W-O、Nb-O及Hf-O摩擦氧化物,这些氧化物在刀具表面形成的同时对涂层内部起到保护的作用,因此在高温条件下依然保持良好的硬度、低摩擦系数、抗摩擦磨损等物理机械性能。实验结果表明,本发明提供的耐高温硬质复合涂层在如下切削条件下:切削速度为350m/min,工件材料为H13(HRC55-57),进给率为0.06mm/flute,深度为0.3mm,侧铣,平均寿命为162.0m,与AlCrSiN涂层的刀具在相同条件下的平均寿命48.0m相比,寿命显著提高。
说明书附图
图1为本发明耐高温硬质复合涂层结构示意图;其中,1为基体,2为CrN为过渡层,3为纳米复合层,4为AlCrSiN层,5为MeN层;
图2为本发明实施例1耐高温硬质复合涂层中纳米复合层的XRD图谱。
下面结合实施例和附图对本发明进一步说明。
本发明提供了一种耐高温硬质复合涂层,如图1所示,本发明提供的耐高温硬质复合涂层包括在基体1表面依次设置的CrN过渡层2和纳米复合层3,所述纳米复合层3包括在CrN过渡层2表面依次交替设置的AlCrSiN层4和MeN层5。
本发明提供的耐高温硬质复合涂层包括设置于基体表面的CrN过渡层。在本发明中,所述CrN过渡层的厚度优选为50~200nm,更优选为100~150nm,最优选为120~130nm。在本发明中,所述的CrN过渡层按原子百分比计,优选包括:Cr 45~64at.%和N 55~36at.%,更优选包括Cr 48~55at.%和N 52~45at.%。在本发明中,所述CrN过渡层设置于基体与纳米复合层之间,与基体与纳米复合层晶格匹配,并且增强二者之间的结合力,并且减少涂层疲劳和内应力。
本发明提供的耐高温硬质复合涂层包括设置于CrN过渡层表面的纳米复合层,所述纳米复合层包括在CrN过渡层表面依次交替设置的AlCrSiN层和MeN层,所述Me包括W、Nb或Hf。在本发明中,所述 耐高温硬质复合涂层的最外层优选为MeN层。在本发明中,每层AlCrSiN层的厚度独立地优选为10~15nm,更优选为12~13nm。在本发明中,所述MeN层的厚度独立地优选为4~10nm,更优选为6~8nm。在本发明中,所述纳米复合层的厚度优选为2~5μm,更优选为3~4μm。
在本发明中,所述AlCrSiN层按原子百分比计,优选包括:Al 34~42at.%,Cr 13~20at.%,Si 5~9at.%和N 33~47at.%,更优选包括:Al 36~40at.%,Cr 15~18at.%,Si 6~8at.%和N 38~42at.%。在本发明中,所述AlCrSiN层优选为包括纳米晶CrN、非晶Si
3N
4和非晶AlN的纳米复合结构。在本发明中,所述纳米晶CrN的晶粒度优选为2~10nm,更优选为3~5nm。在本发明中,所述AlCrSiN层具有高硬度及抗氧化特性,同时具有纳米复合结构,可以促进高速切削状态下元素间的扩散,提升总体涂层的切削性能。
在本发明中,所述MeN层按原子百分比计,优选包括:Me 48~60at.%和N 52~40at.%,更优选包括:Me 50~55at.%和N 55~50at.%。在本发明中,所述MeN层优选包括WN、NbN和HfN的纳米晶中的一种。在本发明中,所述MeN层的晶粒度优选为3~8nm,更优选为4~5nm。在本发明中,所述MeN层的金属元素中的W、Nb或Hf可以在高温条件下(大于800℃)快速形成具有润滑作用的W-O、Nb-O及Hf-O摩擦氧化物,这些氧化物在刀具表面形成的同时对涂层内部起到保护的作用,因此在高温条件下依然保持良好的硬度、低摩擦系数、抗摩擦磨损等物理机械性能。
在本发明中,所述AlCrSiN层和MeN层交替周期排列,具有自适应性能,在切削摩擦摩擦时可以生成摩擦氧化物,从而减少切削磨损,提高刀具寿命。在本发明中,所述AlCrSiN层和MeN层交替排列,复合涂层的最外层根据涂层厚度的变化而变化,最外层可以为AlCrSiN层,也可以为MeN层。
本发明还提供了上述技术方案所述耐高温硬质复合涂层的制备方法,包括以下步骤:
(1)在基体表面沉积CrN过渡层;
(2)在所述步骤(1)中的CrN过渡层的表面依次交替沉积AlCrSiN层和MeN层,所述Me包括W、Nb或Hf,得到耐高温硬质复合涂层。
本发明在基体表面沉积CrN过渡层。在本发明中,所述基体的材质优选为硬质合金或高速钢,更优选为硬质合金。本发明对所述硬质合金或高速钢的成分没有特殊的限定,采用本领域技术人员熟知的用于切削加工的硬质合金或高速钢即可。
在本发明中,所述CrN过渡层的沉积优选为阴极电弧离子镀沉积。本发明对所述CrN过渡层的阴极电弧离子镀沉积的操作没有特殊的限定,采用本领域技术人员熟知的阴极电弧离子镀沉积的技术方案即可。
本发明优选在沉积CrN过渡层前对所述基体依次进行预处理和溅射清洗。本发明对所述预处理的操作没有特殊的限定,采用本领域技术人员熟知的预处理的技术方案即可。在本发明中,所述预处理优选依次包括洗涤和干燥。在本发明中,所述洗涤优选包括在丙酮和无水乙醇中依次超声;所述丙酮和无水乙醇中超声的时间优选独立地为10~30min,更优选为15~25min。在本发明中,所述干燥优选为洁净的氮气吹干。
在本发明中,所述溅射清洗的参数优选为:基体表面与靶材间距10~25mm,基体转速3~9rpm,温度400~500℃,溅射气体氩气,溅射气体压力1~1.3Pa,偏压800~1200V,溅射清洗时间5~20min,更优选为:基体表面与靶材间距15~20mm,基体转速5~7rpm,温度440~460℃,溅射气体氩气,溅射气体压力1.1~1.2Pa,偏压900~1100V,溅射清洗时间10~15min。在本发明中,所述溅射清洗能够提高基体与CrN过渡层之间的结合能力。
本发明优选在所述溅射清洗完成后,直接打开Cr靶,并调整各参数至CrN过渡层的阴极电弧离子镀沉积的参数进行CrN过渡层的沉积。在本发明中,所述CrN过渡层的阴极电弧离子镀沉积的参数优选为:基体表面与靶材间距10~25mm,基体转速3~9rpm,温度400~500℃,溅射气体氩气,溅射气体压力1.2~1.8Pa,反应气体氮气,反应气体压力2.0~2.7Pa,偏压140~200V,电弧靶电流40~80A,沉积时间10~20min,更优选为:基体表面与靶材间距15~20mm,基体转速5~7rpm,温度440~460℃,溅射气体氩气,溅射气体压力1.4~1.6Pa,反应气体氮气,反应气体压力2.3~2.5Pa,偏压160~180V,电弧靶电流50~70A,沉积时间14~16min。
得到CrN过渡层后,本发明在所述CrN过渡层表面依次交替沉积 AlCrSiN层和MeN层,所述Me包括W、Nb或Hf,得到耐高温硬质复合涂层。在本发明中,所述AlCrSiN层和MeN层的沉积优选分别为多弧离子镀沉积和高功率脉冲磁控溅射沉积。在本发明中,所述多弧离子镀沉积和高功率脉冲磁控溅射沉积具有非常高的轰击离子能量,能够进一步提高涂层的性能。
本发明优选在CrN过渡层的沉积完成后,关闭Cr靶,打开Al
0.65Cr
0.25Si
0.1靶,并将参数调整至AlCrSiN层的沉积参数进行沉积,然后再关闭Al
0.65Cr
0.25Si
0.1靶,打开Me靶并将参数调整至MeN层的高功率脉冲磁控溅射沉积参数进行沉积,交替打开和关闭Al
0.65Cr
0.25Si
0.1靶和Me靶,至纳米复合层沉积完成。
在本发明中,所述AlCrSiN层的多弧离子镀沉积参数优选为:基体表面与靶材间距10~25mm,基体转速3~9rpm,温度400~500℃,溅射气体氩气,反应气体氮气,气体总压力0.7~1.2Pa,氮气与氩气体压力比(1~2):(2~1),偏压80~130V,电弧靶电流60~100A,沉积时间2~5min,更优选为:基体表面与靶材间距15~20mm,基体转速5~7rpm,温度440~460℃,溅射气体氩气,反应气体氮气,气体总压力0.9~1.1Pa,氮气与氩气体压力比1:1,偏压100~110V,电弧靶电流70~90A,沉积时间3~4min。
在本发明中,所述MeN层的高功率脉冲磁控溅射沉积参数优选为:基体表面与靶材间距10~25mm,基体转速3~9rpm,温度400~500℃,溅射气体氩气,反应气体氮气,气体总压力0.7~1.2Pa,氮气与氩气体压力比(1~2):(2~1),偏压80~130V,溅射功率1.0~3.0kW,占空比1~5%,峰值电流400~600A,沉积时间5~12min,更优选为:基体表面与靶材间距15~20mm,基体转速5~7rpm,温度440~460℃,溅射气体氩气,反应气体氮气,气体总压力0.9~1.1Pa,氮气与氩气体压力比1:1,偏压90~110V,溅射功率1.5~2.5kW,占空比3~4%,峰值电流450~550A,沉积时间8~10min。
本发明优选在纳米复合层的沉积完成后,将所述沉积的产物冷却,得到耐高温硬质复合涂层。在本发明中,所述冷却优选在沉积的气氛中进行。在本发明中,所述沉积的产物在沉积的气氛中的冷却终点温度优选为150℃以下,更优选为80℃以下。
本发明还提供了一种涂层刀具,包括刀具基体和设置在所述刀具基体表面的涂层,所述涂层为上述技术方案所述的耐高温硬质复合涂层或按照上述技术方案所述制备方法制备的耐高温硬质复合涂层。在本发明中,所述刀具基体的材质优选为硬质合金或高速钢。本发明对所述硬质合金或高速钢的成分没有特殊的限定,采用本领域技术人员熟知的用于切削加工的硬质合金或高速钢即可。本发明对所述刀具基体的形状和尺寸没有特殊的限定,采用本领域技术人员熟知的刀具即可。
在本发明中,所述涂层刀具的制备优选以刀具基体为基体,按照上述技术方案所述耐高温硬质复合涂层的制备方法制备即可,在此不再赘述。
下面结合实施例对本发明提供的耐高温硬质复合涂层及其制备方法和涂层刀具进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
将硬质合金刀具基体采用超声波清洗在丙酮中超声15min,再用无水乙醇超声25min,最后用氮气吹干;
将处理过的刀具基体固定在真空室内的支架上,与靶材间距为15mm,支架转速为4rpm,抽至本底真空为1×10
-3Pa,接着腔体加热至400℃,通入氩气使得腔室压强为1Pa,调整偏压为800V进行辉光溅射清洗12min;
通入氮气气使压强为2.0Pa,其中Ar分压依然为1.3Pa,开启Cr靶材,偏压保持140V,电弧靶电流为40A,沉积CrN过渡层14min;
调节氮气和氩气流量阀,至总气压为0.9Pa,氮气/Ar比例为1/1,基体偏压调制80V,打开Al
0.65Cr
0.25Si
0.1靶,调节弧电流为60A,制备AlCrSiN纳米层3min;
然后关闭Al
0.65Cr
0.25Si
0.1靶,并开启W高功率脉冲磁控溅射靶,调节溅射平均功率为1.4kW,占空比2%,峰值电流45A,压强和偏压保持不变,制备WN纳米层8min;
如此交替开启和关闭Al
0.65Cr
0.25Si
0.1靶和W靶来制备出总厚度为2.2μm的纳米复合涂层AlCrSiN/WN。涂层制备完毕后待真空室降到100℃时,打开腔体自然冷却。
该涂层原子百分比计配比及厚度如下:
CrN层:Cr 48at.%,N 52at.%;厚度80nm;
AlCrSiN层:Al 39at.%,Cr 17at.%,Si 6at.%,N 38at.%;单层厚度12nm;
WN层:W:49at.%,N:51at.%;单层厚度4nm。
制备出来的纳米复合涂层AlCrSiN/WN总厚度大约为2.2μm,其涂层刀具结构示意图如图1所示,刀具结构可以分为三部分,分别为刀具基体,CrN过渡层和AlCrSiN/MeN纳米复合涂层。
涂层的X射线衍射图像如图2所示,可以很明显的CrN和WN的衍射峰,从衍射峰的半高宽可以看出为纳米晶结构。AlCrSiN层的相结构为纳米复合结构。
对比例1
采用实施例1的方法在相同硬质合金立铣刀表面沉积的AlCrSiN涂层。
将实施例1和对比例1的涂层刀具在高速切削淬硬钢进行寿命对比实验。
切削条件为:切削速度为350m/min,工件材料为H13(HRC55-57),进给率为0.06mm/flute,深度为0.3mm,侧铣。
平均寿命分别为:AlCrSiN涂层的刀具为48.0m,AlCrSiN/WN涂层刀具为162.0m。
实施例2
将硬质合金刀具基体采用超声波清洗在丙酮中超声15min,再用无水乙醇超声25min,最后用氮气吹干;
将处理过的刀具基体固定在真空室内的支架上,间距为15mm,支架转速为4rpm,抽至本底真空为1×10
-3Pa,接着腔体加热至400℃,通入氩气使得腔室压强为1Pa,调整偏压为800V进行辉光溅射清洗12min;
通入氮气气使压强为2.0Pa,其中Ar分压依然为1.2Pa,开启Cr靶材,偏压保持120V,电弧靶电流为40A,沉积CrN过渡层14min;
调节氮气和氩气流量阀,至总气压为0.9Pa,氮气/Ar比例为1/1,基体偏压调制80V,打开Al
0.65Cr
0.25Si
0.1靶,调节弧电流为80A,制备 AlCrSiN层5min;
然后关闭Al
0.65Cr
0.25Si
0.1,并开启Nb高功率脉冲磁控溅射靶,调节溅射平均功率为2kW,占空比1.8%,峰值电流50A,压强和偏压保持不变,制备NbN层10min;
如此交替开启和关闭Al
0.65Cr
0.25Si
0.1靶和Nb靶来制备出总厚度为2.5μm的纳米复合涂层AlCrSiN/NbN;
涂层制备完毕后待真空室降到100℃时,打开腔体自然冷却。
该涂层原子百分比计配比及厚度如下:
CrN层:Cr 49at.%,N 51at.%;厚度70nm;
AlCrSiN层:Al 38at.%,Cr 18at.%,Si 7at.%,N 37at.%;单层厚度10nm;
NbN层:Nb:50at.%,N:50at.%;单层厚度4nm。
制备出来的AlCrSiN/NbN涂层总厚度大约为2.5μm。
对比例2
采用实施例2的方法与在相同硬质合金立铣刀表面分别沉积的AlCrN、AlTiN和AlCrSiN涂层,分别得到三种涂层的立铣刀。
对实施例2和对比例2中的涂层刀具在高速切削淬硬钢进行寿命对比实验。切削条件为:切削速度为350m/min,工件材料为H13(HRC55-57),进给率为0.06mm/flute,深度为0.3mm,侧铣。
平均寿命分别为:AlCrN涂层24.0m,AlTiN涂层8.2m,AlCrSiN涂层的刀具为48.0m,AlCrSiN/NbN涂层刀具为200.0m。
实施例3
将高速钢刀具基体采用超声波清洗在丙酮中超声15min,再用无水乙醇超声20min,最后用氮气吹干;
将处理过的刀具基体固定在真空室内的支架上,间距为15mm,支架转速为3rpm,抽至本底真空为2×10
-3Pa,接着腔体加热至400℃,通入氩气使得腔室压强为1Pa,调整偏压为900V进行辉光溅射清洗15min;
通入氮气气使压强为2.0Pa,其中Ar分压依然为1.5Pa,开启Cr靶材,偏压保持140V,电弧靶电流为60A,沉积CrN过渡层15min;
调节氮气和氩气流量阀,至总气压为0.9Pa,氮气/Ar比例为1/1,基 体偏压调制80V,打开Al
0.65Cr
0.25Si
0.1靶,调节弧电流为80A,制备AlCrSiN层5min;
然后关闭Al
0.65Cr
0.25Si
0.1靶,并开启Hf高功率脉冲磁控溅射靶,调节溅射平均功率为1.8kW,占空比2.2%,峰值电流50A,压强和偏压保持不变,制备HfN层6min;
如此交替开启和关闭Al
0.65Cr
0.25Si
0.1靶和Hf靶来制备出总厚度为4μm的纳米复合涂层AlCrSiN/HfN;
涂层制备完毕后待真空室降到100℃时,打开腔体自然冷却。
该涂层原子百分比计配比及厚度如下:
CrN层:Cr 49at.%,N 51at.%;厚度200nm;
AlCrSiN层:Al 37at.%,Cr 18at.%,Si 5at.%,N 40at.%;单层厚度15nm;
HfN层:Hf:48at.%,N:52at.%;单层厚度8nm。
制备出来的AlCrSiN/HfN涂层总厚度大约为4μm。
对比例3
采用实施例3的方法在相同硬质合金立铣刀表面沉积的AlCrN、AlTiN和AlCrSiN涂层,得到三种不同涂层的立铣刀。
对实施例3和对比例3中的涂层刀具在高速切削淬硬钢进行寿命对比实验。
切削条件为:切削速度为350m/min,工件材料为H13(HRC55-57),进给率为0.06mm/flute,深度为0.3mm,侧铣。
平均寿命分别为:AlCrN涂层24.0m,AlTiN涂层8.2m,AlCrSiN涂层的刀具为48.0m,AlCrSiN/HfN涂层刀具为220.0m。
由以上对比例及实施例可以看出,本发明提供的耐高温硬质复合涂层用于刀具表面时刀具的性能大幅度提高,使用寿命提高。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术 人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (13)
- 一种耐高温硬质复合涂层,包括在基体表面依次设置的CrN过渡层和纳米复合层,所述纳米复合层包括在CrN过渡层表面依次交替设置的AlCrSiN层和MeN层,所述Me包括W、Nb或Hf。
- 根据权利要求1所述的耐高温硬质复合涂层,其特征在于,每层AlCrSiN层的厚度独立地为10~15nm。
- 根据权利要求1或2所述的耐高温硬质复合涂层,其特征在于,所述AlCrSiN层按原子百分比计,包括:Al 34~42at.%,Cr 13~20at.%,Si 5~9at.%和N 33~47at.%。
- 根据权利要求3所述的耐高温硬质复合涂层,其特征在于,所述AlCrSiN层为包括纳米晶CrN、非晶Si 3N 4和非晶AlN的纳米复合结构。
- 根据权利要求1所述的耐高温硬质复合涂层,其特征在于,每层MeN层的厚度独立地为4~10nm。
- 根据权利要求1或5所述的耐高温硬质复合涂层,其特征在于,所述MeN层按原子百分比计,包括:Me 48~60at.%和N 52~40at.%。
- 根据权利要求6所述的耐高温硬质复合涂层,其特征在于,所述MeN层包括WN、NbN和HfN的纳米晶中的一种。
- 根据权利要求1所述的耐高温硬质复合涂层,其特征在于,所述纳米复合层的厚度为2~5μm。
- 根据权利要求1所述的耐高温硬质复合涂层,其特征在于,所述CrN过渡层的厚度为50~200nm。
- 权利要求1~9任意一项所述耐高温硬质复合涂层的制备方法,包括以下步骤:(1)在基体表面沉积CrN过渡层;(2)在所述步骤(1)中的CrN过渡层的表面依次交替沉积AlCrSiN层和MeN层,所述Me包括W、Nb或Hf,得到耐高温硬质复合涂层。
- 根据权利要求10所述的制备方法,其特征在于,所述步骤(1)中的沉积为阴极电弧离子镀沉积。
- 根据权利要求10所述的制备方法,其特征在于,所述步骤(2) 中AlCrSiN层的沉积为多弧离子镀沉积,所述MeN层的沉积为高功率脉冲磁控溅射沉积。
- 一种涂层刀具,包括刀具基体和设置在所述刀具基体表面的涂层,所述涂层为权利要求1~9任意一项所述的耐高温硬质复合涂层或按照权利要求10~12任一项所述制备方法制备的耐高温硬质复合涂层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/650,247 US20210040597A1 (en) | 2017-10-10 | 2018-09-25 | High-temperature-resistant hard composite coating, preparation method thereof, and coated cutter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710934135.9 | 2017-10-10 | ||
CN201710934135.9A CN107747092B (zh) | 2017-10-10 | 2017-10-10 | 一种耐高温硬质复合涂层及其制备方法和涂层刀具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019072084A1 true WO2019072084A1 (zh) | 2019-04-18 |
Family
ID=61255309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/107206 WO2019072084A1 (zh) | 2017-10-10 | 2018-09-25 | 一种耐高温硬质复合涂层及其制备方法和涂层刀具 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210040597A1 (zh) |
CN (1) | CN107747092B (zh) |
WO (1) | WO2019072084A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113106450A (zh) * | 2021-03-03 | 2021-07-13 | 泉州市双滢新材料科技有限公司 | 一种复合硬质涂层刀具及其制备方法 |
CN113564539A (zh) * | 2021-07-15 | 2021-10-29 | 科汇工业机械有限公司 | 氮化物涂层制备方法、氮化物涂层及其应用 |
CN113652638A (zh) * | 2021-08-17 | 2021-11-16 | 科汇纳米技术(常州)有限公司 | 一种超高硬质刀具涂层及其制备方法 |
CN114059023A (zh) * | 2021-10-29 | 2022-02-18 | 东莞市华升真空镀膜科技有限公司 | 涂层及其制备方法和器具 |
CN115505886A (zh) * | 2022-09-23 | 2022-12-23 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法 |
CN115928009A (zh) * | 2022-06-23 | 2023-04-07 | 广东华升纳米科技股份有限公司 | TiCN涂层及其制备方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107747092B (zh) * | 2017-10-10 | 2019-08-23 | 岭南师范学院 | 一种耐高温硬质复合涂层及其制备方法和涂层刀具 |
CN108486537B (zh) * | 2018-03-09 | 2020-05-12 | 中国科学院宁波材料技术与工程研究所 | 一种用于锆合金的非晶防护涂层及其制备方法和应用 |
CN109504940B (zh) * | 2018-12-20 | 2021-03-26 | 广东工业大学 | 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用 |
CN112317284B (zh) * | 2020-10-22 | 2022-03-08 | 常州润睿特种合金有限公司 | 一种切削刀具用涂层材料及其制备方法 |
WO2023004752A1 (zh) * | 2021-07-30 | 2023-02-02 | 湖南泰嘉新材料科技股份有限公司 | 一种周期性多层结构涂层带锯条及其制备方法和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1576387A (zh) * | 2003-07-25 | 2005-02-09 | 三菱重工业株式会社 | 高耐磨硬质薄膜 |
JP2006224191A (ja) * | 2005-02-15 | 2006-08-31 | Mitsubishi Materials Corp | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 |
US20070099027A1 (en) * | 2005-10-28 | 2007-05-03 | Anand Krishnamurthy | Wear resistant coatings |
JP2012024856A (ja) * | 2010-07-20 | 2012-02-09 | Mitsubishi Materials Corp | 表面被覆切削工具 |
CN102812149A (zh) * | 2010-01-11 | 2012-12-05 | 伊斯卡有限公司 | 涂覆的切削工具 |
CN103757597A (zh) * | 2014-02-07 | 2014-04-30 | 上海理工大学 | 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法 |
CN107075692A (zh) * | 2014-11-05 | 2017-08-18 | 瓦尔特公开股份有限公司 | 包含多层pvd涂层的切削工具 |
CN107747092A (zh) * | 2017-10-10 | 2018-03-02 | 岭南师范学院 | 一种耐高温硬质复合涂层及其制备方法和涂层刀具 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560483A (zh) * | 2010-12-30 | 2012-07-11 | 鸿富锦精密工业(深圳)有限公司 | 铝及铝合金表面防腐处理方法及其制品 |
CN202037930U (zh) * | 2011-04-06 | 2011-11-16 | 武汉大学苏州研究院 | 一种具有纳米多层超硬复合涂层的刀具 |
CN104002516B (zh) * | 2014-06-10 | 2016-02-10 | 上海理工大学 | 一种具有高硬度和低摩擦系数的CrAlN/MoS2多层涂层及其制备方法 |
JP6491031B2 (ja) * | 2014-06-24 | 2019-03-27 | 株式会社神戸製鋼所 | 積層型硬質皮膜および切削工具 |
US10189089B2 (en) * | 2014-07-25 | 2019-01-29 | Tungaloy Corporation | Coated cutting tool |
-
2017
- 2017-10-10 CN CN201710934135.9A patent/CN107747092B/zh not_active Expired - Fee Related
-
2018
- 2018-09-25 US US16/650,247 patent/US20210040597A1/en not_active Abandoned
- 2018-09-25 WO PCT/CN2018/107206 patent/WO2019072084A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1576387A (zh) * | 2003-07-25 | 2005-02-09 | 三菱重工业株式会社 | 高耐磨硬质薄膜 |
JP2006224191A (ja) * | 2005-02-15 | 2006-08-31 | Mitsubishi Materials Corp | 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 |
US20070099027A1 (en) * | 2005-10-28 | 2007-05-03 | Anand Krishnamurthy | Wear resistant coatings |
CN102812149A (zh) * | 2010-01-11 | 2012-12-05 | 伊斯卡有限公司 | 涂覆的切削工具 |
JP2012024856A (ja) * | 2010-07-20 | 2012-02-09 | Mitsubishi Materials Corp | 表面被覆切削工具 |
CN103757597A (zh) * | 2014-02-07 | 2014-04-30 | 上海理工大学 | 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法 |
CN107075692A (zh) * | 2014-11-05 | 2017-08-18 | 瓦尔特公开股份有限公司 | 包含多层pvd涂层的切削工具 |
CN107747092A (zh) * | 2017-10-10 | 2018-03-02 | 岭南师范学院 | 一种耐高温硬质复合涂层及其制备方法和涂层刀具 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113106450A (zh) * | 2021-03-03 | 2021-07-13 | 泉州市双滢新材料科技有限公司 | 一种复合硬质涂层刀具及其制备方法 |
CN113564539A (zh) * | 2021-07-15 | 2021-10-29 | 科汇工业机械有限公司 | 氮化物涂层制备方法、氮化物涂层及其应用 |
CN113652638A (zh) * | 2021-08-17 | 2021-11-16 | 科汇纳米技术(常州)有限公司 | 一种超高硬质刀具涂层及其制备方法 |
CN114059023A (zh) * | 2021-10-29 | 2022-02-18 | 东莞市华升真空镀膜科技有限公司 | 涂层及其制备方法和器具 |
CN114059023B (zh) * | 2021-10-29 | 2022-09-23 | 东莞市华升真空镀膜科技有限公司 | 涂层及其制备方法和器具 |
CN115928009A (zh) * | 2022-06-23 | 2023-04-07 | 广东华升纳米科技股份有限公司 | TiCN涂层及其制备方法 |
CN115505886A (zh) * | 2022-09-23 | 2022-12-23 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法 |
CN115505886B (zh) * | 2022-09-23 | 2023-10-24 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107747092A (zh) | 2018-03-02 |
CN107747092B (zh) | 2019-08-23 |
US20210040597A1 (en) | 2021-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019072084A1 (zh) | 一种耐高温硬质复合涂层及其制备方法和涂层刀具 | |
CN105112858B (zh) | 一种多层结构的纳米复合刀具涂层 | |
CN103273687B (zh) | TiSiN+ZrSiN复合纳米涂层刀具及其制备方法 | |
CN104131256B (zh) | 一种多层纳米复合刀具涂层及其制备方法 | |
US10941479B2 (en) | Ion source enhanced AlCrSiN coating with gradient Si content and gradient grain size | |
CN109161841B (zh) | 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用 | |
CN109295425B (zh) | Cr/CrN/CrAlSiN/CrAlTiSiN纳米多层梯度膜及其制备方法 | |
CN108642449A (zh) | 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法 | |
CN105584148B (zh) | 硬质耐高温自润滑涂层制品及其制备方法 | |
CN104928638A (zh) | 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法 | |
CN104131250A (zh) | 一种梯度成分设计的纳米复合刀具涂层及其制备方法 | |
WO2019072083A1 (zh) | 一种柔性硬质复合涂层及其制备方法和涂层刀具 | |
CN108866480B (zh) | 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用 | |
CN108517487B (zh) | 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法 | |
CN107523790A (zh) | 一种AlCrSiCuN纳米多层涂层及其制备方法 | |
CN108165925B (zh) | 一种低负偏压高能Ar+刻蚀清洗改善AlTiSiN涂层性能的方法 | |
CN111321381B (zh) | 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法 | |
CN107058943A (zh) | TiCN/CrCN纳米多层膜及其制备方法 | |
CN105256273A (zh) | 一种氮硼钛/氮硅铝钛纳米复合多层涂层刀具及其制备方法 | |
CN108456843A (zh) | 一种高性能TiAlSiN纳米复合涂层及其制备方法和应用 | |
CN103938157B (zh) | 一种ZrNbAlN超晶格涂层及制备方法 | |
CN106567074A (zh) | 一种AlTiSiN‑AlCrSiN纳米晶‑非晶多层复合涂层制备方法 | |
CN109023243B (zh) | 一种超强韧、低摩擦碳基刀具涂层及其制备方法 | |
CN102181835A (zh) | Ti-Zr/ZrN纳米多层涂层刀具及其制备工艺 | |
CN114318226A (zh) | 一种钛合金切削用AlCrN/WN多层结构硬质涂层及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18865449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18865449 Country of ref document: EP Kind code of ref document: A1 |