CN112359319B - 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法 - Google Patents

一种双周期耐磨抗菌和高韧性复合薄膜的制备方法 Download PDF

Info

Publication number
CN112359319B
CN112359319B CN202011058562.3A CN202011058562A CN112359319B CN 112359319 B CN112359319 B CN 112359319B CN 202011058562 A CN202011058562 A CN 202011058562A CN 112359319 B CN112359319 B CN 112359319B
Authority
CN
China
Prior art keywords
preparing
substrate
composite film
sputtering
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011058562.3A
Other languages
English (en)
Other versions
CN112359319A (zh
Inventor
李海涛
陈宜
程东海
刘泽民
刘频
牛鹏亮
王德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202011058562.3A priority Critical patent/CN112359319B/zh
Publication of CN112359319A publication Critical patent/CN112359319A/zh
Application granted granted Critical
Publication of CN112359319B publication Critical patent/CN112359319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种制备方法,本发明是要解决现有镁合金、钛合金等金属基体表面硬度低、不耐磨,所制备的薄膜韧性差的问题。方法:一、基体前处理;二、镀膜前准备;三、制备Ti‑Cu打底层;四、制备TiCuN中间层;五、制备Ti‑Si‑Cu缓冲层;六、制备TiCuSiN硬质层;七、按照上述三、四、五、六步骤反复一次,制备第二个周期的薄膜,得到两个周期共八层复合的薄膜,本方法将直流电源、偏压电源和射频电源结合在磁控溅射技术中,相对于其他周期类薄膜生产和制备的周期短、效率高、性能好,是一种低应力、高韧性、兼具有良好耐磨和抗菌的纳米级复合薄膜的制备方法。

Description

一种双周期耐磨抗菌和高韧性复合薄膜的制备方法
技术领域
本发明涉及一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,所属领域为表面处理和材料保护。
背景技术
镁合金、钛合金等金属基体具有密度小、比强度和比刚度高、强度和韧性综合性能良好等特点在航空航天、交通运输等领域得到了广泛的应用,不仅降低油耗,节能减排,而且减小了惯性,避免了很多事故的发生,因此越来越被人们所重视。同时,镁合金和钛合金无毒无害无污染,与人体骨密度和弹性模量接近、生物相容性良好,而且镁离子又是人体新陈代谢所必需的元素。因此,近些年生物镁合金和钛合金也得到了广泛的运用并迅速发展起来,大大改善了患者的生活质量。但是,众所周知,镁元素和钛元素的化学活性大,易发生反应,而且镁合金和钛合金的表面硬度较低,不耐磨。这些因素就限制了镁合金和钛合金的应用和推广,造成了巨大的损失。表面镀膜技术可以为上述问题的解决提供思路,在保证镁合金和钛合金固有优点的前提下,通过镀膜可以大幅度提高基体的性能。然而,不同的镀层方法和技术的生产效率、薄膜结构、质量和性能往往不同,采用什么样的方法,制备出的薄膜性能如何便成为了解决此种问题的关键。本发明就是在镁合金和钛合金这类金属基体上制备出一种耐磨抗菌和高韧性的薄膜,不仅可用于航空航天、交通运输等工业企业中,还可以应用到生物医学中,在满足高性能使用的前提下,此方法简单、生产率高、周期短。
发明内容
针对以上背景技术中提到的不足和缺陷,本发明提供了一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,包括以下步骤:
一、基体前处理:将基体(基体可以是镁合金、钛合金或其它基体,比如AZ31、T10钢、TC4和C7025等,但不局限于此)经过金相砂纸打磨,NaOH溶液超声去油后,酸洗中和,再用去离子水两道水洗后抛光,然后分别在丙酮、无水乙醇和去离子水中超声清洗;
二、镀膜前准备:清洗后的基体在N2气下冷风吹干,放入磁控溅射真空室内,检查真空室的气密性后开始抽真空。通入Ar并调节好气压,在直流电源和偏压电源的共同作用下,利用氩离子的轰击作用对基体进行溅射清洗和刻蚀,并在同等条件下对靶材进行预溅射;
三、制备Ti-Cu打底层:通入高纯氩气,在偏压和直流电源作用下,磁控溅射自制的Ti-Cu合金靶材,在基体上制备一定厚度的Ti-Cu打底层,不仅释放应力,提高膜/基结合强度,而且对于后续沉积的膜层起到很好的连接作用;
四、制备TiCuN中间层:再通入高纯氮气,在Ti-Cu打底层上,采用偏压加射频混合的磁控溅射方法,通过溅射自制的Ti-Cu合金靶制备TiCuN中间层,得到TiCuN/Ti-Cu/基材的复合材料;
五、制备Ti-Cu-Si缓冲层:关闭氮气的气路,采用水浴锅加热,利用四甲基硅烷沸点低的特点,将四甲基硅烷蒸发送入真空室内提供Si原子。在高纯氩气和硅烷的混合气氛下,采用偏压加直流混合的磁控溅射技术,通过溅射自制的Ti-Cu合金靶材在TiCuN中间层上制备Ti-Cu-Si缓冲层,得到Ti-Cu-Si/TiCuN/Ti-Cu/基材的复合材料;
六、制备TiCuSiN硬质层:再通入高纯氮气,在氮气加氩气加硅烷的混合气氛下,采用射频加偏压混合的磁控溅射方法,在Ti-Cu-Si缓冲层上制备TiCuSiN硬质层,得到TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu/基材的复合材料;
七、周期复合薄膜的制备:按照上述步骤三至步骤六的方法再重复做一次,制备双周期纳米结构的TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu/的复合薄膜,得到TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu//TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu/基材的复合材料。
进一步的,步骤一所述的基体前处理具体操作为:基体依次采用280#、500#、800#、1000#、1500#和2000#的金相砂纸打磨,打磨后在NaOH溶液中超声清洗5min~50min,再用酸中和、去离子水两道冲洗后抛光,抛光后的基体分别在丙酮、无水乙醇和DI水的超声浴中清洗5~50min,超声功率150~200W。
进一步的,步骤二所述的镀膜前的准备具体操作为:超声清洗后的基体在N2气下冷风吹干,放入磁控溅射真空室内,真空室抽真空,本底真空度1×10-4~1×10-3Pa。通入Ar并调节好气压0.5~1.5Pa,Ar流量为10~100sccm,在直流电源(电流0.3~2A)和偏压电源(-100V~-1500V)共同作用下溅射清洗并刻蚀基片5~50min得到纯净的基体。然后在同样的条件下预溅射靶材,得到纯净的靶材表面。
进一步的,步骤三所述的制备Ti-Cu打底层的具体操作为:通入高纯氩气(纯度98.9~99.999%),流量10~100sccm,靶材与基体距离100~300mm,工作气压0.5~1.5Pa,在偏压(-20~-200V)和直流电源(电流0.3~2A)共同作用下,磁控溅射自制的Ti-Cu合金靶材(Cu体积百分比0~60%),在基体上制备一定厚度的Ti-Cu打底层,溅射时间3~20min。
进一步的,步骤四所述的制备TiCuN中间层的具体操作为:再通入高纯氮气(纯度98.9~99.999%),流量5~30sccm,靶材与基体距离100~300mm,工作气压0.5~1.5Pa,在Ti-Cu打底层上,采用偏压加射频混合的磁控溅射方法(-20~-200V,100~300W),通过溅射自制的Ti-Cu合金靶(Cu体积百分比0~60%)制备TiCuN中间层,溅射时间3~20min。
进一步的,步骤五所述的制备Ti-Cu-Si缓冲层的具体操作为:采用水浴锅加热,水浴锅温度为40~80℃,利用四甲基硅烷沸点低的特点,将四甲基硅烷蒸发送入真空室内提供Si原子,流量为2~20sccm。采用偏压(-20~-200V)加直流(0.3~2A)混合的磁控溅射技术,通过溅射自制的Ti-Cu合金靶材(Cu体积百分数0~60%)在TiCuN中间层上制备Ti-Cu-Si缓冲层。氩气流量10~100sccm,靶材与基体距离100~300mm,工作气压0.5~1.5Pa,溅射时间3~20min。
进一步的,步骤六所述的制备TiCuSiN硬质层的具体操作为:再通入高纯氮气(98.9~99.999%),在氮气(流量5~30sccm)加氩气(流量10~100sccm)加硅烷(流量2~20sccm)的混合气氛下,采用射频(100~300W)加偏压(-20~200V)混合的磁控溅射方法,在Ti-Cu-Si缓冲层上制备TiCuSiN硬质层。Ti-Cu合金靶材中Cu体积百分数0~60%,水浴锅温度为40~80℃,靶材与基体距离100~300mm,工作气压0.5~1.5Pa,溅射时间10~40min。
进一步的,步骤七所述的制备周期复合薄膜的具体操作为:按照上述步骤三至步骤六的方法再重复做一次,得到双周期纳米结构的复合薄膜,总厚度1~5μm。
本发明的有益效果:
1、本发明采用直流加偏压加射频混合的磁控溅射技术,可在镁合金、钛合金、钢等金属基体上制备双周期、耐磨抗菌和高韧性的复合薄膜,利用四甲基硅烷沸点低的特点,通过挥发提供Si原子,直流磁控溅射的沉积率高,施加偏压可促进薄膜在基体上的扩散迁移和生长,改善薄膜结构,促使得到更为致密的薄膜,射频磁控溅射可以避免反应溅射过程中靶材中毒的现象,三组电源联合使用,取长补短,提高了薄膜质量和生产率,保证了薄膜制备过程中较高的等离子体密度和辉光的持续稳定,同时本发明制备的复合薄膜韧性高、耐磨,这在节能减排方面也有着重要意义。
2、将打底层、中间层、缓冲层和硬质层分两个周期共八层复合的方式,可以有效释放应力,降低薄膜的残余应力,提高膜基的结合力,膜基结合力对于薄膜在现实中的应用至关重要,如果膜基结合差,那即便薄膜有再好的性能,一旦脱落也无法保护基体。
3、薄膜的纳米晶结构,晶粒细小,和TiN、Cu3N、Si3N4硬质相和非晶相配合在一起具有良好的性能。
4、自制的Ti-Cu靶,将Cu丝镶嵌在纯Ti靶中,Cu在Ti靶中可人为控制其分布和含量,使得薄膜的制备更方便,不用更换靶材。如果想增加薄膜中Cu元素的含量,只需要将更多的Cu丝镶嵌在Ti靶中即可。
5、Cu的加入不仅能提高薄膜的韧性,释放应力,而且还具有良好抗菌性,这对于扩大镁合金、钛合金等金属基体的应用,特别是在医学方面的应用具有广阔的前景,这就在一定程度上扩大了该方法所制备薄膜的应用范围,更值得推广。
6、本发明方法安全可靠、绿色无污染、生产效率高、成本低、设备简单、操作方便,值得推广。
附图说明
图1为实施例1所制备的双周期、耐磨抗菌和高韧性复合薄膜的层结构示意图;
图2为实施例1中自制Ti-Cu靶材的示意图;
图3为实施例1中所制备的双周期、耐磨抗菌和高韧性复合薄膜的声发射曲线;
图4为实施例1中所制备的双周期、耐磨抗菌和高韧性复合薄膜的HRTEM;
图5为实施例1中所制备的双周期、耐磨抗菌和高韧性复合薄膜的摩擦系数曲线;
图6为实施例1中所制备的双周期、耐磨抗菌和高韧性复合薄膜的韧性测试压痕形貌。
具体实施方式
以下结合说明书附图和具体实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围,本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,包括以下步骤:
一、基体前处理:将切割后的基体经过金相砂纸打磨,NaOH碱液去油—酸中和—去离子水两道冲洗—抛光,然后分别在丙酮、无水乙醇和去离子水中超声清洗;
二、镀膜前准备:将步骤一清洗后的基体在N2气流下冷风吹干放入磁控溅射的真空室内,检查气密性后抽真空,待真空度低于1×10-3Pa后,通入氩气并调节真空室内气压,开启直流电源及偏压电源,溅射清洗并刻蚀基体5~50min,然后在相同的条件下对自制的靶材进行预溅射;
三、制备Ti-Cu打底层:通入高纯氩气,在偏压和直流电源作用下,磁控溅射自制的Ti-Cu合金靶材,在基体上制备一定厚度的Ti-Cu打底层;
四、制备TiCuN中间层:再通入高纯氮气,在Ti-Cu打底层上,采用偏压加射频混合的磁控溅射方法,通过溅射自制的Ti-Cu合金靶制备TiCuN中间层;
五、制备Ti-Cu-Si缓冲层:关闭氮气的气路,采用水浴锅加热,利用四甲基硅烷沸点低的特点,将四甲基硅烷蒸发送入真空室内提供Si原子。在高纯氩气和硅烷的混合气氛下,采用偏压加直流混合的磁控溅射技术,通过溅射自制的Ti-Cu合金靶材在TiCuN中间层上制备Ti-Cu-Si缓冲层;
六、制备TiCuSiN硬质层:再通入高纯氮气,在氮气加氩气加硅烷的混合气氛下,采用射频加偏压混合的磁控溅射方法,在Ti-Cu-Si缓冲层上制备TiCuSiN硬质层;
七、制备周期复合薄膜:按照上述步骤三至步骤六的方法再重复做一次,制备双周期纳米结构的TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu/的复合薄膜。
下面对本发明的实施例做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,包括以下步骤:
一、基体前处理:将尺寸为20mm×20mm×3mm的AZ31基体进行金相砂纸逐级打磨,在NaOH溶液中超声清洗去油,酸洗中和残余碱液并用去离子水两道冲洗后抛光处理,得到表面光洁的基体。再将基体分别在丙酮、无水乙醇和去离子水中超声清洗,超声清洗的时间为20min。其中所述基体的元素含量为:Al:3.0911wt.%,Zn:0.7862wt.%,Mn:0.2863wt.%,Mg:余量。所述打磨依次采用280#、500#、800#、1000#、1500#和2000#的金相砂纸打磨。
二、镀膜前准备:在N2气流下冷风吹干基体后,将基体放入磁控溅射的真空室内。将阴极靶安装好,将清洗过的基片固定在样品架上,调节靶材与样品架的距离为200mm,而后关闭真空室顶盖并检查真空室的气密性。随后抽真空,直至真空室内的真空度≤1×10- 3Pa。通入氩气并调节真空室内气压至1Pa,而后开启直流电源及偏压电源,溅射清洗并刻蚀AZ31基体。接下来,为了保证靶材表面的洁净,避免薄膜污染,在直流加偏压电源作用下对靶材进行预溅射,开启挡板,使预溅射下来的粒子沉积在挡板上,避免污染基体。
三、制备Ti-Cu打底层:调节氩气流量,在一定气压下,采用偏压和直流电源,磁控溅射自制的Ti-Cu合金靶材,在基体上制备一定厚度的Ti-Cu打底层。
四、制备TiCuN中间层:再通入高纯氮气,调节氮气流量,在一定气压下,在Ti-Cu打底层上,采用偏压加射频混合的磁控溅射方法,通过溅射自制的Ti-Cu合金靶制备TiCuN中间层,得到TiCuN/Ti-Cu/基体。
五、制备Ti-Cu-Si缓冲层:关闭氮气的气路,采用水浴锅加热,将四甲基硅烷蒸发送入真空室内提供Si原子,调节好四甲基硅烷的流量。在高纯氩气和硅烷的混合气氛下,采用偏压加直流混合的磁控溅射技术,通过溅射自制的Ti-Cu合金靶材在TiCuN中间层上制备Ti-Cu-Si缓冲层,得到Ti-Cu-Si/TiCuN/Ti-Cu/基体。
六、制备TiCuSiN硬质层:再通入高纯氮气,在氮气加氩气加硅烷的混合气氛下,采用射频加偏压混合的磁控溅射方法,在Ti-Cu-Si缓冲层上制备TiCuSiN硬质层,得到TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu/基体。
七、制备周期复合薄膜:按照上述步骤三至步骤六的方法再重复做一次,制备双周期纳米结构的TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu/的复合薄膜。
步骤一所述超声功率为200W。
步骤二所述直流电源的电流为0.5A,偏压电源电压为-1000V,靶材预溅射选用相同的参数,基体和靶材溅射的时间均为20min。
步骤三所述的氩气流量80sccm,纯度99.99%,直流电源的电流为0.5A,偏压电源电压为-100V,Ti-Cu靶中Cu的原子百分比为30%,工作气压1.0Pa,溅射时间10min。
步骤四所述的直流加偏压加射频的磁控溅射技术的具体操作为:再通入高纯氮气,纯度99.99%,流量15sccm,氩气流量80sccm,纯度99.99%,工作气压1.0Pa,在Ti-Cu打底层上,采用-100V偏压加射频混合的磁控溅射方法,射频电源功率为160W,射频频率为13.56MHz,通过溅射自制的Ti-Cu合金靶制备TiCuN中间层,Ti-Cu靶中Cu的体积百分比为30%,溅射时间10min。
步骤五所述的直流加偏压加射频的磁控溅射技术的具体操作为:关闭氮气的气路,采用60℃的水浴锅加热,将四甲基硅烷蒸发送入真空室内,设置流量10sccm。在高纯氩气和硅烷的混合气氛下,采用偏压加直流混合的磁控溅射技术,通过溅射自制的Ti-Cu合金靶材在TiCuN中间层上制备Ti-Cu-Si缓冲层。氩气流量80sccm,纯度99.99%,工作气压1.0Pa,直流电源的电流为0.5A,偏压电源电压为-100V,Ti-Cu靶中Cu的体积百分比为30%,溅射时间10min。
步骤六所述的直流加偏压加射频的磁控溅射技术的具体操作为:再通入高纯氮气,纯度99.99%,流量15sccm,在氮气加氩气加硅烷的混合气氛下,采用射频加偏压混合的磁控溅射方法,在Ti-Cu-Si缓冲层上制备TiCuSiN硬质层。氩气纯度99.99%,流量80sccm,四甲基硅烷流量10sccm,工作气压1.0Pa,Ti-Cu靶中Cu的体积百分比为30%,溅射时间30min。
步骤七所述的直流加偏压加射频的磁控溅射技术的具体操作为:按照上述步骤三至步骤六的方法再重复做一次,制备双周期纳米结构的TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu/的复合薄膜。复合薄膜总层数8层,总厚度3μm左右。
本实施例中按照步骤七得到的复合薄膜的层结构示意图如图1所示。
本方法采用直流加偏压加射频的复合磁控溅射技术,制备效率高,经济实用,薄膜性能良好,寿命较长。采用Ti-Cu作打底层,有效提高了膜/基结合性能,选用Ti-Cu-Si作缓冲层有效释放应力,提高薄膜韧性,而且双周期复合更能增强剥膜的韧性和使用性能。
图2为自制溅射Ti-Cu靶材的示意图,从图中可知,这种设计可更换铜丝的直径,改变铜丝在Ti靶表面镶嵌的位置以及镶嵌的数量,可以随意设计所需Cu含量的靶材,不用购买新的靶材,不仅节约成本,而且可操作性很强。
图3为复合薄膜划痕实验测试出的声发射曲线,由图3可知,本发明方法制备的复合薄膜的膜基结合力Lc1,即薄膜开始破裂的临界载荷为35N,表现出良好的结合性能。
图4为复合薄膜的HRTEM观测结果,F20型透射电子显微镜观察结果证明本方法得到的薄膜结构为纳米晶结构。
图5为复合薄膜的摩擦系数曲线,由图5可知,复合薄膜的摩擦系数较小,数值小于0.15,摩擦过程中摩擦系数波动较小,摩擦平稳,表现出良好的耐磨性能。
图6为显微硬度计加载后压入薄膜表面的压痕形貌,加载150g,由图6可看出,压痕形貌十分清晰,压痕边缘无褶皱,无破裂,表现出较高的韧性。
经过上述实验验证可知,本发明是一种较好的制备低应力、高结合强度厚膜的方法。

Claims (8)

1.一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,该方法包括以下步骤,
一、基体前处理:将基体线切割取样,经不同目数砂纸打磨后,在NaOH溶液中超声清洗除油污,酸洗中和后再用去离子水两道水洗并抛光,将抛光后的基体分别在丙酮、无水乙醇和去离子水中超声清洗;
二、镀膜前准备:将步骤一清洗后的基体在N2气流下冷风吹干放入磁控溅射的真空室内,检查真空室气密性,开启机械泵和分子泵抽真空,待真空室内真空度低于1×10-3 Pa,通入氩气并调节真空室内气压,开启直流电源及偏压电源,溅射清洗并刻蚀基体,然后在相同的条件下对靶材进行预溅射,溅射时将基体用挡板遮住,其特征在于:还包括以下步骤,
三、制备Ti-Cu打底层:通入高纯氩气,在偏压和直流电源作用下,磁控溅射自制的Ti-Cu合金靶材,在基体上制备Ti-Cu打底层;
四、制备TiCuN中间层:再通入高纯氮气,在Ti-Cu打底层上,采用偏压加射频混合的磁控溅射方法,通过溅射自制的Ti-Cu合金靶材制备TiCuN中间层;
五、制备Ti-Cu-Si缓冲层:关闭氮气的气路,采用水浴锅加热,利用四甲基硅烷沸点低的特点,将四甲基硅烷蒸发送入真空室内,提供Si原子,在高纯氩气和硅烷的混合气氛下,采用偏压加直流混合的磁控溅射技术,通过溅射自制的Ti-Cu合金靶材在TiCuN中间层上制备Ti-Cu-Si缓冲层;
六、制备TiCuSiN硬质层:再通入高纯氮气,在氮气加氩气加硅烷的混合气氛下,采用射频加偏压混合的磁控溅射方法,在Ti-Cu-Si缓冲层上制备TiCuSiN硬质层;
七、周期复合薄膜的制备:按照上述步骤三至步骤六的方法再重复做一次,制备双周期的TiCuSiN/Ti-Cu-Si/TiCuN/Ti-Cu纳米结构的复合薄膜;
所述自制的Ti-Cu合金靶材,将Cu丝镶嵌在纯Ti靶中,Cu在Ti靶中可人为控制其分布和含量,如果想增加薄膜中Cu元素的含量,只需要将更多的Cu丝镶嵌在Ti靶中即可。
2.根据权利要求1所述的一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,其特征在于:步骤一中NaOH、丙酮、无水乙醇和去离子水中各超声清洗5~50min。
3.根据权利要求1所述的一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,其特征在于:步骤二中氩气对基材进行清洗并刻蚀以及靶材预溅射的真空室气压为0.5Pa~1.5Pa,基体偏压为-100V~-1500V,直流电流0.3~2A,Ar流量为10~100sccm,氩气清洗并刻蚀5min~50min,得到表面清洁的基体和靶材表面。
4.根据权利要求1所述的一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,其特征在于:步骤三中氩气的纯度98.9~99.999%,基体偏压为-20V~-200V,直流电流0.3~2A,Ar流量为10~100sccm,基体与靶材距离100~300mm,工作气压0.5~1.5Pa,Ti-Cu合金靶材中Cu体积百分数30~70%,沉积时间3~20min。
5.根据权利要求1所述的一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,其特征在于:步骤四中氮气纯度98.9~99.999%,射频功率为100~300W,基体偏压-20~-200V,基体与靶材距离100~300mm,Ar流量为10~100sccm,N2流量为5~30sccm,工作气压0.5~1.5Pa,Ti-Cu合金靶材中Cu体积百分数30~70%,溅射时间3~20min。
6.根据权利要求1所述的一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,其特征在于:步骤五中氩气纯度98.9~99.999%,Ar流量为10~100sccm,直流电流为0.3~2A,基体偏压-20~-200V,基体与靶材距离100~300mm,工作气压0.5~1.5Pa,Ti-Cu合金靶材中Cu体积百分数30~70%,溅射时间3~20min,四甲基硅烷水浴锅温度为40~80℃,流量2~20sccm。
7.根据权利要求1所述的一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,其特征在于:步骤六中氮气纯度98.9~99.999%,流量为5~30sccm,氩气纯度98.9~99.999%,Ar流量为10~100sccm,射频功率为100~300W,基体偏压-20~-200V,基体与靶材距离100~300mm,工作气压0.5~1.5Pa,Ti-Cu合金靶材中Cu体积百分数30~70%,溅射时间10~40min,四甲基硅烷水浴锅温度为40~80℃,流量2~20sccm。
8.根据权利要求1所述的一种双周期耐磨抗菌和高韧性复合薄膜的制备方法,其特征在于:步骤七按照步骤三至六重复做一次,循环2个周期,复合薄膜共计八层,总厚度1~5μm。
CN202011058562.3A 2020-09-30 2020-09-30 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法 Active CN112359319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011058562.3A CN112359319B (zh) 2020-09-30 2020-09-30 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011058562.3A CN112359319B (zh) 2020-09-30 2020-09-30 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN112359319A CN112359319A (zh) 2021-02-12
CN112359319B true CN112359319B (zh) 2022-11-01

Family

ID=74508304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011058562.3A Active CN112359319B (zh) 2020-09-30 2020-09-30 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112359319B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755804B (zh) * 2021-08-13 2023-09-12 中国电子科技集团公司第五十五研究所 一种近零应力掺钪氮化铝薄膜制备方法
CN115927937B (zh) * 2022-11-04 2024-06-11 中国科学院合肥物质科学研究院 一种MnxCu(1-x)/Ti双层结构减振涂层及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983165B1 (ko) * 1999-12-09 2010-09-20 도쿄엘렉트론가부시키가이샤 티탄실리콘나이트라이드막의 성막방법 및 반도체장치의 제조방법
CN106498396B (zh) * 2016-11-03 2019-01-15 佳木斯大学 镁合金表面低应力疏水复合TiSiCN薄膜的制备方法
CN109576651A (zh) * 2017-09-29 2019-04-05 中国科学院金属研究所 一种不锈钢器皿表面抗菌耐磨涂层及其制备方法和应用
KR102203258B1 (ko) * 2018-01-23 2021-01-14 엘지전자 주식회사 Ti합금 나노 복합체 코팅막 및 그 제조 방법
CN108977806B (zh) * 2018-08-03 2020-04-28 南昌航空大学 Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法

Also Published As

Publication number Publication date
CN112359319A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN100412228C (zh) 铝或铝合金基体表面离子注入与沉积复合强化处理方法
CN106222610B (zh) 一种纳米复合硬质涂层及其制备方法
CN112359319B (zh) 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法
CN102392246B (zh) 一种金属表面处理工艺
CN107022761A (zh) 基于类金刚石薄膜的复合厚膜及其镀膜方法
CN111074224B (zh) 一种耐腐蚀高熵合金氮化物涂层、其制备方法及应用
CN107587133B (zh) 一种钨探针复合类金刚石涂层及其制备方法
CN109913771B (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN108796453B (zh) 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
CN111485209A (zh) 高熵合金/wc硬质层纳米多层薄膜、其制备方法及应用
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
JP2022520091A (ja) ネオジム鉄ホウ素磁石の保磁力と耐摩耗性及び耐食性を改善する方法
CN107858684B (zh) 金属-类金刚石复合涂层及其制备方法与用途以及涂层工具
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN112853281B (zh) 碳基多层薄膜及其制备方法和应用
CN112080724B (zh) 一种防腐耐磨的多组元硬质复合涂层的制备方法
CN112662939B (zh) 一种表面沉积涂层的超薄永磁体
CN102373431A (zh) 铝合金表面防腐处理方法及其制品
CN108823544A (zh) 基于氮化钛复合膜及其制备方法
CN107881469B (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN110438421A (zh) 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
CN102534489A (zh) 镀膜件及其制造方法
CN109023265A (zh) CrN/CrNiN纳米多层涂层及其制备方法、纳米多层涂层及其制备方法与应用
CN109136864A (zh) 一种在磁钢表面真空涂覆铝锡复合涂层的方法
CN1035201C (zh) 离子束增强沉积合成氮化钛薄层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant