CN110438445B - W-w2n强韧化纳米多层涂层及其制备方法 - Google Patents

W-w2n强韧化纳米多层涂层及其制备方法 Download PDF

Info

Publication number
CN110438445B
CN110438445B CN201910884462.7A CN201910884462A CN110438445B CN 110438445 B CN110438445 B CN 110438445B CN 201910884462 A CN201910884462 A CN 201910884462A CN 110438445 B CN110438445 B CN 110438445B
Authority
CN
China
Prior art keywords
multilayer coating
substrate
substrate material
metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910884462.7A
Other languages
English (en)
Other versions
CN110438445A (zh
Inventor
王晨
安敏荣
江浩
吕祥鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201910884462.7A priority Critical patent/CN110438445B/zh
Publication of CN110438445A publication Critical patent/CN110438445A/zh
Application granted granted Critical
Publication of CN110438445B publication Critical patent/CN110438445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

W‑W2N金属‑陶瓷纳米多层涂层,包括周期性排布于基底材料表面的调制结构,调制结构为软质相与硬质相周期交替排布于基底材料表面;W‑W2N纳米多层涂层的磁控溅射制备方法,包括以下步骤:1)提供基底材料,去除基底表面粘着的有机物;2)将基底材料快速烘干并装入真空室中,用Ar+离子束轰击基底材料,除去基底表面的氧原子,继续抽真空;3)向真空室中充入氩气与氮气的混合气体,在沉积多层涂层之前先沉积一层W2N过渡层;4)周期性向真空室中充入高纯氩气和混合气体,分别得到金属相W层和陶瓷相W2N层;控制多层涂层中的调制周期和调制比;得到高强高韧的W‑W2N纳米多层涂层;具有潜在应用价值高、强韧化效果好的特点。

Description

W-W2N强韧化纳米多层涂层及其制备方法
技术领域
本发明属于表面处理技术领域,具体涉及W-W2N金属-陶瓷纳米多层涂层及其制备方法。
背景技术
硬质涂层在现代工业中发挥着重要的作用,因其具有较高的强度和耐用度,被广泛的应用于刀具涂层、摩擦磨损部件和高温保护涂层等方面。尤其是在刀具涂层领域,为了满足现代制造业中高速切削和干式切削等先进技术的发展对刀具提出的更高硬度和耐磨性的要求,人们设计出了nc-MenN/a-Si3N4超硬纳米复合涂层体系,这类由两种硬质相组成的涂层体系称为硬/硬体系。这种硬度超过40 GPa的超硬涂层在以磨料磨损为主要切削方式的应用中显示了非常突出的优势,但在一些特殊的环境下,尤其是在对涂层缺陷和脆性断裂较敏感的化学使用环境中,超硬涂层脆性明显,很难承受断裂带来的失效。此时,涂层的韧性开始变得至关重要,涂层必须同时具备高强度和高韧性。
目前,研究具有高韧性的硬质涂层已经成为硬质涂层开发的热点之一。但是材料的硬度和韧性是两个相互冲突的性能指标,也就是说,涂层越硬,它的韧性就越低,提高韧性必然会损失一定量的硬度,为了解决这一瓶颈问题,提高硬质涂层的韧性,实现涂层强韧化,研究者们提出了很多方法,比如增加涂层压应力、添加金属延展相、相变增韧、涂层结构设计、以及形成微/纳表面织构等,其中多层涂层是应用较广的一种增韧方法。作为目前常用的硬/硬体系的陶瓷-陶瓷涂层,具有良好的硬度增强,其韧性也获得了一定的强化,但是受到其材料自身性质的影响,这种强韧化的效果有限。
发明内容
为了克服上述技术的不足,本发明的目的在于提供了W-W2N金属-陶瓷纳米多层涂层及其制备方法,属于典型的软/硬涂层体系W-W2N纳米多层涂层,获得了高强度高韧性的W-W2N涂层,该涂层非常具有潜在应用价值高、强韧化效果好的特点。
为了实现上述目的,本发明采用的技术方案是:W-W2N金属-陶瓷纳米多层涂层,包括有周期性排布于基底材料表面的调制结构,调制结构为软质相与硬质相周期交替排布于基底材料表面;
W-W2N纳米多层涂层的厚度为1μm;
调制结构的调制周期为固定值10nm。
所述的软质相为金属相,金属相的单层厚度在6~9nm之间。
所述的硬质相为陶瓷相,陶瓷相的单层厚度在1~4nm之间。
W作为金属-陶瓷纳米多层涂层的软质相,单层厚度在6~9nm之间。
W2N作为金属-陶瓷纳米多层涂层的硬质相,单层厚度在1~4nm之间。
W-W2N纳米多层涂层的磁控溅射制备方法,包括以下步骤:
1)提供基底材料,分别用丙酮和乙醇进行超声波清洗15min,随后用去离子水清洗15min,去除基底表面粘着的有机物;
2)将步骤1)处理过的基底材料快速烘干并装入真空室中,当抽真空至5.0 ×10−5Pa时,用Ar+离子束轰击基底20分钟,进一步除去基底表面的氧原子,并继续抽真空;
3)当背底真空度优于1.33 ×10−5Pa时,向真空室中充入氩气与氮气的混合气体,在沉积多层涂层之前先沉积一层50nm 的W2N过渡层,提高涂层与基底的结合力;W金属靶由脉冲直流阴极控制,溅射功率均恒定在110W,脉冲频率50kHz,占空比30%,基底偏压−100V;
4)周期性向真空室中充入含有高纯氩气和混合气体,气压固定在 0.9 Pa,分别得到金属相W层和陶瓷相W2N层,W金属靶由脉冲直流阴极控制,溅射功率均恒定在110W,脉冲频率50kHz,占空比30%,基底偏压−100V;通过控制充入高纯氩气和氩气与氮气混合气体的时间控制多层涂层中的调制周期和调制比。
步骤3)所述的混合气体中N2含量25%,纯度为99.95%。
步骤4)所述的高纯氩气的纯度为 99.99%。
步骤4)所述的混合气体中,N2含量25%,纯度为 99.95%。
与现有技术相比,本发明的有益效果是:W-W2N纳米多层涂层是以自然界中贝壳的结构为灵感设计出的由一种硬质相和一种软质相组成的软/硬涂层体系。其中W具有较高的弹性模量,可使涂层在获得较高韧性的同时,也将得到较高的硬度。而W2N的硬度可以达到25 GPa,并且具有较低的摩擦系数,且经济实用。因此,W-W2N纳米多层涂层可以达到高强度高韧性的目标,其硬度与许多陶瓷涂层的硬度相当,而韧性足以和纳米晶金属涂层相媲美。涂层中的界面抑制了晶粒的生长,使裂纹发生偏转和产生分裂纹,以及界面处发生的纳米塑性变形吸收了大量的能量释放多余的应力而造成的裂纹钝化,从而降低了涂层的残余应力,同时提高了涂层的强度和韧性。其操作过程简单,便于规模化批量生产。
附图说明
图1为本发明中实施例一W-W2N纳米多层涂层截面高分辨TEM明场像照片,其中深色条纹为厚度7nm的W 层,浅色条纹为厚度3nm的W2N层。
图2为本发明中实施例二W-W2N纳米多层涂层截面高分辨TEM明场像照片,其中深色条纹为厚度8nm的W 层,浅色条纹为厚度2nm的W2N层。
具体实施方式
下面将结合实例进一步阐明本发明,但实例并不限制本发明的保护范围。
实施例1:
参见图1,实施例1中的W-W2N纳米多层涂层包括深色条纹的软质层W层,以及浅色条纹的硬质层W2N层,软质层W层和硬质层W2N层交替形成于基底材料表面。这种由软质层和硬质层构成的具有调制周期的W-W2N纳米多层涂层的厚度为1μm,硬度为30GPa,韧性为5.6MPa-m1/2,内应力可控制为—0.49GPa,调制周期为10nm,该调制结构中W单层为7nm,W2N单层为3nm,可以看到较为明显的柱状晶形态,并且涂层展现出良好的多层结构。并且可以观察到W层与W2N层之间形成了明锐的界面,W 层和W2N 层之间形成了半共格界面。这是由于半共格界面能要低于非共格界面能,且溅射粒子在异质表面上沉积时活性提高,为半共格界面的形成提供了有利的热力学和动力学条件。各层的亮度区分明显,层状交替的结构阻碍了大晶粒的生长,当受到外力作用产生裂纹时,裂纹在界面处发生偏转并产生分裂纹,且界面处发生的纳米塑性变形吸收了大量的能量释放多余的应力而造成的裂纹钝化,不仅降低了涂层的残余应力,同时提高了涂层的强度和韧性。由于该调制结构的调制周期为纳米量级,可广泛应用于对涂层韧性有特殊要求的加工领域。
本实施例中W-W2N纳米多层涂层采用磁控溅射方法制备,具体制备步骤包括:
1)基底材料用丙酮和乙醇分别进行超声波清洗15min,并进行真空干燥;
2)将基底装入真空室中,当抽真空至 5.0×10−5Pa时,用Ar+离子束轰击基底20分钟,并继续抽真空;
3)在沉积多层涂层之前先沉积一层50nm 的W2N过渡层,提高涂层与基底的结合力。具体操作为当背底真空度优于 1.33×10−5Pa时,向真空室中充入氩气与氮气(N2含量25%,纯度为99.95%)的混合气体, W金属靶由脉冲直流阴极控制,溅射功率均恒定在110W,脉冲频率50kHz,占空比30%,基底偏压−100V;
4)向真空室中充入高纯氩气(纯度为99.99%),沉积软质层W层,随后通入氩气与氮气(N2含量25%,纯度为99.95%)的混合气体,沉积硬质层W2N层。此过程中,气压固定在0.9Pa,金属靶由脉冲直流阴极控制,溅射功率均恒定在110 W,脉冲频率50 kHz,占空比30%,基底偏压−100V。
重复步骤4),已达到目标厚度。通过控制充入高纯氩气(纯度为 99.99%)和氩气与氮气(N2含量25%,纯度为99.95%)混合气体的时间控制多层涂层中的调制周期和调制比。
本发明实施例1的制备方法制备出了纳米级特定厚度的具有调制周期结构的W-W2N纳米多层涂层,可满足实际生产需要,操作过程简单方便,便于规模化批量生产。
实施例2:
参见图2,实施例2中的W-W2N纳米多层涂层包括深色条纹的软质层W层,以及浅色条纹的硬质层W2N层,软质层W层和硬质层W2N层交替形成于基底材料表面。这种由软质层和硬质层构成的具有调制周期的W-W2N纳米多层涂层的厚度为1μm,硬度为29.1GPa,韧性为7.1 MPa-m1/2,内应力可控制为—0.58GPa,调制周期为10nm,该调制结构中W单层为8nm,W2N单层为2nm,可以看到较为明显的柱状晶形态,并且涂层展现出良好的多层结构。同时可以观察到W层与W2N层之间形成了明锐的界面,W 层和W2N 层之间形成了半共格界面。这是由于半共格界面能要低于非共格界面能,且溅射粒子在异质表面上沉积时活性提高,为半共格界面的形成提供了有利的热力学和动力学条件。各层的亮度区分明显,层状交替的结构阻碍了大晶粒的生长,当受到外力作用产生裂纹时,裂纹在界面处发生偏转并产生分裂纹,且界面处发生的纳米塑性变形吸收了大量的能量释放多余的应力而造成的裂纹钝化,不仅降低了涂层的残余应力,同时提高了涂层的强度和韧性。由于该调制结构的调制周期为纳米量级,可广泛应用于对涂层韧性有特殊要求的加工领域。
本实施例中W-W2N纳米多层涂层采用磁控溅射方法制备,具体制备步骤包括:
1)基底材料用丙酮和乙醇分别进行超声波清洗15min,并进行真空干燥;
2)将基底装入真空室中,当抽真空至5.0 ×10−5Pa时,用Ar+离子束轰击基底20分钟,并继续抽真空;
3)在沉积多层涂层之前先沉积一层50nm的W2N过渡层,提高涂层与基底的结合力。具体操作为当背底真空度优于 1.33×10−5Pa时,向真空室中充入氩气与氮气(N2含量25%,纯度为 99.95%)的混合气体,W金属靶由脉冲直流阴极控制,溅射功率均恒定在110W,脉冲频率50kHz,占空比30%,基底偏压−100V;
4)向真空室中充入高纯氩气(纯度为 99.99%),沉积软质层W层,随后通入氩气与氮气(N2含量25%,纯度为99.95%)的混合气体,沉积硬质层W2N层。此过程中,气压固定在0.9Pa,金属靶由脉冲直流阴极控制,溅射功率均恒定在110W,脉冲频率50kHz,占空比30%,基底偏压−100V。
重复步骤4),已达到目标厚度。通过控制充入高纯氩气(纯度为 99.99%)和氩气与氮气(N2含量25%,纯度为 99.95%)混合气体的时间控制多层涂层中的调制周期和调制比。
本发明实施例2的制备方法制备出了纳米级特定厚度的具有调制周期结构的W-W2N纳米多层涂层,可满足实际生产需要,操作过程简单方便,便于规模化批量生产。
经由实施例1、实施例2制备得到的W-W2N纳米多层涂层,得出下表:
Figure DEST_PATH_IMAGE001
根据上表的内容可知,本发明的W-W2N纳米多层涂层与W涂层和W2N涂层相比,硬度大大提高,且内应力相对W2N涂层有所降低,而韧性有了明显的提高。具有高强度高韧性的优点,使得这种涂层的应用范围更广,能够满足市场的需求。
另外,本发明中磁控溅射制备方法的优点是:高真空沉积涂层,涂层具有较高稳定性,对基底材料的影响微乎其微。
实施例3
W-W2N金属-陶瓷纳米多层涂层,包括有周期性排布于基底材料表面的调制结构,调制结构为软质相与硬质相周期交替排布于基底材料表面。
W-W2N纳米多层涂层的厚度为1μm。
调制结构的调制周期为固定值10nm。
所述的软质相为金属相,金属相的单层厚度为6nm。
所述的硬质相为陶瓷相,陶瓷相的单层厚度为4nm。
W作为金属-陶瓷纳米多层涂层的软质相,单层厚度为6nm。
W2N作为金属-陶瓷纳米多层涂层的硬质相,单层厚度为4nm。
实施例4
W-W2N金属-陶瓷纳米多层涂层,包括有周期性排布于基底材料表面的调制结构,调制结构为软质相与硬质相周期交替排布于基底材料表面。
W-W2N纳米多层涂层的厚度为1μm。
调制结构的调制周期为固定值10nm。
所述的软质相为金属相,金属相的单层厚度为9nm。
所述的硬质相为陶瓷相,陶瓷相的单层厚度为1nm。
W作为金属-陶瓷纳米多层涂层的软质相,单层厚度为9nm。
W2N作为金属-陶瓷纳米多层涂层的硬质相,单层厚度为1nm。
以上所述实施例仅表达了本发明的几种实施方式,描述较为具体和详细,但是应当指出的是,在不脱离本发明构思的前提下,还可以做出若干变形和改进,均属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (4)

