CN108517487B - 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法 - Google Patents

一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法 Download PDF

Info

Publication number
CN108517487B
CN108517487B CN201810249865.XA CN201810249865A CN108517487B CN 108517487 B CN108517487 B CN 108517487B CN 201810249865 A CN201810249865 A CN 201810249865A CN 108517487 B CN108517487 B CN 108517487B
Authority
CN
China
Prior art keywords
layer
tialn
substrate
target
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810249865.XA
Other languages
English (en)
Other versions
CN108517487A (zh
Inventor
苏峰华
徐星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810249865.XA priority Critical patent/CN108517487B/zh
Publication of CN108517487A publication Critical patent/CN108517487A/zh
Application granted granted Critical
Publication of CN108517487B publication Critical patent/CN108517487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法。该TiAlN/W2N多层涂层是利用多靶先后溅射的方式,沉积TiN过渡层以及交替溅射沉积TiAlN层和W2N层在基体上,靠近基体的两层依次为TiN过渡层和TiAlN层,最上层为W2N层。所述TiAlN/W2N多层涂层总厚度为2.5~3.5μm,每一层TiAlN层的厚度50~210 nm,每一层W2N涂层的厚度40~160 nm,总的周期层数为10~50层。其制备方法包括清洗基体、沉积TiN过渡层和交替溅射沉积TiAlN及W2N层。该TiAlN/W2N多层涂层的硬度高、耐磨性能好,涂层单层厚度容易控制且可控范围大,工艺简单。

Description

一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法
技术领域
本发明涉及硬质保护涂层领域,具体涉及一种高硬度和高耐磨的 TiAlN/W2N多层涂层及其制备方法。
背景技术
随着社会和科技的不断发展,人们对材料的需求量越来越大,同时对其性能要求也越来越高。在切削加工这一领域,对刀具表面进行强化也是目前的发展趋势,在刀具表面涂覆一层硬质涂层是强化刀具的手段之一,这样可以提高刀具表面的硬度、耐磨耐蚀性能,减少刀具表面的磨损,大幅度提高刀具的使用寿命。TiN作为第一代硬质涂层,人们已经进行了大量研究,并且在工业生产中得到广泛应用。但是日益恶劣的服役环境,使得TiN硬质涂层的性能已经不能满足工业需求,发展多元、多层涂层也已经成为获得高性能涂层的重点方向。
所谓多层涂层指的是两种或多种结构或成分不同的材料在垂直于基体方向交替生长形成的二维多层材料,这种多层材料能够将不同结构或成分涂层的性能结合起来,发挥各个层的优势。
TiAlN以其高硬度、高熔点和抗氧化性好等优良性能被广泛研究使用。Al 原子替代具有立方结构的TiAlN中的Ti原子,占据Ti原子的晶格,形成(Ti, Al)N固溶体强化涂层,使得TiAlN涂层具有比二元涂层TiN更优的性能。近年来,W2N涂层也以其高熔点、高硬度以及高导电性等优良性能吸引广泛关注。目前,TiAlN涂层能够和很多涂层结合形成高硬度、高耐磨性等具有优良性能的多层涂层。将TiAlN涂层与W2N涂层结合起来形成TiAlN/W2N多层涂层具有潜在的应用价值。
通过查文献得知,目前关于TiAlN的多层涂层有TiAlN/MoN,TiAlN/CrN, TiAlN/SiO2等,通过查询,检索到有如下关于制备有关TiAlN多层涂层的中国专利:
申请号为CN201610130391.8申请了一种具有高硬度和优良抗氧化性能的 TiAlN/MoN多层涂层,所制备的多层涂层还具有自润滑性以及较好的结合强度。所制备的TiAlN/MoN多层涂层从下至上依次为金属结合层、过渡层以及 TiAlN/MoN复合涂层,其中金属结合层为TiAl或Mo,过渡层为TiAlN或者 MoN。
申请号为CN201110341948.X申请了一种高硬度高弹性模量的TiAlN/SiO2多层涂层,所制备的多层涂层还具有一定的抗高温氧化能力,主要应用在干式、高速切削加工刀具表面。
申请号为CN201410436427.6申请了一种自硬化的TiAlN/CrAlN多层涂层刀具,同时该多层涂层还具有优异的热稳定性以及高温抗氧化性。
发明内容
针对目前生产实践中存在的问题,本发明提供了一种高硬度和高耐磨的 TiAlN/W2N多层涂层及其制备方法,该TiAlN/W2N多层涂层除具有高硬度和高耐磨性能外,还具有良好的附着力,能够很好地提高工具、刀具的使用性能。
本发明的上述目的通过以下技术方案实现。
一种高硬度和高耐磨的TiAlN/W2N多层涂层,该TiAlN/W2N多层涂层由 TiN过渡层和TiAlN/W2N层所构成,所述TiAlN/W2N层为多个周期的TiAlN 层/W2N层;所述的TiAlN/W2N多层涂层是先在基底上沉积一层TiN过渡层,然后TiAlN层和W2N层依次交替沉积在TiN过渡层上,靠近基体的两层依次为TiN过渡层和TiAlN层,最上层为W2N层。
优选的,所述TiAlN/W2N多层涂层的总厚度为2.5~3.5μm,其中,TiN过渡层的厚度为300~500nm,每层TiAlN层的厚度为50~210nm,每层W2N层的厚度为40~160nm,所述TiAlN/W2N层的层数为10~50层。
优选的,所述TiAlN层为(Ti,Al)N纳米固溶相,所述W2N层为纳米晶 W2N。
本发明中还提供了制备TiAlN/W2N多层涂层的制备方法,该制备方法操作简单,容易控制单层厚度,实现多层结构,并结合多弧电源与直流磁控电源的特点,易于制备性能更优的多层涂层。
本发明采用复合多功能离子镀膜设备,该镀膜设备主要包括真空室、第一弧源、第二弧源、直流磁控溅射电源、加热源、转动单元、进气单元、分子泵和脉冲偏压电源,其中,真空室内壁设有均匀分布的第一弧源、第二弧源和直流磁控溅射电源,真空室中设有可公转、自转的转架。
进一步的,本发明所述第一弧源上安装Ti靶,第二弧源上安装TiAl靶,直流磁控电源上安装W靶,基体安装在转架上。
该高硬度和高耐磨的TiAlN/W2N多层涂层的制备方法,具体包括如下步骤:
(1)基体清洗
首先将经过打磨、抛光处理后的基体进行超声清洗,然后将所得基体放入多靶溅射设备真空室中进行氩离子辉光清洗;
(2)TiN过渡层的沉积
待步骤(1)将基体进行氩离子辉光清洗之后,关闭霍尔离子源,通入氮气,维持真空度在0.5~1.0Pa,氩气的流量为40sccm,氮气的流量为80sccm,在氩气和氮气混合气氛中,同时调节基体直流偏压为120~180V,脉冲偏压为 400~600V,占空比为40%~60%,采用Ti靶,利用第一弧源进行TiN过渡层的沉积,靶电流为50~60A,沉积时间15~20min;
(3)交替溅射TiAlN层和W2N层
在步骤(2)进行TiN过渡层沉积完成以后,接着进行TiAlN层和W2N层的沉积,维持真空度在0.5~1.0Pa,氩气流量为30~50sccm,氮气流量为 60~80sccm,在氩气和氮气混合气氛中,同时调节基体直流偏压为80~120V,脉冲偏压为400~450V,占空比为15%~20%;首先采用TiAl靶,利用第二弧源进行TiAlN层的沉积,电流为50~60A,沉积时间为3~15min;然后关闭第二弧源,采用W靶,利用直流磁控电源进行W2N层的沉积,电流为2.0~3.0A,沉积时间为5~20min;如此交替沉积多次,沉积总的时间为170~200min,最终获得沉积在基体上的TiAlN/W2N多层涂层。
优选的,步骤(1)所述基体为金属、硬质合金和陶瓷中的任意一种。
优选的,步骤(1)所述基体清洗是将经过打磨、抛光处理后的基体放入超声波清洗设备中,在无水乙醇和丙酮中利用20~30kHz超声波进行清洗,清洗时间为20~30分钟;然后在复合多功能离子镀膜设备中进行辉光清洗,具体操作为:将基体放入多靶溅射设备真空室,抽真空低于1.0×10-3Pa以后,再通入氩气,并且维持真空度为0.5~1.0Pa,氩气的流量为50~80sccm,同时调节基体直流偏压为160~200V,脉冲偏压为700~800V,占空比为60%~80%,开启霍尔离子源,对基体进行25~30min的氩离子辉光清洗。
优选的,步骤(2)所述Ti靶的纯度为99.99%,直径为100mm,厚度为 40mm。
优选的,步骤(3)所述的TiAl靶由Ti和Al两种元素组成的,其中Ti: Al原子比为1:1;所述W靶的纯度为99.99%.
优选的,步骤(3)所述TiAl靶的直径为100mm,厚度为40mm;所述W 靶的直径为120mm,厚度为6mm,靶基距离8~10cm。
优选的,步骤(1)、步骤(2)、步骤(3)中,沉积过程工件架的转速为4rpm。
与现有技术相比较,本发明具有如下优点:
(1)本发明的TiAlN/W2N多层涂层可以很好的将TiAlN和W2N的性能结合起来,发挥出两种单层涂层的优势,得到高硬度、高耐磨的复合多层涂层材料;
(2)过渡层沉积较厚的TiN层,相对于其他硬质涂层来说,TiN涂层相对较软,可以减小与基体的应力,提高涂层与基体的结合力,另外TiN过渡层是在偏压逐渐减小的条件下沉积获得的,可进一步减小涂层内应力,提高涂层与基体的结合力;
(3)本发明是固定转架的转速,通过控制沉积时间来控制多层中每一层的厚度,可以人为设计每层的厚度以及多层层数;
(4)本发明所制备的TiAlN/W2N多层涂层晶粒细小,TiAlN层为(Ti, Al)N纳米固溶相,所述W2N层为W2N纳米晶;
(5)本发明的TiAlN/W2N多层涂层是采用多弧电源和直流磁控电源共同制备的,既能够减少多弧溅射产生的大颗粒和克服直流磁控溅射离化率低的问题,又能够发挥多弧溅射结合力强和直流磁控溅射内应力小的优势;
(6)本发明采用的复合多功能离子镀膜设备,与工业生产中的镀膜设备类似,并且操作简单,利于工业应用。
附图说明
图1是实施例1所得TiAlN/W2N多层涂层横截面的扫面电镜照片;
图2a、图2b分别是相同摩擦条件下实施例1中的TiAlN/W2N多层涂层的磨痕形貌与基体的磨痕形貌对比照片。
具体实施方式
下面结合附图和实施例对本发明的具体实施做进一步说明,但本发明的实施方式不限于此。
实施例1
本实施例的TiAlN/W2N多层涂层具体的制备方法如下:
将经过打磨、抛光处理的不锈钢基体,分别用分析纯的无水乙醇和丙酮在超声波中清洗干净,烘干后检查基体表面是否干净,确定基体表面无污染后安装在真空室的转架上,关闭真空室的门,进行抽真空操作。气压达到1.0×10-3Pa以后,向真空室中通入氩气,维持气压在0.5Pa,氩气的流量为70sccm,同时调节基体直流偏压为180V,脉冲偏压800V,占空比80%,开启霍尔离子源,对基体进行30min辉光清洗。辉光清洗结束后,关闭霍尔离子源,向真空室中通入氮气,气压维持在1.0Pa,氩气流量为40sccm,氮气流量为80sccm,同时调节直流偏压为150V,脉冲偏压每隔10min降低100V,由600V降至400V,占空比40%,开启第一弧源,沉积TiN过渡层,沉积20min。TiN过渡层沉积完成之后,关闭第一弧源,调节基体直流偏压为100V,稳定脉冲偏压为400V,占空比20%,开启第二弧源沉积TiAlN层,沉积10min,关闭第二弧源,开启直流磁控溅射电源沉积W2N层,沉积15min,沉积TiAlN/W2N多层重复7次。整个沉积过程转架的转速稳定在4rpm,制备结束后自然冷却,最终获得沉积在基体上的TiAlN/W2N多层涂层。
本实施例所得具有高硬度和高耐磨性的TiAlN/W2N多层涂层,经过检测, TiAlN/W2N多层涂层总厚度约为3μm,TiAlN单层厚度为172nm,W2N单层厚度为137nm,硬度高达34.2GPa。图1为本实施例所制得样品横截面的扫面电镜照片,放大倍数为50000倍,其中靠近基体的暗黑色层依次为TiN过渡层、 TiAlN层,白色为W2N层,之后的暗黑色及白色层为TiAlN/W2N交替层;在相同摩擦条件下,本实施例所得TiAlN/W2N多层涂层的磨痕形貌与基体磨痕形貌的对比图分别如图2a、图2b所示,经过计算,TiAlN/W2N多层涂层的磨损率比基体的磨损率降低了6倍,并且TiAlN/W2N多层涂层的磨痕相对平滑,基体的磨痕形貌出现明显的划痕。
实施例2
本实施例的TiAlN/W2N多层涂层具体的制备方法如下:
将经过打磨、抛光处理的硬质合金基体,分别用分析纯的无水乙醇和丙酮在超声波中清洗干净,烘干后检查基体表面是否干净,确定基体表面无污染后安装在真空室的转架上,关闭真空室的门,进行抽真空操作。气压达到1.0× 10-3Pa以后,向真空室中通入氩气,维持气压在0.5Pa,氩气的流量为70sccm,同时调节基体直流偏压为180V,脉冲偏压800V,占空比80%,开启霍尔离子源,对基体进行30min辉光清洗。辉光清洗结束后,关闭霍尔离子源,向真空室中通入氮气,气压维持在1.0Pa,氩气流量为40sccm,氮气流量为80sccm,同时调节直流偏压为150V,脉冲偏压每隔10min降低100V,由600V降至 400V,占空比40%,开启第一弧源,沉积TiN过渡层,沉积20min。TiN过渡层沉积完成之后,关闭第一弧源,调节基体直流偏压为100V,稳定脉冲偏压为400V,占空比20%,开启第二弧源沉积TiAlN层,沉积7min,关闭第二弧源,开启直流磁控溅射电源沉积W2N层,沉积12min,沉积TiAlN/W2N多层重复9次。整个沉积过程转架的转速稳定在4rpm,制备结束后自然冷却,最终获得沉积在基体上的TiAlN/W2N多层涂层。
本实施例所得具有高硬度和高耐磨性的TiAlN/W2N多层涂层,经过检测, TiAlN/W2N多层涂层总厚度约为2.7μm,TiAlN单层厚度为140nm,W2N单层厚度为116nm,硬度为36GPa。
实施例3
本实施例的TiAlN/W2N多层涂层具体的制备方法如下:
将经过打磨、抛光处理的不锈钢基体,分别用分析纯的无水乙醇和丙酮在超声波中清洗干净,烘干后检查基体表面是否干净,确定基体表面无污染后安装在真空室的转架上,关闭真空室的门,进行抽真空操作。气压达到1.0×10-3Pa以后,向真空室中通入氩气,维持气压在0.5Pa,氩气的流量为70sccm,同时调节基体直流偏压为180V,脉冲偏压800V,占空比80%,开启霍尔离子源,对基体进行30min辉光清洗。辉光清洗结束后,关闭霍尔离子源,向真空室中通入氮气,气压维持在1.0Pa,氩气流量为40sccm,氮气流量为80sccm,同时调节直流偏压为150V,脉冲偏压每隔10min降低100V,由600V降至400V,占空比40%,开启第一弧源,沉积TiN过渡层,沉积20min。TiN过渡层沉积完成之后,关闭第一弧源,调节基体直流偏压为100V,稳定脉冲偏压为400V,占空比20%,开启第二弧源沉积TiAlN层,沉积5min,关闭第二弧源,开启直流磁控溅射电源沉积W2N层,沉积10min,沉积TiAlN/W2N多层重复11次。整个沉积过程转架的转速稳定在4rpm,制备结束后自然冷却,最终获得沉积在基体上的TiAlN/W2N多层涂层。
本实施例所得具有高硬度和高耐磨性的TiAlN/W2N多层涂层,经过检测, TiAlN/W2N多层涂层总厚度约为2.4μm,TiAlN单层厚度为116nm,W2N单层厚度为82nm,硬度为30.7GPa。
实施例4
本实施例的TiAlN/W2N多层涂层具体的制备方法如下:
将经过打磨、抛光处理的不锈钢基体,分别用分析纯的无水乙醇和丙酮在超声波中清洗干净,烘干后检查基体表面是否干净,确定基体表面无污染后安装在真空室的转架上,关闭真空室的门,进行抽真空操作。气压达到1.0×10-3Pa以后,向真空室中通入氩气,维持气压在0.5Pa,氩气的流量为70sccm,同时调节基体直流偏压为180V,脉冲偏压800V,占空比80%,开启霍尔离子源,对基体进行30min辉光清洗。辉光清洗结束后,关闭霍尔离子源,向真空室中通入氮气,气压维持在1.0Pa,氩气流量为40sccm,氮气流量为80sccm,同时调节直流偏压为150V,脉冲偏压每隔10min降低100V,由600V降至400V,占空比40%,开启第一弧源,沉积TiN过渡层,沉积20min。TiN过渡层沉积完成之后,关闭第一弧源,调节基体直流偏压为100V,稳定脉冲偏压为400V,占空比20%,开启第二弧源沉积TiAlN层,沉积4min,关闭第二弧源,开启直流磁控溅射电源沉积W2N层,沉积9min,沉积TiAlN/W2N多层重复13次。整个沉积过程转架的转速稳定在4rpm,制备结束后自然冷却,最终获得沉积在基体上的TiAlN/W2N多层涂层。
本实施例所得具有高硬度和高耐磨性的TiAlN/W2N多层涂层,经过检测, TiAlN/W2N多层涂层总厚度约为2.5μm,TiAlN单层厚度为80nm,W2N单层厚度为70nm,硬度为29.3GPa。

Claims (7)

1.一种高硬度和高耐磨的TiAlN/W2N多层涂层的制备方法,其特征在于,包括如下步骤:
(1)基体清洗
首先将经过打磨、抛光处理后的基体进行超声清洗,然后将所得基体放入多靶溅射设备真空室中进行氩离子辉光清洗;
(2)TiN过渡层的沉积
待步骤(1)将基体进行氩离子辉光清洗之后,关闭霍尔离子源,通入氮气,维持真空度在0.5~1.0Pa,氩气的流量为40sccm,氮气的流量为80sccm,在氩气和氮气混合气氛中,同时调节基体直流偏压为120~180V,脉冲偏压为400~600V,占空比为40%~60%,采用Ti靶,利用第一弧源进行TiN过渡层的沉积,靶电流为50~60A,沉积时间15~20min;
(3)交替溅射TiAlN层和W2N层
在步骤(2)进行TiN过渡层沉积完成以后,接着进行TiAlN层和W2N层的沉积,维持真空度在0.5~1.0Pa,氩气流量为30~50sccm,氮气流量为60~80sccm,在氩气和氮气混合气氛中,同时调节基体直流偏压为80~120V,脉冲偏压为400~450V,占空比为15%~20%;首先采用TiAl靶,利用第二弧源进行TiAlN层的沉积,电流为50~60A,沉积时间为3~15min;然后关闭第二弧源,采用W靶,利用直流磁控电源进行W2N层的沉积,电流为2.0~3.0A,沉积时间为5~20min;如此交替沉积多次,沉积总的时间为170~200min,最终获得沉积在基体上的TiAlN/W2N多层涂层;
所述TiAlN/W2N多层涂层由TiN过渡层和TiAlN/W2N层所构成,所述TiAlN/W2N层为多个周期的TiAlN层/W2N层;所述的TiAlN/W2N多层涂层是先在基底上沉积一层TiN过渡层,然后TiAlN层和W2N层依次交替沉积在TiN过渡层上,靠近基体的两层依次为TiN过渡层和TiAlN层,最上层为W2N层;
所述TiN过渡层和TiAlN/W2N层的总厚度为2.5~3.5μm,其中,TiN过渡层的厚度为300~500nm,每层TiAlN层的厚度为50~210nm,每层W2N层的厚度为40~160nm,所述TiAlN/W2N层的层数为10~50层;
所述TiAlN层为(Ti,Al)N纳米固溶相,所述W2N层为纳米晶W2N。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)所述基体为金属、硬质合金和陶瓷中的任意一种。
3.如权利要求1所述的制备方法,其特征在于,步骤(1)所述基体清洗是将经过打磨、抛光处理后的基体放入超声波清洗设备中,在无水乙醇和丙酮中利用20~30kHz超声波进行清洗,清洗时间为20~30分钟;然后在复合多功能离子镀膜设备中进行辉光清洗,具体操作为:将基体放入多靶溅射设备真空室,抽真空低于1.0×10-3Pa以后,再通入氩气,并且维持真空度为0.5~1.0Pa,氩气的流量为50~80sccm,同时调节基体直流偏压为160~200V,脉冲偏压为700~800V,占空比为60%~80%,开启霍尔离子源,对基体进行25~30min的氩离子辉光清洗。
4.如权利要求1所述的制备方法,其特征在于,步骤(2)所述Ti靶的纯度为99.99%,直径为100mm,厚度为40mm。
5.如权利要求1所述的制备方法,其特征在于,步骤(3)所述的TiAl靶由Ti和Al两种元素组成的,其中Ti:Al原子比为1:1;所述W靶的纯度为99.99%。
6.如权利要求1所述的制备方法,其特征在于,步骤(3)所述TiAl靶的直径为100mm,厚度为40mm;所述W靶的直径为120mm,厚度为6mm,靶基距离8~10cm。
7.如权利要求1所述的制备方法,其特征在于:步骤(1)、步骤(2)、步骤(3)中,沉积过程工件架的转速为4rpm。
CN201810249865.XA 2018-03-26 2018-03-26 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法 Active CN108517487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810249865.XA CN108517487B (zh) 2018-03-26 2018-03-26 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810249865.XA CN108517487B (zh) 2018-03-26 2018-03-26 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN108517487A CN108517487A (zh) 2018-09-11
CN108517487B true CN108517487B (zh) 2020-06-19

Family

ID=63434326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810249865.XA Active CN108517487B (zh) 2018-03-26 2018-03-26 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108517487B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373519B (zh) * 2019-07-12 2021-03-16 重庆文理学院 一种高硬度耐磨损的不锈钢的制备方法
CN110735111B (zh) * 2019-08-16 2021-12-31 缙云县先锋工具有限公司 一种可实现圆锯片干切削的高硬度复合涂层及其制备方法
CN110438445B (zh) * 2019-09-19 2021-11-30 西安石油大学 W-w2n强韧化纳米多层涂层及其制备方法
CN111979543B (zh) * 2020-07-03 2021-09-21 华南理工大学 一种基于摩擦诱导催化形成自润滑非晶碳膜的涂层材料及其制备方法
CN113529033B (zh) * 2021-06-11 2023-04-07 中国科学院宁波材料技术与工程研究所 一种防护涂层的制备方法及制备得到的防护涂层
CN113684448A (zh) * 2021-08-20 2021-11-23 湖南泰嘉新材料科技股份有限公司 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900498B2 (en) * 2001-05-08 2005-05-31 Advanced Technology Materials, Inc. Barrier structures for integration of high K oxides with Cu and Al electrodes
CN106987800B (zh) * 2017-03-10 2019-04-23 广东工业大学 一种周期性多层结构的二硼化钛-二硼化锆涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN108517487A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
CN108517487B (zh) 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法
CN104060230B (zh) 一种TiZrAlSiON纳米复合超硬涂层刀具及其制备方法
CN104846332B (zh) 一种超润滑多层纳米复合涂层及其制备方法
CN109161841B (zh) 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
US6599400B2 (en) Method for the manufacture of coatings and an article
CN107747092B (zh) 一种耐高温硬质复合涂层及其制备方法和涂层刀具
CN100577860C (zh) 一种低应力氮化铬多层硬质薄膜的制备方法
CN103212729B (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN105063554B (zh) ZrSiCN纳米复合梯度涂层刀具及其制备工艺
CN103273687A (zh) TiSiN+ZrSiN复合纳米涂层刀具及其制备方法
CN105088127B (zh) 一种涂层及其制备方法
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
CN106086806A (zh) 一种AlTiCrN高温耐磨涂层及其制备方法
CN107916402A (zh) 一种AlCrTiSiCN涂层结构及其制备方法
CN103382548A (zh) 一种基体表面纳米复合Me-Si-N超硬涂层的制备方法
JP2004332004A (ja) アルミナ保護膜およびその製造方法
CN109097743A (zh) 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法
WO2022241952A1 (zh) 一种纳米多层结构过渡金属氮化物涂层及其制备方法和应用
CN108796453A (zh) 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
CN108251797A (zh) 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法
CN105862002A (zh) 类牡蛎壳的仿生多层强韧化薄膜
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN108977766A (zh) 一种多层复合类金刚石薄膜材料及其制备方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant