CN108977806B - Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法 - Google Patents

Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法 Download PDF

Info

Publication number
CN108977806B
CN108977806B CN201810878425.0A CN201810878425A CN108977806B CN 108977806 B CN108977806 B CN 108977806B CN 201810878425 A CN201810878425 A CN 201810878425A CN 108977806 B CN108977806 B CN 108977806B
Authority
CN
China
Prior art keywords
micro
arc oxidation
gamma
sample
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810878425.0A
Other languages
English (en)
Other versions
CN108977806A (zh
Inventor
徐吉林
潘萌
罗军明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongpu Information Technology Co.,Ltd.
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201810878425.0A priority Critical patent/CN108977806B/zh
Publication of CN108977806A publication Critical patent/CN108977806A/zh
Application granted granted Critical
Publication of CN108977806B publication Critical patent/CN108977806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种Gamma‑TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法,方法步骤为:(一)先将Gamma‑TiAl金属间化合物表面用砂纸打磨预处理;(二)放入电解液液以Gamma‑TiAl为正极、工作槽为负极进行微弧氧化处理;(三)微弧氧化处理后,蒸馏水冲洗、干燥,获得微弧氧化陶瓷涂层;(四)将微弧氧化处理试样作为镀膜样品,以纯金属为靶材,进行金属薄膜溅射,然后升温加热并保温;(五)调节溅射偏压、溅射功率、向样品表面镀膜;(六)待温度降至室温即可在微弧氧化处理试样表面获得一定厚度金属薄膜。本发明的技术效果是:制备方法简单方便、适应性强度,复合涂层可有效提高Gamma‑TiAl金属间化合物抗高温氧化性能、抗温室及高温腐蚀性能和抗高温磨损性能。

Description

Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备 方法
技术领域
本发明涉及一种复合涂层的制备方法,尤其涉及Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法。
背景技术
金属间化合物基高温合金是近年来研发的一类具有重要应用前景的轻比重高温结构材料。与Ti合金和Ni基高温合金相比较,TiAl金属间化合物具有明显的优势。除了塑性之外,Gamma-TiAl金属间化合物其他各方面的性能均高于Ti合金,特别是TiAl金属间化合物的密度小,仅为Ni基高温合金密度的一半,其他性能又与Ni基高温合金非常相近。因此,TiAl被认为是非常前途的轻质高温结构材料。然而TiAl基金属间化合物依然存在700℃以上抗氧化性能、耐腐蚀性能和耐磨性能均急剧降低等缺点,正是这些缺点也限制了TiAl 基金属间化合物的进一步开发和在实际生产中的应用。
目前,提高TiAl基金属间化合物高温性能的途径主要有两种,一种是从合金设计的角度出发,向其中加入各种能够提高基体抗氧化性的合金元素,即合金化;另一种是通过表面处理技术在合金表面形成一层高温防护涂层,从而提高合金的抗高温性能。合金化方法可在一定程度上提升TiAl的高温性能,但也会不同程度地降低其综合力学性能,如增加脆性和降低疲劳性能等。所以表面处理技术是提升TiAl合金高温性能最为行之有效的方法。目前主要有传统的扩散渗技术、预氧化、硫化、渗氮等,热喷涂、激光熔覆、离子镀膜、双辉、磁控溅射和PVD、CVD等多种真空沉积技术以及阳极氧化和微弧氧化等新型电化学方法。这些方法均能在一定程度提高TiAl的高温性能,但也存在各自的缺陷。随着航空航天材料使用领域的扩展,TiAl基金属间化合物表面改性工艺也提出了新的要求,单一涂层已经难于满足其应用需求。
发明内容
本发明的目的是为了解决Gamma-TiAl金属间化合物制备方法中的上述技术问题,而提供Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法。
本发明是这样来实现的,Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法,方法步骤为:
(一)先将Gamma-TiAl金属间化合物表面用砂纸打磨预处理,清洁表面杂质;
(二)放入电解液液以Gamma-TiAl为正极、工作槽为负极进行微弧氧化处理;
(三)微弧氧化处理后,蒸馏水冲洗、干燥,获得微弧氧化陶瓷涂层;
(四)将微弧氧化处理试样作为镀膜样品,以纯金属为靶材,进行金属薄膜溅射,然后升温加热并保温;
(五)调节溅射偏压、溅射功率、向样品表面镀膜,镀膜时间为30min~2h;
(六)待温度降至室温即可在微弧氧化处理试样表面获得一定厚度金属薄膜,即在Gamma-TiAl金属间化合物表面获得了所需要的金属/陶瓷复合涂层。
进一步的,步骤(二)中,电解液为Na2SiO3和KOH混合水溶液,其浓度分别为15~25g/L和1~5g/L。
进一步的,步骤(二)中,电解液为NaAlO2和NaH2PO2·H2O混合水溶液,其浓度分别为15~25g/L和0.5~25g/L。
进一步的,步骤(三)中,纯金属为是铝或锆或钛。
本发明的技术效果是:(1)首次提出采用微弧氧化技术在Gamma-TiAl表面原位生长氧化物陶瓷涂层,再协同磁控溅射技术在微弧氧化陶瓷涂层表面沉积一层金属薄膜(如Al、Zr、Ti等),形成金属/陶瓷复合涂层,通过金属薄膜来封闭微弧氧化陶瓷涂层表面的多孔结构,并在高温自动形成金属氧化物,进一步阻碍腐蚀介质和O向基体扩散,从而提高TiAl的高温抗氧化能力和高温耐蚀性;(2)制备方法简单方便、适应性强度,复合涂层可有效提高Gamma-TiAl 金属间化合物抗高温氧化性能、抗温室及高温腐蚀性能和抗高温磨损性能。
附图说明
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明,其中:
图1为Gamma-TiAl在20g/L Na2SiO3和2g/L KOH溶液中进行400V微弧氧化处理10min获得的XRD图谱;
图2为图1获得的微弧氧化试样表面形貌;
图3为图1获得的微弧氧化试样经50W磁控溅射铝靶2h的表面形貌;
图4为TiAl基体、微弧氧化涂层(MAO coating)试样和复合涂层试样(Al+ MAOcoating)在900℃氧化100h的增重曲线。
具体实施方式
先将Gamma-TiAl金属间化合物表面用砂纸打磨预处理;再放入电解液液以Gamma-TiAl为正极、工作槽为负极进行微弧氧化处理;电解液为Na2SiO3 和KOH混合水溶液,其浓度分别为15~25g/L和1~5g/L;电解液还可以是NaAlO2 和NaH2PO2·H2O混合水溶液,其浓度分别为15~25g/L和0.5~25g/L。微弧氧化处理后,蒸馏水冲洗、干燥,获得微弧氧化陶瓷涂层;接着将微弧氧化处理试样作为镀膜样品,以纯金属为靶材,进行金属薄膜溅射,这纯金属可以是铝、锆、钛;升温加热并保温;调节溅射偏压、溅射功率、向样品表面镀膜一定时间30min~2h;待温度降至室温即可在微弧氧化处理试样表面获得一定厚度金属薄膜,即在Gamma-TiAl金属间化合物表面获得了所需要的金属/陶瓷复合涂层。
磁控溅射Al膜,一般功率为50~100W,时间1~2h;Ti膜,一般功率为 100~150W,时间1~2h;Zr膜,一般功率为150~200W,时间1~2h。
以Na2SiO3和KOH微弧氧化制备陶瓷涂层和磁控溅射Al膜,形成Al/陶瓷涂层为列:
图1是Gamma-TiAl在20g/L Na2SiO3和2g/L KOH溶液中进行400V微弧氧化处理10min获得的XRD图谱。涂层中仅有Al2TiO5结晶相,而涂层中还含有SiO2非晶相。这一涂层在3.5%NaCl水溶液的耐蚀性较基体可提高2个数量级。其表面形貌如图2所示,呈现出珊瑚礁结构。微弧氧化试样经50W磁控溅射铝靶2h,在其表面形成了一层3~4μm的金属Al薄膜,其表面形貌如图3 所示。磁控溅射铝膜可完整的将微弧氧化涂层形貌覆盖,即很好地将陶瓷涂层的多孔结构封闭,而铝膜较为致密,其中铝颗粒的晶粒在2~5μm。
图4为TiAl基体、微弧氧化涂层(MAO coating)试样和复合涂层试样(Al+ MAOcoating)在900℃氧化100h的增重曲线。从图中看见,三种试样的增重均随着时间的延长而增加,但MAO涂层和复合涂层试样的增重远低于TiAl基体试样,而且复合涂层试样的增重又较MAO涂层试样进一步降低。当900℃氧化 100h时,基体试样增重高达30.42mg/cm2,仅微弧氧化试样增重7.77mg/cm2,而复合涂层试样仅增重3.35mg/cm2,较基体下降近一个数量级,较微弧氧化试样下降56.9%。由此可见,复合涂层试样可非常有效地提高TiAl的抗高温氧化性能。
本发明首次提出采用微弧氧化技术在Gamma-TiAl表面原位生长氧化物陶瓷涂层,再协同磁控溅射技术在微弧氧化陶瓷涂层表面沉积一层金属薄膜(如Al、Zr、Ti等),形成金属/陶瓷复合涂层,通过金属薄膜来封闭微弧氧化陶瓷涂层表面的多孔结构,并在高温自动形成金属氧化物,进一步阻碍腐蚀介质和 O向基体扩散,从而提高TiAl的高温抗氧化能力和高温耐蚀性;(2)制备方法简单方便、适应性强度,复合涂层可有效提高Gamma-TiAl金属间化合物抗高温氧化性能、抗温室及高温腐蚀性能和抗高温磨损性能。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (1)

1.Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法,方法步骤为:
(一)先将Gamma-TiAl金属间化合物表面用砂纸打磨预处理,清洁表面杂质;
(二)放入电解液液以Gamma-TiAl为正极、工作槽为负极进行微弧氧化处理,采用20g/LNa2SiO3和2g/L KOH混合水溶液,进行400V微弧氧化处理10min;
(三)微弧氧化处理后,蒸馏水冲洗、干燥,获得微弧氧化陶瓷涂层,涂层中包含Al2TiO5结晶相和SiO2非晶相;
(四)将微弧氧化处理试样作为镀膜样品,以铝为靶材,进行金属薄膜溅射,然后升温加热并保温;
(五)调节溅射偏压、溅射功率、向样品表面镀膜,经50W磁控溅射铝靶2h,其表面形成了一层3~4μm的金属铝薄膜,铝颗粒的晶粒在2~5μm;
(六)待温度降至室温即可在微弧氧化处理试样表面获得一定厚度金属薄膜,即在Gamma-TiAl金属间化合物表面获得了所需要的金属/陶瓷复合涂层。
CN201810878425.0A 2018-08-03 2018-08-03 Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法 Active CN108977806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810878425.0A CN108977806B (zh) 2018-08-03 2018-08-03 Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810878425.0A CN108977806B (zh) 2018-08-03 2018-08-03 Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法

Publications (2)

Publication Number Publication Date
CN108977806A CN108977806A (zh) 2018-12-11
CN108977806B true CN108977806B (zh) 2020-04-28

Family

ID=64554642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810878425.0A Active CN108977806B (zh) 2018-08-03 2018-08-03 Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN108977806B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110886001B (zh) * 2019-12-06 2020-10-27 重庆文理学院 一种有效提高钛合金耐应力腐蚀性能的方法
CN112359319B (zh) * 2020-09-30 2022-11-01 南昌航空大学 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法
CN114717626B (zh) * 2022-05-10 2024-02-13 上海交通大学 一种通过预制氧化膜延长高温合金服役寿命的方法
CN114808073B (zh) * 2022-05-10 2024-08-23 上海交通大学 一种提高高温合金氧化膜抗剥落性能的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674218B (zh) * 2015-03-21 2017-05-31 西北有色金属研究院 一种钛基体表面高温抗氧化复合涂层的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
γ-TiAl合金磁控溅射Al涂层的抗高温氧化性能;于修水等;《金属热处理》;20130830;第38卷(第8期);全文 *
基于微弧氧化技术的复合涂层的研究现状;樊志斌等;《特种铸造及有色合金》;20140131;第34卷(第1期);全文 *

Also Published As

Publication number Publication date
CN108977806A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108977806B (zh) Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法
CN107620033B (zh) 一种高纯强致密max相涂层的制备方法
CN112909281B (zh) 不锈钢金属双极板及其制备方法和燃料电池
CN106252682B (zh) 抑制柱状晶的燃料电池金属极板多相涂层及其制备方法
WO2021259046A1 (zh) 一种Cr-Al-C系MAX相涂层的制备方法及其应用
CN103590008B (zh) 一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法
CN109943803B (zh) 抗熔融铝硅合金腐蚀复合涂层及其制备方法和应用
CN104195569B (zh) 一种镁合金微波组件盖板表面复合处理方法
CN110257780B (zh) 一种多元合金靶材、多元金属/氮化物复合涂层及其制备方法
CN115305443B (zh) 一种锆基非晶多组元氧化物涂层的制备方法及应用
CN103966615B (zh) 一种1200℃完全抗氧化的二元微量活性元素掺杂的PtNiAl粘结层及其制备方法
CN111647851A (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN111455333B (zh) 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法
CN114717516B (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN110257771A (zh) 一种高Al含量的c-CrAlSiN硬质涂层及其制备方法
CN110484866B (zh) 一种铝合金表面防腐涂层的制备方法
CN106544627A (zh) 一种抗高温热腐蚀复合涂层及其制备方法
CN110607510A (zh) 一种磁控溅射制备非晶金属钒薄膜的方法
CN104617316B (zh) 一种质子交换膜燃料电池金属双极板纳米晶ZrBN/Zr复合涂层及其制备方法
CN102560485B (zh) 镁合金表面制备硬质防护膜的方法
CN113667932A (zh) 一种镁合金防护涂层及其制备方法
CN112226768B (zh) 一种微弧氧化CrAlN涂层的复合制备方法
CN109207939B (zh) 一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法
CN111962029A (zh) 一种高温自润滑(Cr,V)2AlC MAX相涂层及其制备方法与应用
CN114934258B (zh) 一种SiAlON涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220401

Address after: 150000 No. 50, Daqing sub Road, Xiangfang District, Harbin, Heilongjiang

Patentee after: Tongpu Information Technology Co.,Ltd.

Address before: 330063 No. 696 Feng Nan Road, Jiangxi, Nanchang

Patentee before: NANCHANG HANGKONG University

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation method of metal/ceramic composite coating on the surface of Gamma-TiAl intermetallic compound

Effective date of registration: 20230112

Granted publication date: 20200428

Pledgee: Heilongjiang Xinzheng financing guarantee Group Co.,Ltd.

Pledgor: Tongpu Information Technology Co.,Ltd.

Registration number: Y2023230000014

PE01 Entry into force of the registration of the contract for pledge of patent right