1.W-W2N金属-陶瓷纳米多层涂层,其特征在于,包括有周期性排布于基底材料表面的调制结构,调制结构为软质相与硬质相周期交替排布于基底材料表面;
W-W2N纳米多层涂层的厚度为1μm;
调制结构的调制周期为固定值10nm;
所述的软质相为金属相,金属相的单层厚度在6~9nm之间;
所述的硬质相为陶瓷相,陶瓷相的单层厚度在1~4nm之间;
W-W2N纳米多层涂层的磁控溅射制备步骤为:
1)提供基底材料,分别用丙酮和乙醇进行超声波清洗15min,随后用去离子水清洗15min,去除基底表面粘着的有机物;
2)将步骤1)处理过的基底材料快速烘干并装入真空室中,当抽真空至5.0 ×10−5Pa时,用Ar+离子束轰击基底20分钟,进一步除去基底表面的氧原子,并继续抽真空;
3)当背底真空度优于1.33 ×10−5Pa时,向真空室中充入氩气与氮气的混合气体,在沉积多层涂层之前先沉积一层50nm 的W2N过渡层,提高涂层与基底的结合力;W金属靶由脉冲直流阴极控制,溅射功率均恒定在110W,脉冲频率50kHz,占空比30%,基底偏压−100V;
4)周期性向真空室中充入含有高纯氩气和混合气体,气压固定在 0.9 Pa,分别得到金属相W层和陶瓷相W2N层,W金属靶由脉冲直流阴极控制,溅射功率均恒定在110W,脉冲频率50kHz,占空比30%,基底偏压−100V;通过控制充入高纯氩气和氩气与氮气混合气体的时间控制多层涂层中的调制周期和调制比。
2.根据权利要求1所述的W-W2N金属-陶瓷纳米多层涂层,其特征在于,步骤3)所述的混合气体中N2含量25%,纯度为99.95%。
3.根据权利要求1所述的W-W2N金属-陶瓷纳米多层涂层,其特征在于,步骤4)所述的高纯氩气的纯度为 99.99%。
4.根据权利要求1所述的W-W2N金属-陶瓷纳米多层涂层,其特征在于,步骤4)所述的混合气体中,N2含量25%,纯度为 99.95%。
CN201910884462.7A 2019-09-19 2019-09-19 W-w2n强韧化纳米多层涂层及其制备方法 Active CN110438445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910884462.7A CN110438445B (zh) 2019-09-19 2019-09-19 W-w2n强韧化纳米多层涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910884462.7A CN110438445B (zh) 2019-09-19 2019-09-19 W-w2n强韧化纳米多层涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN110438445A CN110438445A (zh) 2019-11-12
CN110438445B true CN110438445B (zh) 2021-11-30

Family

ID=68440397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910884462.7A Active CN110438445B (zh) 2019-09-19 2019-09-19 W-w2n强韧化纳米多层涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110438445B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795538B2 (en) * 2020-07-13 2023-10-24 Ningbo Institute Of Materials Technology & Engineering, Chinese Academy Of Sciences Nano composite coating having shell-simulated multi-arch structure as well as preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962860A (zh) * 2014-09-05 2015-10-07 北京机械工业自动化研究所 一种多相耦合ws2/wn固体润滑薄膜制造方法
CN108517487A (zh) * 2018-03-26 2018-09-11 华南理工大学 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法
CN108977781A (zh) * 2018-07-28 2018-12-11 华南理工大学 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962860A (zh) * 2014-09-05 2015-10-07 北京机械工业自动化研究所 一种多相耦合ws2/wn固体润滑薄膜制造方法
CN108517487A (zh) * 2018-03-26 2018-09-11 华南理工大学 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法
CN108977781A (zh) * 2018-07-28 2018-12-11 华南理工大学 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A mechanical study of W–N/W multilayers;L. Maille等;《Surface and Coatings Technology》;20041231;2.1. Thin film deposition,图5 *
L. Maille等.A mechanical study of W–N/W multilayers.《Surface and Coatings Technology》.2004,第483–487页. *
MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS;J. Horník等;《Acta Polytechnica》;20151231;第55卷(第6期);第388–392页 *
Surface modification by multilayered W/W2N coating;R. K. Upadhyay等;《Surface Engineering》;20141231;第30卷(第7期);第475-482页 *

Also Published As

Publication number Publication date
CN110438445A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Ehiasarian et al. Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique
JP5420558B2 (ja) 切削加工工具及びその製造方法
Wo et al. Effects of TiN sublayers on the response of TiSiN nanocomposite coatings to nanoidentation and scratching contacts
TW201035350A (en) Sputtering target and process for producing same
CN102918183B (zh) 用于金属加工的pvd涂层
JP2004169137A (ja) 摺動部材
WO2022241952A1 (zh) 一种纳米多层结构过渡金属氮化物涂层及其制备方法和应用
CN110438445B (zh) W-w2n强韧化纳米多层涂层及其制备方法
JPS62218549A (ja) 装飾用の黒い固有色を有する高耐摩耗性の硬質物質層
CN109097743A (zh) 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法
Luo et al. Low friction coefficient of superhard nc-TiC/aC: H nanocomposite coatings deposited by filtered cathodic vacuum arc
WO2007111293A1 (ja) 切削工具およびその製造方法
Panda et al. Effects of Cr doping on the mechanical properties of AlN films grown by the co-sputtering technique
CN100443625C (zh) ZrO2/TiN硬质纳米多层涂层
CN111020513A (zh) 一种提高纳米金属多层膜韧性的方法
CN1279207C (zh) TiN/SiO2纳米多层膜及其制备方法
CN113235041A (zh) 一种AlCrTiSiWMoN高熵合金氮化物涂层及其制备方法和应用
Boutos et al. Effects of deposition temperature and bilayer thickness on the mechanical properties of AlN/TiN multilayer thin films
JP5053561B2 (ja) 切削工具およびその製造方法
CN112359319B (zh) 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法
CN1888125A (zh) VN/SiO2纳米多层涂层及其制备方法
CN100480043C (zh) 高硬度ZrN/Al2(O1-xNx)3纳米多层涂层
Liepack et al. Mechanical behavior of PACVD TiC–amorphous carbon composite layers
Wei et al. Microstructure and tribological properties of Cu–Zn/TiN multilayers fabricated by dual magnetron sputtering
Ramos et al. Adhesion improvement of RF-sputtered alumina coatings as determined by the scratch test

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant